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1. PBE in Protein Simulations

Partition of 3D domain Ω: Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, and Ω1 is

surrounded by Ω2. Further, set Ω3 ⊂ Ω2.

We consider PBE as below:

−∇ · (ε(x)∇u) + κ(x) sinh u = f(x) in Ω, u = g on ∂Ω,

ε(x) =





ε1 for x ∈ Ω1,

ε2 for x ∈ Ω2,
κ(x) =





0 for x ∈ Ω1 ∪ (Ω2 − Ω3),

κ̄ for x ∈ Ω3,

• Ω1: protein region. Ω2: solvent region. Ω3: ionic region.

Ω2 − Ω3: ion exclusive region.

• u: the electrostatic potential. ε(x): the permittivity. ε(x) > 0.

• κ(x): the ion concentration. κ̄ > 0. f(x): the charge distribution.

qi: the charge at position xi of atom i. c̄: given constant.

f(x) =





c̄
∑n

i=1 qiδ(x− xi) for x ∈ Ω1,

0 for x ∈ Ω2.
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2. Three Difficulties in Solving PBE

1. Singularity of the source term f (a sum of δ-functions). It
causes difficulties in finite element analysis due to u /∈ H1(Ω).

2. Exponential nonlinear term (sinh(u) = (eu − e−u)/2). It leads
to a system with strong nonlinear properties.

3. Discontinuous coefficients ε(x) and κ(x). They lead to
difficulties in theory and computing.

Note: Original PBE has Ω = R3. In numerical PBE, Ω is often
selected as a cube or another regular bounded domain. The
corresponding boundary function g can be well defined by several
well developed numerical techniques.
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On Difficulty 1: u /∈ H1(Ω) caused by singular source term f

If a fundamental solution of PBE is given as G(x), then the
singular part of u(x) can be expressed in the form

G(x) = c̄
n∑

i=1

qiG(x− xi).

Thus, we can define w(x) = u(x)− G such that w ∈ H1(Ω).

In this way, we can consider w(x) instead of u(x) for the
convergence analysis of the finite element equation of PBE.

References:

• Chen, Shen and Xia, Applied Mathematics and Computation,
164 (2005) 11-23 (for linearized PBE only).

• M. Holst and J. Xu, ”The Poisson-Boltzmann equation:
Approximation theory, regularization by singular functions, and
adaptive techniques”. In preparation.
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On Difficulty 2: Large scale nonlinear systems

Note that the derivative of the nonlinear discrete algebraic
equations can be found easily. Hence, Newton method is a good
choice. Due to the large scale of the systems, the challenge is how
to develop a high efficient nonlinear solver for PBE.

Prof. Holst and his group developed an inexact Newton method for
solving PBE, in which a linear multigrid algorithm is applied to
solve the Newton equations approximately, together with adaptive
techniques. The inexact Newton method has been a core part of a
program package called APBS (Adaptive Poisson-Boltzmann Solver
at http://apbs.sourceforge.net).

References:

• M. Holst and F. Saied, J. Comput. Chem., 16 (1995) 337-364.

• M. Holst, N. Baker, and F. Wang, J. Comput. Chem., 21
(2000) 1249-1352.
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On Difficulty 3: Large jump discontinuity coefficients

Due to the discontinuous coefficients, the solution u /∈ H2(Ω) even
assuming the source term f does not contain any singularities.
Hence, from the classic finite element method it cannot follow that

‖u− uh‖H1 ≤ Ch‖u‖H2 ,

where uh is the finite element solution.

In order to raise the accuracy of solution, mesh refinement
techniques and interface continuity conditions should be used in
computing of a solution of PBE. Further, to reduce the size of the
nonlinear system, unstructured meshes and adaptive techniques are
needed in solving PBE.
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3. Mortar Finite Element Approximation of PBE

Mortar finite element methods:

• A nonconfirming domain decomposition technique.

• Allow different discretization schemes and non-matching triangulations on

different subdomains.

• Good for problems with discontinuous coefficients, singular sources, or

corner singularities.

• Two different formulations of mortar methods:

– A nonconforming finite element setting based on a constrained

functional space. Lead to a positive definite system.

– A mixed finite element setting based on a unconstrained functional

space. Lead to an indefinite system.

Clearly, mortar finite element methods are particularly effective to PBE. Here

it is natural to have two disjoint subdomains, Ω1 and Ω2. Thus, two

independent triangulations, T1,h and T2,h, and the two related finite element

function spaces, VΩ1 and VΩ2 , are defined, independently.
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Mortar Condition

• The interface Γ of PBE: Γ = ∂Ω1.

• Notation v|S : Restruction of v onto region S.

• Conventional interface continuity condition:

u|Ω1 = u|Ω2 on Γ and ε1
∂u|Ω1

∂ν
= ε2

∂u|Ω2

∂ν
on Γ.

