FEniCS at KTH: projects, challenges and future plans

Johan Hoffman

jhoffman@csc.kth.se

Royal Institute of Technology KTH

Overview

•

- □ FEniCS at KTH today
- □ A FEniCS prototype
- □ Ongoing projects
- □ Challenges
- □ Future plans

FEniCS at KTH today

□ JH + JJ + 1 PhD + 3 MSc

- □ Dag Lindbo/Gunilla Kreiss 2-phase flow/level set
- 1 PhD/Anders Szepessy Hamilton Jacobi eqns.
- □ 1 PhD/Dan Henningsson (JH) transition
- □ 1 MSc/Luca Brandt (JH) optimal disturbances
- □ Gustav Amberg group (Femlego) testing
- \Box MSc FEM course (JH) Puffin (\rightarrow Dolfin/FFC/FIAT)
- □ MSc CFD project course (JJ?) Dolfin/FFC/FIAT
- □ Wide general interest in the project

TACO - Techn. for Advanced Comp.

- □ Johan Hoffman
- 🗆 Johan Jansson
- Murtazo Nazarov (PhD): compressible turbulence
- □ Oana Marin (MSc): free surface flow, level sets
- □ Alessio Quaglino (MSc): large def. solid mech., contact
- □ Michael Stöckli (MSc): fluid-structure, ALE

TACO - Techn. for Advanced Comp.

TACO projects today:

- □ G2: turbulent flow in complex geometries
- \Box G2: friction bc for turbulent flow
- □ G2: thermodynamics (turbulent compressible flow)
- □ Mesh refinement/coarsening/smoothing/flipping/...
- □ Free surface flow/level set
- □ ALE fluid structure interaction
- □ Large deformation structure mechanics/contact

A FEniCS prototype

Vision of FEniCS: automation of

- □ discretization: done?
- □ discrete solver
- □ adaptivity/error control
- \Box modeling

•

□ optimization

A FEniCS prototype

Vision: Automation of

 \Box discretization:

- 1. $DE \rightarrow Form: not done?$
- 2. Form \rightarrow element matrix: FFC/FIAT
- □ discrete solver: not done?
- □ adaptivity/error control: not done?
- \Box modeling: not done?
- □ optimization: not done?

A FEniCS prototype

FEniCS prototype for turbulent flow: Dolfin NSE solver

 \Box discretization:

- 1. DE \rightarrow Form: General Galerkin G2
- 2. Form \rightarrow element matrix: FFC/FIAT
- \Box discrete solver: not done (PETSc + MG)
- adaptivity/error control: mesh refinement based on output error control by duality.
- \Box turbulence modeling: G2
- optimization: not done

Navier-Stokes Equations (NSE)

$$R(\hat{u}) = \begin{pmatrix} \dot{u} + u \cdot \nabla u - \nu \Delta u + \nabla p - f \\ \nabla \cdot u \end{pmatrix} = 0$$

 $\hat{u} = (u,p)$: u velocity, p pressure, ν viscosity, f=0

Pointwise existence & uniqueness unknown: $R(\hat{u}) = 0$ (Clay Institute \$1 million Prize Problem)

Existence (but not uniq.) of weak solution (Leray 1934): Find $\hat{u} \in \hat{V}$: $(R(\hat{u}), \hat{v}) = 0 \quad \forall \hat{v} = (v, q) \in \hat{V}$ $(R(\hat{u}), \hat{v}) \equiv (\dot{u}, v) + (u \cdot \nabla u, v) - (\nabla \cdot v, p) + (\nabla \cdot u, q) + (\nu \nabla u, \nabla v)$

 $\hat{V} \subset H^1(Q), Q = \Omega \times I, (v, w) = (v, w)_Q \equiv \int_Q v \cdot w \, dx dt$

Turbulent incompressible flow

Typical scientific goals of today:

