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And now that we may give final praise to the machine we may say that

it will be desirable to all who are engaged in computations which, it

is well known, are the managers of financial affairs, the administra-

tors of others’ estates, merchants, surveyors, geographers, navigators,

astronomers. . . For it is unworthy of excellent men to lose hours like

slaves in the labor of calculations which could safely be relegated to

anyone else if the machine were used.

Gottfried Wilhelm Leibniz (1646–1716)





Contents

1 IntroductionBy Anders Logg, Garth N. Wells and Kent-Andre Mardal 11

2 A FEniCS TutorialBy Hans Petter Langtangen 13

I Methodology 95

3 The Finite Element MethodBy Robert C. Kirby and Anders Logg 97

4 Common and Unusual Finite ElementsBy Robert C. Kirby, Anders Logg and Andy R. Terrel121

5 Constructing General Reference Finite ElementsBy Robert C. Kirby and Kent-Andre Mardal

6 Finite Element Variational FormsBy Robert C. Kirby and Anders Logg 157

7 Finite Element AssemblyBy Anders Logg 167

8 Quadrature Representation of Finite Element Variational FormsBy Kristian B. Ølgaard

9 Tensor Representation of Finite Element Variational FormsBy Anders Logg and possibly

10 Discrete Optimization of Finite Element Matrix EvaluationBy Robert C. Kirby, Matthew

11 Parallel Adaptive Mesh RefinementBy Niclas Jansson, Johan Hoffman and Johan Jansson183

II Implementation 197

12 DOLFIN: A C++/Python Finite Element LibraryBy Anders Logg and Garth N. Wells199

7



13 FFC: A Finite Element Form CompilerBy Anders Logg and possibly others201

14 FErari: An Optimizing Compiler for Variational FormsBy Robert C. Kirby and Anders Logg

15 FIAT: Numerical Construction of Finite Element Basis FunctionsBy Robert C. Kirby205

16 Instant: Just-in-Time Compilation of C/C++ Code in PythonBy Ilmar M. Wilbers, Kent-Andre

17 SyFi: Symbolic Construction of Finite Element Basis FunctionsBy Martin S. Alnæs and

18 UFC: A Finite Element Code Generation InterfaceBy Martin S. Alnæs, Anders Logg and K

19 UFL: A Finite Element Form LanguageBy Martin Sandve Alnæs 243

20 Unicorn: A Unified Continuum Mechanics SolverBy Johan Hoffman, Johan Jansson, Niclas

21 Viper: A Minimalistic Scientific PlotterBy Ola Skavhaug 315

22 Lessons Learned in Mixed Language Programming Using Python, C++ and SWIGBy

III Applications 347

23 Finite Elements for Incompressible FluidsBy Andy R. Terrel, L. Ridgway Scott, Matthew G.

24 Benchmarking Finite Element Methods for Navier–StokesBy Kristian Valen-Sendstad, Anders

25 Image-Based Computational HemodynamicsBy Luca Antiga 353

26 Simulating the Hemodynamics of the Circle of WillisBy Kristian Valen-Sendstad, Kent-Andre

27 Cerebrospinal Fluid FlowBy Susanne Hentschel, Svein Linge, Emil Alf Løvgren and Kent-Andre

28 Turbulent Flow and Fluid-Structure Interaction with UnicornBy Johan Hoffman, Johan

29 Fluid–Structure Interaction using Nitsche’s MethodBy Kristoffer Selim and Anders Logg391

30 Improved Boussinesq Equations for Surface Water WavesBy Nuno D. Lopes, P. J. S. Pereira

31 Multiphase Flow Through Porous MediaBy Xuming Shan and Garth N. Wells411

32 A coupled stochastic and deterministic model of Ca
2+

dynamics in the dyadic cleftBy

33 Electromagnetic Waveguide AnalysisBy Evan Lezar and David B. Davidson435

34 Applications in Solid MechanicsBy Kristian B. Ølgaard and Garth N. Wells455

8



35 Modelling Evolving DiscontinuitiesBy Mehdi Nikbakht and Garth N. Wells457

36 Block Preconditioning of Systems of PDEsBy Kent-Andre Mardal 459

37 Automatic Calibration of Depositional ModelsBy Hans Joachim Schroll473

38 Computational Compressible Flow and ThermodynamicsBy Johan Hoffman, Claes Johnson

39 Automated Testing of Saddle Point Stability ConditionsBy Marie E. Rognes509

A Notation 549

9



10



CHAPTER 1

Introduction

By Anders Logg, Garth N. Wells and Kent-Andre Mardal

Chapter ref: [intro]
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CHAPTER 2

A FEniCS Tutorial

By Hans Petter Langtangen

Chapter ref: [langtangen]

2.1 The Fundamentals

FEniCS is a user-friendly tool for solving partial differential equations (PDEs).
The purpose of this tutorial is get you started with solving PDEs with the aid of
FEniCS. First, we present a series of simple examples and demonstrate

• how to define the PDE problem in terms of a variational problem

• how to define simple domains

• how to deal with Dirichlet, Neumann, and Robin conditions

• how to treat variable coefficients

• how to deal with domains built of several materials (subdomains)

• how to compute derived quantities like the flux vector field or a functional
of the solution

• how to quickly visualize the mesh, the solution, the flux, etc.

• how to solve nonlinear PDEs in various ways

• how to deal with time-dependent PDEs
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A FEniCS Tutorial

• how to set parameters governing solution methods for linear systems

• how to create domains of more complex shape

The mathematics of the illustrations is kept simple to better focus on FEniCS
functionality and syntax. This means that we mostly use the Poisson equation
and the time-dependent diffusion equation as model problems, often with input
data adjusted such that we get a very simple solution that can be exactly repro-
duced by any standard finite element method over a uniform, structured mesh.
This latter property greatly enhances the verification of the impelementations.
Occasionally we insert a physically more relevant example to remind the reader
that changing the PDE and boundary conditions to something more real might
often be a trivial task.

FEniCS may seem to require a thorough understanding of the abstract math-
ematical version of the finite element method as well as familiarity with the
Python programming language. Nevertheless, it turns out that many are able to
pick up the fundamentals of finite elements and Python programming as they go
along with this tutorial. Simply keep on reading and try out the examples. You
will be amazed of how easy it is to solve PDEs with FEniCS!

Reading this tutorial obviously requires access to a machine where the FEn-
iCS software is installed. Chapter 2.8.3 explains briefly how to install the neces-
sary tools.

2.1.1 The Poisson Equation

Computer programming books frequently start with an example on how to print
“Hello, World!” on the screen. The counterpart to the “Hello, World!” example in
the world of software for partial differential equations is a program which solves
the Poisson problem,

−∆u = f in Ω,
u = u0 on ∂Ω .

(2.1)

Here, u(x) is the unknown function, f(x) is a prescribed function of space, ∆
is the Laplace operator (also often written as ∇2), Ω is the spatial domain, and
∂Ω is the boundary of Ω. A stationary PDE like this, together with a complete
set of boundary conditions, constitute a boundary-value problem, which must be
precisely stated before it makes sense to start solving it with FEniCS.

In two space dimensions with coordinates x and y, we can write out the Pois-
son equation (2.1) in detail:

−∂
2u

∂x2
− ∂2u

∂y2
= f(x, y) . (2.2)

The unknown u is now a function of two variables, u(x, y), defined over a two-
dimensional domain Ω.
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The Poisson equation (2.1) arises in numerical physical contexts, for exam-
ple, heat conduction, electrostatics, diffusion of substances, twisting of elastic
rods, inviscid fluid flow, water waves. Moreover, the equation appears in numer-
ical splitting strategies of more complicated systems of PDEs, in particular the
Navier-Stokes equations.

2.1.2 Variational Formulation

FEniCS makes it easy to solve PDEs if finite elements are used for discretization
in space and the problem is expressed as a variational problem. Readers who are
not familiar with variational problems will get a brief introduction to the topic in
this tutorial, and in Chapter ??, but we encourage getting and reading a proper
book on the finite element method in addition. Chapter 2.8.4 contains a list of
some suitable books.

The core of the recipe for turning a PDE into a variational problem is to multi-
ply the PDE by a function v, integrate the resulting equation over Ω, and perform
integration by parts of terms with second-order derivatives. The function v which
multiplies the PDE is in the mathematical finite element literature called a test

function. The unknown function u to be approximated is referred to as a trial

function. The terms test and trial function are used in FEniCS programs too.
Suitable function spaces must be specified for the test and trial functions. For
standard PDEs arising in physics and mechanics such spaces are well known.

In the present case, we first multiply by the test function v and integrate,

−
∫

Ω

v∆u dx =

∫

Ω

vf dx . (2.3)

Then we apply integration by parts of the integrand with second-order deriva-
tives,

−
∫

Ω

v∆u dx =

∫

Ω

∇v · ∇u dx−
∫

∂Ω

v
∂u

∂n
ds. (2.4)

The test function v is required to vanish on the parts of the boundary where u is
known, which in the present problem implies that v = 0 on the whole boundary
∂Ω. The second term on the right-hand side of (2.4) therefore vanishes. From
(2.3) and (2.4) it follows that

∫

Ω

∇v · ∇u dx =

∫

Ω

vf dx . (2.5)

This equation is supposed to hold for all v in some function space V̂ . The trial
function u lies in some (possible other) function space V . We refer to (2.5) as the
weak form of the original boundary-value problem (2.1).

The proper statement of our variational problem now goes as follows: Find
u ∈ V such that ∫

Ω

∇v · ∇u dx =

∫

Ω

vf dx ∀v ∈ V̂ . (2.6)
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The test and trial spaces V̂ and V are in the present problem defined as

V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω},
V = {v ∈ H1(Ω) : v = u0 on ∂Ω}.

In short, H1(Ω) is the mathematically well-known Sobolev space containing func-
tions v such that v2 and ||∇v||2 have finite integrals over Ω. This implies that the
functions must be continuous, but the derivatives can be discontinuous. The so-
lution of the underlying PDE, on the contrary, must lie in a function space where
also the derivatives are continuous. The weaker continuity requirements of the
variational statement (2.6), caused by the integration by parts, have great prac-
tical consequences when it comes to constructing finite elements.

To solve the Poisson equation numerically, we need to transform the contin-
uous variational problem (2.6) to a discrete variational problem. This is done
by introducing finite-dimensional test and trial spaces V̂h ⊂ V̂ and Vh ⊂ V . The
discrete variational problem reads: Find uh ∈ Vh ⊂ V such that

∫

Ω

∇v · ∇uh dx =

∫

Ω

vf dx ∀v ∈ V̂h ⊂ V̂ . (2.7)

The choice of V̂h and Vh follows directly from the kind of finite elements we want
to apply in our problem. For example, choosing the well-known linear triangular
element with three nodes implies that V̂h and Vh are the spaces of all piecewise
linear functions over a mesh of triangles, where the functions in V̂h are zero on
the boundary and those in Vh equal u0 on the boundary.

The mathematics literature on variational problems applies uh for the solu-
tion of the discrete problem and u for the solution of the continous problem. To
obtain (almost) a one-to-one relationshop between the mathematical formulation
of a problem and the corresponding FEniCS program, we shall use u for the so-
lution of the discrete problem and ue for the exact solution of the continuous
problem, if we need to explicitly distinguish between the two. In most cases we
will introduce the PDE problem with u as unknown and then simply let u denote
the finite element solution when we come to the discrete variational problem and
the associated program development.

It turns out to be convenient to introduce a unified notation for a weak form
like (2.7):

a(u, v) = L(v) . (2.8)

In the present problem we have that

a(u, v) =

∫

Ω

∇v · ∇u dx, (2.9)

L(v) =

∫

Ω

fv dx . (2.10)
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From the mathematics literature, a(u, v) is known as a bilinear form and L(u) as
a linear form. We shall in every problem we solve identify the terms with the
unknown u and collect them in a(u, v), and similarly collect all terms with only
known functions in L(v). The formulas for a and L are then coded directly in the
program.

To summarize, before making a FEniCS program for solving a PDE, we must
first perform two steps:

1. Turn the PDE problem into a discrete variational problem: Find u ∈ Vh
such that

a(u, v) = L(v) ∀v ∈ V̂h .

2. Specify the choice of discrete spaces, i.e., choice of finite elements.

2.1.3 The Implementation

The test problem so far has a general domain Ω and general functions u0 and f .
However, wemust specify Ω, u0, and f prior to our first implementation. It will be
wise to construct a specific problem where we can easily check that the solution
is correct. Let us choose u(x, y) = 1 + x2 + 2y2 to be the solution of our Poisson
problem since the finite element method with linear elements over a uniform
mesh of triangular cells should exactly reproduce a second-order polynomial at
the vertices of the cells, regardless of the size of the elements. This property
allows us to verify the code by using very few elements and checking that the
computed and the exact solution equal to machine precision. Test problems with
this property will be frequently constructed throughout the present tutorial.

Specifying u(x, y) = 1 + x2 + 2y2 in the problem from Chapter 2.1.2 implies
u0(x, y) = 1 + x2 + 2y2 and f(x, y) = −6. We let Ω be the unit square for simplicity.
A FEniCS program for solving (2.1) with the given choices of u0, f , and Ω may
look as follows (the complete code can be found in the file Poisson2D_D1.py ):

from dolfin import *

# Create mesh and define function space
mesh = UnitSquare(6, 4)
V = FunctionSpace(mesh, ’CG’, 1)

# Define boundary conditions
u0 = Function(V, ’1 + x[0] * x[0] + 2 * x[1] * x[1]’)

class Boundary(SubDomain): # define the Dirichlet boundar y
def inside(self, x, on_boundary):

return on_boundary

u0_boundary = Boundary()
bc = DirichletBC(V, u0, u0_boundary)

# Define variational problem
v = TestFunction(V)
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u = TrialFunction(V)
f = Constant(mesh, -6.0)
a = dot(grad(v), grad(u)) * dx
L = v * f * dx

# Compute solution
problem = VariationalProblem(a, L, bc)
u = problem.solve()

# Plot solution and mesh
plot(u)
plot(mesh)

# Dump solution to file in VTK format
file = File(’poisson.pvd’)
file << u

# Hold plot
interactive()

We shall now dissect this FEniCS program in detail. The program is written
in the Python programming language. You may either take a quick look at a
Python tutorial (The Python Tutorial) to pick up the basics of Python if you are
unfamiliar with the language, or you may learn enough Python as you go along
with the examples in this tutorial. The latter strategy has proven to work for
many newcomers to FEniCS1. Chapter 2.8.5 lists some good Python books.

The listed FEniCS program defines a finite element mesh, the discrete func-
tion spaces Vh and V̂h over this mesh (i.e., the choice of elements), boundary con-
ditions for u (i.e., the function u0), a(u, v), and L(v). Thereafter, the unknown
trial function u is computed. Then we can investigate u visually or analyze the
computed values.

The first line in the program,

from dolfin import *

imports the key classes UnitSquare , FunctionSpace , Function , and so forth,
from the DOLFIN library. All FEniCS programs for solving PDEs by the finite
element method normally start with this line. DOLFIN is a software library with
efficient and convenient C++ classes for finite element computing, and dolfin
is a Python package providing access to this C++ library from Python programs.
You can think of FEniCS is an umbrella, or project name, for a set of computa-
tional components, where DOLFIN is one important component for writing finite
element programs. DOLFIN applies other components in the FEniCS suite un-
der the hood, but newcomers to FEniCS programming do not need to care about
this.

1The requirement of using Python and an abstract mathematical formulation of the finite
element problem may seem difficult for those who are unfamiliar with these topics. However, the
amount of mathematics and Python that is really demanded to get you productive with FEniCS
is quited limited. And Python is an easy-to-learn language that you certainly will love and use
far beyond FEniCS programming.
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The statement

mesh = UnitSquare(6, 4)

defines a uniform finite element mesh over the unit square [0, 1]×[0, 1]. The mesh
consists of cells, which are triangles with straight sides. The parameters 6 and 4
tell that the square is first divided into 6 ·4 rectangles, and then each rectangle is
divided into two triangles. The total number of triangles then becomes 48. The
total number of vertices in this mesh is 7 ·5 = 35. DOLFIN offers some classes for
creating meshes over very simple geometries. For domains of more complicated
shape one needs to use a separate preprocessor program to create the mesh. The
FEniCS program will then read the mesh from file.

Having a mesh, we can define a discrete function space V over this mesh:

V = FunctionSpace(mesh, ’CG’, 1)

The second argument reflects the type of element, while the third argument is
the degree of the basis functions on the element. Here, ’CG’ stands for Con-
tinuous Galerkin, implying the standard Lagrange family of elements. Insted
of ’CG’ we could have written ’Lagrange’ . With degree 1, we simply get the
standard linear Lagrange element, which is a triangle with nodes at the three
vertices. Some finite element practitioners refer to this element as the “linear
triangle”. The computed u will be continuous and linearly varying in x and y
over each cell in the mesh. Higher-order polynomial approximations over each
cell are trivially obtained by increasing the third parameter to FunctionSpace .

In the mathematics, we distinguish between the trial and test spaces Vh and
V̂h. The only difference in the present problem is the boundary conditions. In
FEniCS we do not specify the boundary conditions as part of the function space,
so it is sufficient to work with one common space V for the test and trial functions
in the program:

v = TestFunction(V)
u = TrialFunction(V)

The next step is to specify the boundary condition: u = u0 on ∂Ω. This is done
by

bc = DirichletBC(V, u0, u0_boundary)

where u0 is an instance holding the u0 values, and u0_boundary is an instance
describing if a point lies on the boundary where u is specified. The term instance

means a Python object of a particular type (such as Function , FunctionSpace ,
etc.). Many use instance and object as interchangable terms. In other computer
programming languages one may also use the term variable for the same thing.
We shall in this tutorial mostly use the term instance, since that is most common
in a Python context, but object will also be occasionally used where that is more
natural.
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Boundary conditions of the type u = u0 are known as Dirichlet conditions,
and also as essential boundary conditions in a finite element context. Naturally,
the name of the DOLFIN class holding the information about Dirichlet boundary
conditions is DirichletBC .

The u0 variable refers to a Function instance, which is used to represent a
mathematical function and/or a finite element function. A Function instance
can be created in many ways, but the most straightforward recipe when we have
a simple mathematical expression for u0 is to write

u0 = Function(V, formula)

where formula is a string containing the mathematical expression written with
C++ syntax (the formula is automatically turned into an efficient, compiled C++
function, see Chapter 2.8.6 for details on the syntax). The independent variables
in the function expression are supposed to be available as a point vector x , where
the first element x[0] corresponds to the x coordinate, the second element x[1]
to the y coordinate, and (in a three-dimensional problem) x[2] to the z coordi-
nate. With our choice of u0(x, y) = 1+x2 +2y2, the formula string must be written
as 1 + x[0] * x[0] + 2 * x[1] * x[1] :

u0 = Function(V, ’1 + x[0] * x[0] + 2 * x[1] * x[1]’)

The information about where to apply the u0 function as boundary condition is
coded in a method inside in a subclass of class SubDomain 2:

class Boundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary

on_boundary = Boundary()

The method inside shall return a boolean value: True if the point x lies on the
Dirichlet boundary and False otherwise. The argument on_boundary is True
if x is on the physical boundary of the mesh, so in the present case we can just
return on_boundary . In later examples we will demonstrate how to set Dirich-
let conditions on parts of the boundary, typically achieved by some test on the x
values inside the inside method (as for the formula in Function instances, x
in the inside method represents a point in space with coordinates x[0] , x[1] ,
etc.). The inside method is called for every discrete point in the mesh, which al-
lows us to have boundaries where u are known also inside the domain, if desired.
The choice of class name, here Boundary , is up to the programmer, but the class
must be derived from SubDomain and it must have an inside method.

Newcomers to Python class programming often face some problems with un-
derstanding the self parameter in the inside function. For now it suffices to

2If you are unfamiliar with classes and class methods in Python, stay cool and just modify the
many examples on boundary specifications found in this tutorial. It may well suffice to pick up
Python class programming at a later stage.
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know that self is a required first argument when defining a function in a class.
There is no need to understand the self argument before in Chapter 2.7.2.

Before defining a(u, v) and L(v) we have to specify the f function:

f = Function(V, ’-6’)

When f is constant over the domain, f can be more efficiently represented as a
Constant instance:

f = Constant(mesh, -6.0)

Now we have all the objects we need in order to specify this problem’s a(u, v) and
L(v):

a = dot(grad(v), grad(u)) * dx
L = v * f * dx

In essence, these two lines specify the PDE to be solved. Note the very close cor-
respondence between the Python syntax and the mathematical formulas (2.9)–
(2.10)! This is a key strength of FEniCS: the formulas in the variational formu-
lation translate directly to very similar Python code, a feature that makes it easy
to specify PDE problems with lots of PDEs and complicated terms in the equa-
tions. The language used to express weak forms is called UFL (Unified Form
Language) and is an integral part of FEniCS.

Having a and L defined, and information about essential (Dirichlet) boundary
conditions in bc , we can formulate a VariationalProblem :

problem = VariationalProblem(a, L, bc)

Solving the variational problem for the solution u is just a matter of writing

u = problem.solve()

Unless otherwise stated, a sparse direct solver is used to solve the underlying
linear system implied by the variational formulation. The type of sparse di-
rect solver depends on which linear algebra package that is used by default.
If DOLFIN is compiled with PETSc, that package is the default linear algebra
backend, otherwise it is uBLAS. The FEniCS distribution for Ubuntu Linux con-
tains PETSc, and then the default solver becomes the sparse LU solver from
UMFPACK (which PETSc has an interface to). We shall later in Chapter 2.4
demonstrate how to get full control of the choice of solver and any solver param-
eters.

The u variable refers to a Function instance. Note that we first defined u as
a TrialFunction and used it to specify a. Thereafter, we redefined u to be a
Function representing the computed solution. This redefinition of the variable
u is possible in Python and a programming practice in FEniCS applications.

The simplest way of quickly looking at u and the mesh is to say
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plot(u)
plot(mesh)
interactive()

The interactive() call is necessary for the plot to remain on the screen. With
the left, middle, and right mouse buttons you can rotate, translate, and zoom
(respectively) the plotted surface to better examine how the solution looks like.

It is also possible to dump the computed solution to file, e.g., in the VTK
format:

file = File(’poisson.pvd’)
file << u

The poisson.pvd file can now be loaded into any front-end to VTK, say Par-
aView or VisIt. The plot function from Viper is intended for quick examination
of the solution during program development. More in-depth visual investigations
of finite element solution will normally benefit from using highly professional
tools such as ParaView and VisIt.

2.1.4 Examining the Discrete Solution

We know that, in the particular boundary-value problem of Chapter 2.1.3, the
computed solution u should equal the exact solution at the vertices of the cells.
An important extension of our first program is therefore to examine the com-
puted values of the solution, which is the focus of the present section.

