
Mathematical Aspects of Automating
Finite Element Computation

Robert C. Kirby
kirby@uchicago.edu

The University of Chicago

Mathematical Aspects of Automating Finite Element Computation – p.1/55



Acknowledgements

Collaborators:
Anders Logg, TTI-C
Kevin Long, SLNL
Ridgway Scott, UC
Dmitry Karpeev and Matt Knepley, ANL

U.S. Dept. of Energy

Mathematical Aspects of Automating Finite Element Computation – p.2/55



Introduction

Survey efforts at automatic PDE simulation

Meta-theme 1: code is object ofmathematical
investigation

Meta-theme 2: overarching structure in FEM

Technical content:
Representing discrete multilinear forms
Optimizing the evaluation of variational forms
Reasoning about form syntax with sieves
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Motivation

Effort is focused on Method X for Problem Y

Particular experts find development easy (most
people do not)

Difficult to explore wide range of models/methods

Implicit assumption: Mathematics tells you what to
program, not how to program it
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Automating PDE simulation

New Languages Analysa, FreeFEM
Embedded LanguagesSundance, FFC, Lifev
Library support Albert , Deal

The situation is more complex than ODE:

General purpose code forut = f(u) available since
1970’s

Steady increases in accuracy, adaptive error control,
differential algebraic equations, etc

But no method works for “all” PDE!
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Example: Sundance

Main developer, Kevin Long, SLNL

C++ (with Python interface) library for specifying
weak forms symbolically.

Differentiation, preprocessing, interface to solvers

Solve time>> symbolic processing

Arbitrary order Lagrange elements (other elements
pending) from FIAT.

Example: Pressure-stabilized FEM for
Navier-Stokes implemented in 113 lines (I/O,
Problem specification, continuation loop, etc)
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Variational statement

Steady, incompressible Navier-Stokes equations:
Findu ∈ V g, p ∈W such that

(∇u,∇v) + Re(u · ∇u, v)− (p,∇ · v) = 0

(∇ · u,w) = 0

for all v ∈ V 0, w ∈ W .
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Crash course in FEM

Based on weak formulation of problem.

Approximation is to find solution on
finite-dimensional subspace.

Existence, uniqueness, stability analyzed similar to
PDE

Error estimate↔ approximation theory

But they’re hard to program on a computer. . .
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Finite element method

We consider theequal-order stabilizedmethod

(∇uh,∇vh) + Re(uh · ∇uh, vh)− (ph,∇ · vh) = 0

(∇ · uh, wh) + βh2(∇ph,∇wh) = 0

Circumvents the “inf-sup” condition (Babuska, Brezzi,

Ladyzhenskaya) and allows piecewise linear basis func-

tions for both velocity and pressure.
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Sample code

Problem definition (declarations happen above)
eqn = Integral(interior, (grad*vx)*(grad*ux) \

+ (grad*vy)*(grad*uy) - p*(dx*vx+dy*vy) \

+ beta*h*h*(grad*q)*(grad*p) + q*(dx*ux+dy*uy) \

+ reynolds*(vx*(u*grad)*ux) \

+ reynolds*(vy*(u*grad)*uy), quad2)

bc = EssentialBC(left, vx*ux + vy*uy, quad2) \

+ EssentialBC(right, vx*ux + vy*uy, quad2) \

+ EssentialBC(top, vx*(ux-1.0) + vy*uy, quad2) \

+ EssentialBC(bottom, vx*ux + vy*uy, quad2)

The NonlinearProblem class takes derivatives,

builds Jacobians, and talks to Newton’s method for you.
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Current applications

Source detection

Geometric/toplogical design of microfluidics devices

New student projects at Chicago:
Studying convergence and conditioning
properties of various FEM for Stokes (Andy
Terrel, also using FEniCS/FFC/DOLFIN)
Incorporation of surface tension in a
Rayleigh-Taylor model (Noah Clemons)
Comparison of MHD formulations (Peter Brune)

Many others...
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The rest of the talk

Focus moves beyondonecode working forone
problem.

What is the inherent structure of the pieces of FEM?

Topics:
Form evaluation↔ tensor contractions
Discrete structures for optimized form evaluation
Reasoning about syntax for variational forms.
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Tensor structure of discrete forms

Example: Laplacian

General result

Local matrix (or its action) expressed as sequence of
tensor contractions.

