Current and Future Plans for FEniCS

Anders Logg logg@simula.no

Simula Research Laboratory

BIT Circus Stockholm, August 31 - September 1 2006

《曰》 《聞》 《言》 《言》

5900

≣

Outline

The FEniCS Project

Introduction Examples Efficiency

Current Plans

Overview Linear algebra The new mesh

Future Plans

< 🗆

æ

5990

=

The FEniCS Project

- Initiated in 2003
- Develop free software for the Automation of CMM
- An international project with collaborators from Simula Research Laboratory, KTH, Chalmers, Delft University of Technology, Texas Tech, University of Chicago, and Argonne National Laboratory
- The Automation of CMM:
 - (i) The automation of discretization (done)
- (ii) The automation of discrete solution
- (iii) The automation of error control
- (iv) The automation of modeling
- (v) The automation of optimization

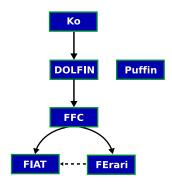
æ

Key Features

- ► Simple and intuitive object-oriented API, C++ or Python
- Automatic and efficient evaluation of variational forms
- Automatic and efficient assembly of linear systems
- General families of finite elements, including arbitrary order continuous and discontinuous Lagrange elements
- Arbitrary mixed elements may be defined
- High-performance parallel linear algebra
- Triangular and tetrahedral meshes, adaptive mesh refinement
- Multi-adaptive mcG(q)/mdG(q) and mono-adaptive cG(q)/dG(q) ODE solvers
- Support for a range of output formats for post-processing, including DOLFIN XML, ParaView/Mayavi/VTK, OpenDX, Tecplot, Octave, MATLAB, GiD

Introduction Examples Efficiency

Components



- DOLFIN is the C++/Python interface of FEniCS
- FIAT is the finite element backend of FEniCS
- FFC is a just-in-time compiler for variational forms
- FErari functions as an optimizing backend for FFC
- Ko is a special-purpose interface for simulation of mechanical systems
- Puffin is a light-weight version of FEniCS for Octave/MATLAB

< O > < 🗗 >

うくぐ

The FEniCS Project	Introduction
Current Plans	Examples
Future Plans	Efficiency

Poisson's Equation

Find $U \in V_h$ such that a(v, U) = L(v) for all $v \in \hat{V}_h$, where

$$\begin{array}{rcl} a(v,U) &=& \int_{\Omega} \nabla v \cdot \nabla U \, \mathrm{d}x \\ L(v) &=& \int_{\Omega} v f \, \mathrm{d}x \end{array}$$

element = FiniteElement("Lagrange", ...)

```
v = TestFunction(element)
```

```
U = TrialFunction(element)
```

```
f = Function(element)
```

```
a = dot(grad(v), grad(U))*dx
```

Introductio Examples Efficiency

The Stokes equations

Differential equation:

$$\begin{array}{rcl} -\Delta u + \nabla p &=& f & \mbox{ in } \Omega \\ \nabla \cdot u &=& 0 & \mbox{ in } \Omega \\ u &=& u_0 & \mbox{ on } \partial \Omega \end{array}$$

• Velocity
$$u = u(x)$$

• Pressure
$$p = p(x)$$

< □ >

< 🗗 🕨

< ≣⇒

< ≣⇒

€

DQC+

Introduction Examples Efficiency

Stokes with Taylor–Hood elements

Find
$$(U, P) \in V_h = V_h^u \times V_h^p$$
 such that

$$\int_{\Omega} \nabla v : \nabla U - (\nabla \cdot v)P + q\nabla \cdot U \, \mathrm{d}x = \int_{\Omega} v \cdot f \, \mathrm{d}x$$

for all $(v,q)\in \hat{V}_h=\hat{V}_h^u\times \hat{V}_h^p$

- Approximating spaces V
 h and V
 h must satisfy the Babuška–Brezzi inf–sup condition
- Use Taylor–Hood elements:
 - P_q for velocity
 - P_{q-1} for pressure

The FEniCS Project	Introduction
Current Plans	Examples
Future Plans	Efficiency

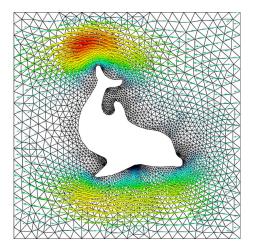
Implementation

```
P2 = FiniteElement("Vector Lagrange", "triangle", 2)
P1 = FiniteElement("Lagrange", "triangle", 1)
TH = P2 + P1
(v, q) = TestFunctions(TH)
(U, P) = TrialFunctions(TH)
f = Function(P2)
a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U))*dx
L = dot(v, f)*dx
```

신물 에 물 에 물 에 드

Introduction Examples Efficiency

Solution (velocity field)