- Prove exist & uniq of pointwise NSE: $R(\hat{u}) = 0$
- Push limit of DNS (wrt Re^3 constraint, $Re = UL/\nu$)
- Turbulence modeling: find model for unresolved scales (filtering of NSE: Reynolds stresses, closure problem)

Alternative scientific goals:

- Approximate weak solution \hat{U} : weak uniqueness in (mean value) output $M(\hat{U})$: stability of \hat{U} wrt $M(\cdot)$
- Adaptive algorithm: min #dof : $error(M(\hat{U})) < TOL$

Existence of ϵ **-Weak Solutions**

 $\blacksquare W_{\epsilon} = \{ \hat{u} \in \hat{V} : |(R(\hat{u}), \hat{v})| \le \epsilon \|\hat{v}\|_{\hat{V}} \quad \forall \hat{v} \in \hat{V} \subset H^1 \}$ (approximate weak solution: $\sim \|R(\hat{u})\|_{H^{-1}} \leq \epsilon$) Existence: Construction of W_{ϵ} : General Galerkin G2 Find $\hat{U} \in \hat{V}_h$: $(R(\hat{U}), \hat{v}) + (hR(\hat{U}), R(\hat{v})) = 0 \quad \forall \hat{v} \in \hat{V}_h$ $\frac{1}{2} \|U(t)\|^2 + \|\sqrt{\nu}\nabla U\|_Q^2 + \|\sqrt{h}R(\hat{U})\|_Q^2 = \frac{1}{2} \|U(0)\|^2$ $(R(\hat{U}), \hat{v}) = (R(\hat{U}), \hat{v} - \pi_h \hat{v}) - (hR(\hat{U}), R(\pi_h \hat{v}))$ $\leq (C + M_U) ||hR(\hat{U})||_Q ||\hat{v}||_{\hat{V}} \leq C\sqrt{h} ||\hat{v}||_{\hat{V}}$ $\widehat{U} \in \mathbf{G2} \Rightarrow \widehat{U} \in W_{\epsilon} \qquad \epsilon = (C + M_U) ||hR(\widehat{U})||_{O}$

Weak Uniqueness: Duality

Output (functional): $M(\hat{u}) \equiv (\hat{u}, \hat{\psi})$ (e.g. drag or lift)

■ Adjoint Navier-Stokes equations (given by NSE): Find $\hat{\varphi} = (\varphi, \theta)$: $a(\hat{u}, \hat{w}; \hat{v}, \hat{\varphi}) = M(\hat{v}) \quad \forall \hat{v} = (v, q) \in \hat{V}$

$$a(\hat{u}, \hat{w}; \hat{v}, \hat{\varphi}) \equiv (\dot{v}, \varphi) + (u \cdot \nabla v, \varphi) + (v \cdot \nabla w, \varphi) - (\nabla \cdot \varphi, q) + (\nabla \cdot v, \theta) + (\nu \nabla v, \nabla \varphi)$$

• Weak Uniqueness: $\hat{u}, \hat{w} \in W_{\epsilon}, \ S_{\epsilon}(\hat{\psi}) \equiv \max_{\hat{u}, \hat{w} \in W_{\epsilon}} \|\hat{\varphi}\|_{\hat{V}}$

$$|M(\hat{u}) - M(\hat{w})| = |a(\hat{u}, \hat{w}; \hat{u} - \hat{w}, \hat{\varphi})|$$

= $|(R(\hat{u}), \hat{\varphi}) - (R(\hat{w}), \hat{\varphi})| \le 2\epsilon S_{\epsilon}(\hat{\psi})$

Exact solution ($\epsilon = 0$): stability information lost!

