Mathematical Aspects of Automating Finite Element Computation

Robert C. Kirby
kirby@uchicago.edu

The University of Chicago

Acknowledgements

- Collaborators:

Anders Logg, TTI-C
Kevin Long, SLNL

- Ridgway Scott, UC
- Dmitry Karpeev and Matt Knepley, ANL
- U.S. Dept. of Energy

Introduction

- Survey efforts at automatic PDE simulation
\square Meta-theme 1: code is object of mathematical investigation
\square Meta-theme 2: overarching structure in FEM
\square Technical content:
- Representing discrete multilinear forms
- Optimizing the evaluation of variational forms
- Reasoning about form syntax with sieves

Motivation

- Effort is focused on Method X for Problem Y
- Particular experts find development easy (most people do not)
- Difficult to explore wide range of models/methods
- Implicit assumption: Mathematics tells you what to program, not how to program it

Automating PDE simulation

New Languages	Analysa, FreeFEM
Embedded Languages	Sundance, FFC, Lifev
Library support	Albert, Deal

The situation is more complex than ODE:
\square General purpose code for $u_{t}=f(u)$ available since 1970's

- Steady increases in accuracy, adaptive error control, differential algebraic equations, etc
- But no method works for "all" PDE!

Example: Sundance

\square Main developer, Kevin Long, SLNL
\square C++ (with Python interface) library for specifying weak forms symbolically.
\square Differentiation, preprocessing, interface to solvers
\square Solve time \gg symbolic processing
\square Arbitrary order Lagrange elements (other elements pending) from FIAT.
\square Example: Pressure-stabilized FEM for Navier-Stokes implemented in 113 lines (I/O, Problem specification, continuation loop, etc)

Variational statement

Steady, incompressible Navier-Stokes equations: Find $u \in V^{g}, p \in W$ such that

$$
\begin{aligned}
(\nabla u, \nabla v)+\operatorname{Re}(u \cdot \nabla u, v)-(p, \nabla \cdot v) & =0 \\
(\nabla \cdot u, w) & =0
\end{aligned}
$$

for all $v \in V^{0}, w \in W$.

Crash course in FEM

\square Based on weak formulation of problem.

- Approximation is to find solution on finite-dimensional subspace.
- Existence, uniqueness, stability analyzed similar to PDE
- Error estimate \leftrightarrow approximation theory
\square But they're hard to program on a computer . . .

Finite element method

We consider the equal-order stabilized method

$$
\begin{aligned}
\left(\nabla u_{h}, \nabla v_{h}\right)+\operatorname{Re}\left(u_{h} \cdot \nabla u_{h}, v_{h}\right)-\left(p_{h}, \nabla \cdot v_{h}\right) & =0 \\
\left(\nabla \cdot u_{h}, w_{h}\right)+\quad \beta h^{2}\left(\nabla p_{h}, \nabla w_{h}\right) & =0
\end{aligned}
$$

Circumvents the "inf-sup" condition (Babuska, Brezzi, Ladyzhenskaya) and allows piecewise linear basis functions for both velocity and pressure.

Finite element method

We consider the equal-order stabilized method

$$
\begin{aligned}
\left(\nabla u_{h}, \nabla v_{h}\right)+\operatorname{Re}\left(u_{h} \cdot \nabla u_{h}, v_{h}\right)-\left(p_{h}, \nabla \cdot v_{h}\right) & =0 \\
\left(\nabla \cdot u_{h}, w_{h}\right)+\beta h^{2}\left(\nabla p_{h}, \nabla w_{h}\right) & =0
\end{aligned}
$$

Circumvents the "inf-sup" condition (Babuska, Brezzi, Ladyzhenskaya) and allows piecewise linear basis functions for both velocity and pressure.