< 口 > < 同 >

-

.≣ . ▶

The FEniCS Project	Introduction
Current Plans	Examples
Future Plans	Efficiency

Stabilization

- Circumvent the Babuška–Brezzi condition by adding a stabilization term
- Modify the test function according to

$$(v,q) \to (v,q) + (\delta \nabla q,0)$$

with $\delta = \beta h^2$

Find $(U,P) \in V_h = V_h^u \times V_h^p$ such that

 $\int_{\Omega} \nabla v : \nabla U - (\nabla \cdot v)P + q \nabla \cdot U + \delta \nabla q \cdot \nabla P \, \mathrm{d}x = \int_{\Omega} (v + \delta \nabla q) \cdot f \, \mathrm{d}x$

for all $(v,q)\in \hat{V}_h=\hat{V}_h^u\times \hat{V}_h^q$

The FEniCS Project	Introduction
Current Plans	Examples
Future Plans	Efficiency

Implementation

```
vector = FiniteElement("Vector Lagrange", "triangle", 1)
scalar = FiniteElement("Lagrange", "triangle", 1)
system = vector + scalar
(v, q) = TestFunctions(system)
(U, P) = TrialFunctions(system)
f = Function(vector)
h = Function(scalar)
d = 0.2 * h * h
a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U) + \setminus
     d*dot(grad(q), grad(P)))*dx
L = dot(v + mult(d, grad(q)), f)*dx
```

Sac

The FEniCS Project	Introduction
Current Plans	Examples
Future Plans	Efficiency

Benchmarks

- Measure CPU time for the evaluation of the element tensor (the "element stiffness matrix")
- Code automatically generated by the form compiler FFC
- Compute speedup compared to a standard quadrature-based approach with loops over quadrature points

Form	q = 1	q = 2	q = 3	q = 4	q = 5	q = 6	q = 7	q = 8
Mass 2D	12	31	50	78	108	147	183	232
Mass 3D	21	81	189	355	616	881	1442	1475
Poisson 2D	8	29	56	86	129	144	189	236
Poisson 3D	9	56	143	259	427	341	285	356
Navier–Stokes 2D	32	33	53	37				—
Navier–Stokes 3D	77	100	61	42	—		—	—
Elasticity 2D	10	43	67	97				—
Elasticity 3D	14	87	103	134		—		—

The FEniCS Project Current Plans Future Plans Efficiency

Compiling Poisson's equation: non-optimized, 16 ops

```
void eval(real block[], const AffineMap& map) const
ł
  [...]
  block[0] = 0.5*G0_0_0 + 0.5*G0_0_1 +
               0.5*G0 \ 1 \ 0 \ + \ 0.5*G0 \ 1 \ 1:
  block[1] = -0.5*GO \ O \ O \ - \ 0.5*GO \ 1 \ O;
  block[2] = -0.5*G0_0_1 - 0.5*G0_1_1;
  block[3] = -0.5*G0 \ 0 \ 0 \ - \ 0.5*G0 \ 0 \ 1:
  block[4] = 0.5*G0_0_0;
  block[5] = 0.5*G0 \ 0 \ 1:
  block[6] = -0.5*G0 \ 1 \ 0 \ - \ 0.5*G0 \ 1 \ 1;
  block[7] = 0.5*G0_1_0;
  block[8] = 0.5*G0_1_1;
}
```

소 曰 ▷ (一司 ▷ (三 ▷ (三 ▷)

∍

DQC

The FEniCS Project Current Plans Future Plans Efficiency

Compiling Poisson's equation: ffc -0, 11 ops

```
void eval(real block[], const AffineMap& map) const
ł
  [...]
  block[1] = -0.5*G0_0_0 + -0.5*G0_1_0;
  block[0] = -block[1] + 0.5*G0_0_1 + 0.5*G0_1_1;
  block[7] = -block[1] + -0.5*GO_0_0;
  block[6] = -block[7] + -0.5*G0_1_1;
  block[8] = -block[6] + -0.5*G0_1_0;
  block[2] = -block[8] + -0.5*G0_0_1;
  block[5] = -block[2] + -0.5*G0_1_1;
  block[3] = -block[5] + -0.5*GO 0 0:
  block[4] = -block[1] + -0.5*G0 1 0;
}
```

 The FEniCS Project
 Introduction

 Current Plans
 Examples

 Future Plans
 Efficiency

Compiling Poisson's equation: ffc -f blas, 36 ops

```
void eval(real block[], const AffineMap& map) const
{
   [...]
   cblas_dgemv(CblasRowMajor, CblasNoTrans,
        blas.mi, blas.ni, 1.0,
        blas.Ai, blas.ni, blas.Gi,
        1, 0.0, block, 1);
}
```

A.

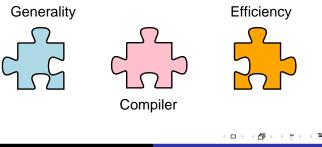
うくぐ

Introductio Examples Efficiency

The compiler approach

- Any form
- Any element
- Maximum efficiency

Possible to combine generality with efficiency by using a compiler approach:



Overview Linear algebra The new mesh

Recent updates (DOLFIN 0.6.2 / FFC 0.3.3)

- Release of DOLFIN 0.6.2 and FFC 0.3.3 (any day now)
- Improved linear algebra supporting PETSc and uBlas
- FErari optimization in FFC
- Much improved ODE solvers
- Boundary integrals
- PyDOLFIN, the Python interface of DOLFIN
- Bugzilla database
- Improved manual, compiler support, demos, matrix factory, file formats, ...