A finite element function like u is expressed as a linear combination of basis
functions φi (spanning the space Vh):

N∑

j=1

Ujφj . (2.11)

By writing u = problem.solve() in the program, a linear systemwill be formed
from a and L, and this system is solved for the U1, . . . , UN values. The U1, . . . , UN
values are known as degrees of freedom of u. For Lagrange elements (and many
other element types) Uk is simply the value of u at the node with global number
k. (The nodes and cell vertices coincide for linear Lagrange elements, while for
higher-order elements there may be additional nodes at the facets and in the
interior of cells.)

Having u represented as a Function object, we can either evaluate u(x) at
the nodes x in the mesh, or we can grab the values Uj directly by

u_nodal_values = u.vector()

The result is a DOLFIN Vector instance, which is basically an encapsulation of
the vector object used in the linear algebra package that is applied to solve the
linear system arising form the variational problem. Since we program in Python
it is convenient to convert the Vector instance to a standard numpy array for
further processing:

22



Hans Petter Langtangen

u_array = u_nodal_values.array()

With numpy arrays we can write “Matlab-like” code to analyze the data. Indexing
is done with square brackets: u_array[i] , where the index i always starts at
0.

The coordinates of the vertices in the mesh can be extracted by

coor = mesh.coordinates()

For a d-dimensional problem, coor is anM×d numpy array,M being the number
of vertices in the mesh. Writing out the solution on the screen can now be done
by a simple loop:

for i in range(len(u_array)):
print ’u(%8g,%8g) = %g’ % \

(coor[i][0], coor[i][1], u_array[i])

The beginning of the output looks like

u( 0, 0) = 1
u(0.166667, 0) = 1.02778
u(0.333333, 0) = 1.11111
u( 0.5, 0) = 1.25
u(0.666667, 0) = 1.44444
u(0.833333, 0) = 1.69444
u( 1, 0) = 2

For Lagrange elements of degree higher than one, the vertices and the nodes do
not coincide, and then the loop above is meaningless.

For verification purposes we want to compare the values of u at the nodes, i.e.,
the values of the vector u_array , with the exact solution given by u0 . At each
node, the difference between the computed and exact solution should be less
than a small tolerance. The exact solution is given by the Function instance
u0 , which we can evaluate directly as u0(coor[i]) at the vertex with global
number i , or as u0(x) for any spatial point. Alternatively, we can make a finite
element field u_e , representing the exact solution, whose values at the nodes
are given by the u0 function. With mathematics, ue =

∑N
j=1Ejφj, where Ej =

u0(xj , yj), (xj, yj) being the coordinates of node no. j. This process is known as
interpolation. FEniCS has a function for performing the operation:

u_e = interpolate(u0, V)

The maximum error can now be computed as

u_e_array = u_e.vector().array()
diff = abs(u_array - u_e_array)
print ’Max error:’, diff.max()

# or more compactly:
print ’Max error:’, abs(u_e_array - u_array).max()
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The value of the error should be at the level of the machine precision (10−16).
To demonstrate the use of point evaluations of Function instances, we write

out the computed u at the center point of the domain and compare it with the
exact solution:

# Compare numerical and exact solution at (0.5, 0.5)
center = (0.5, 0.5)
u_value = u(center)
u0_value = u0(center)
print ’numerical u at the center point:’, u_value
print ’exact u at the center point:’, u0_value

Trying a 3× 3 mesh, the output from the previous snippet becomes

numerical u at the center point: [ 1.83333333]
exact u at the center point: [ 1.75]

The discrepancy is due to the fact that the center point is not a node in this
particular mesh, but a point in the interior of a cell, and u varies linearly over
the cell while u0 is a quadratic function.

Mesh information can be gathered from the mesh instance, e.g., mesh.num_cells()
returns the number of cells (triangles) in the mesh, mesh.num_vertices() re-
turns the number of verticies in the mesh (with our choice of linear Lagrange
elements this equals the number of nodes). The call str(mesh) , or simply writ-
ing print mesh , creates a short “pretty print” description of the mesh:

<Mesh of topological dimension 2 (triangles) with
16 vertices and 18 cells, ordered>

All mesh objects are of type Mesh so typing the command pydoc dolfin.Mesh
in a terminal window will give a list of methods that can be called through
any Mesh instance. In fact, pydoc dolfin.X shows the documentation of any
DOLFIN name X (at the time of this writing, some names have missing or in-
complete documentation).

We have seen how to extract the nodal values in a numpy array. If desired, we
can adjust the nodal values too. Say we want to normalize the solution such that
maxj Uj = 1. Then we must divide all Uj values by maxj Uj . The following snippet
performs the task:

max_u = u_array.max()
u_array /= max_u
u.vector()[:] = u_array
print u.vector().array()

That is, we manipulate u_array as desired, and then we insert this array into
u’s Vector instance. The /= operator implies an in-place modification of the ob-
ject on the left-hand side: all elements of the u_array are divided by the value
max_u. Alternatively, one could write u_array = u_array/max_u , which im-
plies creating a new array on the right-hand side and assigning this array to the
name u_array . We can equally well insert the entries of u_array into u’s numpy
array:
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u.vector().array()[:] = u_array

All the code in this subsection can be found in the file Poisson2D_D2.py .

2.1.5 Formulating a Real Physical Problem

Perhaps you are not particularly amazed by viewing the simple surface of u in
the test problem from Chapters 2.1.3 and 2.1.4. However, solving a real physical
problem with a more interesting and amazing solution on the screen is only a
matter of specifying a more exciting domain, boundary condition, and/or right-
hand side f .

One possible physical problem regards the deflection of D(x, y) of an elastic
circular membrane with radius R, subject to a localized perpendicular pressure
force, modeled as a Gaussian function. The appropriate PDE model is

−T∆D = p(x, y) in Ω = {(x, y) | x2 + y2 ≤ R}, (2.12)

with

p(x, y) =
A

2πσ
exp

(
−1

2

(
x− x0

σ

)2

− 1

2

(
y − y0

σ

)2
)
. (2.13)

Here, T is the tension in the membrane (constant), p is the external pressure
load, A the amplitude of the pressure, (x0, y0) the localization of the Gaussian
pressure function, and σ the “width” of this function. The boundary condition is
D = 0.

Introducing a scaling with R as characteristic length and 8πσT/A as charac-
teristic size of D, we can derive the equivalent scaled problem on the unit circle,

−∆w = 4 exp

(
−1

2

(
Rx− x0

σ

)2

− 1

2

(
Ry − y0

σ

)2
)
, (2.14)

with w = 0 on the boundary. We have that D = Aw/(8πσT ).
A mesh over the unit circle can be created by

mesh = UnitCircle(n)

where n is the typical number of elements in the radial direction. You should
now be able to figure out how to modify the Poisson2D_D1.py code to solve
this membrane problem. More specifically, you are recommended to perform the
following extensions:

1. initialize R, x0, y0, σ, T , and A in the beginning of the program,

2. build a string expression for p with correct C++ syntax (use printf format-
ting in Python to build the expression),
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3. define the a and L variables in the variational problem for w and compute
the solution,

4. plot the mesh, w, and the scaled pressure function p (the right-hand side of
(2.14)),

5. write out the maximum real deflectionD (i.e., the maximum of the w values
times A/(8πσT )).

Use variable names in the program similar to the mathematical symbols in this
problem.

Choosing a small width σ (say 0.01) and a location (x9, y0) toward the cir-
cular boundary (say (0.6R cos θ, 0.6R sin θ) for any θ ∈ [0, 2π]), may produce an
exciting visual comparison of w and p that demonstrates the very smoothed elas-
tic response to a peak force (or mathematically, the smoothing properties of the
Laplace operator). You need to experiment with the mesh resolution to get a
smooth visual representation of p.

In the limit σ →∞, the right-hand side p of (2.14) approaches the constant 4,
and then the solution should be w(x, y) = 1−x2−y2. Compute the absolute value
of the difference between the exact and the numerical solution if σ ≥ 50 and write
out the maximum difference to provide some evidence that the implementation
is correct.

You are strongly encouraged to spend some time on doing this exercise and
play around with the plots and different mesh resolutions. A suggested solution
to the exercise can be found in the file membrane1.py .

from dolfin import *

# Set pressure function:
T = 10.0 # tension
A = 1.0 # pressure amplitude
R = 0.3 # radius of domain
theta = 0.2
x0 = 0.6 * R* cos(theta)
y0 = 0.6 * R* sin(theta)
sigma = 0.025
#sigma = 50 # verification
pressure = ’4 * exp(-0.5 * (pow((%g * x[0] - %g)/%g, 2)) ’\

’ - 0.5 * (pow((%g * x[1] - %g)/%g, 2)))’ % \
(R, x0, sigma, R, y0, sigma)

n = 40 # approx no of elements in radial direction
mesh = UnitCircle(n)
V = FunctionSpace(mesh, ’CG’, 1)

# Define boundary condition w=0

class Boundary(SubDomain): # define the whole boundary
def inside(self, x, on_boundary):

return on_boundary
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boundary = Boundary()
bc = DirichletBC(V, Constant(mesh, 0.0), boundary)

# Define variational problem
v = TestFunction(V)
w = TrialFunction(V)
p = Function(V, pressure)
a = dot(grad(v), grad(w)) * dx
L = v * p* dx

# Compute solution
problem = VariationalProblem(a, L, bc)
w = problem.solve()

# Plot solution and mesh
plot(mesh, title=’Mesh over scaled domain’)
plot(w, title=’Scaled deflection’)
plot(p, title=’Scaled pressure’)

# Find maximum real deflection
max_w = w.vector().array().max()
max_D = A* max_w/(8 * pi * sigma * T)
print ’Maximum real deflection is’, max_D

# Verification for "flat" pressure
if sigma >= 50:

w_exact = Function(V, ’1 - x[0] * x[0] - x[1] * x[1]’)
w_e = interpolate(w_exact, V)
w_e_array = w_e.vector().array()
w_array = w.vector().array()
diff_array = abs(w_e_array - w_array)
print ’Verification of the solution, max difference is %.4E ’ % \

diff_array.max()

difference = Function(V)
difference.vector()[:] = diff_array
#plot(difference, title=’Error field for sigma=%g’ % sigm a)

# Should be at the end
interactive()

2.1.6 Computing Derivatives

In many Poisson and other problems the gradient of the solution is of interest.
The computation is in principle simple: since u =

∑N
j=1Ujφj, we have that

∇u =

N∑

j=1

Uj∇φj .

Given the solution variable u in the program, grad(u) denotes the gradient.
However, the gradient of a finite element scalar field is a discontinuous vector
field since the φj has discontinuous derivatives at the boundaries of the cells.
For example, using Lagrange elements of degree 1, u is linear over each cell, and
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the numerical∇u becomes a piecewise constant vector field. On the contrary, the
exact gradient is continuous. For visualization and data analysis purposes we
often want the computed gradient to be a continuous vector field. Typically, we
want each component of ∇u to be represented in the same way as u itself. To this
end, we can project the components of ∇u onto the same function space as we
used for u. This means that we solve w = ∇u by a finite element method3, using
the the same elements for the components of w as we used for u.

The variational problem for w reads: Find w ∈ Vh such that

a(w, v) = L(v) ∀v ∈ V̂ (g)
h , (2.15)

where

a(w, v) =

∫

Ω

w · v dx, (2.16)

L(v) =

∫

Ω

v · ∇u dx . (2.17)

The function spaces Vh and V̂
(g)
h are vector versions of the function space for u,

with boundary conditions removed (if Vh is the space we used for u, with no re-

strictions on boundary values, V
(g)
h = V̂

(g)
h = [Vh]

d, where d is the number of space
dimensions). For example, if we used piecewise linear functions on the mesh to
approximate u, the variational problem for w corresponds to approximating each
component field of w by piecewise linear functions.

The variational problem for the vector field w, called gradu in the code, is
easy to solve in FEniCS:

V_g = VectorFunctionSpace(mesh, ’CG’, 1)
v = TestFunction(V_g)
w = TrialFunction(V_g)

a = dot(w, v) * dx
L = dot(grad(u), v) * dx
problem = VariationalProblem(a, L)
gradu = problem.solve()

plot(gradu, title=’grad(u)’)

The new thing is basically that we work with a VectorFunctionSpace , since
the unknown is now a vector field, instead of the FunctionSpace object for
scalar fields.

The scalar component fields of the gradient can be extracted as separated
fields and, e.g., visualized:

3This process is known as projection. Looking at the component ∂u/∂x of the gradient, we
project the (discrete) derivative

∑
j Uj∂φj/∂x onto another function space with basis φ̄1, . . . φ̄ such

that the derivative in this space is expressed by the standard sum
∑

j Ūj φ̄j , for suitable (new)

coefficients Ūj .
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gradu_x, gradu_y = gradu.split(deepcopy=True) # extract c omponents
plot(gradu_x, title=’x-component of grad(u)’)
plot(gradu_y, title=’y-component of grad(u)’)

The gradu_x and gradu_y variables behave as Function instances. In partic-
ular, we can extract the underlying arrays of nodal values by

gradu_x_array = gradu_x.vector().array()
gradu_y_array = gradu_y.vector().array()

The degrees of freedom of the gradu vector field can also be reached by

gradu_array = gradu.vector().array()

but this is a flat numpy array where the degrees of freedom for the x component
of the gradient is stored in the first part, then the degrees of freedom of the y
component, and so on.

The program Poisson2D_D3.py extends the code Poisson2D_D2.py from
Chapter 2.1.4 with computations and visualizations of the gradient. Examin-
ing the arrays gradu_x_array and gradu_y_array , or looking at the plots
of gradu_x and gradu_y , quickly reveals that the computed gradu field does
not equal the exact gradient (2x, 4y) in this particular test problem where u =
1 + x2 + y2. There are inaccuracies at the boundaries, arising from the approxi-
mation problem for w. Increasing the mesh resolution shows, however, that the
components of the gradient vary linearly as 2x and 4y in the interior of the mesh
(i.e., as soon as we are one element away from the boundary). See Chapter 2.1.8
for illustrations of this phenomenon.

Representing the gradient by the same elements as we used for the solution
is a very common step in finite element programs, so the formation and solution
of a variational problem for w as shown above can be replaced by a one-line call:

gradu = project(grad(u), VectorFunctionSpace(mesh, ’CG’ , 1))

The project function can take an expression involving some finite element func-
tion in some space and project the expression onto another space. The applica-
tions are many, including turning discontinuous gradient fields into continuous
ones, comparing higher- and lower-order function approximations, and trans-
forming a higher-order finite element solution down to a first-order field which is
required by many visualization packages.

2.1.7 Computing Functionals

After the solution u of a PDE is computed, we often want to compute functionals
of u, for example,

1

2
||∇u||2 ≡ 1

2

∫

Ω

∇u · ∇u dx, (2.18)
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which often reflects the some energy quantity. Another frequently occuring func-
tional is the error

||u− ue|| =
(∫

Ω

(ue − u)2 dx

)1/2

, (2.19)

which is of particular interest when studying convergence properties. Sometimes
the interst concerns the flux out of a part Γ of the boundary ∂Ω,

F = −
∫

Γ

p∇u ·n ds, (2.20)

where n is an outward unit normal at Γ and p is a coefficient (see the problem in
Chapter 2.1.12 for a specific example). All these functionals are easy to compute
with FEniCS, and this section describes how it can be done.

Energy Functional. The integrand of the energy functional (2.18) is described
in the UFL language in the same manner as we describe weak forms:

energy = 0.5 * grad(u) * grad(u) * dx
E = assemble(energy)

The assemble call performs the integration. It is possible to restrict the integra-
tion to subdomains, using a mesh function to mark the subdomains as explained
in Chapter 2.6.3. The program membrane2.py carries out the computation of
the elastic energy 1

2
||T∇w||2 in the membrane problem from Chapter 2.1.5.

Convergence Estimation. To illustrate error computations and convergence
of finite element solutions, wemodify the Poisson2D_D3.py program from Chap-
ter 2.1.6 and specify a more complicated solution,

u(x, y) = sin(ωπx) sin(ωπy)

on the unit square. It follows that u0 = 0 and that f(x, y) = 2ω2π2u(x, y). We
must define the appropriate boundary conditions, the exact solution, and the f
function:

class Boundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(mesh, 0.0), Boundary())

omega = 1.0
u_exact = Function(V, ’sin(omega * pi * x[0]) * sin(omega * pi * x[1])’,

{’omega’: omega})

f = 2 * pi ** 2* omega** 2* u_exact

The computation of (2.19) can be done by
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error = (u - u_exact) ** 2* dx
E = sqrt(assemble(error))

However, u_exact will in this expression be interpolated onto the function space
V, i.e., the exact solution used in the integral will vary linearly over the cells,
and not as a sine function, if V corresponds to linear Lagrange elements. More
accurate representation of the exact solution can be obtained by defining higher-
order elements, say

Ve = FunctionSpace(mesh, ’CG’, degree=3)
u_e = interpolate(u_exact, Ve)
error = (u - u_e) ** 2* dx
E = sqrt(assemble(error))

The u function will here be automatically interpolated and represented in the Ve
space. (When functions in different function spaces enter UFL expressions, they
will be represented in the space of highest order before integrations are carried
out.)

The square in the expression for error will be expanded and lead to a lot
of terms that almost cancel when the error is small, with the potential of in-
troducing significant round-off errors. The function errornorm is available for
avoiding this effect by first interpolating u and u_exact to a space with higher-
order elements, then subtracting the degrees of freedom, and then performing
the integration. The usage is simple:

E = errornorm(u_exact, u, normtype=’l2’, degree=3)

Finally, we remove all plot calls and printouts of u values in the original
program, and collect the computations in a function:

def compute(nx, ny, degree):
mesh = UnitSquare(nx, ny)
V = FunctionSpace(mesh, ’CG’, degree)
...
E = errornorm(u_exact, u, normtype=’l2’, degree=3)
return E

Calling compute for finer and finer meshes enables us to study the conver-
gence rate. Define the element size h = 1/n, where n is the number of divi-
sions in x and y direction (nx=ny in the code). We perform experiments with
h0 > h1 > h2 · · · and compute the corresponding errors E0, E1, E3 and so forth.
Assuming Ei = Chri for unknown constants C and r, we can compare two consec-
utive experiments, Ei = Chri and Ei−1 = Chri−1, and solve for r:

r =
ln(Ei/Ei−1)

ln(hi/hi−1)
.

The r values should approach the expected convergence rate degree+1 as i in-
creases.

The procedure above can easily be turned into Python code:
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# Perform experiments
degree = int(sys.argv[1])
h = [] # element sizes
E = [] # errors
for nx in [4, 8, 16, 32, 64, 128]:

h.append(1.0/nx)
E.append(compute(nx, nx, degree))

# Convergence rates
from math import log as ln # (log is a dolfin name too)
for i in range(1, len(E)):

r = ln(E[i]/E[i-1])/ln(h[i]/h[i-1])
print ’h=%10.2E r=%.2f’ % (h[i], r)

The resulting program has the name Poisson2D_D4.py . Running this program
for first-order elements yields the output

h= 1.25E-01 r=1.76
h= 6.25E-02 r=1.94
h= 3.12E-02 r=1.98
h= 1.56E-02 r=2.00
h= 7.81E-03 r=2.00

That is, we approach the expected second-order convergence of linear Lagrange
elements as the meshes become sufficiently fine. Running the program for third-
order elements results in the expected value r = 4:

h= 1.25E-01 r=4.09
h= 6.25E-02 r=4.03
h= 3.12E-02 r=4.01
h= 1.56E-02 r=4.00
h= 7.81E-03 r=4.00

Checking convergence rates is the next best method for verifying PDE codes (the
best being exact recovery of a solution as in Chapter 2.1.4 and many other places
in this tutorial).

Flux Functionals. To compute flux integrals like (2.20) we need to define the
n vector, referred to as facet normal in FEniCS. If Γ is the complete boundary we
can perform the flux computation by

n = FacetNormal(mesh)
flux = -p * dot(grad(u), n) * ds
total_flux = assemble(flux)

It is possible to restrict the integration to a part of the boundary using a mesh
function to mark the relevant part, as explained in Chapter 2.6.3. Assuming
that the part corresponds to subdomain no. 0, the relevant form for the flux is
-p * dot(grad(u), n) * ds(0) .
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2.1.8 Quick Visualization with VTK

As we go along with examples it is fun to play around with plot commands
and visualize what is computed. This section explains some useful visualization
features.

The plot(u) command launches a FEniCS component called Viper, which
applies the VTK package to visualize finite element functions. Viper is not a
full-fledged, easy-to-use front-end to VTK (like ParaView or VisIt), but rather a
thin layer on top of VTK’s Python interface, allowing us to quickly visualize a
DOLFIN function or mesh, or data in plain Numerical Python arrays, within a
Python program. Viper is ideal for debugging, teaching, and initial scientific in-
vestigations. The visualization can be interactive, or you can steer and automate
it through program statements. More advanced and professional visualizations
are usually better done with advanced tools like ParaView, VisIt, or MayaVi2.

We have made a program membrane1v.py for the membrane deflection prob-
lem in Chapter 2.1.5 and added various demonstrations of Viper capabilities.
You are encouraged to play around with membrane1v.py and modify the code
as you read about various features. The membrane1v.py program solves the
two-dimensional Poisson equation for a scalar field w (the membrane deflection).

The plot function can take additional arguments, such as a title of the plot,
or a specification of a wireframe plot (elevated mesh) instead of a colored surface
plot:

plot(mesh, title=’Finite element mesh’)
plot(w, wireframe=True, title=’solution’)

The three mouse buttons can be used to rotate, translate, and zoom the sur-
face. Pressing h in the plot window makes a printout of several key bindings
that are available in such windows. For example, pressing m in the mesh plot
window dumps the plot of the mesh to an Encapsulated PostScript (.eps ) file,
while pressing i saves the plot in PNG format. All plotfile names are automat-
ically generated as simulationX.eps , where X is a counter 0000 , 0001 , 0002 ,
etc., being increased every time a new plot file in that format is generated (the
extension of PNG files is .png instead of .eps ). Pressing ’o’ adds a red outline
of a bounding box around the domain.