Sample code

Problem definition (declarations happen above)

```
eqn = Integral(interior, (grad*vx)*(grad*ux)
    + (grad*vy)*(grad*uy) - p*(dx*vx+dy*vy)
    + beta*h*h*(grad*q)*(grad*p) + q*(dx*ux+dy*uy) \
    + reynolds*(vx*(u*grad)*ux) \
    + reynolds*(vy*(u*grad)*uy), quad2)
bc = EssentialBC(left, vx*ux + vy*uy, quad2) \
    + EssentialBC(right, vx*ux + vy*uy, quad2)
    + EssentialBC(top, vx*(ux-1.0) + vy*uy, quad2) \
    + EssentialBC(bottom, vx*ux + vy*uy, quad2)
```

The NonlinearProblem class takes derivatives, builds Jacobians, and talks to Newton's method for you.

Current applications

\square Source detection
\square Geometric/toplogical design of microfluidics devices

- New student projects at Chicago:
- Studying convergence and conditioning properties of various FEM for Stokes (Andy Terrel, also using FEniCS/FFC/DOLFIN)
- Incorporation of surface tension in a Rayleigh-Taylor model (Noah Clemons)
- Comparison of MHD formulations (Peter Brune)
- Many others...

The rest of the talk

- Focus moves beyond one code working for one problem.
\square What is the inherent structure of the pieces of FEM?
- Topics:
- Form evaluation \leftrightarrow tensor contractions

Discrete structures for optimized form evaluation

- Reasoning about syntax for variational forms.

Tensor structure of discrete forms

- Example: Laplacian
- General result
- Local matrix (or its action) expressed as sequence of tensor contractions.
- These are optimized by discrete metrics/geometry

Example: Laplacian

Variational form:

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v
$$

For each $K \in \mathcal{T}_{h}$, need to build

$$
\begin{aligned}
A_{i}^{K} & =\int_{K} \nabla \phi_{i_{1}} \cdot \nabla \phi_{i_{2}} \mathrm{~d} x \\
& =\sum_{d=1}^{D} \int_{K} D_{x}^{d} \phi_{i_{1}} D_{x}^{d} \phi_{i, 2} \mathrm{~d} x
\end{aligned}
$$

This is a sum over monomial terms.

Transforming to reference element

Calculation usually happens via a change of variables:

Transforming the Laplacian

$$
\begin{aligned}
A_{i}^{K} & =\int_{K} \nabla \phi_{i_{1}}^{K, 1}(x) \cdot \nabla \phi_{i_{2}}^{K, 2}(x) \mathrm{d} x \\
& =\operatorname{det} F_{K}^{\prime} \sum_{\beta} \frac{\partial X_{\alpha_{1}}}{\partial x_{\beta}} \frac{\partial X_{\alpha_{2}}}{\partial x_{\beta}} \int_{K_{0}} \frac{\partial \Phi_{i_{1}}^{1}(X)}{\partial X_{\alpha_{1}}} \frac{\partial \Phi_{i_{2}}^{2}(X)}{\partial X_{\alpha_{2}}} \mathrm{~d} X \\
& =\sum_{\alpha} A_{i \alpha}^{0} G_{K}^{\alpha}
\end{aligned}
$$

Every A_{i}^{0} is contracted with G_{K} for each element.

Transforming the Laplacian (2)

Tensors:

$$
\begin{aligned}
A_{i \alpha}^{0} & =\int_{K_{0}} \frac{\partial \Phi_{i_{1}}^{1}(X)}{\partial X_{\alpha_{1}}} \frac{\partial \Phi_{i_{2}}^{2}}{\partial X_{\alpha_{2}}} \mathrm{~d} X \\
G_{K}^{\alpha} & =\operatorname{det} F_{K}^{\prime} \sum_{\beta} \frac{\partial X_{\alpha_{1}}}{\partial x_{\beta}} \frac{\partial X_{\alpha_{2}}}{\partial x_{\beta}}
\end{aligned}
$$

- Reference element and geometry separated
\square One A^{0} for the form, one G_{K} for each element
\square Main loop nest for computation of matrix: contract/insert

Quadratics on triangles

3	0	0	-1	1	1	-4	-4	0	4	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
-1	0	0	3	1	1	0	0	4	0	-4	-4
1	0	0	1	3	3	-4	0	0	0	0	-4
1	0	0	1	3	3	-4	0	0	0	0	-4
-4	0	0	0	-4	-4	8	4	0	-4	0	4
-4	0	0	0	0	0	4	8	-4	-8	4	0
0	0	0	4	0	0	0	-4	8	4	-8	-4
4	0	0	0	0	0	-4	-8	4	8	-4	0
0	0	0	-4	0	0	0	4	-8	-4	8	4
0	0	0	-4	-4	-4	4	0	-4	0	4	8

Notice this can be done cheaply, we'll revisit this idea later.