These are optimized by discrete metrics/geometry
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Example: Laplacian

Variational form:

a(u, v) =

∫

Ω

∇u · ∇v

For eachK ∈ Th, need to build

AK
i =

∫

K

∇φi1 · ∇φi2 dx

=
D

∑

d=1

∫

K

Dd
xφi1D

d
xφi,2 dx

This is a sum overmonomialterms.
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Transforming to reference element

Calculation usually happens via a change of variables:

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1)

X

x = FK(X)

FK

x1

x2

x3

K0

K
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Transforming the Laplacian

AK
i =

∫

K

∇φK,1
i1

(x) · ∇φK,2
i2

(x) dx

= detF ′K
∑

β

∂Xα1

∂xβ

∂Xα2

∂xβ

∫

K0

∂Φ1
i1
(X)

∂Xα1

∂Φ2
i2
(X)

∂Xα2

dX

=
∑

α

A0
iαGα

K

EveryA0
i is contracted withGK for each element.
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Transforming the Laplacian (2)

Tensors:

A0
iα =

∫

K0

∂Φ1
i1
(X)

∂Xα1

∂Φ2
i2
(X)

∂Xα2

dX

Gα
K = detF ′K

∑

β

∂Xα1

∂xβ

∂Xα2

∂xβ

Reference element and geometry separated

OneA0 for the form, oneGK for each element

Main loop nest for computation of matrix:
contract/insert
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Quadratics on triangles

3 0 0 -1 1 1 -4 -4 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 3 1 1 0 0 4 0 -4 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

-4 0 0 0 -4 -4 8 4 0 -4 0 4

-4 0 0 0 0 0 4 8 -4 -8 4 0

0 0 0 4 0 0 0 -4 8 4 -8 -4

4 0 0 0 0 0 -4 -8 4 8 -4 0

0 0 0 -4 0 0 0 4 -8 -4 8 4

0 0 0 -4 -4 -4 4 0 -4 0 4 8

Notice this can be done cheaply, we’ll revisit this idea

later.
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Symmetry

Symmetric form→ GK symmetric

Can reduce work for triangles from 4 to 3 (9 to 6 on
tets)

Similar reductions for more complicated symmetric
forms.
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Canonical form

General class of multilinear forms:

AK
i =

∑

γ∈C

∫

K

m
∏

j=1

cj(i, γ)Dδj(i,γ)
x φK,j

ιj(i,γ)[κj(i, γ)] dx

Notation:
cj(i, γ) coefficient
ιj(i, γ) basis function index
κj(i, γ) vector component index
δj(i, γ) multiindex for derivative
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Vector Weighted Laplacian

a(v, u) =
d

∑

γ1=1

d
∑

γ2=1

∫

Ω

w
∂v[γ1]

∂xγ2

∂u[γ1]

∂xγ2

dx.

AK
i =

d
∑

γ1=1

d
∑

γ2=1

|V K
3
|

∑

γ3=1

∫

Ω

∂φK,1
i1

[γ1]

∂xγ2

∂φK,2
i2

[γ1]

∂xγ2

wγ3
φK,3

γ3
dx,

In the notation above, we haver = 2, m = 3, ι(i, γ) =

(i1, i2, γ3), δ(i, γ) = (γ2, γ2, ∅), κ(i, γ) = (γ1, γ1, ∅) and

cj(i, γ) = (1, 1, wγ3
)
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Representation result

Theorem. Let FK : K0 → K be affine,
{V K

j }
m
j=1,{V

0
j }

m
j=1 discrete function spaces,Φ = φ ◦ FK .

Then
AK

i =
∑

α∈A

A0
iαGα

K ∀i ∈ I,

A0
iα =

∑

β∈B

∫

K0

m
∏

j=1

D
δ′j(i,α,β)

X ΦK0,j

ιj(i,α,β)[κj(i, α, β)] dX,

Gα
K =

∑

β∈B′

det F ′K

m
∏

j=1

cj(i, α, β)
m
∏

j′=1

|δj′(i,α,β)|
∏

k=1

∂Xδ′
j′k

(i,α,β)

∂xδj′k(i,α,β)
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Implications

Separatesreference elementinformation from
geometric/coefficientinformation.

Reference tensor and code for geometry tensor can
be generated once for all (FFC).

Can be extended to nonlinearities, curved geometry
(Logg & K.)

One element isomorphic to matrix-vector
multiplication

But instead of BLAS...
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Optimizing form evaluation

Abstract problem:

V ⊂ R
m with |V | <∞ be given.

