
Ideas Example Details Performance

PySE – Python Stencil Environment

Åsmund Ødeg̊ard

Simula Research Laboratory

FEniCS’05, Chicago, October 19-20, 2005

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Outline

1 General Ideas of PySE

2 A simple example

3 Some details on the interfaces

4 Performance of PySE

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Outline

1 General Ideas of PySE

2 A simple example

3 Some details on the interfaces

4 Performance of PySE

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Basic features of PySE

High–level tool for rapid development of FDM solvers.

High–level syntax, Matlab-like.

Code close to the math or pseudo code.

Easy deployment on parallel computers.

Written in python, uses extension modules for better
performance.

Available at http://pyfdm.sourceforge.net.

Former know as paraStencils and pyFDM.

Priorities: 1. Abstractions, 2. Parallelization, 3. Efficiency

Ødeg̊ard PySE – Python Stencil Environment

http://pyfdm.sourceforge.net

Ideas Example Details Performance

Some related works

PySE use ideas and concepts from many other tools:

Diffpack

hypre

A++/P++

cogito

PETSc

Trilinos

Chombo

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

The abstractions

PySE defines the following abstractions.

Grid; for the domain and FDM mesh.

Field; for scalar fields over a Grid.

Stencil; the action of the PDE in a point.

StencilSet; set of stencils for a problem.

The first three abstractions are quite common.
Stencil and StencilSet are the most important abstractions in
PySE.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Outline

1 General Ideas of PySE

2 A simple example

3 Some details on the interfaces

4 Performance of PySE

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Consider a simple Heat equation:

ut = ∇
2u x ∈ Ω

u(x , 0) = f (x), x ∈ Ω

∂u(x , t)

∂n
= gn(x , t), x ∈ ∂Ωn

u(x , t) = gd(x , t), x ∈ ∂Ωd

Assume further that we want to solve this on the unit square with
f and g given as initialfunc and neumannfunc, respectively.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

A simple example, graphically

Assume A is the StencilSet.

One explicit step: un+1 = A(un).

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Example code

This short code solves the problem on the previous slide:

from pyFDM import *

def neumannfunc(x,y): return sin(x)*cos(y)

def initialfunc(x,y): return sin(x)*cos(y)

g = Grid(domain=([0,1,[0,1]),division=(100,100))
u = Field(g)
t = 0; dt = T/n;
A = StencilSet(g)
innerstencil = Identity(g.nsd) + dt*Laplace(g)
innerind = A.addStencil(innerstencil, g.innerPoints())
A += createNeumannBoundary(innerstencil, g, neumannfunc)
u.fill(initialfunc)
for t < T:

u = A(u)
t += dt

plot(u)

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Example code

Some remarks on the code

Laplace and Identity are stencils defined in PySE

The Neumann condition function is not time dependent

It can be made time dependent by wrapping into a lambda:

def neumannfunc(x,y,t): return x*y*t

rt = 0
neumanncall = lambda x,y: neumannfunc(x,y,rt)
A += createNeumannBoundary(innerstencil, g, neumanncall)
while rt < T:

u = A(u)
t += dt
A.updateDataStructures()

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Outline

1 General Ideas of PySE

2 A simple example

3 Some details on the interfaces

4 Performance of PySE

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Stencil

You can easily build your own stencils

h = (dt**2/g.dx**2)
lap_5pt = Stencil(nsd=2, varcoeff=False,\

nodes={ (0,1): 1.,\
(-1,0): 1., (0,0): -4., (1,0): 1.,\

(0,-1): 1.})
id = Stencil(nsd=2, varcoeff=False, nodes={(0,0): 1.0})
inner = id + h*lap_5pt

Stencils can be added together, scaled, and evaluated

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

StencilSet

Stencils are added to a StencilSet together with an iterator for
nodes.

Grid have methods for various sets of nodes:

allPoints
innerPoints
boundary
corners

innerPoints and boundary take an optional region argument:

A.addStencil(diricond, \
grid.boundary(region=((-1,1),(-1,1)), \

type=’circle’, center=(0,0), \
radius=1, direction=’in’))

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

StencilSet

During the first call to the call–operator A(u) in StencilSet, more
efficient datastructures are build:

Why:

Walking the iterators is time–consuming (in pure Python).