- Symmetric form $\rightarrow G_{K}$ symmetric
\square Can reduce work for triangles from 4 to 3 (9 to 6 on tets)
\square Similar reductions for more complicated symmetric forms.

Canonical form

General class of multilinear forms:

$$
A_{i}^{K}=\sum_{\gamma \in \mathcal{C}} \int_{K} \prod_{j=1}^{m} c_{j}(i, \gamma) D_{x}^{\delta_{j}(i, \gamma)} \phi_{\iota_{j}(i, \gamma)}^{K, j}\left[\kappa_{j}(i, \gamma)\right] \mathrm{d} x
$$

Notation:

$c_{j}(i, \gamma)$	coefficient
$\iota_{j}(i, \gamma)$	basis function index
$\kappa_{j}(i, \gamma)$	vector component index
$\delta_{j}(i, \gamma)$	multiindex for derivative

Vector Weighted Laplacian

$$
\begin{gathered}
a(v, u)=\sum_{\gamma_{1}=1}^{d} \sum_{\gamma_{2}=1}^{d} \int_{\Omega} w \frac{\partial v\left[\gamma_{1}\right]}{\partial x_{\gamma_{2}}} \frac{\partial u\left[\gamma_{1}\right]}{\partial x_{\gamma_{2}}} \mathrm{~d} x . \\
A_{i}^{K}=\sum_{\gamma_{1}=1}^{d} \sum_{\gamma_{2}=1}^{d} \sum_{\gamma_{3}=1}^{\left|V_{3}^{K}\right|} \int_{\Omega} \frac{\partial \phi_{i_{1}}^{K, 1}\left[\gamma_{1}\right]}{\partial x_{\gamma_{2}}} \frac{\partial \phi_{i_{2}}^{K, 2}\left[\gamma_{1}\right]}{\partial x_{\gamma_{2}}} w_{\gamma_{3}} \phi_{\gamma_{3}}^{K, 3} \mathrm{~d} x,
\end{gathered}
$$

In the notation above, we have $r=2, m=3, \iota(i, \gamma)=$ $\left(i_{1}, i_{2}, \gamma_{3}\right), \delta(i, \gamma)=\left(\gamma_{2}, \gamma_{2}, \emptyset\right), \kappa(i, \gamma)=\left(\gamma_{1}, \gamma_{1}, \emptyset\right)$ and $c_{j}(i, \gamma)=\left(1,1, w_{\gamma_{3}}\right)$

Representation result

Theorem. Let $F_{K}: K_{0} \rightarrow K$ be affine,
$\left\{V_{j}^{K}\right\}_{j=1}^{m},\left\{V_{j}^{0}\right\}_{j=1}^{m}$ discrete function spaces, $\Phi=\phi \circ F_{K}$.
Then

$$
\begin{gathered}
A_{i}^{K}=\sum_{\alpha \in \mathcal{A}} A_{i \alpha}^{0} G_{K}^{\alpha} \quad \forall i \in \mathcal{I}, \\
A_{i \alpha}^{0}=\sum_{\beta \in \mathcal{B}} \int_{K_{0}} \prod_{j=1}^{m} D_{X}^{\delta_{j}^{\prime}(i, \alpha, \beta)} \Phi_{\iota_{j}(i, \alpha, \beta)}^{K_{0}, j}\left[\kappa_{j}(i, \alpha, \beta)\right] \mathrm{d} X, \\
G_{K}^{\alpha}=\sum_{\beta \in \mathcal{B}^{\prime}} \operatorname{det} F_{K}^{\prime} \prod_{j=1}^{m} c_{j}(i, \alpha, \beta) \prod_{j^{\prime}=1}^{m} \prod_{k=1}^{\left|\delta_{j^{\prime}}(i, \alpha, \beta)\right|} \frac{\partial X_{\delta_{j^{\prime} k}^{\prime}(i, \alpha, \beta)}}{\partial x_{\delta_{j^{\prime} k}(i, \alpha, \beta)}}
\end{gathered}
$$