One can alternatively control the visualization from the program code di-
rectly. This is done through a Viper instance returned from the plot command.
Let us grab this object and use it to 1) tilt the camera −65 degrees in latitude
direction, 2) add some simple x and y axis, 3) change the default name of the plot
files (generated by typing mand i in the plot window), 4) change the color scale,
and 5) write the plot to a PNG and an EPS file. Here is the code:

viz1 = plot(w,
wireframe=False,
title=’Scaled membrane deflection’,
rescale=False,
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Figure 2.1: Plot of the deflection of a membrane.

axes=True, # include axes
basename=’deflection’, # default plotfile name
)

viz1.elevate(-65) # tilt camera -65 degrees (latitude dir)
viz1.set_min_max(0, 0.5 * max_w) # color scale
viz1.update(w) # bring settings above into action
viz1.write_png(’deflection.png’)
viz1.write_ps(’deflection’, format=’eps’)

The format argument in the latter line can also take the values ’ps’ for a
standard PostScript file and ’pdf’ for a PDF file. Note the necessity of the
viz.update(w) call – without it we will not see the effects of tilting the camera
and changing the color scale. Figure 2.1 shows the resulting scalar surface.
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2.1.9 Combining Dirichlet and Neumann Conditions

Let us make a slight extension of our two-dimensional Poisson problem from
Chapter 2.1.1 and add a Neumann boundary condition. The domain is still the
unit square, but now we set the Dirichlet condition u = u0 at the left and right
sides, x = 0 and x = 1, while the Neumann condition

−∂u
∂n

= g

is applied to the remaining sides y = 0 and y = 1. The Neumann condition is also
known as a natural boundary condition (in contrast to an essential boundary
condition).

Let ΓD and ΓN denote the parts of ∂Ω where the Dirichlet and Neumann con-
ditions apply, respectively. The complete boundary-value problem can be written
as

−∆u = f in Ω, (2.21)

u = u0 on ΓD, (2.22)

−∂u
∂n

= g on ΓN (2.23)

Again we choose u = 1 + x2 + 2y2 as the exact solution and adjust f , g, and u0

accordingly:

f = −6,

g =

{
−4, y = 1
0, y = 0

u0 = 1 + x2 + 2y2 .

For ease of programming we may introduce a g function defined over the whole of
Ω such that g takes on the right values at y = 0 and y = 1. One possible extension
is

g(x, y) = −4y .

The first task is to derive the variational problem. This time we cannot omit
the boundary term arising from the integration by parts, because v is only zero
at the ΓD. We have

−
∫

Ω

v∆u dx =

∫

Ω

∇v · ∇u dx−
∫

∂Ω

v
∂u

∂n
ds,

and since v = 0 on ΓD,

−
∫

∂Ω

v
∂u

∂n
ds = −

∫

ΓN

v
∂u

∂n
ds =

∫

ΓN

gv ds,
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by applying the boundary condition at ΓN . The resulting weak form reads
∫

Ω

∇v · ∇u dx+

∫

ΓN

gv ds =

∫

Ω

fv dx . (2.24)

Expressing (2.24) in the standard notation a(u, v) = L(v) is straightforward with

a(u, v) =

∫

Ω

∇v · ∇u dx, (2.25)

L(v) =

∫

Ω

fv dx−
∫

ΓN

gv ds . (2.26)

How does the Neumann condition impact the implementation? The code in
the file Poisson2D_D2.py remains almost the same. Only two adjustments are
necessary:

1. The class describing the boundary where Dirichlet conditions apply must
be modified.

2. The new boundary term must be added to the expression in L.

Step 1 can be coded as

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

if on_boundary:
if x[0] == 0 or x[0] == 1:

return True
else:

return False
else:

return False

A more compact implementation reads

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and (x[0] == 0 or x[0] == 1)

We remark that testing for an exact match of real numbers, as in x[0] == 1 ,
is not good programming practice, because small round-off errors in the compu-
tation of the x values could make the outcome False even though x lies on the
Dirichlet boundary. A better test is to check for equality with a tolerance:

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and \

(abs(x[0]) < tol or abs(x[0] - 1) < tol)

The second adjustment of our program concerns the definition of L, where we
have to add a boundary integral and a definition of the g function to be inte-
grated:
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g = Function(V, ’-4 * x[1]’)
L = v * f * dx - v * g* ds

The ds variable implies a boundary integral, while dx implies an intergral over
the domain Ω. No more modifications are necessary. Running the resulting pro-
gram, found in the file Poisson2D_DN1.py , shows a successful verification – u
equals the exact solution at all the nodes, regardless of how many elements we
use.

2.1.10 Multiple Dirichlet Conditions

The PDE problem from the previous section applies a function u0(x, y) for setting
Dirichlet conditions at two parts of the boundary. Having a single function to
set multiple Dirichlet conditions is seldom possible. The more general case is to
have m functions for setting Dirichlet conditions at m parts of the boundary. The
purpose of this section is to explain how such multiple conditions are treated in
FEniCS programs.

Let us return to the case from Chapter 2.1.9 and define two separate functions
for the two Dirichlet conditions:

−∆u = −6 in Ω,

u = uL on Γ0,

u = uR on Γ1,

−∂u
∂n

= g on ΓN .

Here, Γ0 is the boundary x = 0, while Γ1 corresponds to the boundary x = 1.
We have that uL = 1 + 2y2, uR = 2 + 2y2, and g = −4y. For the left boundary
Γ0 we define the usual triple of a function for the boundary value, a subclass of
SubDomain for defining the boundary of interest, and a DirichletBC instance:

u_L = Function(V, ’1 + 2 * x[1] * x[1]’)

class LeftDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = DirichletBC(V, u_L, LeftDirichletBoundary())

For the boundary x = 1 we define a similar code:

u_R = Function(V, ’2 + 2 * x[1] * x[1]’)

class RightDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = DirichletBC(V, u_R, RightDirichletBoundary())
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The various essential conditions are then collected in a list and passed onto our
problem object of type VariationalProblem :

bc = [Gamma_0, Gamma_1]
...
problem = VariationalProblem(a, L, bc)

If the u values are constant at a part of the boundary, we may use a Constant
instance instead of a full Function instance.

The file Poisson2D_DN2.py contains a complete program which demonstrates
the constructions above. An extended example with multiple Neumann con-
ditions would have been quite natural now, but this requires marking various
parts of the boundary using the mesh function concept and is therefore left to
Chapter 2.6.3.

2.1.11 A Linear Algebra Formulation

Given a(u, v) = L(v), the discrete solution u is computed by inserting u =
∑N

j=1 Ujφj
into a(u, v) and demanding a(u, v) = L(v) to be fulfilled for N test functions
φ̂1, . . . , φ̂N . This implies

N∑

j=1

a(φj , φ̂i) = L(φ̂i), i = 1, . . . , N,

which is nothing but a linear system,

AU = b,

where the entries in A and b are given by

Aij = a(φj , φ̂i),

bi = L(φ̂i) .

The examples so far have constructed a VariationalProblem instance and
called its solve method to compute the solution u. The VariationalProblem
instance creates a linear system AU = b and calls an appropriate solution method
for such systems. An alternative is dropping the use of a VariationalProblem
instance and instead asking FEniCS to create the matrix A and right-hand side
b, and then solve for the solution vector U of the linear system. The relevant
statements read

A = assemble(a)
b = assemble(L)
bc.apply(A, b)
u = Function(V)
solve(A, u.vector(), b)
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The variables a and L are as before, i.e., a refers to the bilinear form involving
a TrialFunction instance (say u) and a TestFunction instance (v ), and L
involves a TestFunction instance (v ). From a and L the assemble function
can compute the matrix elements Ai,j and the vector elements bi.

The matrix A and vector b are first assembled without incorporating essential
(Dirichlet) boundary conditions. Thereafter, the bc.apply(A, b) call performs
the necessary modifications to the linear system. The first three statements
above can alternatively be carried out by4

A, b = assemble_system(a, L, bc)

When we have multiple Dirichlet conditions stored in a list bc , as explained
in Chapter 2.1.10, we must apply each condition in bc to the system:

# bc is a list of DirichletBC instances
for condition in bc:

condition.apply(A, b)

Alternatively, we can make the call

A, b = assemble_system(a, L, bc)

Note that the solution u is, as before, a Function instance. The degrees of
freedom, U = A−1b, are filled into u’s Vector instance (u.vector() ) by the
solve function.

The object A is of type Matrix , while b and u.vector() are of type Vector .
We may convert the matrix and vector data to numpy arrays by calling the
array() method as shown before. If you wonder how essential boundary condi-
tions are incorporated in the linear system, you can print out A and b before and
after the bc.apply(A, b) call:

if mesh.numCells() < 16: # print for small meshes only
print A.array()
print b.array()

bc.apply(A, b)
if mesh.numCells() < 16:

print A.array()
print b.array()

You will see that A is modified in a symmetric way: for each degree of freedom
that is known, the corresponding row and column is zero’ed out and 1 is placed
on the main diagonal. The right-hand side b is modified accordingly (the column
times the value of the degree of freedom is subtracted from b, and then the cor-
responding entry in b is replaced by the known value of the degree of freedom).

Sometimes it can be handy to transfer the linear system to Matlab or Octave
for futher analysis, e.g., computation of eigenvalues of A. This is easily done by
opening a File instance with a filename extension .m and dump the Matrix
and Vector instances as follows:

4The essential boundary conditions are now applied to the element matrices and vectors prior
to assembly.
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mfile = File(’A.m’); mfile << A
mfile = File(’b.m’); mfile << b

The data files A.m and b.m can be loaded directly into Matlab or Octave.
The complete code where our Poisson problem is solved by forming the lin-

ear system AU = b explicitly, is stored in the files Poisson2D_DN_la1.py (one
common Dirichlet condition) and Poisson2D_DN_la2.py (two separate Dirich-
let conditions).

Creating the linear system explicitly in the user’s program, as an alternative
to using a VariationalProblem instance, can have some advantages in more
advanced problem settings. For example, A may be constant throughout a time-
dependent simulation, so we can avoid recalculating A at every time level and
save a significant amount of simulation time. Chapters 2.3.2 and 2.3.3 deal with
this topic in detail.

2.1.12 A Variable-Coefficient Poisson Problem

Suppose we have a variable coefficient p(x, y) in the Laplace operator, as in the
boundary-value problem

−∇ · [p(x, y)∇u(x, y)] = f(x, y) in Ω,
u(x, y) = u0(x, y) on ∂Ω .

(2.27)

We shall quickly demonstrate that this simple extension of our model problem
only requires an equally simple extension of the FEniCS program.

Let us continue to use our favorite solution u(x, y) = 1 + x + 2y2 and then
prescribe p(x, y) = x + y. It follows that u0(x, y) = 1 + x2 + 2y2 and f(x, y) =
−8x− 10y.

What are the modifications we need to do in the Poisson2D_D2.py program
from Chapter 2.1.4?

1. f must be a Function since it is no longer a constant,

2. a new Function p must be defined for the variable coefficient,

3. the variational problem is slightly changed.

First we address the modified variational problem. Multiplying the PDE in (2.27)
and integrating by parts now results in

∫

Ω

p∇v · ∇u dx−
∫

∂Ω

pv
∂u

∂n
ds =

∫

Ω

vf dx .

The function spaces for u and v are the same as in Chapter 2.1.2, implying that
the boundary integral vanishes since v = 0 on ∂Ω where we have Dirichlet condi-
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tions. The weak form a(u, v) = L(v) then has

a(u, v) =

∫

Ω

p∇v · ∇u dx, (2.28)

L(v) =

∫

Ω

vf dx . (2.29)

In the code from Chapter 2.1.3 we must replace

a = dot(grad(v), grad(u)) * dx

by

a = p* dot(grad(v), grad(u)) * dx

The definitions of p and f read

p = Function(V, ’x[0] + x[1]’)
f = Function(V, ’-8 * x[0] - 10 * x[1]’)

No additional modifications are necessary. The complete code can be found in
in the file Poisson2D_Dvc.py . You can run it and confirm that it recovers the
exact u at the nodes.

The flux −p∇u may be of particular interest in variable-coefficient Poisson
problems. As explained in Chapter 2.1.6, we normally want the piecewise discon-
tinuous flux or gradient to be approximated by a continuous vector field, using
the same elements as used for the numerical solution u. The approximation now

consists of solving w = −p∇u by a finite element method: find w ∈ V (g)
h such that

a(w, v) = L(vg) ∀v ∈ V̂ (g)
h , (2.30)

where

a(w, v) =

∫

Ω

w · v dx, (2.31)

L(vg) =

∫

Ω

v · (−p∇u) dx . (2.32)

This problem is identical to the one in Chapter 2.1.6, except that p enters the
integral in L.

The relevant Python statements for computing the flux field take the form

V_g = VectorFunctionSpace(mesh, ’CG’, 1)
v = TestFunction(V_g)
w = TrialFunction(V_g)

a = dot(w, v) * dx
L = dot(-p * grad(u), v) * dx
problem = VariationalProblem(a, L)
flux = problem.solve()
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The convenience function project was made to condense the frequently occur-
ing statements above:

flux = project(-p * grad(u),
VectorFunctionSpace(mesh, ’CG’, 1))

Plotting the flux vector field is naturally as easy as plotting the gradient in
Chapter 2.1.6:

plot(flux, title=’flux field’)

flux_x, flux_y = flux.split(deepcopy=True) # extract comp onents
plot(flux_x, title=’x-component of flux (-p * grad(u))’)
plot(flux_y, title=’y-component of flux (-p * grad(u))’)

Data analysis of the nodal values of the flux field may conveniently apply the
underlying numpy arrays:

flux_x_array = flux_x.vector().array()
flux_y_array = flux_y.vector().array()

The program Poisson2D_Dvc.py contains in addition some plots, including
a curve plot comparing flux_x and the exact counterpart along the line y = 1/2.
The associated programming details related to this visualization are explained
in Chapter 2.1.13.

2.1.13 Visualization of Structured Mesh Data

When finite element computations are done on a structured rectangular mesh,
maybe with uniform partitioning, VTK-based tools for completely unstructured
2D/3D meshes are not required. Instead we can use visualization tools for struc-
tured data, like the data appearing in finite difference simulations and image
analysis. We shall demonstrate the potential of such tools.

A necessary first step is to transform our mesh instance to an object repre-
senting a rectangle with equally-shaped rectangular cells. The Python package
scitools has this type of structure, called a UniformBoxGrid . The second step
is to transform the one-dimensional array of nodal values to a two-dimensional
array holding the values at the corners of the cells in the structured grid. In
such grids, we want to access a value by its i and j indices, i counting cells in
the x direction, and j counting cells in the y direction. This transformation is
in principle straiightforward, yet it frequently leads to obscure indexing errors.
The BoxField object in scitools takes conveniently care of the details of the
transformation. With a BoxField defined on a UniformBoxGrid it is very easy
to call up more standard plotting packages to visualize the solution along lines
in the domain or as 2D contours or lifted surfaces.

Let us go back to the Poisson2D_Dvc.py code from Chapter 2.1.12 and map
u onto a BoxField instance:
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from scitools.BoxField import *
u_box = dolfin_function2BoxField(u, mesh, (nx,ny), unifo rm_mesh=True)

Here, nx and ny are the number of divisions in each space direction that were
used when calling UnitSquare to make the mesh instance. The result u_box is a
BoxField instance that supports “finite difference” indexing and an underlying
grid suitable for numpy operations on 2D data. Also 1D and 3D functions in
DOLFIN can be turned into BoxField instances.

The ability to access a finite element field in the way one can access a finite
difference-type of field is handy in many occasions, including visualization and
data analysis. Here is an example of writing out the coordinates and the field
value at a grid point with indices i and j (going from 0 to nx and ny , respectively,
from lower left to upper right corner):

i = nx; j = ny # upper right corner
print ’u(%g,%g)=%g’ % (u_box.grid.coor[X][i],

u_box.grid.coor[Y][j],
u_box.values[i,j])

For instance, the x coordinates are reached by u_box.grid.coor[X] , where X
is an integer (0) imported from scitools.BoxField . The grid attribute is an
instance of class UniformBoxGrid .

Many plotting programs can be used to visualize the data in u_box . Mat-
plotlib is now a very popular plotting program in the Python world and could
be used to make contour plots of u_box . However, other programs like Gnuplot,
VTK, and Matlab have better support for surface plots. Our choice in this tuto-
rial is to use the Python package scitools.easyviz , which offers a uniform
Matlab-like syntax to various plotting packages such as Gnuplot, Matplotlib,
VTK, OpenDX, Matlab, and others. With scitools.easyviz we write one set
of statements, close to what one would do in Matlab or Octave, and then it is
easy to switch between different plotting programs, at a later stage, through a
command-line option, a line in a configuration file, or an import statement in
the program. By default, scitools.easyviz employs Gnuplot as plotting pro-
gram, and this is a highly relevant choice for scalar fields over two-dimensional,
structured meshes, or for curve plots along lines through the domain.

A contour plot is made by the following scitools.easyviz command:

from scitools.easyviz import contour, title, hardcopy
contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_b ox.values,

5, clabels=’on’)
title(’Contour plot of u’)
hardcopy(’u_contours.eps’)

# or more compact syntax:
contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_b ox.values,

5, clabels=’on’,
hardcopy=’u_contours.eps’, title=’Contour plot of u’)

The resulting plot can be viewed in Figure 2.3a. The contour function needs
arrays with the x and y coordinates expanded to 2D arrays (in the same way as
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demanded when making vectorized numpy calculations of arithmetic expressions
over all grid points). The correctly expanded arrays are stored in grid.coorv .
The above call to contour creates 5 equally spaced contour lines, and with
clabels=’on’ the contour values can be seen in the plot.

Other functions for visualizing 2D scalar fields are surf and mesh as known
from Matlab. Because the from dolfin import * statement imports sev-
eral names that are also present in scitools.easyviz (e.g., plot , mesh, and
figure ), we use functions from the latter package through a module prefix ev
(for easyviz) from now on:

import scitools.easyviz as ev
ev.figure()
ev.surf(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_b ox.values,

shading=’interp’, colorbar=’on’,
title=’surf plot of u’, hardcopy=’u_surf.eps’)

ev.figure()
ev.mesh(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_b ox.values,

title=’mesh plot of u’, hardcopy=’u_mesh.eps’)

Figure 2.2 exemplifies the surfaces arising from the two plotting commands
above. You can type pydoc scitools.easyviz in a terminal window to get
a full tutorial.

A handy feature of BoxField is the ability to give a start point in the grid
and a direction, and then extract the field and corresponding coordinates along
the nearst grid line. In 3D fields one can also extract data in a plane. Say we
want to plot u along the line y = 1/2 in the grid. The grid points, x , and the u
values along this line, uval , are extracted by

start = (0, 0.5)
x, uval, y_fixed, snapped = u_box.gridline(start, directi on=X)

The variable snapped is true if the line had to be snapped onto a gridline and in
that case y_fixed holds the snapped (altered) y value. Plotting u versus the x
coordinate along this line, using scitools.easyviz , is now a matter of

ev.figure() # new plot window
ev.plot(x, uval, ’r-’) # ’r--: red solid line
ev.title(’Solution’)
ev.legend(’finite element solution’)

# or more compactly:
ev.plot(x, uval, ’r-’, title=’Solution’,

legend=’finite element solution’)

A more exciting plot compares the projected numerical flux in x direction
along the line y = 1/2 with the exact flux:

ev.figure()
flux_x_box = dolfin_function2BoxField(flux_x, mesh, (nx ,ny),

uniform_mesh=True)
x, fluxval, y_fixed, snapped = \
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flux_x_box.gridline(start, direction=X)
y = y_fixed
flux_x_exact = -(x + y) * 2* x
ev.plot(x, fluxval, ’r-’,

x, flux_x_exact, ’b-’,
legend=(’numerical (projected) flux’, ’exact flux’),
title=’Flux in x-direction (at y=%g)’ % y_fixed,
hardcopy=’flux.eps’)

As seen from Figure 2.3b, the numerical flux is accurate except in the elements
closest to the boundaries.

It should be easy with the information above to a transform finite element
field over a uniform rectangular or box-shaped mesh to the corresponding BoxField
instance and perform Matlab-style visualizations of the whole field or the field
over planes or along lines through the domain. By the transformation to a reg-
ular grid we have some more flexibility than what Viper offers. (It should be
added that comprehensive tools like VisIt, MayaVi2, or ParaView also have the
possibility for plotting fields along lines and extracting planes in 3D geometries,
though usually with less degree of control compared to Gnuplot, Matlab, and
Matplotlib.)

2.1.14 Parameterizing the Number of Space Dimensions

FEniCS makes it is easy to write a unified simulation code that can operate in
1D, 2D, and 3D. We will conveniently make use of this feature in forthcoming
examples. The relevant technicalities are therefore explained below.

Consider the simple problem

u′′(x) = 2 in [0, 1], u(0) = 0, u(1) = 0, (2.33)

with exact solution u(x) = x2. Our aim is to formulate and solve this problem
in a 2D and a 3D domain as well. We may generalize the domain [0, 1] to a box
of any size in the y and z directions and pose homogeneous Neumann conditions
∂u/∂n = 0 at all additional boundaries y = const and z = const to ensure that u
only varies with x. For example, let us choose a unit hypercube as domain: Ω =
[0, 1]d, where d is the number of space dimensions. The generalized d-dimensional
Poisson problem then reads

∆u = 2 in Ω,
u = 0 on Γ0,
u = 1 on Γ1,
∂u
∂n

= 0 on ∂Ω ∩ (Γ0 ∪ Γ1) ,

(2.34)

where Γ0 is the side of the hypercube where x = 0, and where Γ1 is the side where
x = 1.

