Mechanical modelling with FEniCS

A wish list

Garth N. Wells

Faculty of Civil Engineering and Geosciences Delft University of Technology, The Netherlands

FEniCS '05, Chicago

Outline

Interests

Example applications of FEniCS components

Wish list

Issues

Interests and motivation

- Rapid development and efficient solution of mechanical models.
- Minimal simplicity versus computational speed compromise.
- Significant productivity increase.
- Open source.

Interest

Licensing: GPL or LGPL?

- GPL/LGPL protects me from my project sponsors.
- GPL might be too strong for some project sponsors.

Problem hallmarks

- Nonlinear.
- Multiple fields.

Porous media

Classical Biot theory + Darcy flow

Mechanical swelling due to fluid penetration

Porous media

```
PU = FiniteElement("Vector Lagrange", "triangle", 2)
PP = FiniteElement("Lagrange", "triangle", 1)
ME = PU + PP
(v, q) = BasisFunctions(ME) # test functions
(u, p) = BasisFunctions(ME) # trial functions
.
# Bilinear and linear form for solid component
aSolid = dt*theta*dot(grad(v), stress(symgrad(u), p, mu, . . .
LSolidInt = dt*theta*dot(grad(v), stress(symgrad(u0), p0, mu, . . .
LSolidExt = dt*theta*v[1]*(rho*g)*dx
# Bilinear and linear form for fluid component
aFluid = q*comp*p*dx + q*alpha*Sw*div(u)*dx + . . .
LFluidInt = dt*theta*q*comp*pr*dx + dt*theta*q*alpha*Sw*
LFluidExt = dt*theta*q*f*dx + dt*theta*perm*rhow*q.dx(1)*g*dx
```


Mechanically-driven diffusion in elastic solids

 with Luisa Molari, University of BolognaMechanical response

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{\sigma}+\mathbf{f}=\mathbf{0} \\
& \boldsymbol{\sigma}=\mathcal{C}: \nabla^{\mathrm{s}} \mathbf{u}-\beta \mathbf{I} \mathbf{c} \\
& +B . C
\end{aligned}
$$

Steady-state diffusion

$$
\begin{aligned}
& \nabla \cdot \mathbf{q}=0 \\
& \mathbf{q}=-\kappa \nabla c+M \nabla(\nabla \cdot \mathbf{u}) \\
& +B . C .
\end{aligned}
$$

Mechanically-driven diffusion in elastic solids

Find $\mathbf{u}^{h} \in V^{h}, e^{h} \in S^{h}, c^{h} \in X^{h}$ such that:

$$
\begin{aligned}
& \left(\nabla \mathbf{w}^{h}, C: \nabla^{\mathrm{s}} \mathbf{u}^{h}\right)_{\Omega}-\left(\nabla \mathbf{w}^{h}, \beta \mathbf{I} c^{h}\right)_{\Omega}=\left(\mathbf{w}^{h}, \mathbf{f}\right) \quad \forall \mathbf{w}^{h} \in V^{h} \\
& \left(v^{h}, e^{h}\right)_{\Omega}-\left(v^{h}, \nabla \cdot \mathbf{u}^{h}\right)_{\Omega}=0 \quad \forall v^{h} \in S^{h} \\
& \left(\nabla q^{h}, \kappa \nabla c^{h}\right)_{\Omega}-\left(\nabla v^{h}, M \nabla e^{h}\right)_{\Omega}=0 \quad \forall q^{h} \in X^{h}
\end{aligned}
$$

Mechanically-driven diffusion in elastic solids

```
E1 = FiniteElement("Vector Lagrange", "tetrahedron", 2)
E2 = FiniteElement("Lagrange", "tetrahedron", 1)
E3 = FiniteElement("Lagrange", "tetrahedron", 1)
element = E1 + E2 + E3
# Elasticity
au = . . .
# Divergence of u
ae = . . .
# Diffusion
ac = . . .
```


Mechanically-driven diffusion in elastic solids

dilation

Mechanically-driven diffusion in elastic solids

Cahn-Hilliard equation

Model for phase separation

- Important in material science and other fields.
- Diffuse interface model.
- Fourth-order in space nonlinear parabolic equation.

$$
\begin{aligned}
& \dot{c}=\nabla \cdot M(c) \nabla\left(\mu_{\mathrm{c}}(c)-\lambda \nabla^{2} c\right) \quad \text { in } \Omega \\
& M \lambda \nabla c \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega \\
& M \nabla\left(\mu_{\mathrm{c}}-\lambda \nabla^{2} c\right) \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

- c: concentration $0<c<1$
- M : mobility
- μ_{c} : chemical potential $\left(=d \Psi_{\mathrm{c}} / d c\right)$
- λ : surface energy term

Cahn-Hilliard equation

Chemical free-energy Ψ^{c}

Surface free-energy Ψ^{5}

$$
\psi^{s}=\frac{1}{2} \lambda \nabla c: \nabla c
$$

Cahn-Hilliard equation

Mixed formulation:

$$
\begin{aligned}
& \dot{c}=\nabla \cdot\left(M \nabla\left(\mu_{c}-\kappa\right)\right), \\
& \kappa=\lambda \nabla^{2} c .
\end{aligned}
$$

Find $c^{h} \in S^{h} \times[0, T]$ and $\kappa^{h} \in P^{h}$ such that

$$
\begin{aligned}
& \left(w^{h}, \dot{c}^{h}\right)_{\Omega}+\left(\nabla w^{h}, M^{h} \nabla\left(\mu_{c}^{h}-\kappa^{h}\right)\right)_{\Omega}=0 \quad \forall w^{h} \in V^{h} \\
& \left(v^{h}, \kappa^{h}\right)_{\Omega}+\left(\nabla v^{h}, \lambda \nabla c^{h}\right)_{\Omega}=0 \quad \forall v^{h} \in Q^{h} \\
& \left(w^{h}, c(\mathbf{x}, 0)\right)_{\Omega}=\left(w^{h}, c_{0}(\mathbf{x})\right)_{\Omega} \quad \forall w^{h} \in V^{h} .
\end{aligned}
$$

Cahn-Hilliard equation

Benchmark

Cahn-Hilliard equation

Randomly perturbed initial conditions.