Implications

- Separates reference element information from geometric/coefficient information.
- Reference tensor and code for geometry tensor can be generated once for all (FFC).
- Can be extended to nonlinearities, curved geometry (Logg \& K.)
- One element isomorphic to matrix-vector multiplication
- But instead of BLAS...

Optimizing form evaluation

Abstract problem:
$\square V \subset \mathbb{R}^{m}$ with $|V|<\infty$ be given.
\square Find a process for computing $\left\{v^{t} g: v \in V\right\}$ for arbitrary $g \in \mathbb{R}^{m}$ in minimal flops
Points to remember:
$\square V$ is very special - not random.
\square Finding true minimum is very hard and not necessary.

- This is not something a general-purpose compiler can do.

What kinds of tricks are there?

Look back at the Laplacian.
\square Sparsity

- Equality: $u=v$
\square Colinearity: $u=\alpha v, v \neq 0$.
\square Hamming distance
- Linear combinations $u=\alpha v+\beta w$

If $u^{t} g$ is known, perhaps $v^{t} g$ can be computed in less than m multiply-add pairs.

Complexity-reducing relations

Definition. Let $\rho: Y \times Y \rightarrow[0, m]$ be symmetric. We say that ρ is complexity-reducing if for every $y, z \in Y$ with $\rho(y, z) \leq k<m, y^{t} g$ may be computed using the result $z^{t} g$ in no more than k multiply-add pairs.

Examples

$$
\begin{aligned}
& d(y, z)= \begin{cases}0, & y=z \\
m, & y \neq z\end{cases} \\
& c(y, z)= \begin{cases}1, & y=\alpha z \\
m, & y \neq \alpha z\end{cases} \\
& \text { Discrete metric } \\
& \text { Colinearity } \\
& d^{ \pm}(y, z)=\left\{\begin{array}{ll}
0, & y= \pm z \\
m, & y \neq \pm z
\end{array}\right. \text { Projective } \\
& H(y, z)=\left|\left\{i: y_{i} \neq z_{i}\right\}\right|
\end{aligned} \text { Hamming distance } . ~ \$
$$

Hamming:
Let $y=\{1,2,3\}, z=\{1,2,5\}$.
$z^{t} g=y^{t} g+(z-y)^{t} g$, but $z-y=\{0,0,2\}$.

CRRs and metrics

- Many CRRs are metrics, but not all are.
\square Others are metrics on projective space or equivalence classes
- Minimum over CRRs is a CRR
\square Minimum over metric CRRs is not necessarily a metric
- Can define a meet operation on metrics.

WLOG, we will assume a single $\operatorname{CRR} \rho$ that may or may not be a metric in the following.

A sketch of an "optimal" algorithm

$g \in \mathbb{R}^{m}$ given
compute $v_{1}^{t} g$
$I=\{1\}$
while $I \neq[1, n]$ do
Pick $i \notin I$ to minimize over $\left\{\rho\left(v_{i}, v_{j}\right): j \in I\right\}$.
Compute $v_{i}^{t} g$
$I \leftarrow I \cup\{i\}$
end while

Relation to graph structure

(V, ρ) defines a complete weighted graph with elements of V as nodes and $\rho\left(v_{i}, v_{j}\right)$ the weight of the edge between v_{i} and v_{j}.
The above algorithm needs a minimum spanning tree of the graph associated with (V, ρ).
Theorem. Let ρ be a complexity-reducing relation on V and $g \in \mathbb{R}^{m}$ be arbitrary. Then, computing $\left\{v^{t} g: v \in V\right\}$ by traversing of a minimum spanning tree of (V, ρ) gives a minimal-flop computation.

