Abstractions in FEM Software

A R Terrel

Motivation and Goals

Experiences and Observations

Outlook

Appendix

Abstractions in FEM Software

Andy R Terrel aterrel@uchicago.edu

Department of Computer Science University of Chicago

November 8-9, 2006 FEniCS'06 Delft University of Technology

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Outline

Motivation and Goals

Abstractions in FEM Software

A R Terrel

Notivation and Goals

Experiences and Observations

Outlook

Appendix

・ロト・日本・日本・日本・日本・日本

Motivation

- Success of the Finite Element Method(FEM) has led to a proliferation of FEM simulation software.
 - The FEniCS Project, Sundance, DEAL
 - Others: FreeFEM, FEMLab, ...
- No single package meets everyone's needs ... yet.
 - Sundance handles optimization well, but is limited in kinds of elements,
 - FEniCS gives a good smaller bundle that effeciently generates code,
 - DEAL handles a more elements and has a larger user community,
 - Both Sundance and FEniCS use easily readable code for user input.

Abstractions in FEM Software

A R Terrel

Motivation and Goals

Experiences and Observations

Outlook

Goals

- There seem to still be disjunctions between the math and the software.
 - Domains and meshes are not always identical.
 - Small variations of methods are hard or not possible.
 - ... other issues
- Some goals for this talk
 - Point out some rough spots in current software through my experiences.
 - Get feedback on validity and feasibility of ideas.
 - Challenge the next generation of FEM software to be more mathematically rigorous
 - Rigorous in code correctness.
 - Rigorous in correct mathematical abstractions from problems.

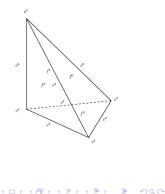
Abstractions in FEM Software

A R Terrel

Motivation and Goals

Experiences and Observations

Outlook


Analysis v. Simulation

Mathematically a finite element method is simply:

- A reference element, K
- A space of shape functions, \mathcal{P}
- A basis, ${\cal N}$

But it seems there is something missing:

- Links between elements,
- How the elements affect the solvers.

Abstractions in FEM Software

A R Terrel

Motivation and Goals

Experiences and Observations

Outlook

Alternate Methods

- It seems there is always someone who wants to do something different.
- How much control of you software to give the user, to play with new methods?

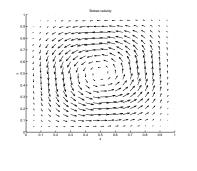
▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

 Example: Mixed methods, do we just put the formulation in the software or give the user the matrices. Abstractions in FEM Software

A R Terrel

Motivation and Goals

Experiences and Observations


Outlook

Example: Stokes Equations

$$\begin{array}{l} -\Delta u + \nabla p = f \\ \nabla \cdot u = 0 \end{array}, \qquad \qquad u = \begin{bmatrix} \sin(\pi x) \cos(\pi y) \\ -\cos(\pi x) \sin(\pi y) \end{bmatrix}$$

Using Taylor-Hood elements with mixed formulation,

Number of Iterations		
mesh	P1/P2	P2/P3
4x4	14	22
8x8	24	54
16x16	83	283
32x32	328	1319

Abstractions in FEM Software

A R Terrel

Motivation and Goals

Experiences and Observations

Outlook

Appendix

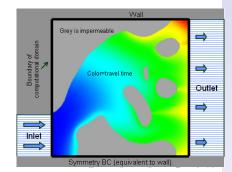
・ロ・・日・・日・・日・・日・

How about optimization problems?

- Use Automatic Differentiation tools on produced code - expensive on user side
- Create a symbolics engine that can give derivatives expensive on developer side

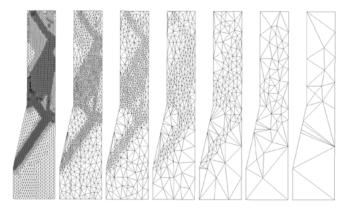
Example Problem in Microfluidic Devices

Abstractions in FEM Software


A R Terrel

Motivation and Goals

Experiences and Observations


Outlook

- To optimize flow, change channel geometry
- Most effective methods, use level set methods

What meshes can we handle?

None of these software packages are giving us great tools for multigrid adaptivity.

- courtesy Peter Brune.

A R Terrel

Motivation and Goals

Experiences and Observations

Outlook

Appendix

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

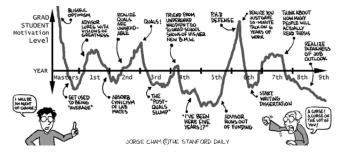
Why is Mathematical Software Hard?

The design space for mathematical software is multi-dimensional and not orthogonal.

- Mesh: uniform meshes, general geometry, adaptive meshes, unstructured meshes
- Function Space: linears, menu of options, arbitrary order, FIAT, exterior calculus
- Equation Description: menu, language, derived forms, error estimators
- Solver algorithms: menu, language
- Parallel Computing Support
- Boundary Conditions and embedded geometries.

Abstractions in FEM Software

A R Terrel


Motivation and Goals

Experiences and Observations

Outlook

Future

- Good mathematical abstractions have gotten us this far, where else can we go?
- How do these issues play well with software design principles?
- Is there a single solution to automated mathematical modelling?

Questions or Comments? aterrel@uchicago.edu

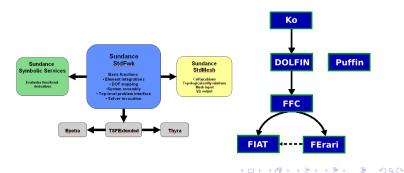
ロト 4 同 ト 4 ヨ ト 4 ヨ ト ヨ ・ の Q ()

Abstractions in FEM Software

A R Terrel

Motivation and Goals

Experiences and Observations


Outlook

What about code complexity?

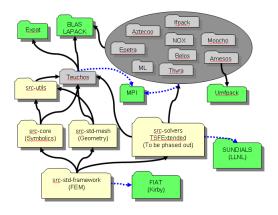
One bad estimate is lines of code:

- Dolfin + FFC \sim 50K lines
- Sundance \sim 100K lines
- $\bullet~\text{DEAL}\sim400\text{K}$ lines

Some Organization Charts

Abstractions in FEM Software

A R Terrel


Motivation and Goals

Experiences and Observations

Outlook

More Detailed Dependencies

An example of Dependencies for Sundance (not especially different from others)

Abstractions in FEM Software

A R Terrel

Notivation and Goals

Experiences and Observations

Outlook

Appendix

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・