Initial condition $c=0.63+$ small random fluctuation.

Cahn-Hilliard equation

low surface energy

higher surface energy

Cahn-Hilliard equation

C
0.9882
0.9059
0.8235
0.7412
0.6588
0.5765
0.4941
0.4118
0.3294
0.2471
0.1647
0.0824
0.0000

. . . even higher surface energy

Cahn-Hilliard equation

Cahn-Hilliard equation

3D plane

Cahn-Hilliard equation

Problem: cannot find an iterative solver that works.

Cahn-Hilliard primal formulation

Find $c^{h} \in \mathcal{V}^{h} \times[0, T]$ such that

$$
\begin{aligned}
& \left(w^{h}, \dot{c}^{h}\right)_{\Omega}+\left(\nabla w^{h}, M^{h} \nabla \mu_{c}^{h}\right)_{\Omega}+\left(\nabla^{2} w^{h}, M^{h} \lambda \nabla^{2} c^{h}\right)_{\tilde{\Omega}} \\
& +\left(\nabla w^{h}, \nabla M^{h} \lambda \nabla^{2} c^{h}\right)_{\tilde{\Omega}}-\left(\llbracket \nabla w^{h} \rrbracket,\left\langle M^{h} \lambda \nabla^{2} c^{h}\right\rangle\right)_{\tilde{\Gamma}} \\
& -\left(\left\langle M^{h} \lambda \nabla^{2} w^{h}\right\rangle, \llbracket \nabla c^{h} \rrbracket\right)_{\tilde{\Gamma}}-\left(\nabla w^{h} \cdot \mathbf{n}, M^{h} \lambda \nabla^{2} c^{h}\right)_{\Gamma} \\
& -\left(M^{h} \lambda \nabla^{2} w^{h}, \nabla c^{h} \cdot \mathbf{n}\right)_{\Gamma}+\left(\beta \nabla w^{h} \cdot \mathbf{n}, \nabla c^{h} \cdot \mathbf{n}\right)_{\Gamma} \\
& \quad+\left(\beta \llbracket \nabla w^{h} \rrbracket, \llbracket \nabla c^{h} \rrbracket\right)_{\tilde{\Gamma}}=0 \quad \forall w^{h} \in \mathcal{V}^{h}
\end{aligned}
$$

Modelling discontinuities

Approach:

$$
\mathbf{u}^{h}=\overline{\mathbf{u}}^{h}+H_{s} \tilde{\mathbf{u}}^{h}
$$

Discontinuity surface evolves.

Modelling discontinuities

Exploit partition of unity property (Melenk \& Babuska, Duarte \& Oden, Belytschko \& Black)

$$
u^{h}=\sum_{i=1}^{n} \phi_{i} a_{i}+\sum_{j=1}^{m} H_{s} \phi_{j} b_{i}
$$

Crack propagation

Delamination

Delamination

Crack propagation

Requirements

- Abstract evolving surface representation.
- Integration on an evolving surface.

Find . . .

$$
\begin{gathered}
\left(\nabla \overline{\mathbf{w}}^{h}, C: \nabla^{\mathbf{s}}\left(\overline{\mathbf{u}}^{h}+H_{s} \tilde{\mathbf{u}}^{h}\right)\right)_{\Omega}+\left(\nabla \tilde{\mathbf{w}}^{h}, C: \nabla^{\mathrm{s}}\left(\overline{\mathbf{u}}^{h}+H_{s} \tilde{\mathbf{u}}^{h}\right)\right)_{\Omega^{+}} \\
+\left(\tilde{\mathbf{w}}^{h}, \mathbf{t}\left(\tilde{\mathbf{u}}^{h}\right)\right)_{\Gamma_{s}}=\left(\mathbf{w}^{h}, \mathbf{f}\right)_{\Omega} \quad \forall \overline{\mathbf{w}}^{h} \in \bar{V}^{h}, \tilde{\mathbf{w}}^{h} \in \tilde{V}^{h}
\end{gathered}
$$

General wishes (FFC)

- Complex numbers.
- Inter-element boundary integrals.
- Simple polar coordinates.

Compact notation for nonlinear problems

- Variational problem compact.
- Linearised and time-dependent form very large (decrease in readability).

Issues

- Students
- Loss of transparency.
- Don't develop skills to implement models going beyond the current capabilities of FIAT/FFC/DOLFIN.
- Penetration
- Level of abstraction too high for old-style FE users.
- Quadrilateral and brick elements.
- Developers ready for users?
- Preparedness/time to help novice users with trivial questions?
- 0800-Anders-and-JohanJansson-help-desk (24 hour).

DOLFIN needs

Most important aspect for dragging people over the threshold: simple, accessible demos with immediate postprocessing.

Solver demos to key mechanical problems:

- Linear-elasticity.
- Classical plasticity.
- Advection-diffusion.
- Stokes flow / incompressible elasticity.
- Incompressible Navier-Stokes.
'Extras' section outside of DOLFIN src tree.

Packaging and distribution

- Bloat in number of required components.
- Version dependencies becoming an issue.
- Bundle components?

Supporting FEniCS

Details

- Sufficient financial structure to make contributions possible.

How to spend it?

- Meetings
- Hardware, network
- ???