Weak Uniqueness: Duality

Weak Uniqueness: $\hat{u}, \hat{w} \in W_{\epsilon}$ $|M(\hat{u}) - M(\hat{w})| \leq 2\epsilon S_{\epsilon}(\hat{\psi}) \quad ||R(\hat{u})||_{H^{-1}}, ||R(\hat{w})||_{H^{-1}} \leq \epsilon$ Computability: $\hat{u} \in W_{\epsilon}$ and $\hat{U} \in G2$ $|M(\hat{u}) - M(\hat{U})| \leq (\epsilon + \epsilon_{G2}) S_{\epsilon_{G2}}(\hat{\psi}) \quad \epsilon_{G2} = C ||hR(\hat{U})||$

Residual only needs to be small in a weak norm!!! (for weak uniqueness)

 $\blacksquare \|R(\hat{u})\|_{H^{-1}} \& \|hR(\hat{U})\|_{L_2} \text{ vs } \|R(\hat{u})\|_{L_2}$

 \blacksquare Weak uniqueness characterized by stability factor $S_{\epsilon}(\hat{\psi})$

Automation of turbulence simulation

NSE: $R(\hat{u}) = 0$

G2: $\hat{U} \in \hat{V}_h : (R(\hat{U}), \hat{v}) + SD_{\delta}(\hat{U}; \hat{v}) = 0 \quad \forall \hat{v} \in \hat{V}_h$

Functional output: $M(\hat{u}) = (\hat{u}, \hat{\psi})$ (drag, lift,...)

 $|M(\hat{u}) - M(\hat{U})| = |a(\hat{u}, \hat{U}; \hat{u} - \hat{U}, \hat{\varphi})| = |(R(\hat{u}), \hat{\varphi}) - (R(\hat{U}), \hat{\varphi})|$ $\leq \epsilon S_{\epsilon} + |(R(\hat{U}), \hat{\varphi})| = \epsilon S_{\epsilon} + |(R(\hat{U}), \hat{\varphi} - \hat{\Phi}) + SD_{\delta}(\hat{U}; \hat{\Phi})|$ for all $\hat{\Phi} \in \hat{V}_h$, in particular for the interpolant of $\hat{\varphi}^h$ in \hat{V}_h

Use interpolation estimates: $||h^{-1}(\hat{\varphi} - \hat{\varphi}^h)|| \leq C_i ||\hat{\varphi}||_1$

Compute (using G2) approx. dual solution $\hat{\varphi}_h = (\varphi_h, \theta_h)$

Automation of turbulence simulation

- G2 for NSE: No filtering. No Reynolds stresses.
 G2 automatic "turbulence model".
- Adaptive algorithm captures separation points, and "correct" (finite limit) dissipation in the turbulent wake.
- Mean value output (drag, lift, frequencies, separation points, pressure coeff,...) computable up to a tolerance corresponding to experimental accuracy (\approx 1-5%).
- About 10-100 times less mesh points needed to compute drag than in non-adaptive LES.
- Simple/complex geometry: laptop/cluster.

Automation of turbulence simulation

$$|M(\hat{u}) - M(\hat{U})| \leq \sum_{K \in \mathcal{T}} \mathcal{E}_K = \sum_{K \in \mathcal{T}} ||hR(\hat{U})|| ||\hat{\varphi}_h||_1 + |SD_{\delta}(\hat{U}; \hat{\varphi}_h)|$$

Galerkin discretization error + stabilization modeling error

Adaptive algorithm: From coarse mesh \mathcal{T}^0 do

(1) compute primal and dual problem on \mathcal{T}^k

(2) if
$$\sum_{K \in \mathcal{T}^k} \mathcal{E}_K^k < \text{TOL then STOP, else}$$

- (3) refine elements $K \in \mathcal{T}^k$ with largest $\mathcal{E}_K^k \rightarrow \mathcal{T}^{k+1}$
- (4) set k = k + 1, then goto (1)

Ref. Mesh wrt c_D : circular cylinder

Circular cylinder: $c_D \approx 1.0$

Circular cylinder: error estimates

•

G2 for complex geometry (Volvo CC)

Turbulent boundary layers

No slip boundary conditions ok for modeling laminar boundary layers.

For high *Re* boundary layer undergoes transition.