Implementing (2.34) for any d is no more complicated than solving a dimension-
specific problem. The only non-trivial part of the code is actually to define the
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Figure 2.2: Examples on plots created by transforming the finite element field
to a field on a uniform, structured 2D grid: (a) a surface plot of the solution; (b)
lifted mesh plot of the solution.
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Figure 2.3: Examples on plots created by transforming the finite element field to
a field on a uniform, structured 2D grid: (a) contour plot of the solution; (b) curve
plot of the exact flux −p∂u/∂x against the corresponding projected numerical
flux.
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mesh. We use the command line to provide user-input to the program. The first
argument can be the degree of the polynomial in the finite element basis func-
tions. Thereafter, we supply the cell divisions in the various spatial directions.
The number of command-line arguments will then imply the number of space
dimensions. For example, writing 3 10 3 4 on the command-line means that
we want to approximate u by piecewise polynomials of degree 3, and that the
domain is a three-dimensional cube with 10 × 3 × 4 divisions in the x, y, and z
directions, respectively. Each of the 10× 3× 4 = 120 boxes will be divided into six
tetrahedras. The Python code can be quite compact:

degree = int(sys.argv[1])
divisions = [int(arg) for arg in sys.argv[2:]]
d = len(divisions)
domain_type = [UnitInterval, UnitSquare, UnitCube]
mesh = domain_type[d-1]( * divisions)
V = FunctionSpace(mesh, ’CG’, degree)

First note that although sys.argv[2:] holds the divisions of the mesh, all
elements of the list sys.argv[2:] are string objects, so we need to explic-
itly convert each element to an integer. The construction domain_type[d-1]
will pick the right name of the object used to define the domain and generate
the mesh. Moreover, the argument * divisions sends each component of the
list divisions as a separate argument. For example, in a 2D problem where
divisions has two elements, the statement

mesh = domain_type[d-1]( * divisions)

is equivalent to

mesh = UnitSquare(divisions[0], divisions[1])

The next part of the program is to set up the boundary conditions. Since the
Neumann conditions have ∂u/∂n = 0 we can omit the boundary integral from the
weak form. We then only need to take care of Dirichlet conditions at two sides:

tol = 1E-14 # tolerance for coordinate comparisons
class DirichletBoundary0(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[0]) < tol

class DirichletBoundary1(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[0] - 1) < tol

bc0 = DirichletBC(V, Constant(mesh, 0), DirichletBoundar y0())
bc1 = DirichletBC(V, Constant(mesh, 1), DirichletBoundar y1())
bc = [bc0, bc1]

Note that this code is independent of the number of space dimensions. So are the
statements defining and solving the variational problem:
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v = TestFunction(V)
u = TrialFunction(V)
f = Constant(mesh, -2)
a = dot(grad(v), grad(u)) * dx
L = v * f * dx

problem = VariationalProblem(a, L, bc)
u = problem.solve()

The complete code is found in Poisson123D_DN1.py .
Observe that if we actually want to test variations in one selected space di-

rection, parameterized by e, we only need to replace x[0] in the code by x[e]
(!). The parameter e could be given as the second command-line argument. This
extension appears in the file Poisson123D_DN2.py . You can run a 3D problem
with this code where u varies in, e.g., z direction and is approximated by, e.g.,
a 5-th degree polynomial. For any legal input the numerical solution coincides
with the exact solution at the nodes (because the exact solution is a second-order
polynomial).

2.2 Nonlinear Problems

Now we shall address how to solve nonlinear PDEs in FEniCS. Our sample PDE
for implementation is taken as a nonlinear Poisson equation:

−∇ · (q(u)∇u) = f . (2.35)

The coefficient q(u) makes the equation nonlinear (unless q(u) is a constant).
To be able to easily verify our implementation, we choose the domain, q(u), f ,

and the boundary conditions such that we have a simple, exact solution u. Let
Ω is the unit hypercube [0, 1]d in d dimensions, q(u) = (1 + u)m, f = 0, u = 0 for
x0 = 0, u = 1 for x0 = 1, and ∂u/∂n = 0 at all other boundaries xi = 0 and xi = 1,
i = 1, . . . , d− 1. The coordinates are now represented by the symbols x0, . . . , xd−1.
The exact solution is then

u(x0, . . . , xd) =
(
(2m+1 − 1)x0 + 1

)1/(m+1) − 1 . (2.36)

The variational formulation of our model problem reads: Find u ∈ V such
that

F (u; v) = 0 ∀v ∈ V̂ , (2.37)

where

F (u; v) =

∫

Ω

∇v · (q(u)∇u) dx, (2.38)

and

V̂ = {v ∈ H1(Ω) : v = 0 on x0 = 0 and x0 = 1},
V = {v ∈ H1(Ω) : v = 0 on x0 = 0 and v = 1 on x0 = 1}.
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The discrete problem arises as usual by restricting V and V̂ to a pair of discrete
spaces: Find uh ∈ Vh such that

F (uh; v) = 0 ∀v ∈ V̂h, (2.39)

with uh =
∑N

j=1 Ujφj . Since F is a nonlinear function of uh, (2.39) gives rise to a
system of nonlinear algebraic equations. From now on the interest is only in the
discrete problem, and as mentioned in Chapter 2.1.2, we simply write u instead
of uh to get a closer notation between the mathematics and the Python code.
When the exact solution needs to be distinguished, we denote it by ue.

FEniCS can be used in alternative ways for solving a nonlinear PDE problem.
We shall in the following subsections go through four solution strategies: 1) a
simple Picard-type iteration, 2) a Newton method at the algebraic level, 3) a
Newton method at the PDE level, and 4) an automatic approach where FEniCS
attacks the nonlinear variational problem directly. The “black box” strategy 4)
is definitely the simplest one from a programmer’s point of view, but the others
give more control of the solution process for nonlinear equations (which also has
some pedagogical advantages).

2.2.1 Picard Iteration

Picard iteration is an easy way of handling nonlinear PDEs: we simply use a
known, previous solutions in the nonlinear terms such that these terms become
linear in the unknown u. For our particular problem, this means that we use a
known, previous solution in the coefficient q(u). More precisely, given a solution
uk from iteration k, we seek a new (hopefully improved) solution uk+1 in iteration
k + 1 such that uk+1 solves the linear problem

∇ ·
(
q(uk)∇uk+1

)
= 0, k = 0, 1, . . . (2.40)

The iterations require an initial guess u0. The hope is that uk → u as k →∞, and
that uk+1 is sufficiently close to the exact solution u of the discrete problem after
just a few iterations.

We can easily formulate a variational problem for uk+1 from Equation (2.40).
Equivalently, we can use uk in q(u) in the nonlinear variational problem (2.38) to
obtain the same linear variational problem. In both cases, the problem consists
of seeking u ∈ V such that

F (uk+1; v) = 0 ∀v ∈ V̂ , k = 0, 1, . . . , (2.41)

with

F (uk+1; v) =

∫

Ω

∇v ·
(
q(uk)∇uk+1

)
dx . (2.42)

Since this is a linear problem in the unknown uk+1, we can equivalently use the
formulation

a(uk+1, v) = L(v), (2.43)
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with

a(u, v) =

∫

Ω

∇v ·
(
q(uk)∇u

)
dx (2.44)

L(v) = 0 . (2.45)

The iterations can be stopped when ǫ ≡ ||uk+1 − uk|| < tol, where tol is small,
say 10−5, or when the number of iterations exceed some critical limit. The latter
case will pick up divergence of the method or unacceptable slow convergence.

In the solution algorithm we only need to store uk and uk+, called uk and u in
the code below. The algorithm can then be expressed as follows:

def q(u):
return (1+u) ** m

# Define variational problem
v = TestFunction(V)
u = TrialFunction(V)
uk = Function(V, ’0.0’) # previous (known) u
a = dot(grad(v), q(uk) * grad(u)) * dx
f = Constant(mesh, 0.0)
L = f * v* dx

# Picard iterations
u = Function(V) # new unknown function
eps = 1.0 # error measure ||u-uk||
tol = 1.0E-5 # tolerance
iter = 0 # iteration counter
maxiter = 25 # max no of iterations allowed
while eps > tol and iter < maxiter:

iter += 1
problem = VariationalProblem(a, L, bc)
u = problem.solve()
diff = u.vector().array() - uk.vector().array()
eps = numpy.linalg.norm(diff, ord=numpy.Inf)
print ’Norm, iter=%d: %g’ % (iter, eps)
uk.assign(u) # update for next iteration

Note that we use numpy functionality to compute the norm of the difference
between the two most recent solutions. Here we apply the maximum/infinity
norm on the difference of the solution vectors (ord=1 and ord=2 give the ℓ1
and ℓ2 vector norms – other norms are possible for numpy arrays, see pydoc
numpy.linalg.norm ).

The file nlPoisson_Picard.py contains the complete code for this prob-
lem. The implementation is d dimensional, with mesh construction and setting
of Dirichlet conditions as explained in Chapter 2.1.14. For a 33 × 33 grid with
m = 2 we need 9 iterations for convergence when the tolerance is 10−5.

2.2.2 A Newton Method at the Algebraic Level

After having discretized our nonlinear PDE problem, wemay use Newton’s method
to solve the system of nonlinear algebraic equations. From the continuous varia-
tional problem (2.38), the discrete version (2.39) results in a system of equations
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for the unknown parameters U1, . . . , UN (by inserting u =
∑N

j=1 Ujφj and v = φ̂i in
(2.39)):

Fi(U1, . . . , UN) ≡
N∑

j=1

∫

Ω

∇φ̂i ·
(
q(

N∑

ℓ=1

Uℓφℓ)∇φjUj
)

dx = 0, i = 1, . . . , N . (2.46)

Newton’s method for the system Fi(U1, . . . , Uj) = 0, i = 1, . . . , N can be formulated
as

N∑

j=1

∂

∂Uj
Fi(U

k
1 , . . . , U

k
N)δUj = −Fi(Uk

1 , . . . , U
k
N ), (2.47)

Uk+1
j = Uk

j + ωδUj, (2.48)

where ω ∈ [0, 1] is a relaxation parameter, and k is an iteration index. An initial
guess u0 must be provided to start the algorithm. The original Newton method
has ω = 1, but in problems where it is difficult to obtain convergence, so-called
under-relaxation with ω < 1 may help.

We need, in a program, to compute the Jacobian matrix ∂Fi/∂Uj and the right-
hand side vector −Fi. Our present problem has Fi given by (2.46). The derivative
∂Fi/∂Uj becomes

∫

Ω

[
∇φ̂i · ((q′(

N∑

ℓ=1

Uk
ℓ φℓ)φj∇(

N∑

j=1

Uk
j φj)) +∇φ̂i · (q(

N∑

ℓ=1

Uk
ℓ φℓ)∇φj)

]
dx . (2.49)

The following results were used to obtain (2.49):

∂u

∂Uj
=

∂

∂Uj

N∑

j=1

Ujφj = φj,
∂

∂Uj
∇u = ∇φj,

∂

∂Uj
q(u) = q′(u)φj . (2.50)

We can reformulate the Jacobian matrix in (2.49) by introducing the short nota-
tion uk =

∑N
j=1U

k
j φj :

∂Fi
∂Uj

=

∫

Ω

[
∇φ̂i ·

(
q′(uk)φj∇uk

)
+∇φ̂i ·

(
q(uk)∇φj

)]
dx . (2.51)

In order to make FEniCS compute this matrix, we need to formulate a corre-
sponding variational problem. Looking at the linear system of equations in New-
ton’s method,

N∑

j=1

∂Fi
∂Uj

δUj = −Fi, i = 1, . . . , N,

we can introduce v as a general test function replacing φ̂i, and we can identify the
unknown δu =

∑N
j=1 δUjφj. From the linear system we can now go “backwards”

to construct the corresponding discrete weak form
∫

Ω

[
∇v ·

(
q′(uk)δu∇uk

)
+∇v ·

(
q(uk)∇δu

)]
dx = −

∫

Ω

∇v ·
(
q(uk)∇uk

)
dx . (2.52)
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Equation (2.52) fits the standard form a(u, v) = L(v) with

a(u, v) =

∫

Ω

[
∇v ·

(
q′(uk)δu∇uk

)
+∇v ·

(
q(uk)∇δu

)]
dx

L(v) = −
∫

Ω

∇v ·
(
q(uk)∇uk

)
dx .

Note the important feature in Newton’s method that the previous solution uk

replaces u in the formulas when computing the matrix ∂Fi/∂Uj and vector Fi for
the linear system in each Newton iteration.

We now turn to the implementation. To obtain a good initial guess u0, we
can solve a simplified, linear problem, typically with q(u) = 1, which yields the
standard Laplace equation ∆u0 = 0. The receipe for solving this problem appears
in Chapters 2.1.2, 2.1.3, and 2.1.9. The code for computing u0 becomes as follows:

tol = 1E-14
class LeftDirichletBoundary(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[0]) < tol

class RightDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[0]-1) < tol

Gamma_0 = DirichletBC(V, Constant(mesh, 0.0),
LeftDirichletBoundary())

Gamma_1 = DirichletBC(V, Constant(mesh, 1.0),
RightDirichletBoundary())

bc_u = [Gamma_0, Gamma_1]

# Define variational problem for initial guess (q(u)=1, i.e ., m=0)
v = TestFunction(V)
u = TrialFunction(V)
a = dot(grad(v), grad(u)) * dx
f = Constant(mesh, 0.0)
L = v * f * dx
A, b = assemble_system(a, L, bc_u)
uk = Function(V)
solve(A, uk.vector(), b)

Here, uk denotes the solution function for the previous iteration, so that solution
after each Newton iteration is u = uk + omega * du . Initially, uk is the initial
guess we call u0 in the mathematics.

The Dirichlet boundary conditions for the problem to be solved in each New-
ton iteration are somewhat different than the conditions for u. Assuming that uk

fulfills the Dirichlet conditions for u, δumust be zero at the boundaries where the
Dirichlet conditions apply, in order for uk+1 = uk + ωδu to fulfill the right Dirich-
let values. We therefore define an additional list of Dirichlet boundary conditions
instances for δu:

Gamma_0_du = DirichletBC(V, Constant(mesh, 0.0),
LeftDirichletBoundary())

53



A FEniCS Tutorial

Gamma_1_du = DirichletBC(V, Constant(mesh, 0.0),
RightDirichletBoundary())

bc_du = [Gamma_0_du, Gamma_1_du]

The nonlinear coefficient and its derivative must be defined before coding the
weak form of the Newton system:

def q(u):
return (1+u) ** m

def Dq(u):
return m * (1+u) ** (m-1)

du = TrialFunction(V) # u = uk + omega * du
a = dot(grad(v), q(uk) * grad(du)) * dx + \

dot(grad(v), Dq(uk) * du* grad(uk)) * dx
L = -dot(grad(v), q(uk) * grad(uk)) * dx

The Newton iteration loop is very similar to the Picard iteration loop in Chap-
ter 2.2.1:

du = Function(V)
u = Function(V) # u = uk + omega * du
omega = 1.0 # relaxation parameter
eps = 1.0
tol = 1.0E-5
iter = 0
maxiter = 25
while eps > tol and iter < maxiter:

iter += 1
A, b = assemble_system(a, L, bc_du)
solve(A, du.vector(), b)
eps = numpy.linalg.norm(du.vector().array(), ord=numpy .Inf)
print ’Norm:’, eps
u.vector()[:] = uk.vector() + omega * du.vector()
uk.assign(u)

There are other ways of implementing the update of the solution as well:

u.assign(uk) # u = uk
u.vector().axpy(omega, du.vector())

# or
u.vector()[:] += omega * du.vector()

The axpy(a, y) operation adds a scalar a times a Vector y to a Vector in-
stance. It is usually a fast operation calling up an optimized BLAS routine for
the calculation.

Mesh construction for a d-dimensional problem with arbitrary degree of the
Lagrange elements can be done as explained in Chapter 2.1.14. The complete
program appears in the file nlPoisson_algNewton.py .
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2.2.3 A Newton Method at the PDE Level

Although Newton’s method in PDE problems is normally formulated at the lin-
ear algebra level, i.e., as a solution method for systems of nonlinear algebraic
equations, we can also formulate the method at the PDE level. This approach
yields a linearization of the PDEs before they are discretized. FEniCS users will
probably find this technique simpler to apply than the more standard method of
Chapter 2.2.2.

Given an approximation to the solution field, uk, we seek a perturbation δu so
that

uk+1 = uk + δu (2.53)

fulfills the nonlinear PDE. However, the problem for δu is still nonlinear and
nothing is gained. The idea is therefore to assume that δu is sufficiently small so
that we can linearize the problem with respect to δu. Inserting uk+1 in the PDE,
linearizing the q term as

q(uk+1) = q(uk) + q′(uk)δu+O((δu)2) ≈ q(uk) + q′(uk)δu, (2.54)

and dropping other nonlinear terms in δu, we get

∇ ·
(
q(uk)∇uk

)
+∇ ·

(
q(uk)∇δu

)
+∇ ·

(
q′(uk)δu∇uk

)
= 0 .

We may collect the terms with the unknown δu on the left-hand side,

∇ ·
(
q(uk)∇δu

)
+∇ ·

(
q′(uk)δu∇uk

)
= −∇ ·

(
q(uk)∇uk

)
, (2.55)

The weak form of this PDE is derived by multiplying by a test function v and
integrating over Ω, integrating the second-order derivatives by parts:

∫

Ω

(
∇v ·

(
q(uk)∇δu

)
+∇v ·

(
q′(uk)δu∇uk

))
dx =

∫

Ω

∇v ·
(
q(uk)∇uk

)
dx . (2.56)

The variational problem reads: Find δu ∈ V such that a(δu, v) = L(v) for all
v ∈ V̂ , where

a(δu, v) =

∫

Ω

(
∇v ·

(
q(uk)∇δu

)
+∇v ·

(
q′(uk)∇uk

))
dx, (2.57)

L(v) =

∫

Ω

∇v ·
(
q(uk)∇uk

)
dx . (2.58)

The continuous function spaces V and V̂ , and their discrete counterparts, Vh and
V̂h, are as in the linear Poisson problem from Chapter 2.1.2.

Wemust provide some initial guess, e.g., the solution of the PDEwith q(u) = 1.
The corresponding weak form a0(u

0, v) = L0(v) has a0(u, v) =
∫
Ω
∇v · ∇u dx and

L(v) = 0. Thereafter, we enter a loop and solve a(δu, v) = L(v) for δt and compute
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a new approximation uk+1 = uk + δu. Looking at (2.58) and (2.58), we see that
the variational form is the same as for the Newton method at the algebraic level
in Chapter 2.2.2. Since Newton’s method at the algebraic level required some
“backward” construction of the underlying weak forms, FEniCS users may pre-
fer Newton’s method at the PDE level, which is more straightforward. There is
seemingly no need for differentiations to derive a Jacobian matrix, but a math-
ematically equivalent derivation is done when nonlinear terms are linearized
using the first two Taylor series terms and when products in the perturbation δu
are neglected.

The implementation is identical to the one in Chapter 2.2.2 and is found in the
file nlPoisson_pdeNewton.py (for the fun of it we use a VariationalProblem
instance instead of assembling a matrix and vector and calling solve ). The
reader is encouraged to go through this code to be convinced that the present
method actually ends up with the same program as needed for the Newtonmethod
at the linear algebra level (Chapter 2.2.2).

2.2.4 Solving the Nonlinear Variational Problem Directly

DOLFIN has a built-in Newton solver and is able to automate the computation
of nonlinear, stationary boundary-value problems. The automation is demon-
strated next. A nonlinear variational problem (2.37) can be solved by

VariationalProblem(a, L, nonlinear=True)

where L corresponds to the form F (u; v) in (2.37) and a is a form for the derivative
of L.

The L form is straightforwardly defined (assuming q(u) is coded):

v = TestFunction(V)
u = Function(V) # the unknown
L = dot(grad(v), q(u) * grad(u)) * dx

The derivative a of L is formally the Gateaux derivative of F (u; v) in the di-
rection of the trial function. Technically, this Gateaux derivative is derived by
computing

lim
ǫ→0

d

dǫ
Fi(u

k + ǫδu; v) (2.59)

The δu is now the trial function and uk is as usual the previous approximation to
the solution u. We start with

d

dǫ

∫

Ω

∇v ·
(
q(uk + ǫδu)∇(uk + ǫδu)

)
dx

and obtain
∫

Ω

∇v ·
[
q′(uk + ǫδu)δu∇(uk + ǫδu) + q(uk + ǫδu)∇δu

]
dx,
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which leads to ∫

Ω

∇v ·
[
q′(uk)δu∇(uk) + q(uk)∇δu

]
dx, (2.60)

as ǫ → 0. This last expression is the Gateaux derivative of F and is denoted by
a(δu, v). The corresponding implementation goes as

du = TrialFunction(V)
a = dot(grad(v), q(u) * grad(du)) * dx + \

dot(grad(v), Dq(u) * du* grad(u)) * dx

The UFL language we use to specify weak forms supports differentiation of
forms. This means that when L is given as above, we can simply compute the
Gateaux derivative by

a = derivative(L, u, du)

The differentiation is done symbolically so no numerical approximation formulas
are involved. The derivative function is obviously very convenient in problems
where differentiating L by hand implies lengthy calculations.

The solution of the nonlinear problem is now a question of two statements:

problem = VariationalProblem(a, L, bc, nonlinear=True)
u = problem.solve(u)

The u we feed to problem.solve is filled with the solution and returned, imply-
ing that the u on the left-hand side actually refers to the same u as provided
on the right-hand side5. The file nlPoisson_vp1.py contains the complete
code, where a is calculated manually, while nlPoisson_vp2.py is a counter-
part where a is computed by derivative(L, u, du) . The latter file repre-
sents clearly the most automated way of solving the present nonlinear problem
in FEniCS.

2.3 Time-Dependent Problems

The examples in Chapter 2.1 illustrate that solving linear, stationary PDE prob-
lems with the aid of FEniCS is easy and requires little programming. That
is, FEniCS automates the spatial discretization by the finite element method.
The solution of nonlinear problems, as we showed in Chapter 2.37, can also be
automated (cf. Chapter 2.2.4), but many scientists will prefer to code the solu-
tion strategy of the nonlinear problem themselves and experiment with various
combination of strategies in difficult problems. Time-dependent problems are

5Python has a convention that all input data to a function or class method are represented
as arguments, while all output data are returned to the calling code. Data used as both input
and output, as in this case, will then be arguments and returned. It is not necessary to have
a variable on the left-hand side, as the function instance is modified correctly anyway, but it is
convention that we follow here.
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somewhat similar in this respect: we have to add a time discretization scheme,
which is often quite simple, making it natural to explicitly code the details of the
scheme so that the programmer have full control. We shall explain how easily
this is accomplished through examples.

2.3.1 A Diffusion Problem and Its Discretization

Our time-dependent model problem for teaching purposes is naturally the sim-
plest extension of the Poisson problem into the time domain, i.e., the diffusion
problem

∂u

∂t
= ∆u+ f in Ω, (2.61)

u = u0 on ∂Ω, (2.62)

u = I for t = 0 . (2.63)

Here, u varies with space and time, e.g., u = u(x, y, t) if the spatial domain Ω is
two-dimensional. The source function f and the boundary values u0 may also
vary with space and time. The initial condition I is a function of space only.

A straightforward approach to solving time-dependent PDEs by the finite el-
ement method is to first discretize the time derivative by a finite difference ap-
proximation, which yields a recursive set of stationary problems, and then turn
each stationary problem into a variational formulation.