A.

Overview Linear algebra The new mesh

Coming updates (DOLFIN 0.6.3)

A new mesh library!

< □ >

€

DQC+

Overview Linear algebra The new mesh

Linear algebra backends

Complete support for PETSc

- High-performance parallel linear algebra
- Krylov solvers, preconditioners
- Complete support for uBlas
 - BLAS level 1, 2 and 3
 - Dense, packed and sparse matrices
 - ► C++ operator overloading and expression templates
 - Krylov solvers, preconditioners added by DOLFIN
- Uniform interface to both linear algebra backends
- LU factorization by UMFPACK for uBlas matrix types
- Eigenvalue problems solved by SLEPc for PETSc matrix types
- Matrix-free solvers ("virtual matrices")

A >

The FEniCS Project	Overview
Current Plans	Linear algebra
Future Plans	The new mesh

Matrices and vectors

```
Matrix A(M, N);
Vector x(N);
A(5, 5) = 1.0;
x(3) = 2.0;
```

- Default data types: Matrix, Vector
- Additional data types: SparseMatrix, DenseMatrix, PETScMatrix, uBlasMatrix
- Common interface: GenericMatrix, GenericVector

Overview Linear algebra The new mesh

Solving linear systems (simple)

Direct solution by LU factorization:

LU::solve(A, x, b);

Iterative solution by ILU-preconditioned GMRES:

GMRES::solve(A, x, b);

< 🗗 🕨

< <p>Image: Image: Imag

Overview Linear algebra The new mesh

Solving linear systems (contd.)

Specify Krylov method and preconditioner:

KrylovSolver solver(gmres, ilu); solver.solve(A, x, b);

- Krylov methods: cg, gmres, bicgstab
- Preconditioners: jacobi, sor, ilu, icc, amg

< D

A

The FEniCS Project Current Plans Future Plans The new mesh

Key features

- Dimension-independent interface
- Efficient (close to optimal) storage
- Automatic computation of connectivity
- Parallel

< D >

67 ▶ < Ξ

5990

.≣ . ▶

The FEniCS Project	Overview
Current Plans	Linear algebra
Future Plans	The new mesh

Benchmarks

Initial results for some random mesh:

Task	Old mesh	New mesh
Reading and initializing 1000 times	0.9 s	0.21 s
Refining mesh uniformly 8 times	27.2 s	2.14 s
Iterating over connectivity 100 times	18.2 s	1.86 s
Memory usage	281 MB	43 MB

< □ >

67 ▶ < Ξ

< ≣ →

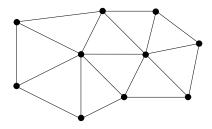
€

DQC+

The FEniCS Project	Overview
Current Plans	Linear algebra
Future Plans	The new mesh

Mesh abstractions

- Mesh = (Topology, Geometry)
- Topology = ({ Mesh entities }, Connectivity)
- Mesh entity = (dim, index)
- Connectivity = { Incidence relations d d' }



うくぐ

The FEniCS Project	Overview
Current Plans	Linear algebra
Future Plans	The new mesh

Mesh entities

Entity	Dimension	Codimension
Vertex	0	-
Edge	1	_
Face	2	-
Facet	_	1
Cell	_	0

- Mesh entity defined by (dim, index)
- Named mesh entities: Vertex, Edge, Face, Facet, Cell

< 🗆

The FEniCS Project	Overview
Current Plans	Linear algebra
Future Plans	The new mesh

Mesh iterators

Basic iteration:

```
Mesh mesh;
for (MeshEntityIterator e(mesh, d); !e.end(); ++e)
for (MeshEntityIterator f(e, 0); !f.end(); ++f)
f->foo();
```

Iteration with named iterators:

```
for (CellIterator c(mesh); !c.end(); ++c)
for (VertexIterator v(c); !v.end(); ++v)
v->foo();
```

SOC.

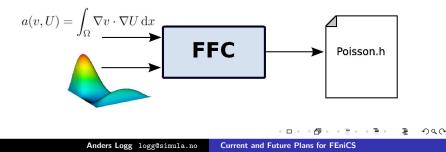
Highlights

UFL/UFC

- Automation of error control
 - Automatic generation of dual problems
 - Automatic generation of a posteriori error estimates
- Discontinuous Galerkin methods
- Mesh algorithms
 - Adaptive mesh refinement
 - Mesh algorithms for ALE methods
- Improved geometry support
- Finite element exterior calculus

A common framework

- UFL Unified Form Language
- UFC Unified Form-assembly Code
- Unify, standardize, extend
- Working protototypes: FFC (Logg), SyFi (Mardal)



FEniCS'06 in Delft November 8-9

http://www.fenics.org/

《曰》 《聞》 《言》 《言》 言