Find a process for computing{vtg : v ∈ V } for
arbitraryg ∈ R

m in minimal flops

Points to remember:

V is very special – not random.

Finding true minimum is very hard and not
necessary.

This is not something a general-purpose compiler
can do.

Mathematical Aspects of Automating Finite Element Computation – p.24/55



What kinds of tricks are there?

Look back at the Laplacian.

Sparsity

Equality:u = v

Colinearity:u = αv, v 6= 0.

Hamming distance

Linear combinationsu = αv + βw

If utg is known, perhapsvtg can be computed in less than

m multiply-add pairs.
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Complexity-reducing relations

Definition. Let ρ : Y × Y → [0,m] be symmetric. We

say thatρ is complexity-reducingif for every y, z ∈ Y

with ρ(y, z) ≤ k < m, ytg may be computed using the

resultztg in no more thank multiply-add pairs.
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Examples

d(y, z) =

{

0, y = z

m, y 6= z
Discrete metric

c(y, z) =

{

1, y = αz

m, y 6= αz
Colinearity

d±(y, z) =

{

0, y = ±z

m, y 6= ±z
Projective

H(y, z) = |{i : yi 6= zi}| Hamming distance
Hamming:
Let y = {1, 2, 3}, z = {1, 2, 5}.

ztg = ytg + (z − y)tg, butz − y = {0, 0, 2}.
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CRRs and metrics

Many CRRs are metrics, but not all are.

Others are metrics on projective space or
equivalence classes

Minimum over CRRs is a CRR

Minimum over metric CRRs is not necessarily a
metric

Can define ameetoperation on metrics.

WLOG, we will assume a single CRRρ that may or may

not be a metric in the following.
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A sketch of an “optimal” algorithm

g ∈ R
m given

computevt
1g

I = {1}
while I 6= [1, n] do

Pick i /∈ I to minimize over{ρ(vi, vj) : j ∈ I}.
Computevt

ig
I ← I ∪ {i}

end while
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Relation to graph structure

(V, ρ) defines a complete weighted graph with elements
of V as nodes andρ(vi, vj) the weight of the edge
betweenvi andvj.
The above algorithm needs aminimum spanning treeof
the graph associated with(V, ρ).

Theorem. Let ρ be a complexity-reducing relation onV

andg ∈ R
m be arbitrary. Then, computing{vtg : v ∈ V }

by traversing of a minimum spanning tree of(V, ρ) gives

a minimal-flop computation.
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MST example

Total cost: 17 MAPs
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Practical details

V generated by FFC (need to pipe code back)

Can generate straight-line code (MST/graph is only
used for generation,notat run-time)

Computing MST is (worst-case)n2 log n, n = |V |
by Prim or Kruskal.
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Experimental results

Observe flop reduction for a few forms

Run-time impact for Laplacian
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Flop reduction, Laplacian

Total flop count for computing one element matrix. Note

that the main cost on triangles is writing down the answer.
triangles tetrahedra

degree n m nm MAPs

1 6 3 18 9

2 21 3 63 17

3 55 3 165 46

degree n m nm MAPs

1 10 6 60 27

2 55 6 330 101

3 210 6 1260 370
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Scalar weighted Laplacian

aw(u, v) =

∫

Ω

w∇u · ∇v dx

A0
iα =

∫

E

Φα1
(X)

∂Φi1(X)

∂Xα2

∂Φi2(X)

∂Xα3

dX

Gα
e = wα1

detF ′e
∂Xα2

∂xβ

∂Xα3

∂xβ

.

= wα1
(GL)(α2,α3)

e

Note the outer product structure ofGe
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Options

Do contraction all at once (must buildGK)

AK
i =

∑

α

A0
iαGα

K

Contract with(GL)K first (optimize), then contract with
w.

ÃK
i,α1

=
∑

α2,α3

A0
iα(GL)

(α2,α3)
K

AK
i =

∑

α1

Ãi,α1
wα1
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Options (2)

Contract withw first (optimize), then(GL)K .

ÂK
i,(α2,α3)

=
∑

α1

A0
iαwα1

AK
i =

∑

α2,α3

ÂK
α2,α3

(GL)K(α2, α3

Must account for

Computing outer product forGK or not.

Cost of optimized first phase.