Let superscript k denote a quantity at time tk, where k is an integer counting
time levels. For example, uk means u at time level k. A finite difference dis-
cretization in time first consists in sampling the PDE at some time level, say k:

∂

∂t
uk = ∆uk + fk . (2.64)

The time-derivative can be approximated by a finite difference. For simplicity
and stability reasons we choose a simple backward difference:

∂

∂t
uk ≈ uk − uk−1

∆t
, (2.65)

where ∆t is the time discretization parameter. Inserting (2.65) in (2.64) yields

uk − uk−1

∆t
= ∆uk + fk . (2.66)

This is our time-discrete version of the diffusion PDE (2.61). Reordering (2.66)
so that uk appears on the left-hand side only, shows that (2.66) is a recursive set
of spatial (stationary) problems for uk (assuming uk−1 is know from compuations
at the previous time level):

u0 = I, (2.67)

uk −∆uk = uk−1 + ∆tfk, k = 1, 2, . . . (2.68)
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Given I, we can solve for u0, u1, u2, and so on.
We use a finite element method to solve the equations (2.67) and (2.68). This

requires turning the equations into weak forms. As usual, we multiply by a
test function v ∈ V̂ and integrate second-derivatives by parts. Introducing the
symbol u for uk (which is natural in the program too), the resulting weak forms
can be conveniently written in the standard notation: a0(u, v) = L0(v) for (2.67)
and a(u, v) = L(v) for (2.68), where

a0(u, v) =

∫

Ω

vu dx, (2.69)

L0(v) =

∫

Ω

vI dx, (2.70)

a(u, v) =

∫

Ω

(vu+ ∆t∇v · ∇u) dx, (2.71)

L(v) =

∫

Ω

v
(
uk−1 + ∆tfk

)
dx . (2.72)

The continuous variational problem is to find u0 ∈ V such that a0(u
0, v) = L0(v)

holds for all v ∈ V̂ , and then find uk ∈ V such that a(uk, v) = L(v) for all v ∈ V̂ ,
k = 1, 2, . . ..

Approximate solutions in space are found by restricting the functional spaces
V and V̂ to finite-dimensional spaces Vh and V̂h, exactly as we have done in the
Poisson problems. We shall use the symbol u for the finite element approximation
at time tk. In case we need to distinguish this space-time discrete approximation
from the exact solution of the continuous diffusion problem, we use ue for the
latter. With uk−1 we mean, from now on, the finite element approximation of the
solution at time tk−1.

Note that the forms a0 and L0 are identical to the forms met in Chapter 2.1.6,
except that the unknown now is a scalar field and not a vector field. Instead
of solving (2.67) by a finite element method, i.e., projecting I onto Vh via the
problem a0(u, v) = L0(v), we could simply interpolate u0 from I. That is, if u0 =∑N

j=1U
0
j φj, we simply set Uj = I(xj , yj), where (xj , yj) are the coordinates of node

no. j. We refer to these two strategies as computing the initial condition by either
projecting I or interpolating I. Both operations are easy to compute through one
statement, using either the project or interpolate function.

2.3.2 Implementation

Our program needs to perform the time stepping explicitly, but can rely on FEn-
iCS to easily compute a0, L0, a, and L, and solve the linear systems for the un-
knowns. We realize that a does not depend on time, which means that its as-
sociated matrix also will be time independent. Therefore, it is wise to explicitly
create matrices and vectors as in Chapter 2.1.11. The matrix A arising from a
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can be computed prior to the time stepping, so that we only need to compute
the right-hand side b, corresponding to L, in each pass in the time loop. Let us
express the solution procedure in algorithmic form, writing u for uk and uprev for
the previous solution uk−1:

define Dirichlet boundary condition (u0, Dirichlet boundary, etc.)
if uprev is to be computed by projecting I:

define a0 and L0

assemble matrixM from a0 and vector b from L0

solveMU = b and store U in uprev

else: (interpolation)
let uprev interpolate I

define a and L
assemble matrix A from a
set some stopping time T
t = ∆t
while t ≤ T

assemble vector b from L
apply essential boundary conditions
solve AU = b for U and store in u
t← t+ ∆t
uprev ← u (be ready for next step)

Before starting the coding, we shall construct a problem where it is easy to
determine if the calculations are correct. The simple backward time difference
is exact for linear functions, so we decide to have a linear variation in time.
Combining a second-order polynomial in space with a linear term in time,

u = 1 + x2 + αy2 + βt, (2.73)

yields a function whose computed values at the nodes may be exact, regardless
of the size of the elements and ∆t, as long as the mesh is uniformly partitioned.
Inserting (2.73) in the PDE problem (2.61), it follows that u0 must be given as
(2.73) and that f(x, y, t) = β − 2− 2α and I(x, y) = 1 + x2 + αy2.

A new programming issue is how to deal with functions that vary in space
and time, such as the boundary condition u0 given by (2.73). Given a mesh and
an associated function space V, we can specify the u0 function as

alpha = 3; beta = 1.2
u0 = Function(V, ’1 + x[0] * x[0] + alpha * x[1] * x[1] + beta * t’,

{’alpha’: alpha, ’beta’: beta})
u0.t = 0

This function expression has the components of x as independent variables, while
alpha , beta , and t are parameters. The parameters can either be set through a
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dictionary at construction time, as demonstrated for alpha and beta , or anytime
through attributes in the function instance, as shown for the t parameter.

The essential boundary conditions, along the whole boundary in this case, are
set in the usual way,

class Boundary(SubDomain): # define the Dirichlet boundar y
def inside(self, x, on_boundary):

return on_boundary

boundary = Boundary()
bc = DirichletBC(V, u_exact, boundary)

The initial condition can be computed by either projecting or interpolating I.
The I(x, y) function is available in the program through u0 , as long as u0.t is
zero. We can then do

u_prev = interpolate(u0, V)
# or
u_prev = project(u0, V)

Note that we could, as an equivalent alternative to using project , define a0

and L0 as we did in Chapter 2.1.6 and form a VariationalProblem instance.
To actually recover (2.73) to machine precision, it is important not to compute
the discrete initial condition by projecting I, but by interpolating I so that the
nodal values are exact at t = 0 (projection will imply approximative values at the
nodes).

The definition of a and L goes as follows:

dt = 0.3 # time step

v = TestFunction(V)
u = TrialFunction(V)
f = Constant(mesh, beta - 2 - 2 * alpha)

a = u* v* dx + dt * dot(grad(v), grad(u)) * dx
L = (u_prev + dt * f) * v* dx

A = assemble(a) # assemble only once, before the time steppin g

Finally, we perform the time stepping in a loop:

u = Function(V) # the unknown at a new time level
T = 2 # total simulation time
t = dt

while t <= T:
b = assemble(L)
u0.t = t
bc.apply(A, b)
solve(A, u.vector(), b)

t += dt
u_prev.assign(u)
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Observe that u0.t must be updated before bc applies it to enforce the Dirichlet
conditions at the current time level.

The time loop above does not contain any examination of the numerical solu-
tion, which we must include in order to verify the implementation. As in many
previous examples, we compute the difference between the array of nodal values
of u and the array of the interpolated exact solution. The following code is to be
included inside the loop, after u is found:

u_e = interpolate(u0, V)
maxdiff = (u_e.vector().array() - u.vector().array()).m ax()
print ’Max error, t=%-10.3f:’ % maxdiff

The right-hand side vector b must obviously be recomputed at each time level.
With the construction b = assemble(L) , a new vector for b is allocated in mem-
ory in every pass of the time loop. It would be much more memory friendly to
reuse the storage of the b we already have. This is easily accomplished by

b = assemble(L, tensor=b)

That is, we send in our previous b, which is then filled with new values and
returned from assemble . Now there will be only a single memory allocation of
the right-hand side vector. Before the time loop we set b = None such that b is
defined in the first call to assemble .

The complete program code for this time-dependent case is stored in the file
diffusion2D_D1.py .

2.3.3 Avoiding Assembly

The purpose of this section is to present a technique for speeding up FEniCS sim-
ulators for time-dependent problems where it is possible to perform all assembly
operations prior to the time loop. There are two costly operations in the time loop:
assembly of the right-hand side b and solution of the linear system via the solve
call. The assembly process involves work proportional to the number of degrees
of freedom N , while the solve operation has a work estimate of O(N1+p), where
p ≥ 0. As N → ∞, the solve operation will for p > 0 dominate, but for the values
of N typically used on smaller computers, the assembly step may still represent
a considerable part of the total work at each time level. Avoiding repeated as-
sembly can therefore contribute to a significant speed-up of a finite element code
in time-dependent problems.

To see how repeated assembly can be avoided, we look at the L(v) form in
(2.72), which in general varies with time through uk−1, fk, and possibly also with
∆t if the time step is adjusted during the simulation. The technique for avoiding
repeated assembly consists in expanding the finite element functions in sums
over the basis functions φi, as explained in Chapter 2.1.11, to identify matrix-
vector products that build up the complete system. We have uk−1 =

∑N
j=1U

k−1
j φj ,
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and we can expand fk as fk =
∑N

j=1 F
k
j φj. Inserting these expressions in L(v) and

using v = φ̂i result in

∫

Ω

(
uk−1 + ∆tfk

)
v dx =

∫

Ω

(
N∑

j=1

Uk−1
j φj + ∆t

N∑

j=1

F k
j φj

)
φ̂i dx,

=
∑

j=1

(∫

Ω

φ̂iφj dx

)
Uk−1
j + ∆t

∑

j=1

(∫

Ω

φ̂iφj dx

)
F k
j .

IntroducingMij =
∫
Ω
φ̂iφj dx, we see that the last expression can be written

∑

j=1

MijU
k−1
j + ∆t

∑

j=1

MijF
k
j ,

which is nothing but two matrix-vector products,

MUk−1 + ∆tMF k,

ifM is the matrix with entriesMij and

Uk−1 = (Uk−1
1 , . . . , Uk−1

N ),

and
F k = (F k

1 , . . . , F
k
N ) .

We have immediate access to Uk−1 in the program since that is the vector in
the u_prev function. The F k vector can easily be computed by interpolating the
prescribed f function (at each time level if f varies with time). Given M , Uk−1,
and F k, the right-hand side b can be calculated as

b = MUk−1 + ∆tMF k .

That is, no assembly is necessary to compute b.
The coefficient matrix A can also be split into two terms. We insert v = φ̂i and

uk =
∑N

j=1 U
k
j φj in the expression (2.71) to get

N∑

j=1

(∫

Ω

φ̂iφj dx

)
Uk
j + ∆t

N∑

j=1

(∫

Ω

∇φ̂i · ∇φj dx

)
Uk
j ,

which can be written as a sum of matrix-vector products,

MUk + ∆tKUk = (M + ∆tK)Uk,

if we identify the matrix M with entries Mij as above and the matrix K with
entries

Kij =

∫

Ω

∇φ̂i · ∇φj dx . (2.74)
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The matrixM is often called the “mass matrix” while “stiffness matrix” is a com-
mon nickname for K. The associated bilinear forms for these matrices, as we
need them for the assembly process in a FEniCS program, become

aK(u, v) =

∫

Ω

∇v · ∇u dx, (2.75)

aM (u, v) =

∫

Ω

vu dx, . (2.76)

The linear system at each time level, written as AUk = b, can now be com-
puted by first computing M and K, and then forming A = M + ∆tK at t = 0,
while b is computed as b = MUk−1 + ∆tMF k at each time level.

The following modifications are needed in the diffusion2D_D1.py program
from the previous section in order to implement the new strategy of avoiding
assembly at each time level:

1. Define separate forms aM and aK

2. Assemble aM toM and aK to K

3. Compute A = M + ∆K

4. Define f as a Function

5. Interpolate the formula for f to a finite element function F k

6. Compute b = MUk−1 + ∆tMF k

The relevant code segments become

# 1.
a_K = dot(grad(v), grad(u)) * dx
a_M = u* v* dx

# 2. and 3.
M = assemble(a_M)
K = assemble(a_K)
A = M + dt* K

# 4.
f = Function(V, ’beta - 2 - 2 * alpha’,

{’beta’: beta, ’alpha’: alpha})

# 5. and 6.
while t <= T:

fk = interpolate(f, V)
Fk = fk.vector()
b = M* u_prev.vector() + dt * M* Fk

The complete program appears in the file diffusion2D_D2.py ..
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2.3.4 A Physical Example

With the basic programming techniques for time-dependent problem from Chap-
ters 2.3.3–2.3.2 we are ready to attack more physically realistic examples. The
next example concerns the question: How is the temperature in the ground af-
fected by day and night variations at the earth’s surface? We consider some
box-shaped domain Ω in d dimensions with coordinates x0, . . . , xd−1 (the problem
is meaningful in 1D, 2D, and 3D). At the top of the domain, xd−1 = 0, we have an
oscillating temperature

T0(t) = TR + TA sin(ωt),

where TR is some reference temperature, TA is the amplitude of the temperature
variations at the surface, and ω is the frequency of the temperature oscillations.
At all other boundaries we assume that the temperature does not change any-
more when we move away from the boundary, i.e., the normal derivative is zero.
Initially, the temperature can be taken as TR everywhere. The heat conductiv-
ity properties of the soil in the ground may vary with space so we introduce a
variable coefficient κ reflecting this property. Figure 2.4 shows a sketch of the
problem, with a small region where the heat conductivity is much lower.

The initial-boundary value problem for this problem reads

̺c
∂T

∂t
= ∇ · (k∇T ) in Ω× (0, T ], (2.77)

T = T0(t) on Γ0, (2.78)

∂T

∂n
= 0 on ∂Ω ∩ Γ0, (2.79)

T = TR at t = 0 . (2.80)

Here, ̺ is the density of the soil, c is the heat capacity, κ is the thermal con-
ductivity (heat conduction coefficient) in the soil, and Γ0 is the surface boundary
xd−1 = 0.

We use a θ-scheme in time, i.e., the evolution equation ∂P/∂t = Q(t) is dis-
cretized as

P k − P k−1

∆t
= θQk + (1− θ)Qk−1,

where θ ∈ [0, 1] is a weighting factor: θ = 1 corresponds to the backward dif-
ference scheme, θ = 1/2 to the Crank-Nicolson scheme, and θ = 0 to a forward
difference scheme. The θ-scheme applied to our PDE results in

̺c
T k − T k−1

∆t
= θ∇ ·

(
k∇T k

)
+ (1− θ)∇ ·

(
k∇T k−1

)
.

Bringing this time-discrete PDE on weak form follows the technique shownmany
times earlier in this tutorial. In the standard notation a(T, v) = L(v) the weak
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∂u/∂n = 0∂u/∂n = 0

y

x

T0(t) = TR + TA sin(ωt)

D

W

κ≪ κ0

̺, c, κ0

∂u/∂n = 0

Figure 2.4: Sketch of a (2D) problem involving heating and cooling of the ground
due to an oscillating surface temperature.
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form has

a(T, v) =

∫

Ω

(̺cTv + θ∆tκ∇v · ∇T ) dx, (2.81)

L(v) =

∫

Ω

(
̺cvT k−1 − (1− θ)∆tκ∇v · ∇T

)
dx . (2.82)

Observe that boundary integrals vanish because of the Neumann boundary con-
ditions.

The size of a 3D box is taken asW×W×D, whereD is the depth andW = D/2
is the width. We give the degree of the basis functions at the command line, then
D, and then the divisions of the domain in the various directions. To make a box,
rectangle, or interval of arbitrary (not unit) size, we have the DOLFIN classes
Box, Rectangle , and Interval at our disposal. The mesh and the function
space can be created by the following code:

degree = int(sys.argv[1])
D = float(sys.argv[2])
divisions = [int(arg) for arg in sys.argv[3:]]
d = len(divisions) # no of space dimensions
if d == 1:

mesh = Interval(divisions[0], -D, 0)
elif d == 2:

mesh = Rectangle(0, -D, D/2, 0, divisions[0], divisions[1] )
elif d == 3:

mesh = Box(0, 0, -D, D/2, D/2, 0,
divisions[0], divisions[1], divisions[2])

V = FunctionSpace(mesh, ’CG’, degree)

The Rectangle and Box instances are defined by the coordinates of the “mini-
mum” and “maximum” corners.

Setting Dirichlet conditions at the upper boundary can be done by

T_R = 0; T_A = 1.0; omega = 2 * pi
T_0 = Function(V, ’T_R + T_A * sin(omega * t)’,

{’T_R’: T_R, ’T_A’: T_A, ’omega’: omega, ’t’: 0.0})

class Surface(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[d-1]) < 1E-14

surface = Surface()
bc = DirichletBC(V, T_0, surface)

Quite simple values (non-physical for soil and real temperature variations) are
chosen for the initial testing.

The κ function can be defined as a constant κ1 inside the particular rectangu-
lar area with a special soil composition, as indicated in Figure 2.4. Outside this
area κ is a constant κ0. The domain of the rectangular area are taken as

[−W/4,W/4]× [−W/4,W/4]× [−D/2,−D/2 +D/4]
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in 3D, with [−W/4,W/4] × [−D/2,−D/2 + D/4] in 2D and [−D/2,−D/2 + D/4]
in 1D. Since we need some testing in the definition of the κ(x) function, the
most straightforward approach is to define a subclass of Function with an eval
method for computing the values:

class Kappa(Function):
def eval(self, value, x):

"""x: spatial point, value[0]: function value."""
d = len(x) # no of space dimensions
material = 0 # 0: outside, 1: inside
if d == 1:

if -D/2. < x[d-1] < -D/2. + D/4.:
material = 1

elif d == 2:
if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4.:
material = 1

elif d == 3:
if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4. and -W/4. < x[1] < W/4.:
material = 1

value[0] = kappa_0 if material == 0 else kappa_1

The eval method gives great flexibility in defining functions, but a downside is
that C++ calls up eval in Python for each point x , which is a slow process, and
the number of calls is proportional to the number of nodes in the mesh. Function
expressions in terms of strings are compiled to efficient C++ functions, being
called from C++, so we should try to express functions as string expressions if
possible. (The eval method can also be defined through C++ code, but this is
much more involved and not covered here.) Using inline if-tests in C++, we can
make string expressions for κ:

kappa_0 = 0.2
kappa_1 = 0.001
kappa_str = {}
kappa_str[1] = ’x[0] > -%s/2 && x[0] < -%s/2 + %s/4 ? %g : %g’ % \

(D, D, D, kappa_1, kappa_0)
kappa_str[2] = ’x[0] > -%s/4 && x[0] < %s/4 ’\

’&& x[1] > -%s/2 && x[1] < -%s/2 + %s/4 ? %g : %g’ % \
(W, W, D, D, D, kappa_1, kappa_0)

kappa_str[3] = ’x[0] > -%s/4 && x[0] < %s/4 ’\
’x[1] > -%s/4 && x[1] < %s/4 ’\

’&& x[2] > -%s/2 && x[2] < -%s/2 + %s/4 ? %g : %g’ % \
(W, W, W, W, D, D, D, kappa_1, kappa_0)

kappa = Function(V, kappa_str[d])

For example, in 2D kappa_str[1] becomes

x[0] > -0.5/4 && x[0] < 0.5/4 && x[1] > -1.0/2 &&
x[1] < -1.0/2 + 1.0/4 ? 1e-07 : 0.2

for D = 1 and W = D/2 (the string is one line, but broken into two here to fit the
page width). It is very important to have a D that is float and not int , other-
wise one gets integer divisions in the C++ expression and a completely wrong κ
function.
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We are now ready to define the initial condition and the a and L forms of our
problem:

T_prev = interpolate(Constant(mesh, T_R), V)

rho = 1
c = 1
period = 2 * pi/omega
T_stop = 5 * period
dt = period/20 # 20 time steps per period
theta = 1

v = TestFunction(V)
T = TrialFunction(V)
f = Constant(mesh, 0)
a = rho * c* T* v* dx + theta * dt * kappa * dot(grad(v), grad(T)) * dx
L = (rho * c* T_prev * v + dt * f * v -

(1-theta) * dt * kappa * dot(grad(v), grad(T))) * dx

A = assemble(a)
b = None # variable used for memory savings in assemble calls

We could, alternatively, break a and L up in subexpressions and assemble a mass
matrix and stiffness matrix, as exemplified in Chapter 2.3.3, to avoid assembly of
b at every time level. This modification is straightforward and left as an exercise.
The speed-up can be significant in 3D problems.

The time loop is very similar to what we have displayed in Chapter 2.3.2:

T = Function(V) # unknown at the current time level
t = dt
while t <= T_stop:

b = assemble(L, tensor=b)
T_0.t = t
bc.apply(A, b)
solve(A, T.vector(), b)
# visualization statements
t += dt
T_prev.assign(T)

The complete code in diffusion123D_sin.py contains several statements re-
lated to visualization of the solution, both as a finite element field (plot calls)
and as a curve in the vertical direction. The code also plots the exact analytical
solution,

T (x, t) = TR + TAe
ax sin(ωt+ ax), a =

√
ω̺c

2κ
,

which is valid when κ is constant throughout Ω. The reader is encouraged to play
around with the code and test out various parameter sets:

• TR = 0, TA = 1, κ0 = κ1 = 0.2, ̺ = c = 1, ω = 2π

• TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.01, ̺ = c = 1, ω = 2π

• TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.001, ̺ = c = 1, ω = 2π
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• TR = 10 C, TA = 10 C, κ0 = 1.1 K−1Ns−1, κ0 = 2.3 K−1Ns−1, ̺ = 1500 kg/m3,
c = 1600 Nmkg−1K−1, ω = 2π/24 1/h = 7.27 · 10−5 1/s, D = 1.5 m

The latter set of data is relevant for real temperature variations in the ground.

2.4 Controlling the Solution of Linear Systems

Several linear algebra packages, referred to as linear algebra backends, can be
used in FEniCS to solve linear systems: PETSc, uBLAS, Epetra (Trilinos), or
MTL4. Which backend to apply can be controlled by setting

parameters[’linear algebra backend’] = backendname

where backendname is a string, either ’PETSc’ , ’uBLAS’ , ’Epetra’ , or ’MTL4’ .
These backends offer high-quality implementations of both iterative and direct
solvers for linear systems of equations.

The backend determines the specific data structures that are used in the
Matrix and Vector classes. For example, with the PETSc backend, Matrix en-
capsulates a PETSc matrix storage structure, and Vector encapsulates a PETSc
vector storage structure. The underlying PETSc objects can be fetched by

A_PETSc = down_cast(A).mat()
b_PETSc = down_cast(b).vec()
U_PETSc = down_cast(u.vector()).vec()

Here, u is a Function , A is a Matrix , and b is a Vector . The same syntax
applies if we want to fetch the underlying Epetra, uBLAS, or MTL4 matrices
and vectors.

2.4.1 Variational Problem Objects

Let us explain how one can choose between direct and iterative solvers. We
have seen that there are two ways of solving linear systems, either we call the
solve() method in a VariationalProblem instance or we call the solve(A,
U, b) function with the assembled coefficient matrix A, right-hand side vector
b, and solution vector U.

In case we use a VariationalProblem instance, named problem , it has a
parameters instance that behaves like a Python dictionary, and we can use this
object to choose between a direct or iterative solver:

problem.parameters[’linear_solver’] = ’direct’
# or
problem.parameters[’linear_solver’] = ’iterative’

Another parameter ’symmetric’ can be set to True if the coefficient matrix
is symmetric so that a method exploiting symmetry can be utilized. For exam-
ple, the default iterative solver is GMRES, but when solving a Poisson equation,
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the iterative solution process will be more efficient by setting the ’symmetry’
parameter so that a Conjugate Gradient is applied.

