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Interests and motivation

I Rapid development and efficient solution of mechanical
models.

I Minimal simplicity versus computational speed compromise.

I Significant productivity increase.

I Open source.

3 / 37

Delft University of Technology



Interest

Licensing: GPL or LGPL?

I GPL/LGPL protects me from my project sponsors.

I GPL might be too strong for some project sponsors.
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Problem hallmarks

I Nonlinear.

I Multiple fields.
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Porous media

Classical Biot theory + Darcy flow

PSfrag replacements

p1p2

Mechanical swelling due to fluid penetration
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Porous media

PU = FiniteElement("Vector Lagrange", "triangle", 2)

PP = FiniteElement("Lagrange", "triangle", 1)

ME = PU + PP

(v, q) = BasisFunctions(ME) # test functions

(u, p) = BasisFunctions(ME) # trial functions

.

.

# Bilinear and linear form for solid component

aSolid = dt*theta*dot(grad(v), stress(symgrad(u), p, mu, . . .

LSolidInt = dt*theta*dot(grad(v), stress(symgrad(u0), p0, mu, . . .

LSolidExt = dt*theta*v[1]*(rho*g)*dx

# Bilinear and linear form for fluid component

aFluid = q*comp*p*dx + q*alpha*Sw*div(u)*dx + . . .

LFluidInt = dt*theta*q*comp*pr*dx + dt*theta*q*alpha*Sw* . . .

LFluidExt = dt*theta*q*f*dx + dt*theta*perm*rhow*q.dx(1)*g*dx
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Mechanically-driven diffusion in elastic solids
with Luisa Molari, University of Bologna

Mechanical response

∇ · σ + f = 0

σ = C : ∇su − βIc

+ B .C .

Steady-state diffusion

∇ · q = 0

q = −κ∇c + M∇ (∇ · u)

+ B .C .
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Mechanically-driven diffusion in elastic solids

Find uh ∈ V h, eh ∈ Sh, ch ∈ X h such that:

(

∇wh,C : ∇suh
)

Ω
−

(

∇wh, βIch
)

Ω
=

(

wh, f
)

∀ wh
∈ V h,

(

vh, eh
)

Ω
−

(

vh,∇ · uh
)

Ω
= 0 ∀ vh

∈ Sh,

(

∇qh, κ∇ch
)

Ω
−

(

∇vh,M∇eh
)

Ω
= 0 ∀ qh

∈ X h.
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Mechanically-driven diffusion in elastic solids

E1 = FiniteElement("Vector Lagrange", "tetrahedron", 2)

E2 = FiniteElement("Lagrange", "tetrahedron", 1)

E3 = FiniteElement("Lagrange", "tetrahedron", 1)

element = E1 + E2 + E3

.

.

# Elasticity

au = . . .

# Divergence of u

ae = . . .

# Diffusion

ac = . . .

.

.
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Mechanically-driven diffusion in elastic solids

dilation
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Mechanically-driven diffusion in elastic solids

concentration
14 / 37

Delft University of Technology



Cahn-Hilliard equation

Model for phase separation

I Important in material science and other fields.

I Diffuse interface model.

I Fourth-order in space nonlinear parabolic equation.

ċ = ∇ · M (c)∇
(

µc (c) − λ∇2c
)

in Ω

Mλ∇c · n = 0 on ∂Ω

M∇
(

µc − λ∇2c
)

· n = 0 on ∂Ω

I c : concentration 0 < c < 1
I M : mobility
I µc: chemical potential (= dΨc/dc)
I λ: surface energy term
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Cahn-Hilliard equation

Chemical free-energy Ψc
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λ∇c : ∇c
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Cahn-Hilliard equation

Mixed formulation:

ċ = ∇ · (M ∇ (µc − κ)) ,

κ = λ∇2c .

Find ch ∈ Sh × [0,T ] and κh ∈ Ph such that

(

wh, ċh
)

Ω
+

(

∇wh,Mh
∇

(

µh
c − κh

))

Ω
= 0 ∀wh

∈ V h,

(

vh, κh
)

Ω
+

(

∇vh, λ∇ch
)

Ω
= 0 ∀vh

∈ Qh,

(

wh, c (x, 0)
)

Ω
=

(

wh, c0 (x)
)

Ω
∀wh

∈ V h.
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Cahn-Hilliard equation

Benchmark

PSfrag replacements
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Cahn-Hilliard equation

Randomly perturbed initial conditions.

concentration
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Initial condition c = 0.63 + small random fluctuation.