Cost of second, nonoptimized phase.
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Results

In most cases, third approach gives the best reduction
triangles tetrahedra

degree n m nm MAPs

1 6 9 54 25 (3)

2 21 18 378 201 (3)

3 55 30 1650 1064 (3)

degree n m nm MAPs

1 10 24 240 67 (2)

2 55 60 3300 795 (3)

3 210 120 25200 8988 (3)
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Performance
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Geometric optimization

Relations between three or more (e.g. linear
dependence) tensors don’t fit in graph-theoretic
structure.

What’s the right model?

Integrate geometric dependencies with CRRs
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Partial geometry

Let |V | <∞ be a set andL ⊂ P(V ) be a set of
lines. Then(V, L) is apartial geometryif there is at
most one line passing through each pair of points
and each line contains at least three points.

Note: typical geometries have every pair of points
contained inexactlyone line.

Partial geometries are encoded by ternary relations
on distinct unordered triples that satisfy
R{u, v, w}∧R{v, w, x} → R{u, v, x}∧R{u,w, x}

Coplanarity is such a ternary relation.

Can generalize to relations of higher arity.
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Closure and generators

We define theclosureof S ⊂ V , denoted bȳS,
recursively by

v ∈ S → v ∈ S̄

z ∈ V ∧ ∃x, y ∈ S̄ 3 R{x, y, z} → z ∈ S̄

We can also definegeneratorsfor a set:

If S̄ = T ⊂ V , we sayS generatesT .

If S generatesT and no subset ofS generatesT ,
thenS is aminimal generatorfor T .
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Minimal generators/optimization

Computing the closure of a setS gives a digraph:

Topological sort resolves dependencies, sequences
computation

Want minimal generator that gets all ofV and has
smallest number of elements (roots in graph)

Mathematical Aspects of Automating Finite Element Computation – p.43/55



Minimal minimal generators

Hardness unknown (so far)

Greedy algorithm:
Add “most connected” point to the set of
generators
Compute closure
Repeat until all items are generated or generators

Don’t know if this gets the minimal, but seems
effective

Geometric optimization not as effective as CRR
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Combining approaches

Want a “minimum spanning hypertree”

Each item
Is root (costsm) OR
Has one (binary) or two (geometric) parents

This is probablyNP -hard (optimization over all
permutations ofV )

Simple modification of Prim’s algorithm is a first
approximation algorithm

Typically get about 25% additional reduction in flop
count
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Moving up a level

Reasoned about low-level algorithms

Can reason about “form syntax”
Represented as a DAG
DAG→ Sieve
Nonlinear coupling
Extracting logical blocks
Implementation still in progress
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Abstract syntax graph

Incompressible Navier-Stokes equations:
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Sieve

Introduced by Knepley and Karpeev (TOMS, 2005)
as a combinatorial/topological model for finite
element meshes

Based on covering relation

Expresses dimensional/shape-independent meshes
(and many interesting operations)

Operations defined onchains(sets) of nodes in the
graph.

Allows construction of alatticeon the power set of a
graph

Also allows us to reason about abstract syntax.
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Sieve operations

cone(u): in-neighbors ofu

support(u): out-neighbors ofu

Define these on chains by union of nodewise results

closure(u): applycone recursively, all points
from whichu is reachable

star(u): applysupport recursively, all points
reachable fromu.

These are extended to chains as well.
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Sieve operations (2)

We can introduce lattice operations as follows

meet(u,v) is the minimal separator – minimal set
of points which, if removed, ensure thatu,v are not
both reachable from any point.

meet defined on chains,join is meet on the dual
graph.

meet,join defined on chains by union

These operations are critical to reasoning about abstract

syntax.
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What equations containu?

star(closure(u))
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What equations coupleu? andv

star(meet(u,v))
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Other analyses

u,p would couple nonlinearly ifmeet(u,p) are
nonempty.

Example: MHD, Lorenz force couples velocity,
magnetic field

polynomial nonlinearity inu. Need a slightly
different operatorselfmeet(u).
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Applications

PDE language allows extraction of logical blocks
Schur-type solver/preconditioner
Pattern match against existing code

Automatic/adaptive implicitness? (cf adaptive ODE)
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Conclusions

Numerical PDE rich in structure atmany levels

Potential for automation/optimization enriched if we
let mathematics inform our software engineering
(Mathematical software should bemathematical)

Improve reliability and efficiency of scientists, new
opportunities for numerical analysts (and other
mathematicians, too)
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