Having chosen an interative solver, we can invoke a submenu ’krylov_solver’
in the parameters object for setting various parameters for the iterative solver
(GMRES or Conjugate Gradients, depending on whether the matrix is symmetric
or not):

itsolver = problem.parameters[’krylov_solver’] # short f orm
itsolver[’absolute_tolerance’] = 1E-10
itsolver[’relative_tolerance’] = 1E-6
itsolver[’divergence_limit’] = 1000.0
itsolver[’gmres_restart’] = 50
itsolver[’monitor_convergence’] = True
itsolver[’report’] = True

Here, ’divergence_limit’ governs the maximum allowable number of itera-
tions, the ’gmres_restart’ parameter tells how many iterations GMRES per-
forms before it restarts, ’monitor_convergence’ prints detailed information
about the development of the residual of a solver, ’report’ governs whether a
one-line report about the solution method and the number of iterations is writ-
ten on the screen or not. The absolute and relative tolerances enter (usually
residual-based) stopping criteria, which are dependent on the implementation of
the underlying iterative solver in the actual backend.

When direct solver is chosen, there is similarly a submenu ’lu_solver’ to
set parameters, but here only the ’report’ parameter is available (since di-
rect solvers very soldom have any adjustable parameters). For nonlinear prob-
lems there is also submenu ’newton_solver’ where tolerances, maximum it-
erations, and so on, for a the Newton solver in VariationalProblem can be
set.

A complete list of all parameters and their default values is printed to the
screen by

info(problem.parameters, True)

2.4.2 Solve Function

For the solve(A, x, b) approach, a 4th argument to solve determines the
type of method:

• ’lu’ for a sparse direct (LU decomposition) method,

• ’cg’ for the Conjugate Gradient (CG) method, which is applicable if A is
symmetric and positive definite,

• ’gmres’ for the GMRES iterative method, which is applicable when A is
nonsymmetric,
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• ’bicgstab’ for the BiCGStab iterative method, which is applicatble when
A is nonsymmetric.

The default solver is ’lu’ .
Good performance of an iterative method requires preconditioning of the lin-

ear system. The 5th argument to solve determines the preconditioner:

• ’none’ for no preconditioning.

• ’jacobi’ for the simple Jacobi (diagonal) preconditioner,

• ’sor’ for SOR preconditioning,

• ’ilu’ for incomplete LU factorization (ILU) preconditioning,

• ’icc’ for incomplete Cholesky factorization preconditioning (requires A to
be symmetric and positive definite),

• ’amg_hypre’ for algebraic multigrid (AMG) preconditioning with the Hypre
package (if available),

• ’mag_ml’ for algebraic multigrid (AMG) preconditioning with theML pack-
age from Trilinos (if available),

• ’default_pc’ for a default preconditioner, which depends on the linear
algebra backend (’ilu’ for PETSc).

If the 5th argument is not provided, ’ilu’ is taken as the default preconditioner.
Here are some sample calls to solve demonstrating the choice of solvers and

preconditioners:

solve(A, u.vector(), b) # ’lu’ is default solver
solve(A, u.vector(), cg) # CG with ILU prec.
solve(A, u.vector(), ’gmres’, ’amg_ml’) # GMRES with ML pre c.

2.4.3 Setting the Start Vector

The choice of start vector for the iterations in a linear solver is often important.
With the solve(A, U, b) function the start vector is the vector we feed in for
the solution. A start vector with random numbers in the interval [−1, 1] can be
computed as

n = u.vector().array().size
u.vector()[:] = numpy.random.uniform(-1, 1, n)
solve(A, u.vector(), b, cg, ilu)

Or if a VariationalProblem instance is used, its solve method may take an
optional u function as argument (which we can fill with the right values):
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problem = VariationalProblem(a, L, bc)
n = u.vector().array().size
u.vector()[:] = numpy.random.uniform(-1, 1, n)
u = problem.solve(u)

The program Poisson2D_DN_laprm.py demonstrates the various control
mechanisms for steering linear solvers as described above.

2.4.4 Using a Backend-Specific Solver

Here is a demo where we operate on Trilinos-specific vectors, matrices, iterative
solvers, and preconditioners. Given a linear system AU = b, represented by a
Matrix instance A, and two Vector instances U and b, the purpose is to set up
a solver using the Aztec Conjugate Gradient method from Trilinos’ Aztec library
and combine that solver with the algebraic multigrid preconditioner ML from
the ML library in Trilinos.

try:
from PyTrilinos import Epetra, AztecOO, TriUtils, ML

except:
print ’’’You Need to have PyTrilinos with’

Epetra, AztecOO, TriUtils and ML installed
for this demo to run’’’

exit()

from dolfin import *

if not has_la_backend(’Epetra’):
print ’Warning: Dolfin is not compiled with Trilinos’
exit()

parameters[’linear_algebra_backend’] = ’Epetra’

# create matrix A and vector b in the usual way
# u is a Function

# Fetch underlying Epetra objects
A_epetra = down_cast(A).mat()
b_epetra = down_cast(b).vec()
U_epetra = down_cast(u.vector()).vec()

# Sets up the parameters for ML using a python dictionary
ML_param = {"max levels" : 3,

"output" : 10,
"smoother: type" : "ML symmetric Gauss-Seidel",
"aggregation: type" : "Uncoupled",
"ML validate parameter list" : False

}

# Create the preconditioner
prec = ML.MultiLevelPreconditioner(A_epetra, False)
prec.SetParameterList(ML_param)
prec.ComputePreconditioner()

# Create solver and solve system
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solver = AztecOO.AztecOO(A_epetra, U_epetra, b_epetra)
solver.SetPrecOperator(prec)
solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_ cg)
solver.SetAztecOption(AztecOO.AZ_output, 16)
solver.Iterate(MaxIters=1550, Tolerance=1e-5)

plot(u)

2.5 Creating More Complex Domains

Up to now we have been very fond of the unit square as domain, which is an
appropriate choice for initial versions of a PDE solver. The strength of the finite
element method, however, is its ease of handling domains with complex shapes.
This section shows some methods that can be used to create different types of
domains and meshes.

Domains of complex shape must normally be constructed in separate prepro-
cessor programs. Two relevant preprocessors are Triangle for 2D domains and
Netgen for 3D domains.

2.5.1 Built-In Mesh Generation Tools

DOLFIN has a few tools for creating various types of meshes over domains with
simple shape: UnitInterval , UnitSphere , UnitSquare , Interval , Rectangle ,
Box, UnitCircle , and UnitCube . Some of these names have been briefly met
in previous sections. The hopefully self-explanatory code snippet below summa-
rizes typical constructions of meshes with the aid of these tools:

# 1D domains
mesh = UnitInterval(20) # 20 cells, 21 vertices
mesh = Interval(20, -1, 1) # domain [-1,1]

# 2D domains (6x10 divisions, 120 cells, 77 vertices)
mesh = UnitSquare(6, 10) # ’right’ diagonal is default
# The diagonals can be right, left or crossed
mesh = UnitSquare(6, 10, ’left’)
mesh = UnitSquare(6, 10, ’crossed’)

# Domain [0,3]x[0,2] with 6x10 divisions and left diagonals
mesh = Rectangle(0, 0, 3, 2, 6, 10, ’left’)

# 6x10x5 boxes in the unit cube, each box gets 6 tetrahedra:
mesh = UnitCube(6, 10, 5)

# Domain [-1,1]x[-1,0]x[-1,2] with 6x10x5 divisions
mesh = Box(-1, -1, -1, 1, 0, 2, 6, 10, 5)

# 10 divisions in radial directions
mesh = UnitCircle(10)
mesh = UnitSphere(10)
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2.5.2 Transforming Mesh Coordinates

A mesh that is denser toward a boundary is often desired to increase accuracy
in that region. Given a mesh with uniformly spaced coordinates x0, . . . , xM−1 in
[a, b], the coordinate transformation ξ = (x − a)/(b − a) maps x onto ξ ∈ [0, 1]. A
new mapping η = ξs, for some s > 1, stretches the mesh toward ξ = 0 (x = a),
while η = ξ1/s makes a stretching toward ξ = 1 (x = b). Mapping the η ∈ [0, 1]
coordinates back to [a, b] gives new, stretched x coordinates,

x̄ = a + (b− a)
(
x− a
b− a

)s
(2.83)

toward x = a, or

x̄ = a+ (b− a)
(
x− a
b− a

)1/s

(2.84)

toward x = b
One way of creating more complex geometries is to transform the vertex coor-

dinates in a rectangular mesh according to some formula. Say we want to create
a part of a hollow cylinder of Θ degrees, with inner radius a and outer radius
b. A standard mapping from polar coordinates to Cartesian coordinates can be
used to generate the hollow cylinder. Given a rectangle in (x̄, ȳ) space such that
a ≤ x̄ ≤ b and 0 ≤ ȳ ≤ 1, the mapping

x̂ = x̄ cos(Θȳ), ŷ = x̄ sin(Θȳ),

takes a point in the rectangular (x̄, ȳ) geometry and maps it to a point (x̂, ŷ) in a
hollow cylinder.

The corresponding Python code for first stretching the mesh and then map-
ping it onto a hollow cylinder looks as follows:

Theta = pi/2
a, b = 1, 5.0
nr = 10 # divisions in r direction
nt = 20 # divisions in theta direction
mesh = Rectangle(a, 0, b, 1, nr, nt, ’crossed’)

# First make a denser mesh towards r=a
x = mesh.coordinates()[:,0]
y = mesh.coordinates()[:,1]
s = 1.3

def denser(x, y):
return [a + (b-a) * ((x-a)/(b-a)) ** s, y]

x_bar, y_bar = denser(x, y)
xy_bar_coor = numpy.array([x_bar, y_bar]).transpose()
mesh.coordinates()[:] = xy_bar_coor
plot(mesh, title=’stretched mesh’)

def cylinder(r, s):

75



A FEniCS Tutorial

Figure 2.5: Hollow cylinder generated by mapping a rectangular mesh, stretched
toward the left side.

return [r * cos(Theta * s), r * sin(Theta * s)]

x_hat, y_hat = cylinder(x_bar, y_bar)
xy_hat_coor = numpy.array([x_hat, y_hat]).transpose()
mesh.coordinates()[:] = xy_hat_coor
plot(mesh, title=’hollow cylinder’)
interactive()

The result of calling denser and cylinder above is a list of two vectors, with
the x and y coordinates, respectively. Turning this list into a numpy array object
results in a 2×M array, M being the number of vertices in the mesh. However,
mesh.coordinates() is by convention an M × 2 array so we need to take the
transpose. The resulting mesh is displayed in Figure 2.5.

2.5.3 Separate Preprocessor Applications

2.6 Handling Domains with Different Materials

Solving PDEs in domains made up of different materials is a frequently encoun-
tered task. In FEniCS, this kind of problems are handled by defining subdomains
inside the domain. The subdomains may represent the various materials. We
can thereafter define material properties through functions, known in FEniCS
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Figure 2.6: Sketch of a Poisson problem with a variable coefficient that is con-
stant in each of the two subdomains Ω0 and Ω1.

as mesh functions, that are piecewise constant in each subdomain. A simple ex-
ample with two materials (subdomains) in 2D will demonstrate the basic steps in
the process. Later, a multi-material problem in d space dimensions is addressed.

2.6.1 Working with Two Subdomains

Suppose we want to solve

∇ · [k(x, y)∇u(x, y)] = 0, (2.85)

in a domain Ω consisting of two subdomains where k takes on a different value
in each subdomain. For simplicity, yet without loss of generality, we choose for
the current implementation the domain Ω = [0, 1] × [0, 1] and divide it into two
equal subdomains, as depicted in Figure 2.6,

Ω0 = [0, 1]× [0, 1/2], Ω1 = [0, 1]× (1/2, 1] .

We define k(x, y) = 1 in Ω0 and k(x, y) = 10 in Ω1. As boundary conditions, we
choose u = 0 at x = 0, u = 1 at x = 1, and ∂u/∂n = 0 at y = 0 and y = 1. This
choice implies the simple solution u(x, y) = x, which we should recover exactly
with linear or higher order finite elements.

Physically, the present problem may correspond to heat conduction, where the
heat conduction in Ω1 is ten times more efficient than in Ω0. An alternative in-
terpretation is flow in porous media with two geological layers, where the layers’
ability to transport the fluid differs by a factor of 10.
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2.6.2 The Implementation

The new functionality in this subsection regards how to to define the subdomains
Ω0 and Ω1. Defining a subdomain is done by creating a subclass of SubDomain
and implementing the inside function. In the present case we define

class Omega0(SubDomain):
def inside(self, x, on_boundary):

return True if x[1] <= 0.5 else False

class Omega1(SubDomain):
def inside(self, x, on_boundary):

return True if x[1] >= 0.5 else False

The next task is to introduce a MeshFunction to mark all cells in Ω0 with
the subdomain number 0 and all cells in Ω1 with the subdomain number 1. Our
convention is to number subdomains as 0, 1, 2, . . ..

A MeshFunction is a discrete function that can be evaluated at a set of
so-called mesh entities. Three mesh entities are cells, facets, and vertices. A
MeshFunction over cells is suitable to represent subdomains (materials), while
a MeshFunction over facets is used to represent pieces of external or internal
boundaries. Mesh functions over vertices can be used to describe continuous
fields.

Since we need to define subdomains of Ω in the present example, we must
make use of a MeshFunction over cells. The MeshFunction constructor is fed
with three arguments: 1) the type of value: ’int’ for integers, ’uint’ for pos-
itive (unsigned) integers, ’double’ for real numbers, and ’bool’ for logical
values; 2) a Mesh instance, and 3) the topological dimension of the mesh entity
in question: cells have topological dimension equal to the number of space dimen-
sions in the PDE problem, and facets have one dimension lower. Alternatively,
the constructor can take just a filename and initialize the MeshFunction from
data in a file. We shall demonstrate this functionality in the next multi-material
problem in Chapter 2.7.

We start with creating a MeshFunction whose values are non-negative inte-
gers (’uint’ ) for numbering the subdomains. The mesh entities of interest are
the cells, which have dimension 2 in a two-dimensional problem (1 in 1D, 3 in
3D). The appropriate code for defining the MeshFunction for two subdomains
then reads

subdomains = MeshFunction(’uint’, mesh, 2)
# Mark subdomains with numbers 0 and 1
subdomain0 = Omega0()
subdomain0.mark(subdomains, 0)
subdomain1 = Omega1()
subdomain1.mark(subdomains, 1)

Calling subdomains.values() returns a numpy array of the subdomain val-
ues. That is, subdomain.values()[i] is the subdomain value of cell no. i .
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This array is used to look up the subdomain or material number of a specific
element.

Now we want a function k that is piecewise constant in each subdomain Ω0

and Ω1. Since we want k to be a finite element function, it is natural to choose a
space of functions that are constant over each element. The family of discontinu-
ous Galerkin methods, in FEniCS denoted by ’DG’ , is suitable for this purpose.
Since we want functions that are piecewise constant, the value of the degree
parameter is zero:

V0 = FunctionSpace(mesh, ’DG’, 0)
k = Function(V0)

To fill k with the right values in each element, we loop over all cells (i.e., indices
in subdomain.values() ), extract the corresponding subdomain number of a
cell, and assign the corresponding k value to the k.vector() array:

k_values = [1.5, 50] # values of k in the two subdomains
for cell_no in range(len(subdomains.values())):

subdomain_no = subdomains.values()[cell_no]
k.vector()[cell_no] = k_values[subdomain_no]

Long loops in Python are known to be slow, so for large meshes the it is prefer-
able to avoid such loops and instead use vectorized code. Normally this implies
that the loop must be replaced by calls to functions from the numpy library that
operate on complete arrays (in efficient C code). The functionality we want in the
present case is to compute an array of the same size as subdomain.values() ,
but where the value i of an entry in subdomain.values() is replaced by k_values[i] .
Such an operation is carried out by the numpy function choose :

help = numpy.asarray(subdomains.values(), dtype=numpy. int32)
k.vector()[:] = numpy.choose(help, k_values)

The help array is required since choose cannot work with subdomain.values()
because this array has elements of type uint32 . We must therefore transform
this array to an array help with standard int32 integers.

Having the k function ready for finite element computations, we can proceed
in the normal manner with defining essential boundary conditions, as in Chap-
ter 2.1.10, and the a(u, v) and L(v) forms, as in Chapter 2.1.12. All the details
can be found in the file Poisson2D_2mat.py .

2.6.3 Multiple Neumann, Robin, and Dirichlet Conditions

Let us go back to the model problem from Chapter 2.1.10 where we had both
Dirichlet and Neumann conditions. The term v* g* ds in the expression for L
implies a boundary integral over the complete boundary, or in FEniCS terms, an
integral over all exterior cell facets. However, the contributions from the parts
of the boundary where we have Dirichlet conditions are erased when the linear
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system is modified by the Dirichlet conditions. We would like, from an efficiency
point of view, to integrate v* g* ds only over the parts of the boundary where we
actually have Neumann conditions. And more importantly, in other problems
one may have different Neumann conditions or other conditions like the Robin
type condition. With the mesh function concept we can mark different parts of
the boundary and integrate over specific parts. The same concept can also be
used to treat multiple Dirichlet conditions. The forthcoming text illustrates how
this is done.

Essentially, we still stick to the model problem from Chapter 2.1.10, but re-
place the Neumann condition at y = 0 by a Robin condition6:

−∂u
∂n

= p(u− q),

where p and q are specified functions. Since we have prescribed a simple solution
in our model problem, u = 1 + x2 + y4, we adjust p and q such that the condition
holds at y = 0. This implies that q = 1 + x2 + 2y2 and p can be arbitrary (the
normal derivative at y = 0: ∂u/∂n = −∂u/∂y = −4y = 0).

Now we have four parts of the boundary: ΓN which corresponds to the upper
side y = 1, ΓR which corresponds to the lower part y = 0, Γ0 which corresponds
to the left part x = 0, and Γ1 which corresponds to the right part x = 1. The
complete boundary-value problem reads

−∆u = −6 in Ω, (2.86)

u = uL on Γ0, (2.87)

u = uR on Γ1, (2.88)

−∂u
∂n

= p(u− q) on ΓR, (2.89)

−∂u
∂n

= 4y on ΓN . (2.90)

The involved prescribed functions are uL == 1+2y2, uR = 2+2y2, q = 1+x2 +2y2,
p is arbitrary, and g = −4y.

Integration by parts of −
∫
Ω
v

Deltau dx becomes as usual

−
∫

Ω

v∆u dx =

∫

Ω

∇v · ∇u dx−
∫

∂Ω

v
∂u

∂n
ds .

The boundary integral vanishes on Γ0∪Γ1, and we split the parts over ΓN and ΓR
since we have different conditions at those parts:

−
∫

∂Ω

v
∂u

∂n
ds = −

∫

ΓN

v
∂u

∂n
ds−

∫

ΓR

v
∂u

∂n
ds =

∫

ΓN

vg ds+

∫

ΓR

vp(u− q) ds .

6The Robin condition is most often used to model heat transfer to the surroundings and arise
naturally from Newton’s cooling law.
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The weak form then becomes
∫

Ω

∇v · ∇u dx+

∫

ΓN

gv ds +

∫

ΓR

vp(u− q) ds =

∫

Ω

fv dx,

We want to write this weak form in the standard notation a(u, v) = L(v), which
requires that we indentify all integrals with both u and v, and collect these in
a(u, v), while the remaining integrals with v and not u go into L(v). The integral
from the Robin condition must of this reason be split in two parts:

∫

ΓR

vp(u− q) ds =

∫

ΓR

vpu ds−
∫

ΓR

vpq ds .

We then have

a(u, v) =

∫

Ω

∇v · ∇u dx+

∫

ΓR

vpu ds, (2.91)

L(v) =

∫

Ω

fv dx−
∫

ΓN

gv ds+

∫

ΓR

vpq ds . (2.92)

A natural starting point for implementation is the Poisson2D_DN2.py pro-
gram, which we now copy to Poisson2D_DNR.py . The new aspects are

1. definition of a mesh function over the boundary,

2. marking each side as a subdomain, using the mesh function,

3. splitting a boundary integral into parts.

Task 1 makes use of the MeshFunction object, but contrary to Chapter 2.6.2,
this is not a function over cells, but a function over cell facets. The topological di-
mension of cell facets is one lower than the cell interiors, so in a two-dimensional
problem the dimension becomes 1. In general, the facet dimension is given as
mesh.topology().dim()-1 , which we use in the code for ease of direct reuse
in other problems. The construction of a MeshFunction instance to mark bound-
ary parts now reads

boundary_parts = \
MeshFunction("uint", mesh, mesh.topology().dim()-1)

As in Chapter 2.6.2 we use a subclass of SubDomain to identify the various parts
of the mesh function. Problems with domains of more complicated may set the
mesh function for marking boundaries as part of the mesh generation. In our
case, the y = 0 boundary can be marked by

class LowerRobinBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[1]) < tol

Gamma_R = LowerRobinBoundary()
Gamma_R.mark(boundary_parts, 0)

81



A FEniCS Tutorial

The code for the y = 1 boundary is similar and is seen in Poisson2D_DNR.py .
The Dirichlet boundaries are marked similarly, using subdomain number 2

for Γ0 and 3 for Γ1:

class LeftDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = LeftDirichletBoundary()
Gamma_0.mark(boundary_parts, 2)

class RightDirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = RightDirichletBoundary()
Gamma_1.mark(boundary_parts, 3)

Specifying the DirichletBC instances may now make use of the mesh function
(instead of a SubDomain subclass object) and an indicator for which subdomain
each condition should be applied to:

u_L = Function(V, ’1 + 2 * x[1] * x[1]’)
u_R = Function(V, ’2 + 2 * x[1] * x[1]’)
bc = [DirichletBC(V, u_L, boundary_parts, 2),

DirichletBC(V, u_R, boundary_parts, 3)]

Some functions need to be defined before we can go on with the a and L of the
variational problem:

q = Function(V, ’1 + x[0] * x[0] + 2 * x[1] * x[1]’)
p = Constant(mesh, 100) # arbitrary function can go here
v = TestFunction(V)
u = TrialFunction(V)
f = Constant(mesh, -6.0)

The new aspect of the variational problem is the two distinct boundary inte-
grals. Having a mesh function over exterior cell facets (i.e., our boundary_parts
object), where subdomains (boundary parts) are numbered as 0, 1, 2, . . ., the spe-
cial symbol ds(0) implies integration over subdomain (part) 0, ds(1) denotes
integration over subdomain (part) 1, and so on. The idea of multiple ds -type
objects generalizes to volume integrals too: dx(0) , dx(1) , etc., are used to inte-
grate over subdomain 0, 1, etc., inside Ω.