Stencil–coefficients are assembled in a sparse matrix.

Source information is assembled in a vector.

We need to provide hooks to update for changes in
coefficients and source:

updateDataStructures
updateSourceDatastructures

These methods trigger reassembling of all or parts of the data.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

StencilSet

If present in StencilSet instances, the sparse matrix and vector
will be used on subsequent calls to A(u) and A*u.

A.direct matvec(x): operate on a NumPy vector, returns a
NumPy vector.

Less overhead (no Field creation), hence more efficient.
The interface for updating datastructures is (at least for now)
less convenient in this case.
A Field u stores its data as u.data, a NumPy vector.
Remark, a dummy A(u) must be inserted to build
datastructures.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Neumann boundary conditions

Creating Neumann boundary conditions can be tricky in the
multidimensional case.

The function createNeumanBoundary function can be used:

nSet = createNeumanBoundary(stencil, grid, condition)

The Neumann creator also accept a region specification:

nSet = createNeumanBoundary(stencil, grid, condition,\
region=((-1,1),(-1,1)), \
type=’circle’, center=(0,0), \
raduis=1, direction=’out’)

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Parallel computations with PySE

All parts of PySE are inherently parallel.

Parallelism is initated with

grid.partition(StencilSet)

The StencilSet supplied shoud be “ready”

All Fields created on the grid, will be converted.

Other StencilSets in the grid get the same partitioning with

StencilSet.doInitParallel()

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Outline

1 General Ideas of PySE

2 A simple example

3 Some details on the interfaces

4 Performance of PySE

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

A more involved example

Consider the following problem:

ut = ∇ · (k(x , y)∇u) + f (x , y , t), (x , y) ∈ Ω, t ∈ R
+,

u(x , y , t) = h(x , y , t), (x , y) ∈ ∂Ω, t ∈ R
+,

u(x , y , 0) = g(x , y), (x , y) ∈ Ω.

We chose f (x , y , t), k(x , y), h(x , y , t), and g(x , y) such that

u(x , y , t) = e−tsin(πx)cos(πy)

Implementation follow the simple example.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Timing of the solver

cpus: 1 4 16 24 32

1000 × 1000, 160 step: 7984 1998 498.5 332.0 249.3

speed–up: 1 3.99 16.0 24.0 32.0

1500 × 1500, 240 step: 26820 6728 1681 1125 838.8

speed–up: 1 3.98 15.9 23.8 31.9

CPU time in seconds and corresponding speed-up numbers.

The solver uses the direct matvec trick

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Comparison with a C solver

We have created a (less flexible) solver in C:

Problem size runtime 1-cpu P/C 32-cpu P/C

1000 × 1000, 160 steps: 107.3 74.4 2.32

1500 × 1500, 240 steps: 362.4 74.0 2.31

CPU time in seconds for the solver implemented in C, as well as
speed– relative to the Python solver running on one and 32
processors.

For certain applications, this is just fine

If we do not assemble in sparse matrix and vector, multiply
P/C numbers by O(10) (update source vs. all)

Where do we loose that much?

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Comparison with a C solver

We have created a (less flexible) solver in C:

Problem size runtime 1-cpu P/C 32-cpu P/C

1000 × 1000, 160 steps: 107.3 74.4 2.32

1500 × 1500, 240 steps: 362.4 74.0 2.31

CPU time in seconds for the solver implemented in C, as well as
speed– relative to the Python solver running on one and 32
processors.

For certain applications, this is just fine

If we do not assemble in sparse matrix and vector, multiply
P/C numbers by O(10) (update source vs. all)

Where do we loose that much?

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Comparison with a C solver

We have created a (less flexible) solver in C:

Problem size runtime 1-cpu P/C 32-cpu P/C

1000 × 1000, 160 steps: 107.3 74.4 2.32

1500 × 1500, 240 steps: 362.4 74.0 2.31

CPU time in seconds for the solver implemented in C, as well as
speed– relative to the Python solver running on one and 32
processors.

For certain applications, this is just fine

If we do not assemble in sparse matrix and vector, multiply
P/C numbers by O(10) (update source vs. all)

Where do we loose that much?