Extremely expensive to resolve turbulent boundary layer: We need wall-model for correct separation and skin friction

Turbulent boundary layers

Experiments: boundary skin friction $c_f \sim Re^{-0.2}$

That is: no Law of finite dissipation for $c_f!$

Skin friction c_f depend on Re!

Cannot expect skin friction to be mesh independent:

We have to resolve/model the turbulent boundary layer! (unless $c_f \approx 0!!$)

• •

Skin friction boundary condition

Slip with friction boundary condition [Maxwell, Navier,....] Friction coefficient β ; $\beta = 0$: slip b.c., $\beta = \infty$: no slip b.c. [LES + Boundary Layer theory: Layton, John, Illiescu,....]

Simple wall model: $\beta \sim c_f$ (skin friction $c_f \sim Re^{-0.2}$) $\beta = \beta(Re, h); \lim_{h \to 0} \beta = \infty, \lim_{Re \to \infty} \beta = 0$ $\frac{1}{2} \|U(t)\|^2 + \sum_{i=1}^2 \|\sqrt{\beta}u \cdot \tau_i\|_{\Gamma \times I}^2 + \|\sqrt{h}R(\hat{U})\|_Q^2 = \frac{1}{2} \|U(0)\|^2$

(with ν small)

• • • •

Drag crisis for a cylinder

Turb. boundary layer \Rightarrow high momentum near boundary \Rightarrow delayed separation \Rightarrow small wake \Rightarrow drag crisis

Drag crisis for a circular cylinder at $Re \sim 10^5 - 10^6$

drag crisis; $\beta = 1$: $c_D \approx 1.0$

drag crisis; $\beta = 2 \times 10^{-2}$: $c_D \approx 0.7$

drag crisis: $\beta = 1 \times 10^{-2}$; $c_D \approx 0.5$

drag crisis; $\beta = 5 \times 10^{-3}$: $c_D \approx 0.45$

Drag crisis for a sphere

Modeling of drag crisis for a sphere by skin friction model

Friction coeff. $\beta = 0.1 \rightarrow 0.01$: $c_D = 0.4 \rightarrow 0.2$

Drag crisis for a sphere

EG2 and Turbulent Euler solutions

 $\beta \rightarrow 0$; $Re \rightarrow \infty$ ($\nu \rightarrow 0$) \Rightarrow Euler/G2 + slip b.c. (EG2)

EG2: no empirical parameters; only h (very general...)

No experimental results for cylinder at $Re > 10^7$

EG2 and Turbulent Euler solutions

Euler relevant for very large Re: geophysical flow!

EG2 solutions: sphere and cylinder

EG2 solutions of physical relevance for (very) high Re?

Simulation of take-off: lift vs drag

EG2 for the compressible Euler equations:

- □ Conservation of total mass, momentum, and energy
- □ Automatic satisfaction of 2nd Law.

$$\dot{\rho} + \nabla \cdot (u\rho) = 0$$

$$\dot{m} + \nabla \cdot (um) + \nabla p = 0$$

$$\dot{e} + \nabla \cdot (ue) + \nabla \cdot (up) = 0$$

EG2 for the compressible Euler equations:

- □ Conservation of total mass, momentum, and energy
- Automatic satisfaction of 2nd Law.

EG2 for the compressible Euler equations:

- □ Conservation of total mass, momentum, and energy
- Automatic satisfaction of 2nd Law.

Temperature

EG2 for the compressible Euler equations:

- □ Conservation of total mass, momentum, and energy
- Automatic satisfaction of 2nd Law.

Shocktube on coarse meshes: density, velocity, pressure

Fluid-structure: ALE

- □ Ex: blood flow with elastic walls,...
- □ ALE: mesh moving/smoothing, object in a box,...
- □ Splitting of discrete system: NS + Ko
- □ Turbulence, transition, separation,...
- Adaptivity: moving domain, splitting, h-p-r,...