The variational problem can be defined as

a = dot(grad(v), grad(u)) * dx + v * p* u* ds(0)
L = v * f * dx - v * g* ds(1) + v * p* q* ds(0)

For the ds(0) and ds(1) symbols to work we must obviously connect them (or
a and L) to the mesh function marking parts of the boundary. This is done by a
certain keyword argument to the assemble function:
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A = assemble(a, exterior_facet_domains=boundary_parts)
b = assemble(L, exterior_facet_domains=boundary_parts)

Then essential boundary conditions are enforced, and the system can be solved
in the usual way:

for condition in bc: condition.apply(A, b)
u = Function(V)
solve(A, u.vector(), b)

At the time of this writing, it is not possible to perform integrals over different
parts of the domain or boundary using the assemble_system function or the
VariationalProblem instance.

2.7 A General d-Dimensional Multi-Material Test

Problem

This section is in a preliminary state!

The purpose of the present section is to generalize the basic ideas from the
previous section to a problem involving an arbitrary number of materials in 1D,
2D, or 3D domains. The example also highlights how to build more general and
flexible FEniCS applications.

2.7.1 The PDE Problem

We generalize the problem in Chapter 2.6.1 to the case where there are s mate-
rials Ω0, . . . ,Ωs−1, with associated constant k values k0, k1, . . . , ks−1, as illustrated
in Figure 2.7. Although the sketch of the domain is in two dimensions, we can
easily define this problem in any number of dimensions, using the ideas of Chap-
ter 2.1.14, but the layer boundaries are planes x0 = const and u varies with x0

only.
The PDE reads

∇ · (k∇u) = 0 . (2.93)

To construct a problem where we can find an analytical solution that can be
computed to machine precision regardless of the element size, we choose Ω as a
hypercube [0, 1]d, and the materials as layers in the x0 direction, as depicted in
Figure 2.7 for a 2D case with four materials. The boundaries x0 = 0 and x0 = 1
have Dirichlet conditions u = 0 and u = 1, respectively, while Neumann condi-
tions ∂u/∂n = 0 are set on the remaining boundaries. The complete boundary-
value problem is then

∇ · (k(x0)∇u(x0, . . . , xd−1)) = 0 in Ω,
u = 0 on Γ0,
u = 1 on Γ1,
∂u
∂n

= 0 on ΓN .

(2.94)
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Figure 2.7: Sketch of a multi-material problem.
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The domain Ω is divided into s materials Ωi, i = 0, . . . , s− 1, where

Ωi = {(x0, . . . , xd−1 |Li ≤ x0 < Li+1}

for given x0 values 0 = L0 < L1 < · · · < Ls = 1 of the material (subdomain)
boundaries. The k(x0) function takes on the value ki in Ωi.

The exact solution of the basic PDE in (2.94) is

u(x0, . . . , xd−1) =

∫ x0

0
(k(τ))−1dτ

∫ 1

0
(k(τ))−1dτ

.

For a piecewise constant k(x0) as explained, we get

u(x0, . . . , xd−1) =
(x0 − Li)k−1

i +
∑i−1

j=0(Lj+1 − Lj)k−1
j∑s−1

j=0(Lj+1 − Lj)k−1
j

, Li ≤ x0 ≤ Li+1 . (2.95)

That is, u(x0, . . . , xd−1) is piecewise linear in x0 and constant in all other direc-
tions. If Li coincides with the element boundaries, any standard finite element
method will reproduce this exact solution to machine precision, which is ideal for
a test case.

2.7.2 Preparing a Mesh with Subdomains

Our first task is to generate a mesh for Ω = [0, 1]d and divide it into subdomains

Ωi = {(x0, . . . , xd−1) |Li < x0 < Li+1}

for given subdomain boundaries x0 = Li, i = 0, . . . , s, L0 = 0, Ls = 1. Note that
the boundaries x0 = Li are points in 1D, lines in 2D, and planes in 3D.

Let us, on the command line, specify the polynomial degree of Lagrange el-
ements and the number of element divisions in the various space directions, as
explained in detail in Chapter 2.1.14. This results in an instance mesh repre-
senting the interval [0, 1] in 1D, the unit square in 2D, or the unit cube in 3D.

The subdomains Ωi must be defined through subclasses of SubDomain . Would
could, in principle, introduce one subclass of SubDomain for each subdomain, and
this would be feasible if one has a small and fixed number of subdomains as in the
example in Chapter 2.6.1 with two subdomains. Our present case is more general
as we have s subdomains. It then makes sense to create one subclass Material
of SubDomain and have an attribute to reflect the subdomain (material) number.
We use this number in the test whether a spatial point x is inside a subdomain
or not:

class Material(SubDomain):
"""Define material (subdomain) no. i."""
def __init__(self, subdomain_number, subdomain_boundar ies):

self.number = subdomain_number
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self.boundaries = subdomain_boundaries
SubDomain.__init__(self)

def inside(self, x, on_boundary):
i = self.number
L = self.boundaries # short form (cf. the math)
if L[i] <= x[0] <= L[i+1]:

return True
else:

return False

The <= in the test if a point is inside a subdomain is important as x will equal
vertex coordinates in the elements, and many of these will lie on the subdomain
boundaries. All vertices x in a cell must be lead to a True return value from
inside for the cell to be a part of a subdomain.

The marking and numbering of all subdomains goes as follows:

cell_entity_dim = mesh.topology().dim() # = d
subdomains = MeshFunction(’uint’, mesh, cell_entity_dim )
# Mark subdomains with numbers i=0,1,\ldots,s (=len(L)-1)
for i in range(s):

material_i = Material(i, L)
material_i.mark(subdomains, i)

We have now all the geometric information about subdomains in a MeshFunction
instance subdomains . The subdomain number of mesh entity number e, here
cell e, is given by subdomains.values()[e] .

The code presented so far had the purpose of preparing a mesh and a mesh
function defining the subdomain. It is smart to put this code in a separate file,
say define_layers.py , and view the code as a preprocessing step. We must
then store the computed mesh and mesh function in files. Another program may
load the files and perform the actually actually solve the boundary-value prob-
lem.

Storing the mesh itself and the mesh function in XML format is done by

file = File(’hypercube_mesh.xml.gz’)
file << mesh
file = File(’layers.xml.gz’)
file << subdomains

This preprocessing code knows about the layer geometries and the corre-
sponding k, which must be propagated to the solver code. One idea is to let
the preprocessing code write a Python module containing the L and k lists as
well as an implementation of a function that evaluates the exact solution. The
solver code can import this module to get access to L, k , and the exact solution
(for comparison). The relevant Python code for generating a Python module may
take the form

f = open(’u_layered.py’, ’w’)
f.write("""
import numpy
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L = numpy.array(%s, float)
k = numpy.array(%s, float)
s = len(L)-1

def u_exact(x):
# First find which subdomain x0 is located in
for i in range(len(L)-1):

if L[i] <= x <= L[i+1]:
break

# Vectorized implementation of summation:
s2 = sum((L[1:s+1] - L[0:s]) * (1.0/k[:]))
if i == 0:

u = (x - L[i]) * (1.0/k[0])/s2
else:

s1 = sum((L[1:i+1] - L[0:i]) * (1.0/k[0:i]))
u = ((x - L[i]) * (1.0/k[i]) + s1)/s2

return u

if __name__ == ’__main__’:
# Plot the exact solution
from scitools.std import linspace, plot, array
x = linspace(0, 1, 101)
u = array([u_exact(xi) for xi in x])
print u
plot(x, u)

""" % (L, k))
f.close()

2.7.3 Solving the PDE Problem

The solver program starts with loading a prepared mesh with a mesh function
representing the subdomains:

mesh = Mesh(’hypercube_mesh.xml.gz’)
subdomains = MeshFunction(’uint’, mesh, ’layers.xml.gz’ )

The next task is to define the k function as a finite element function. As we
recall from Chapter 2.6.2, a k that is constant in each element is suitable. We
then follow the recipe from Chapter 2.6.2 to compute k:

V0 = FunctionSpace(mesh, ’DG’, 0)
k = Function(V0)

# Vectorized calculation
help = numpy.asarray(subdomains.values(), dtype=numpy. int32)
k.vector()[:] = numpy.choose(help, k_values)

The essential boundary conditions are defined in the same way is in Poisson2D_DN2.py
from Chapter 2.1.10 and therefore not repeated here. The variational problem is
defined and solved in a standard manner,

v = TestFunction(V)
u = TrialFunction(V)
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f = Constant(mesh, 0)
a = k * dot(grad(v), grad(u)) * dx
L = v * f * dx

problem = VariationalProblem(a, L, bc)
u = problem.solve()

Plotting the discontinuous k is often desired. Just a plot(k) makes a contin-
uous function out of k , which is not what we want. Making a MeshFunction over
cells and filling in the right k values results in an object that can be displayed as
a discontinuous field. A relevant code is

k_meshfunc = MeshFunction(’double’, mesh, mesh.topology ().dim())

# Scalar version
for i in range(len(subdomains.values())):

k_meshfunc.values()[i] = k_values[subdomains.values() [i]]

# Vectorized version
help = numpy.asarray(subdomains.values(), dtype=numpy. int32)
k_meshfunc.values()[:] = numpy.choose(help, k_values)

plot(k_meshfunc, title=’k as mesh function’)

The file Poisson_layers.py contains the complete code.

2.8 Miscellaneous Topics

2.8.1 Glossary

Below we explain some key terms used in this tutorial.

FEniCS: name of a software suite composed of many individual software com-
ponents (see fenics.org ). Some components are DOLFIN and Viper, explicitly
referred to in this tutorial. Others are FFC and FIAT, heavily used by the pro-
grams appearing in this tutorial, but never explicitly used from the programs.

DOLFIN: a FEniCS component, more precisely a C++ library, with a Python
interface, for performing important actions in finite element programs. DOLFIN
makes use of many other FEniCS components and many external software pack-
ages.

Viper: a FEniCS component for quick visualization of finite element meshes
and solutions.

UFL: a FEniCS component implementing the unified form language for spec-
ifying finite element forms in FEniCS programs. The definition of the forms,
typically called a and L in this tutorial, must have legal UFL syntax. The same
applies to the definition of functionals (see Chapter 2.1.7).
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Class (Python): a programming construction for creating objects containing a
set of variables and functions. Most types of FEniCS objects are defined through
the class concept.

Instance (Python): an object of a particular type, where the type is imple-
mented as a class. For instance, mesh = UnitInterval(10) creates an in-
stance of class UnitInterval , which is reached by the the name mesh. (Class
UnitInterval is actually just an interface to a corresponding C++ class in the
DOLFIN C++ library.)

Class method (Python): a function in a class, reached by dot notation: instance_name.method_name

self parameter (Python): required first parameter in class methods, rep-
resenting a particular instance of the class. Used in method definitions, but
never in calls to a method For example, if method(self, x) is the definition of
method in a class Y, method is called as y.method(x) , where y is an instance
of class X. In a call like y.method(x) , method is invoked with self=y .

Class attribute (Python): a variable in a class, reached by dot notation: instance_name.attribute_name

2.8.2 Overview of Objects and Functions

Most objects in FEniCS have a explanation of the purpose and usuage that can
be seen by using the general documentation command pydoc for Python objects.
You can type

pydoc dolfin.X

to look up documentation of a Python class X from the DOLFIN library (X can
be UnitSquare , Function , Viper , etc.). Below is an overview of the most im-
portant classes and functions in FEniCS programs, in the order they typically
appear within programs.

UnitSquare(nx, ny) : generate mesh over the unit square [0, 1]×[0, 1] using
nx divisions in x direction and ny divisions in y direction. Each of the nx * ny
squares are divided into two cells of triangular shape.

UnitInterval ,UnitCube , UnitCircle , UnitSphere , Interval , Rectangle ,
and Box: generate mesh over domains of simple geometric shape, see Chap-
ter 2.5.

FunctionSpace(mesh, element_type, degree) : a function space defined
over a mesh, with a given element type (e.g., ’CG’ or ’DG’ ), with basis functions
as polynomials of a specified degree.

Function(V, expression) : a scalar- or vector-valued function, given as a
mathematical formula expression (string) written in C++ syntax.

89



A FEniCS Tutorial

Function(V) : a scalar- or vector-valued finite element field in the function
space V.

SubDomain : class for defining a subdomain, either a part of the boundary,
an internal boundary, or a part of the domain. The programmer must sub-
class SubDomain and implement the inside(self, x, on_boundary) func-
tion (see Chapter 2.1.3) for telling whether a point x is inside the subdomain or
not.

MeshFunction : tool for marking parts of the domain or the boundary. Used
for variable coefficients (“material properties”, see Chapter 2.6.1) or for boundary
conditions (see Chapter 2.6.3).

DirichletBC(V, value, where) : specification of Dirichlet (essential) bound-
ary conditions via a function space V, a function value(x) for computing the
value of the condition at a point x , and a specification where of the boundary, ei-
ther as a SubDomain subclass instance, a plain function, or as a MeshFunction
instance. In the latter case, a 4th argument is provided to describe which subdo-
main number that describes the relevant boundary.

TestFunction(V) : define a test function on a space V to be used in a varia-
tional form.

TrialFunction(V) : define a trial function on a space V to be used in a vari-
ational form to represent the unknown in a finite element problem.

assemble(X) : assemble a matrix, a right-hand side, or a functional, given a
from X written with UFL syntax.

assemble_system(a, L, bc) : assemble the matrix and the right-hand
side from a bilinear (a) and linear (L) form written with UFL syntax. The bc
parameter holds one or more DirichletBC instances.

VariationalProblem(a, L, bc) : define a variational problem by a bilin-
ear (a) and linear (L) form, written with UFL syntax, and one or more DirichletBC
instances stored in bc .

VariationalProblem(a, L, bc) : define and solve a variational problem,
given a bilinear (a) and linear (L) form, written with UFL syntax, and one or
more DirichletBC instances stored in bc . A 4th argument, nonlinear=True ,
can be given to define and solve nonlinear variational problems (see Chapter 2.2.4).

solve(A, U, b) : solve a linear system with A as coefficient matrix (Matrix
instance), U as unknown (Vector instance), and b as right-hand side (Vector
instance). Usually, U is replaced by u.vector() , where u is a Function in-
stance representing the unknown finite element function of the problem, while A
and b are computed by calls to assemble or assemble_system .
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plot(q) : quick visualization of a mesh, function, or mesh function q, using
the Viper component in FEniCS.

interpolate(func, V) : interpolate a formula or finite element function
func onto the function space V.

project(func, V) : project a formula or finite element function func onto
the function space V.

2.8.3 Installing FEniCS

The FEniCS software components are available for Linux, Windows and Mac
OS X platforms. Detailed information on how to get FEniCS running on such
machines are available at the fenics.org website. Here are just some quick
descriptions and recommendations by the author.

To make the installation of FEniCS as painless and reliable as possible, the
reader is strongly recommended to use Ubuntu Linux. Any standard PC can
easily be equipped with Ubuntu Linux, which may live side by side with either
Windows or Mac OS X or another Linux installation. Basically, you download
Ubuntu from www.ubuntu.com/getubuntu/download , burn the file on a CD,
reboot the machine with the CD, and answer some usually straightforward ques-
tions (if necessary). Ubuntu is quite similar to both Windows 7 and Mac OS X,
but to be efficient when doing science with FEniCS this author recommends to
run programs in a terminal window and write them in a text editor like Emacs
or Vim. You can employ integrated development environment such as Eclipse,
but intensive FEniCS developers and users tend to find terminal windows and
plain text editors more user friendly.

Instead of making it possible to boot your machine with the Linux Ubuntu
operating system, you can run Ubuntu in a separate window in your existing
operation system. On Mac, you can use the VirtualBox software available from
http://www.virtualbox.org to run Ubuntu. On Windows, Wubi makes a
tool that automatically installs Ubuntu on the machine. Just give a username
and password for the Ubuntu installation, and Wubi performs the rest. You can
also use VirtualBox on Windows machines.

Once the Ubuntu window is up and running, go to the fenics.org cite and
paste in the five few lines that are needed to install what you need.

2.8.4 Books on the Finite Element Method

There are a large number of books on the finite element method. The books typ-
ically fall in either of two categories: the abstract mathematical version of the
method and the engineering “structural analysis” version of the method. FEniCS
builds heavily on concepts in the former version. Readers who prefer mathemat-
ical rigor, and analysis of the finite element method, will appreciate the texts
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by Brenner and Scott (Brenner and Scott, 2008), Braess (Braess, 2007), or Cia-
rlet (Ciarlet, 2002b). Alternative books with less mathematical rigor and more
intuitive and engineering-oriented expositions are ..............

2.8.5 Books on Python

Two very popular introductory books on Python are “Learning Python” by Lutz
(Lutz, 2007) and “Practical Python” by Hetland (Hetland, 2002). More advanced
and comprehensive books include “Programming Python” by Lutz (Lutz, 2006),
and “Python Cookbook” (Martelli and Ascher, 2005) and “Python in a Nutshell”
(Martelli, 2006) by Martelli. The web page http:://python.org/... lists
numerous additional books. Very few texts teach Python in a mathematical and
numerical context, but the references (Langtangen, 2009a,b) are exceptions.

2.8.6 User-Defined Function Objects

User-defined functions are implemented as a Function object. There are several
ways of constructing such objects, such as

• a string containing a mathematical expression,

• a subclass of Function in Python,

• a subclass of Function in C++,

• a set of degrees of freedom of a finite element function.

Writing pydoc dolfin.Function gives a documentation of the various tech-
niques.

When defining a function in terms of a mathematical expression inside a
string formula, the expression will be turned into a C++ function and compiled
to gain efficiency. Therefore, the syntax used in the expression must be valid
C++ syntax. Most Python syntax for mathematical expressions are also valid
C++ syntax, but power expressions make an exception: p** a must be written
as pow(p,a) in C++ (this is also an alternative Python syntax). The following
mathematical functions can be used directly in C++ expressions for Function
objects: cos , sin , tan , acos , asin , atan , atan2 , cosh , sinh , tanh , exp ,
frexp , ldexp , log , log10 , modf , pow, sqrt , ceil , fabs , floor , and fmod .
Moreover, the number π is available as the symbol pi . All the listed functions
are taken from the cmath C++ header file, and one may hence consult documen-
tation of cmath for more information on the various functions.
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CHAPTER 3

The Finite Element Method

By Robert C. Kirby and Anders Logg

Chapter ref: [kirby-7]

The finite element method has grown out of Galerkin’s method, emerging as
a universal method for the solution of differential equations. Much of the success
of the finite element method can be contributed to its generality and simplicity,
allowing a wide range of differential equations from all areas of science to be
analyzed and solved within a common framework. Another contributing factor to
the success of the finite element method is the flexibility of formulation, allowing
the properties of the discretization to be controlled by the choice of finite element
approximating spaces.

In this chapter, we review the finite element method and introduce some basic
concepts and notation. In the coming chapters, we discuss these concepts in more
detail, with a particular focus on the implementation and automation of the finite
element method as part of the FEniCS project.

3.1 A Simple Model Problem

In 1813, Siméon Denis Poisson (Figure 3.1) published in Bulletin de la société

philomatique his famous equation as a correction of an equation published ear-
lier by Pierre-Simon Laplace. Poisson’s equation is a second-order partial differ-
ential equation stating that the negative Laplacian −∆u of some unknown field
u = u(x) is equal to a given function f = f(x) on a domain Ω ⊂ R

d, possibly
amended by a set of boundary conditions for the solution u on the boundary ∂Ω

97



The Finite Element Method

Figure 3.1: Siméon Denis Poisson (1781–1840), inventor of Poisson’s equation.

of Ω:
−∆u = f in Ω,

u = u0 on ΓD ⊂ ∂Ω,
−∂nu = g on ΓN ⊂ ∂Ω.

(3.1)

The Dirichlet boundary condition u = u0 signifies a prescribed value for the un-
known u on a subset ΓD of the boundary and the Neumann boundary condition
−∂nu = g signifies a prescribed value for the (negative) normal derivative of u
on the remaining boundary ΓN = ∂Ω \ ΓD. Poisson’s equation is a simple model
for gravity, electromagnetism, heat transfer, fluid flow, and many other physical
processes. It also appears as the basic building block in a large number of more
complex physical models, including the Navier–Stokes equations that we return
to below in Chapters ??.

To derive Poisson’s equation (3.1), we may consider a model for the tempera-
ture u in a body occupying a domain Ω subject to a heat source f . Letting σ = σ(x)
denote heat flux, it follows by conservation of energy that the outflow of energy
over the boundary ∂ω of any test volume ω ⊂ Ω must be balanced by the energy
transferred from the heat source f ,

∫

∂ω

σ · n ds =

∫

ω

f dx.

Integrating by parts, it follows that

∫

ω

∇ · σ dx =

∫

ω

f dx

for all test volumes ω and thus that ∇·σ = f (by suitable regularity assumptions
on σ and f ). If we now make the assumption that the heat flux σ is proportional
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Figure 3.2: Poisson’s equation is a simple consequence of balance of energy in an
arbitrary test volume ω ⊂ Ω.

to the negative gradient of the temperature u (Fourier’s law),

σ = −κ∇u,

we arrive at the following system of equations:

∇ · σ = f in Ω,
σ +∇u = 0 in Ω,

(3.2)

where we have assumed that the the heat conductivity κ = 1. Replacing σ in
the first of these equations by −∇u, we arrive at Poisson’s equation (3.1). We
note that one may as well arrive at the system of first order equations (3.2) by
introducing σ = −∇u as an auxiliary variable in the second order equation (3.1).
We also note that the Dirichlet and Neumann boundary conditions in (3.1) corre-
spond to prescribed values for the temperature and heat flux respectively.