MST example

Total cost: 17 MAPs

Practical details

$\square V$ generated by FFC (need to pipe code back)

- Can generate straight-line code (MST/graph is only used for generation, not at run-time)
- Computing MST is (worst-case) $n^{2} \log n, n=|V|$ by Prim or Kruskal.

Experimental results

- Observe flop reduction for a few forms
\square Run-time impact for Laplacian

Flop reduction, Laplacian

Total flop count for computing one element matrix. Note that the main cost on triangles is writing down the answer.

	triangles				tetrahedra				
degree	n	m	$n \mathrm{~m}$	MAPs	degree	n	m	nm	MAPs
1	6	3	18	9	1	10	6	60	27
2	21	3	63	17	2	55	6	330	101
3	55	3	165	46	3	210	6	1260	370

Scalar weighted Laplacian

$$
\begin{gathered}
a_{w}(u, v)=\int_{\Omega} w \nabla u \cdot \nabla v \mathrm{~d} x \\
A_{i \alpha}^{0}=\int_{E} \Phi_{\alpha_{1}}(X) \frac{\partial \Phi_{i_{1}}(X)}{\partial X_{\alpha_{2}}} \frac{\partial \Phi_{i_{2}}(X)}{\partial X_{\alpha_{3}}} \mathrm{~d} X \\
G_{e}^{\alpha}=w_{\alpha_{1}} \operatorname{det} F_{e}^{\prime} \frac{\partial X_{\alpha_{2}}}{\partial x_{\beta}} \frac{\partial X_{\alpha_{3}}}{\partial x_{\beta}} . \\
=w_{\alpha_{1}}\left(G^{L}\right)_{e}^{\left(\alpha_{2}, \alpha_{3}\right)}
\end{gathered}
$$

Note the outer product structure of G_{e}

Options

Do contraction all at once (must build G_{K})

$$
A_{i}^{K}=\sum_{\alpha} A_{i \alpha}^{0} G_{K}^{\alpha}
$$

Contract with $\left(G^{L}\right)^{K}$ first (optimize), then contract with w.

$$
\begin{array}{r}
\tilde{A}_{i, \alpha_{1}}^{K}=\sum_{\alpha_{2}, \alpha_{3}} A_{i \alpha}^{0}\left(G^{L}\right)_{K}^{\left(\alpha_{2}, \alpha_{3}\right)} \\
A_{i}^{K}=\sum_{\alpha_{1}} \tilde{A}_{i, \alpha_{1}} w_{\alpha_{1}}
\end{array}
$$

Options (2)

Contract with w first (optimize), then $\left(G^{L}\right)_{K}$.

$$
\begin{array}{r}
\hat{A}_{i,\left(\alpha_{2}, \alpha_{3}\right)}^{K}=\sum_{\alpha_{1}} A_{i \alpha}^{0} w_{\alpha_{1}} \\
A_{i}^{K}=\sum_{\alpha_{2}, \alpha_{3}} \hat{A}_{\alpha_{2}, \alpha_{3}}^{K}\left(G^{L}\right)_{K}\left(\alpha_{2}, \alpha_{3}\right.
\end{array}
$$

Must account for

- Computing outer product for G_{K} or not.
- Cost of optimized first phase.
- Cost of second, nonoptimized phase.

In most cases, third approach gives the best reduction

	triangles				tetrahedra				
degree	n	m	$n m$	MAPs	degree	n	m	$n \mathrm{~m}$	MAPs
1	6	9	54	25 (3)	1	10	24	240	67 (2)
2	21	18	378	201 (3)	2	55	60	3300	795 (3)
3	55	30	1650	1064 (3)	3	210	120	25200	8988 (3)

Performance

Seconds per million triangles

Geometric optimization

- Relations between three or more (e.g. linear dependence) tensors don't fit in graph-theoretic structure.
\square What's the right model?
\square Integrate geometric dependencies with CRRs

Partial geometry

- Let $|V|<\infty$ be a set and $L \subset \mathcal{P}(V)$ be a set of lines. Then (V, L) is a partial geometry if there is at most one line passing through each pair of points and each line contains at least three points.
- Note: typical geometries have every pair of points contained in exactly one line.
- Partial geometries are encoded by ternary relations on distinct unordered triples that satisfy

$$
R\{u, v, w\} \wedge R\{v, w, x\} \rightarrow R\{u, v, x\} \wedge R\{u, w, x\}
$$

- Coplanarity is such a ternary relation.
- Can generalize to relations of higher arity.

