A Novice Uses FEniCS

Andy R. Terrel with lots of guidance from Anders Logg and Robert C. Kirby

University of Chicago, Chicago, IL

Contents

- Who I am
- My Problem
- How FEniCS works well
- Some difficulties
- Some results
- Conclusions

Who I am

- Second year graduate student in Computer Science,
- BS in Physics/Math, BA in Philosophy,
- Very new to programming,
- New to FEM,

My Problem

Test out some different Finite Elements in FIAT for some mixed methods.

- Learn about Convergence rates,
- Check the error of different finite element,
- Give a head to head comparison on what elements work better.

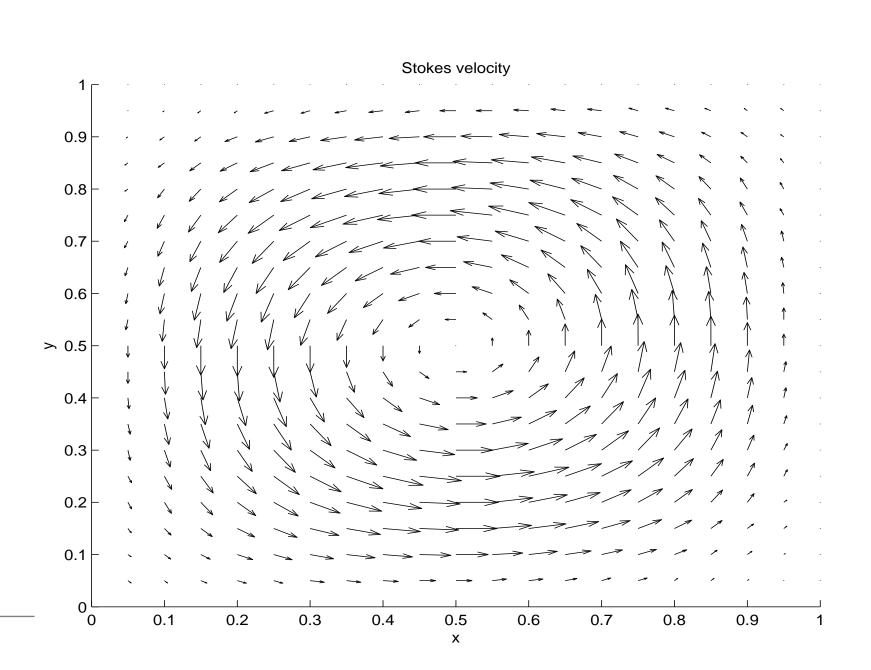
How FEniCS works well

- Powerful scripting style environment,
- Quick introduction to standard problems,
- Nice modular interfaces,
- Limited knowledge required to use,
- Rather easy to start changing things.

Some Difficulties w/ Dolfin mostly

- Documentation
 - Where to go for help?
 - Where to learn about new ways of doing things?
- Programming Petsc or not?
 - Problems with Matrix/Vector wrappers.
 - Limited set of Petsc functionality
- Coding Conventions
 - Should this code be added?
 - Does the code look right?

Results


For Stoke equations, with an easy to solve u:

$$\begin{array}{ccc}
-\Delta u + \nabla p &= f \\
\nabla \cdot u &= 0
\end{array}, \qquad u = \begin{bmatrix}
\sin(\pi x)\cos(\pi y) \\
-\cos(\pi x)\sin(\pi y)
\end{bmatrix}$$

Using Taylor-Hood elements,

Number of Iterations		
$mesh(n \times n)$	P1 & P2	P2 & P3
4	14	22
8	24	54
16	83	283
32	328	1319

Plot

Closing

Any Questions?