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

The bottelneck...

In this problem, the Dirichlet boundary condition and the source
function are time dependent.

For each timestep, we walk the iterators to update data.

If we remove the time dependency (and hence the need for
update of data), we get:

Problem size C Python

1000 × 1000, 160 time steps: 34.5 30.5

The modules we’re using from Python for mat*vec, vec*vec are
obviously smarter than my C program

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

The bottelneck can be removed!

NumPy can fill an array with values from a function very fast!

We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.

Rewrite the explicit update as

u = A(u) + S(F) + B(H)

The Fields F and H can be filled quickly with
F.fill vec(function).

The direct matvec trick improve performance further.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

The bottelneck can be removed!

NumPy can fill an array with values from a function very fast!

We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.

Rewrite the explicit update as

u = A(u) + S(F) + B(H)

The Fields F and H can be filled quickly with
F.fill vec(function).

The direct matvec trick improve performance further.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

The bottelneck can be removed!

NumPy can fill an array with values from a function very fast!

We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.

Rewrite the explicit update as

u = A(u) + S(F) + B(H)

The Fields F and H can be filled quickly with
F.fill vec(function).

The direct matvec trick improve performance further.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

The bottelneck can be removed!

NumPy can fill an array with values from a function very fast!

We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.

Rewrite the explicit update as

u = A(u) + S(F) + B(H)

The Fields F and H can be filled quickly with
F.fill vec(function).

The direct matvec trick improve performance further.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

The bottelneck can be removed!

NumPy can fill an array with values from a function very fast!

We can put source and boundary information in Fields, and
use additional (static) StencilSet operators.

Rewrite the explicit update as

u = A(u) + S(F) + B(H)

The Fields F and H can be filled quickly with
F.fill vec(function).

The direct matvec trick improve performance further.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

When the bottelneck is gone, we get good performance

cpus: 1 4 16 24 32

1000 × 1000, 160 steps: 365.0 93.90 23.51 16.05 12.52

speed–up: 1 3.89 15.5 22.7 29.2

1500 × 1500, 240 steps: 1226 315.7 78.42 52.33 40.73

speed–up: 1 3.88 15.6 23.4 30.1

CPU time in seconds and corresponding speed-up numbers for the
improved Python solver.

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Comparison with C of the faster solver

Problem size runtime 1-cpu P/C 32-cpu P/C

1000 × 1000, 160 steps: 107.3 3.40 0.12

1500 × 1500, 240 steps: 362.4 3.38 0.11

Is this fast enough?

What did we loose? Only nice syntax.

What’s not there: limited support for higher order methods,
no support for non–linear problems, only simple grids

How can it be usefull in FEniCS?

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Comparison with C of the faster solver

Problem size runtime 1-cpu P/C 32-cpu P/C

1000 × 1000, 160 steps: 107.3 3.40 0.12

1500 × 1500, 240 steps: 362.4 3.38 0.11

Is this fast enough?

What did we loose? Only nice syntax.

What’s not there: limited support for higher order methods,
no support for non–linear problems, only simple grids

How can it be usefull in FEniCS?

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Comparison with C of the faster solver

Problem size runtime 1-cpu P/C 32-cpu P/C

1000 × 1000, 160 steps: 107.3 3.40 0.12

1500 × 1500, 240 steps: 362.4 3.38 0.11

Is this fast enough?

What did we loose? Only nice syntax.

What’s not there: limited support for higher order methods,
no support for non–linear problems, only simple grids

How can it be usefull in FEniCS?

Ødeg̊ard PySE – Python Stencil Environment

Ideas Example Details Performance

Comparison with C of the faster solver

Problem size runtime 1-cpu P/C 32-cpu P/C

1000 × 1000, 160 steps: 107.3 3.40 0.12

1500 × 1500, 240 steps: 362.4 3.38 0.11

Is this fast enough?

What did we loose? Only nice syntax.

What’s not there: limited support for higher order methods,
no support for non–linear problems, only simple grids

How can it be usefull in FEniCS?

Ødeg̊ard PySE – Python Stencil Environment

	General Ideas of PySE
	A simple example
	Some details on the interfaces
	Performance of PySE