19 / 37

Delft University of Technology



Cahn-Hilliard equation

concentration
0.9882
0.9059
0.8235
0.7412
0.6588
0.5765
0.4941
0.4118
0.3294
0.2471
0.1647
0.0824
0.0000

concentration
0.9882
0.9059
0.8235
0.7412
0.6588
0.5765
0.4941
0.4118
0.3294
0.2471
0.1647
0.0824
0.0000

low surface energy higher surface energy
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Cahn-Hilliard equation

C
0.9882
0.9059
0.8235
0.7412
0.6588
0.5765
0.4941
0.4118
0.3294
0.2471
0.1647
0.0824
0.0000

. . . even higher surface energy
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Cahn-Hilliard equation
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Cahn-Hilliard equation

3D plane DOLFIN
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Cahn-Hilliard equation

Problem: cannot find an iterative solver that works.
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Cahn-Hilliard primal formulation

Find ch ∈ Vh × [0,T ] such that

(

wh, ċh
)

Ω
+

(

∇wh,Mh
∇µh

c

)

Ω
+

(

∇
2wh,Mhλ∇2ch

)

Ω̃

+
(

∇wh,∇Mhλ∇2ch
)

Ω̃
−

(r

∇wh
z

,
〈

Mhλ∇2ch
〉)

Γ̃

−

(〈

Mhλ∇2wh
〉

,
r

∇ch
z)

Γ̃
−

(

∇wh
· n,Mhλ∇2ch

)

Γ

−

(

Mhλ∇2wh,∇ch
· n

)

Γ
+

(

β∇wh
· n,∇ch

· n
)

Γ

+
(

β
r

∇wh
z

,
r

∇ch
z)

Γ̃
= 0 ∀ wh

∈ V
h
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Modelling discontinuities

Approach:

uh = ūh + Hs ũ
h

1

PSfrag replacements
Hs = 0

Hs = 1

Γs

n

Discontinuity surface evolves.
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Modelling discontinuities

Exploit partition of unity property (Melenk & Babuska, Duarte &
Oden, Belytschko & Black)

uh =
n

∑

i=1

φiai +
m

∑

j=1

Hsφjbi
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Crack propagation
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Delamination
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Delamination

30 / 37

Delft University of Technology



Crack propagation

Requirements

I Abstract evolving surface representation.

I Integration on an evolving surface.

Find . . .

(

∇w̄h,C : ∇s
(

ūh + Hs ũ
h
))

Ω
+

(

∇w̃h,C : ∇s
(

ūh + Hs ũ
h
))

Ω+

+
(

w̃h, t
(

ũh
))

Γs

=
(

wh, f
)

Ω
∀ w̄h

∈ V̄ h, w̃h
∈ Ṽ h
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General wishes (FFC)

I Complex numbers.

I Inter-element boundary integrals.

I Simple polar coordinates.
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Compact notation for nonlinear problems

I Variational problem compact.

I Linearised and time-dependent form very large (decrease in
readability).
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Issues

I Students
I Loss of transparency.
I Don’t develop skills to implement models going beyond the

current capabilities of FIAT/FFC/DOLFIN.

I Penetration
I Level of abstraction too high for old-style FE users.
I Quadrilateral and brick elements.

I Developers ready for users?
I Preparedness/time to help novice users with trivial questions?
I 0800-Anders-and-JohanJansson-help-desk (24 hour).
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DOLFIN needs . . .

Most important aspect for dragging people over the threshold:
simple, accessible demos with immediate postprocessing.

Solver demos to key mechanical problems:

I Linear-elasticity.

I Classical plasticity.

I Advection-diffusion.

I Stokes flow / incompressible elasticity.

I Incompressible Navier-Stokes.

‘Extras’ section outside of DOLFIN src tree.
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Packaging and distribution

I Bloat in number of required components.

I Version dependencies becoming an issue.

I Bundle components?
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Supporting FEniCS

Details

I Sufficient financial structure to make contributions possible.

How to spend it?

I Meetings

I Hardware, network

I ???
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