Mesh algorithms

- □ Mesh refinement/coarsening
- □ Mesh smoothing (Laplacian, optimization,...)
- □ Edge flip/face swap
- Local remesh
- Projection between general meshes
- □ Hierarchy vs. one mesh
- \Box GMG vs. AMG
- □ Optimal alg. vs. simple alg. + smooth/flip/swap

Mesh refinement

Goals for (tetrahedral) mesh refinement:

- 1. cut edges (reduce *h*)
- 2. avoid adding edges to node (avoid small angles)
- 3. avoid hanging nodes (localization)
- \Box Edge vertex insertion (1 0 1)
- \Box Face vertex insertion (0 0 1)
- \Box Cell vertex insertion (0 0 1)
- □ Uniform cell refinement (1 1 0)

Mesh coarsening

Goals for (tetrahedral) mesh coarsening:

1. increase h

- 2. avoid adding edges to node (avoid small angles)
- 3. localization
- □ Edge collapse
- □ Face collapse
- □ Cell collapse

Alt. 1: coarsen by mesh hierarchy (use parent-child info). Alt. 2: coarsen by "Matt-algorithm".

Free surface flow - level sets

Applications: dam break, flow past structures, ships,... Challenges: topology changes, turbulence, wetting bc,... Method: G2, variable density/viscosity, "level set",...

Large deformation - contact

Physics engine for animation using Ko/DOLFIN/FFC/FIAT Industrial partner: plug-in for gaming, simulators,... Real-time: efficiency, contact model,...

FEniCS - Challenges

Challenges

- Dolfin module developers need stable kernel
- □ New users simple build (including dependencies)
- □ Industrial partners (including software companies)

Solutions

- □ dolfin-dev + dolfin-stable
- □ scons/cmake/?
- □ A license that does not exclude industrial partners

Expected input to FEniCS

- \Box Automation of modeling: turbulent flow (G2)
- □ Mesh algorithms: refine/coarse/smooth/flip/...
- □ General function projections
- □ Modules: turbulence, free surface, ale, solid, contact,...
- □ Advanced modules/top applications
 → new abstractions, users/developers, visibility,...
- \Box New developers \rightarrow testing, contribution,...
- \Box Use in education \rightarrow visibility, testing,...
- \Box Industrial partners \rightarrow visibility, testing, funded devel.,...

Future plans

FEniCS prototype: automation of

- □ turbulent incompressible/compressible flow,
- □ fluid-structure interaction,
- □ general free-surface problem,
- \Box h-p-r adaptivity.

G2 - automation of discretization

General Galerkin G2: Find $\hat{U} \in \hat{V}_h \subset \hat{V}$:

 $(R(\hat{U}), \hat{v}) + (hR(\hat{U}), R(\hat{v})) = 0 \quad \forall \hat{v} \in \hat{V}_h$

The G2 solution $\hat{U} \in \hat{V}_h$ is defined on a computational mesh, of size h(x), which defines a smallest scale.

G2 - automation of discretization

General Galerkin G2: Find $\hat{U} \in \hat{V}_h \subset \hat{V}$:

$$(R(\hat{U}), \hat{v}) + (hR(\hat{U}), R(\hat{v})) = 0 \quad \forall \hat{v} \in \hat{V}_h$$

Energy estimate for G2 (assuming f = 0): set $\hat{v} = \hat{U}$

$$\frac{1}{2} \|U(t)\|^2 + \|\sqrt{\nu}\nabla U\|_Q^2 + \|\sqrt{h}R(\hat{U})\|_Q^2 = \frac{1}{2} \|U(0)\|^2$$

Total dissipation of energy: $||\sqrt{\nu}\nabla U||_Q^2 + ||\sqrt{h}R(\hat{U})||_Q^2$

Law of Finite Energy Dissipation

The intensity of the stabilizing term $||\sqrt{h}R(\hat{U})||_Q^2$ in the wake is independent of *h* after some mesh refinement.