Closure and generators

We define the closure of $S \subset V$, denoted by \bar{S}, recursively by

$$
\begin{aligned}
& \square v \in S \rightarrow v \in \bar{S} \\
& \square z \in V \wedge \exists x, y \in \bar{S} \ni R\{x, y, z\} \rightarrow z \in \bar{S}
\end{aligned}
$$

We can also define generators for a set:

- If $\bar{S}=T \subset V$, we say S generates T.
- If S generates T and no subset of S generates T, then S is a minimal generator for T.

Minimal generators/optimization

Computing the closure of a set S gives a digraph:

\square Topological sort resolves dependencies, sequences computation
Want minimal cenerator that

Minimal minimal generators

- Hardness unknown (so far)
\square Greedy algorithm:
a Add "most connected" point to the set of generators
- Compute closure
- Repeat until all items are generated or generators
\square Don't know if this gets the minimal, but seems effective
\square Geometric optimization not as effective as CRR

Combining approaches

- Want a "minimum spanning hypertree"
- Each item
- Is root (costs m) OR
- Has one (binary) or two (geometric) parents
- This is probably $N P$-hard (optimization over all permutations of V)
- Simple modification of Prim's algorithm is a first approximation algorithm
- Typically get about 25\% additional reduction in flop count

Moving up a level

\square Reasoned about low-level algorithms

- Can reason about "form syntax"
- Represented as a DAG

DAG \rightarrow Sieve
Nonlinear coupling

- Extracting logical blocks
- Implementation still in progress

Abstract syntax graph

Incompressible
Navier-Stokes
equations:

- Introduced by Knepley and Karpeev (TOMS, 2005) as a combinatorial/topological model for finite element meshes
\square Based on covering relation
- Expresses dimensional/shape-independent meshes (and many interesting operations)
- Operations defined on chains (sets) of nodes in the graph.
- Allows construction of a lattice on the power set of a graph
- Also allows us to reason about abstract syntax.

Sieve operations

- cone (u) : in-neighbors of u
- support (u) : out-neighbors of u
\square Define these on chains by union of nodewise results
\square closure (u) : apply cone recursively, all points from which u is reachable
- star (u) : apply support recursively, all points reachable from u.
\square These are extended to chains as well.

Sieve operations (2)

We can introduce lattice operations as follows
\square meet (u, v) is the minimal separator - minimal set of points which, if removed, ensure that u, v are not both reachable from any point.
\square meet defined on chains, join is meet on the dual graph.
\square meet, join defined on chains by union
These operations are critical to reasoning about abstract syntax.

What equations contain u?

star(closure (u))

What equations couple u? and v

$\operatorname{star}(\operatorname{meet}(\mathrm{u}, \mathrm{v}))$

Other analyses

$\square u, p$ would couple nonlinearly if meet (u, p) are nonempty.
\square Example: MHD, Lorenz force couples velocity, magnetic field
\square polynomial nonlinearity in u. Need a slightly different operator selfmeet (u).

Applications

\square PDE language allows extraction of logical blocks

- Schur-type solver/preconditioner
- Pattern match against existing code
\square Automatic/adaptive implicitness? (cf adaptive ODE)

Conclusions

- Numerical PDE rich in structure at many levels
\square Potential for automation/optimization enriched if we let mathematics inform our software engineering (Mathematical software should be mathematical)
- Improve reliability and efficiency of scientists, new opportunities for numerical analysts (and other mathematicians, too)