• Mortar condition:

b(u,w) = 0 ∀w ∈ Λh,

where b(u,w) =
∫
Γ
(u|Ω1 − u|Ω2)wds, and Λh is a finite element

space based on the grid mesh Γh that inherits from T1,h.
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Mortar finite element equation of PBE

Define product function space Vh:

Vh = {v ∈ L2(Ω) | v|Ω1 ∈ VΩ1 , and v|Ω2 ∈ VΩ2}.

Define a subspace Ṽh of Vh by

Ṽh = {v ∈ Vh | b(v, w) = 0 for all w ∈ Λh}.

Mortar finite element equation of PBE: Find u ∈ Ṽh such that

a(u, v) +
∫

Ω

vκ(x) sinh udx =
∫

Ω

fvdx, ∀v ∈ Ṽh, (1)

where a(u, v) is a symmetric bilinear functional defined by

a(u, v) =
∫

Ω1

ε1∇u · ∇vdx +
∫

Ω2

ε2∇u · ∇vdx.
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4. Two PBE Related Minimization Problems

Define a functional, J , as below:

J (v) =
1

2
a(v, v) +

∫

Ω
κ(x) cosh vdx−

∫

Ω
fvdx, for v ∈ Vh.

Let J ′ and J ′′ be the first and second G-derivatives of J . Then,

(J ′(u), v) = a(u, v) +

∫

Ω
vκ(x) sinh udx−

∫

Ω
fvdx, ∀v ∈ Vh,

(J ′′(u)v, v) = a(v, v) +

∫

Ω
v2κ(x) cosh udx, ∀v ∈ Vh.

(1) A unconstrained minimization problem: Find u ∈ Ṽh such that

J (u) = min{J (v) | v ∈ Ṽh},
where Ṽh = {v ∈ Vh | b(v, w) = 0 for all w ∈ Λh}.
(2) A constrained minimization problem: Find u ∈ Vh such that

J (u) = min{J (v) | v ∈ Vh} subject to b(u, w) = 0 for all w ∈ Λh.

Theorem 1: The PBE mortar finite element problem and the above two

minimization problems are equivalent.
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Uniqueness of Solution of Mortar Finite Element Equation

Remark: a(v, v) may be zero in Vh since Ω1 is surrounded by Ω2.

For example, set v0 = 1 in the closure of Ω1 and v0 = 0 others.
Then, v0 ∈ Vh, and a(v0, v0) = 0. But, for the mortar finite element
approximation of PBE, we have that

Theorem 2: ∃α > 0 such that a(v, v) > α‖v‖2 for all v ∈ Ṽh.

Consequently, (J ′′(u)v, v) > 0 for all nonzero v ∈ Ṽh, implying that
J (v) is a strictly convex functional in Ṽh.

We then proved that

Theorem 3: The unconstrained minimization problem has a
unique solution in Ṽh.

Corollary: The mortar finite element equation and the constrained
minimization problem have a unique solution, respectively.
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5. Formulation of Nonlinear Algebraic Equations
With a set of basis functions of Vh, ϕj for j = 1, 2, . . . , N , we have that for u in

Vh, u =
∑N

j=1 ujϕj , and the PBE mortar finite element equation in Vh is

equivalent to the nonlinear system: For j = 1, 2, . . . , N ,

N∑

i=1

a(ϕi, ϕj)ui +

∫

Ω
ϕjκ(x) sinh(

N∑

i=1

uiϕi)dx =

∫

Ω
fϕjdx.

In matrix form, the nonlinear system becomes

AU + S(U) = F,

where A = (a(ϕi, ϕj)) is a N ×N matrix, U , S(U) and F are column vectors

with the jth entry uj , sj =
∫
Ω ϕjκ(x) sinh(

∑N
i=1 uiϕi)dx, and fj =

∫
Ω fϕjdx.

By the definition of δ-function,
∫
Ω δ(x−xi)ϕj(x)dx = ϕj(x

i), fj is evaluated by

fj =
∫
Ω fϕjdx = c̄

∑n
i=1 qiϕj(x

i), j = 1, 2, . . . , N .

By a simple quadrature, sj can be evaluated as below:

sj =

∫

τj
ϕjκ(x) sinh(

N∑

i=1

uiϕi)dx ≈ κ(xj)|τ j | sinh(uj),

where τ j denotes the support set of ϕj , and |τj | denotes the size of τj .
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Algebraic Form of Mortar Condition

Define four subspaces of Vh as below:

VΩ1 = Span{ϕj |xj ∈ Ω1,h}, VΩ2 = Span{ϕj |xj ∈ Ω2,h},
VΓΩ1

= Span{ϕj |xj ∈ ΓΩ1,h}, and VΓΩ2
= Span{ϕj |xj ∈ ΓΩ2,h},

For convenience, we assign local ordering numbers to the basis functions, and

denote these local basis functions as {ϕj}n1
j=1, {ϕ̃j}n2

j=1, {ϕ̂j}l
j=1, and {ϕ̄j}m

j=1.

Then, for v ∈ Vh, we have

v|Ω1 =

n1∑

j=1

vjϕj , v|Ω2 =

n2∑

j=1

ṽj ϕ̃j , v|ΓΩ1
=

l∑

j=1

v̂j ϕ̂j , and v|ΓΩ2
=

m∑

j=m

v̄j ϕ̄j .

We then label the unknowns in a global ordering: first on the nodes of Ω1,h,

then ΓΩ1,h, next Ω2,h, and finally ΓΩ2,h. In this global ordering, V has the

4-block form V = (VΩ1 , VΓΩ1
, VΩ2 , VΓΩ2

)T , where

VΩ1 =




v1

v2

.

..

vn1




, VΓΩ1
=




v̂1

v̂2

.

..

v̂l




, VΩ2 =




ṽ1

ṽ2

.

..

ṽn2




, and VΓΩ2
=




v̄1

v̄2

.

..

v̄m




.
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We obtained the following theorem.

Theorem 4: Let ψj for j = 1, 2, . . . , l be a set of basis functions of the finite

element space Λh. Then the algebraic expression of the mortar condition

b(u, w) = 0 can be formulated in the matrix form

MVΓΩ1
−WVΓΩ2

= 0,

where M and W are two matrices of l× l and l×m, respectively, with entries

mji =
∫
Γ ϕ̂iψjds and wjk =

∫
Γ ϕ̄kψjds for i, j = 1, 2, . . . , l, k = 1, 2, . . . , m.

Moreover, M is nonsingular.

Thus, the mortar finite element equation in the restricted finite element space

Ṽh has the following algebraic form:




AU + S(U) = F

MUΓΩ1
−WUΓΩ2

= 0,

Note that the mortar algebraic condition can be written as

UΓΩ1
= TUΓΩ2

with T = M−1W.

Hence, the sub-unknown vector UΓΩ1
can be eliminated so that the above two

equations are combined as one equation.
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Algebraic Formulation of Minimization Problem of PBE

Set Ũ =




UΩ1

UΩ2

UΓΩ2


 , and B̄ =




I 0 0

0 0 T

0 I 0

0 0 I




. Then U = B̄Ũ and the

mortar finite element equation is expressed as ÃŨ + S̃(Ũ) = F̃ ,

where Ã = B̄T AB̄, S̃(Ũ) = B̄T S(B̄Ũ), and F̃ = B̄T F .

If the jth component of S(U) is approximated by sj = κ(xi)|τ i| sinh(uj), the

equivalent minimization problem becomes

J̃(Ũ) = min{J̃(Ṽ ) | Ṽ ∈ RN−l},

where J̃(Ṽ ) = 1
2
Ṽ T ÃṼ + C̃(Ṽ )− F̃ T Ṽ , C̃(Ṽ ) =

∑N
i=1 κ(xi)|τ i| cosh(BiṼ ), and

Bi denotes the ith row of the matrix B̄.

Theorem 5: The Hessian matrix ∇2J̃(Ṽ ) is symmetric, positive definite in

RN−l. Thus, the minimization problem has a unique solution.

In fact, ∇2J̃(Ṽ ) = Ã +
∑N

i=1 κ(xi)|τ i| cosh(BiṼ )BT
i Bi.
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6. Truncated Newton Minimization Method for PBE

A sequence of TN iterates, {Ũk}, is defined in the form

Ũk+1 = Ũk + λkP k,

where λk is a step length determined by the line search algorithm, and P k is a

search direction generated by the preconditioned conjugate gradient method for

solving the classic Newton equation at step k,

H(Ũk)P = −g(Ũk). (2)

Here H(Ũk) = ∇2J̃(Ũk), and g(Ũk) = ∇J̃(Ũk) = ÃŨk + S̃(Ũk)− F̃ .

Since H is sparse and symmetric positive definite, a multigrid preconditioner

can be defined by applying one iteration of a multigrid method for solving (2).

Truncation test: If ‖rj+1‖ ≤ min{cr/k, ‖gk‖}‖gk‖, exit PCG loop with

P k = pj+1. By default, cr = 0.5. Here pj represent the jth PCG iterate, and rj

the residual vector of (2).

• All the PCG iterates are descent search directions.

• The TN iterates converges for any initial guess Ũ0.
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Future Work

• Make numerical experiments and compare with other methods
(e.g., the inexact Newton method by M. Holst).

• Develop a parallel version of TN for solving PBE.

• Extend the approach and schemes to other application
problems.
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