3.2 Finite Element Discretization

3.2.1 Discretizing Poisson’s equation

To discretize Poisson’s equation (3.1) by the finite element method, we first mul-
tiply by a test function v and integrate by parts to obtain

∫

Ω

∇v · ∇u dx−
∫

Ω

v ∂nu ds =

∫

Ω

vf dx.
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Letting the test function v vanish on the Dirichlet boundary ΓD where the solu-
tion u is known, we arrive at the following classical variational problem: Find
u ∈ V such that ∫

Ω

∇v · ∇u dx =

∫

Ω

vf dx−
∫

ΓN

v g ds ∀v ∈ V̂ . (3.3)

The test space V̂ is defined by

V̂ = {v ∈ H1(Ω) : v = 0 on ΓD},
and the trial space V contains members of V̂ shifted by the Dirichlet condition,

V = {v ∈ H1(Ω) : v = u0 on ΓD}.
We may now discretize Poisson’s equation by restricting the variational prob-

lem (3.3) to a pair of discrete spaces: Find uh ∈ Vh ⊂ V such that
∫

Ω

∇v · ∇uh dx =

∫

Ω

vf dx−
∫

ΓN

v g ds ∀v ∈ V̂h ⊂ V̂ . (3.4)

We note here that the Dirichlet condition u = u0 on ΓD enters into the definition of
the trial space Vh (it is an essential boundary condition), whereas the Neumann
condition −∂nu = g on ΓN enters into the variational problem (it is a natural

boundary condition).
To solve the discrete variational problem (3.4), we must construct a suitable

pair of discrete test and trial spaces V̂h and Vh. We return to this issue below, but
assume for now that we have a basis {φ̂i}Ni=1 for V̂h and a basis {φj}Nj=1 for Vh. We
may then make an ansatz for uh in terms of the basis functions of the trial space,

uh =

N∑

j=1

Ujφj,

where U ∈ R
N is the vector of degrees of freedom to be computed. Inserting this

into (3.4) and varying the test function v over the basis functions of the discrete
test space V̂h, we obtain

N∑

j=1

Uj

∫

Ω

∇φ̂i · ∇φj dx =

∫

Ω

φ̂if dx−
∫

ΓN

φ̂ig ds, i = 1, 2, . . . , N.

We may thus compute the finite element solution uh =
∑N

j=1Ujφj by solving the
linear system

AU = b,

where

Aij =

∫

Ω

∇φ̂i · ∇φj dx,

bi =

∫

Ω

φ̂if dx−
∫

ΓN

φ̂ig ds.
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3.2.2 Discretizing the first order system

We may similarly discretize the first order system (3.2) by multiplying the first
equation by a test function v and the second by a test function τ . Summing up
and integrating by parts, we find

∫

Ω

v∇ · σ + τ · σ −∇ · τ u dx+

∫

∂Ω

τ · nu ds =

∫

Ω

vf dx ∀v ∈ V̂ .

The normal flux σ ·n = g is known on the Neumann boundary ΓN so we may take
τ · n = 0 on ΓN . Inserting the value for u on the Dirichlet boundary ΓD, we thus
arrive at the following variational problem: Find (u, σ) ∈ V such that

∫

Ω

v∇ · σ + τ · σ −∇ · τ u dx =

∫

Ω

vf dx−
∫

ΓD

τ · nu0 ds ∀(v, τ) ∈ V̂ . (3.5)

Now, V̂ and V are a pair of suitable test and trial spaces, here

V̂ = {(v, τ) : v ∈ L2(Ω), τ ∈ H(div; Ω), τ · n = 0 on ΓN},
V = {(v, τ) : v ∈ L2(Ω), τ ∈ H(div; Ω), τ · n = g on ΓN}.

As above, we restrict this variational problem to a pair of discrete test and
trial spaces V̂h ⊂ V̂ and Vh ⊂ V andmake an ansatz for the finite element solution
of the form

(uh, σh) =
N∑

j=1

Uj(φj, ψj),

where {(φj, ψj)}Nj=1 is a basis for the trial space Vh. Typically, either φj or ψj will
vanish, so that the basis is really the tensor product of a basis for an L2 space
with an H(div) space. We thus obtain a linear system for the degrees of freedom
U ∈ R

N by solving a linear system AU = b, where now

Aij =

∫

Ω

φ̂i∇ · ψj + ψ̂i · ψj −∇ · ψ̂i φj dx,

bi =

∫

Ω

φ̂if dx−
∫

ΓD

ψ̂i · nu0 ds.

We note that the variational problem (3.5) differs from the variational prob-
lem (3.3) in that the Dirichlet condition u = u0 on ΓD enters into the variational
formulation (it is now a natural boundary condition), whereas the Neumann con-
dition σ = g on ΓN enters into the definition of the trial space V (it is now an
essential boundary condition).

Such mixed methods require some care in selecting spaces that discretize L2

and H(div) in a compatible way. Stable discretizations must satisfy the so-called
inf–sup or Ladysenskaja–Babuška–Brezzi (LBB) condition. This theory explains
why many of the elements for mixed methods seem complicated compared to
those for standard Galerkin methods.
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3.3 Finite Element Abstract Formalism

3.3.1 Linear problems

We saw above that the finite element solution of Poisson’s equation (3.1) or (3.2)
can be obtained by restricting an infinite dimensional variational problem to a
finite dimensional variational problem and solving a linear system.

To formalize this, we consider a general linear variational problem written in
the following canonical form: Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂ , (3.6)

where V̂ is the test space and V is the trial space. We may thus express the
variational problem in terms of a bilinear form a and linear form (functional) L,

a : V̂ × V → R,

L : V̂ → R.

As above, we discretize the variational problem (3.6) by restricting to a pair of
discrete test and trial spaces: Find uh ∈ Vh ⊂ V such that

a(v, uh) = L(v) ∀v ∈ V̂h ⊂ V̂ . (3.7)

To solve the discrete variational problem (3.7), we make an ansatz of the form

uh =

N∑

j=1

Ujφj, (3.8)

and take v = φ̂i, i = 1, 2, . . . , N , where {φ̂i}Ni=1 is a basis for the discrete test
space V̂h and {φj}Nj=1 is a basis for the discrete trial space Vh. It follows that

N∑

j=1

Uj a(φ̂i, φj) = L(φ̂i), i = 1, 2, . . . , N.

We thus obtain the degrees of freedom U of the finite element solution uh by
solving a linear system AU = b, where

Aij = a(φ̂i, φj), i, j = 1, 2, . . . , N,

bi = L(φ̂i).
(3.9)

3.3.2 Nonlinear problems

We also consider nonlinear variational problems written in the following canon-
ical form: Find u ∈ V such that

F (u; v) = 0 ∀v ∈ V̂ , (3.10)
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where now F : V × V̂ → R is a semilinear form, linear in the argument(s) subse-
quent to the semicolon. As above, we discretize the variational problem (3.10) by
restricting to a pair of discrete test and trial spaces: Find uh ∈ Vh ⊂ V such that

F (uh; v) = 0 ∀v ∈ V̂h ⊂ V̂ .

The finite element solution uh =
∑N

j=1Ujφj may then be computed by solving a
nonlinear system of equations,

b(U) = 0, (3.11)

where b : R
N → R

N and

bi(U) = F (uh; φ̂i), i = 1, 2, . . . , N. (3.12)

To solve the nonlinear system (3.11) by Newton’s method or some variant of
Newton’s method, we compute the Jacobian A = b′. We note that if the semilinear
form F is differentiable in u, then the entries of the Jacobian A are given by

Aij(uh) =
∂bi(U)

∂Uj
=

∂

∂Uj
F (uh; φ̂i) = F ′(uh; φ̂i)

∂uh
∂Uj

= F ′(uh; φ̂i)φj ≡ F ′(uh; φ̂i, φj).

(3.13)

In each Newton iteration, we must then evaluate (assemble) the matrix A and
the vector b, and update the solution vector U by

Uk+1 = Uk − δUk,

where δUk solves the linear system

A(ukh) δU
k = b(ukh). (3.14)

We note that for each fixed uh, a = F ′(uh; ·, ·) is a bilinear form and L = F (uh; ·)
is a linear form. In each Newton iteration, we thus solve a linear variational
problem of the canonical form (3.6): Find δu ∈ V0 such that

F ′(uh; v, δu) = F (uh; v) ∀v ∈ V̂ , (3.15)

where V0 = {v − w : v, w ∈ V }. Discretizing (3.15) as in Section 3.3.1, we recover
the linear system (3.14).

Example 3.1 (Nonlinear Poisson equation) As an example, consider the fol-

lowing nonlinear Poisson equation:

−∇ · ((1 + u)∇u) = f in Ω,

u = 0 on ∂Ω.
(3.16)
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Multiplying (3.16) with a test function v and integrating by parts, we obtain

∫

Ω

∇v · ((1 + u)∇u) dx =

∫

Ω

vf dx,

which is a nonlinear variational problem of the form (3.10), with

F (u; v) =

∫

Ω

∇v · ((1 + u)∇u) dx−
∫

Ω

v f dx.

Linearizing the semilinear form F around u = uh, we obtain

F ′(uh; v, δu) =

∫

Ω

∇v · (δu∇uh) dx+

∫

Ω

∇v · ((1 + uh)∇δu) dx.

We may thus compute the entries of the Jacobian matrix A(uh) by

Aij(uh) = F ′(uh; φ̂i, φj) =

∫

Ω

∇φ̂i · (φj∇uh) dx+

∫

Ω

∇φ̂i · ((1 + uh)∇φj) dx. (3.17)

3.4 Finite Element Function Spaces

In the above discussion, we assumed that we could construct discrete subspaces
Vh ⊂ V of infinite dimensional function spaces. A central aspect of the finite
element method is the construction of such subspaces by patching together lo-
cal function spaces defined on a set of finite elements. We here give a general
overview of the construction of finite element function spaces and return below
in Chapters 4 and 5 to the construction of specific function spaces such as subsets
of H1(Ω), H(curl), H(div) and L2(Ω).

3.4.1 The mesh

To define Vh, we first partition the domain Ω into a finite set of disjoint cells
T = {K} such that

∪K∈TK = Ω.

Together, these cells form a mesh of the domain Ω. The cells are typically simple
polygonal shapes like intervals, triangles, quadrilaterals, tetrahedra or hexahe-
dra as shown in Figure 3.3. But other shapes are possible, in particular curved
cells to correctly capture the boundary of a non-polygonal domain as shown in
Figure 3.4.
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Figure 3.3: Finite element cells in one, two and three space dimensions.

Figure 3.4: A straight triangular cell (left) and curved triangular cell (right).
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3.4.2 The finite element definition

Once a domain Ω has been partitioned into cells, one may define a local function
space PK on each cell K and use these local function spaces to build the global
function space Vh. A cell K together with a local function space PK and a set
of rules for describing functions in PK is called a finite element. This definition
of finite element was first formalized by Ciarlet in Ciarlet (1978, 2002a), and it
remains the standard formulation today (Brenner and Scott, 1994, 2008). The
formal definition reads as follows: A finite element is a triple (K,PK ,LK), where

• K ⊂ R
d is a bounded closed subset of R

d with nonempty interior and piece-
wise smooth boundary;

• PK is a function space on K of dimension nK <∞;

• LK = {ℓK1 , ℓK2 , . . . , ℓKnK
} is a basis for P ′

K (the bounded linear functionals on
PK).

As an example, consider the standard linear Lagrange finite element on the
triangle in Figure 3.5. The cell K is given by the triangle and the space PK is
given by the space of first degree polynomials on K. As a basis for P ′

K , we may
take point evaluation at the three vertices of K, that is,

ℓKi : PK → R,

ℓKi (v) = v(xi),

for i = 1, 2, 3 where xi is the coordinate of the ith vertex. To check that this
is indeed a finite element, we need to verify that LK is a basis for P ′

K . This
is equivalent to the unisolvence of LK , that is, if v ∈ PK and ℓKi (v) = 0 for all
ℓKi , then v = 0. (Brenner and Scott, 2008) For the linear Lagrange triangle, we
note that if v is zero at each vertex, then v must be zero everywhere, since a
plane is uniquely determined by its value a three non-collinear points. Thus, the
linear Lagrange triangle is indeed a finite element. In general, determining the
unisolvence of LK may be non-trivial.

3.4.3 The nodal basis

Expressing finite element solutions in Vh in terms of basis functions for the local
function spaces PK may be greatly simplified by introducing a nodal basis for
PK . A nodal basis {φKi }nK

i=1 for PK is a basis for PK that satisfies

ℓKi (φKj ) = δij , i, j = 1, 2, . . . , nK . (3.18)

It follows that any v ∈ PK may be expressed by

v =

nK∑

i=1

ℓKi (v)φKi . (3.19)
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Figure 3.5: The linear Lagrange (Courant) triangle).

In particular, any function v in PK for the linear Lagrange triangle is given by
v =

∑3
i=1 v(x

i)φKi . In other words, the degrees of freedom of any function v may be
obtained by evaluating the linear functionals LK . We shall therefore sometimes
refer to LK as degrees of freedom.
◮ Author note: Give explicit formulas for some nodal basis functions. Use example envi-

ronment.

For any finite element (K,PK ,LK), the nodal basis may be computed by solv-
ing a linear system of size nK × nK . To see this, let {ψKi }nK

i=1 be any basis (the
prime basis) for PK . Such a basis is easy to construct if PK is a full polyno-
mial space or may otherwise be computed by a singular-value decomposition or
a Gram-Schmidt procedure, see (Kirby, 2004). We may then make an ansatz for
the nodal basis in terms of the prime basis:

φj =

nK∑

k=1

αjkψ
K
k , j = 1, 2, . . . , nK .

Inserting this into (3.18), we find that

nK∑

k=1

αjkℓ
K
i (ψKk ) = δij , j = 1, 2, . . . , nK .

In other words, the expansion coefficients α for the nodal basis may be computed
by solving the linear system

Bα⊤ = I,

where Bij = ℓKi (ψKj ).

3.4.4 The local-to-global mapping

Now, to define a global function space Vh = span{φi}Ni=1 on Ω from a given set
{(K,PK,LK)}K∈T of finite elements, we also need to specify how the local function
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Figure 3.6: Local-to-global mapping for a simple mesh consisting of two triangles.

spaces are patched together. We do this by specifying for each cell K ∈ T a local-

to-global mapping,
ιK : [1, nK ]→ N. (3.20)

This mapping specifies how the local degrees of freedom LK = {ℓKi }nK

i=1 are mapped
to global degrees of freedom L = {ℓi}Ni=1. More precisely, the global degrees of
freedom are given by

ℓιK(i)(v) = ℓKi (v|K), i = 1, 2, . . . , nK , (3.21)

for any v ∈ Vh. Thus, each local degree of freedom ℓKi ∈ LK corresponds to a
global degree of freedom νιK(i) ∈ L determined by the local-to-global mapping ιK .
As we shall see, the local-to-global mapping together with the choice of degrees
of freedom determine the continuity of the global function space Vh.

For standard piecewise linears, one may define the local-to-global mapping
by simply mapping each local vertex number i for i = 1, 2, 3 to the corresponding
global vertex number ιK(i). This is illustrated in Figure 3.6 for a simple mesh
consisting of two triangles.

3.4.5 The global function space

One may now define the global function space Vh as the set of functions on Ω
satisfying the following pair of conditions. We first require that

v|K ∈ PK ∀K ∈ T , (3.22)

that is, the restriction of v to each cell K lies in the local function space PK .
Second, we require that for any pair of cells (K,K ′) ∈ T × T and any pair (i, i′) ∈
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Figure 3.7: Patching together local function spaces on a pair of cells (K,K ′) to
form a global function space on Ω = K ∪K ′.

[1, nK ]× [1, nK ′] satisfying
ιK(i) = ιK ′(i′), (3.23)

it holds that
ℓKi (v|K) = ℓK

′

i′ (v|K ′). (3.24)

In other words, if two local degrees of freedom ℓKi and ℓK
′

i′ are mapped to the same
global degree of freedom, then they must agree for each function v ∈ Vh. Here, v|K
denotes the continuous extension to K of the restriction of v to the interior of K.
This is illustrated in Figure 3.7 for the space of continuous piecewise quadratics
obtained by patching together two quadratic Lagrange triangles.

Note that by this construction, the functions of Vh are undefined on cell bound-
aries, unless the constraints (3.24) force the (restrictions of) functions of Vh to be
continuous on cell boundaries. However, this is usually not a problem, since we
can perform all operations on the restrictions of functions to the local cells.

The local-to-global mapping together with the choice of degrees of freedom de-
termine the continuity of the global function space Vh. For the Lagrange triangle,
the choice of degrees of freedom as point evaluation at vertices ensures that the
restrictions v|K and v|K ′ of a function v ∈ Vh to a pair of adjacent triangles K
agree at the two common vertices, since ιK and ιK ′ map corresponding degrees of
freedom to the same global degree of freedom and this global degree of freedom
is single-valued. It follows that the functions of Vh are continuous not only at
vertices but along each shared edge since a first-degree polynomial on a line is
uniquely determined by its values at two distinct points. Thus, the global func-
tion space of piecewise linears generated by the Lagrange triangle is continuous
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Figure 3.8: The degree of continuity is determined by the choice of degrees of free-
dom, illustrated here for a pair of linear Lagrange triangles, Crouzeix–Raviart
triangles, Brezzi–Douglas–Marini triangles and Nédélec triangles.

and thus H1-conforming, that is, Vh ⊂ H1(Ω).
One may also consider degrees of freedom defined by point evaluation at the

midpoint of each edge. This is the so-called Crouzeix–Raviart triangle. The cor-
responding global Crouzeix–Raviart space Vh is consequently continuous only at
edge midpoints and so Vh is not a subspace of H1. The Crouzeix–Raviart triangle
is an example of an H1-nonconforming element. Other choices of degrees of free-
dom may ensure continuity of normal components like for the H(div)-conforming
Brezzi–Douglas–Marini elements or tangential components as for the H(curl)-
conforming Nédélec elements. This is illustrated in Figure 3.8. In Chapter 4,
other examples of particular elements are given which ensure different kinds of
continuity by the choice of degrees of freedom and local-to-global mapping.

3.4.6 The mapping from the reference element

◮ Editor note: Need to change the notation here to (K0,P0,L0) since ·̂ is already used for

the test space.

As we have seen, the global function space Vh may be described by a mesh
T , a set of finite elements {(K,PK ,LK)}K∈T and a set of local-to-global mappings
{ιK}K∈T . We may simplify this description further by introducing a reference fi-

nite element (K̂, P̂, L̂), where L̂ = {ℓ̂1, ℓ̂2, . . . , ℓ̂n̂}, and a set of invertible mappings
{FK}K∈T that map the reference cell K̂ to the cells of the mesh,

K = FK(K̂) ∀K ∈ T . (3.25)

This is illustrated in Figure 3.9. Note that K̂ is generally not part of the mesh.

110



Robert C. Kirby and Anders Logg

Figure 3.9: The (affine) mapping FK from a reference cell K̂ to some cell K ∈ T .

For function spaces discretizing H1 as in (3.3), the mapping FK is typically
affine, that is, FK can be written in the form FK(x̂) = AK x̂ + bK for some ma-
trix AK ∈ R

d×d and some vector bK ∈ R
d, or isoparametric, in which case the

components of FK are functions in P̂. For function spaces discretizing H(div) like
in (3.5) orH(curl), the appropriate mappings are the contravariant and covariant
Piola mappings which preserve normal and tangential components respectively,
see (Rognes et al., 2008). For simplicity, we restrict the following discussion to
the case when FK is affine or isoparametric.

For each cell K ∈ T , the mapping FK generates a function space on K given
by

PK = {v : v = v̂ ◦ F−1
K , v̂ ∈ P̂}, (3.26)

that is, each function v = v(x) may be expressed as v(x) = v̂(F−1
K (x)) = v̂ ◦ F−1

K (x)

for some v̂ ∈ P̂ .
The mapping FK also generates a set of degrees of freedom LK on PK given

by
LK = {ℓKi : ℓKi (v) = ℓ̂i(v ◦ FK), i = 1, 2, . . . , n̂}. (3.27)

The mappings {FK}K∈T thus generate from the reference finite element (K̂, P̂, L̂)
a set of finite elements {(K,PK ,LK)}K∈T given by

K = FK(K̂),

PK = {v : v = v̂ ◦ F−1
K : v̂ ∈ P̂},

LK = {ℓKi : ℓKi (v) = ℓ̂i(v ◦ FK), i = 1, 2, . . . , n̂ = nK}.
(3.28)

By this construction, we also obtain the nodal basis functions {φKi }nK

i=1 onK from a

set of nodal basis functions {φ̂i}n̂i=1 on the reference element satisfying ℓ̂i(φ̂j) = δij .
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Letting φKi = φ̂i ◦ F−1
K for i = 1, 2, . . . , nK , we find that

ℓKi (φKj ) = ℓ̂i(φ
K
j ◦ FK) = ℓ̂i(φ̂j) = δij , (3.29)

so {φKi }nK

i=1 is a nodal basis for PK .
We may thus define the function space Vh by specifying a mesh T , a reference

finite element (K̂, P̂, L̂), a set of local-to-global mappings {ιK}K∈T and a set of
mappings {FK}K∈T from the reference cell K̂. Note that in general, the mappings
need not be of the same type for all cells K and not all finite elements need to
be generated from the same reference finite element. In particular, one could
employ a different (higher-degree) isoparametric mapping for cells on a curved
boundary.

The above construction is valid for so-called affine-equivalent elements (Brenner and Scott,
2008) like the family H1-conforming Lagrange finite elements. A similar con-
struction is possible forH(div)- andH(curl) conforming elements, like the Raviart–
Thomas, Brezzi–Douglas–Marini and Nédélec elements, where an appropriate
Piola mapping must be used to map the basis functions. However, not all finite
elements may be generated from a reference finite element using this simple
construction. For example, this construction fails for the family of Hermite finite
elements. (Brenner and Scott, 2008, Ciarlet, 2002a).

3.5 Finite Element Solvers

Finite elements provide a powerful methodology for discretizing differential equa-
tions, but solving the resulting algebraic systems also presents quite a chal-
lenge, even for linear systems. Good solvers must handle the sparsity and ill-
conditioning of the algebraic system, but also scale well on parallel computers.
The linear solve is a fundamental operation not only in linear problems, but also
within each iteration of a nonlinear solve via Newton’s method, an eigenvalue
solve, or time-stepping.

A classical approach that has been revived recently is direct solution, based
on Gaussian elimination. Thanks to techniques enabling parallel scalability and
recognizing block structure, packages such as UMFPACK (Davis, 2004) and Su-
perLU (Li, 2005) have made direct methods competitive for quite large problems.

The 1970s and 1980s saw the advent of modern iterative methods. These grew
out of classical iterative methods such as relaxation methods (?) and the con-
jugate gradient iteration of Hestenes and Stieffel (Hestenes and Stiefel, 1952).
These techniques can use much less memory than direct methods and are easier
to parallelize.
◮ Author note: Missing reference for relaxation methods

Multigrid methods (Brandt, 1977, Wesseling, 1992) use relaxation techniques
on a hierarchy of meshes to solve elliptic equations, typically for symmetric prob-
lems, in nearly linear time. However, they require a hierarchy of meshes that
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may not always be available. This motivated the introduction of algebraic multi-
grid methods (AMG) that mimic mesh coarsening, working only on the matrix en-
tries. Successful AMG distributions include the Hypre package (Falgout and Yang,
2002) and the ML package inside Trilinos (Heroux et al., 2005).

Krylov methods such as conjugate gradients and GMRES (Saad and Schultz,
1986) generate a sequence of approximations converging to the solution of the
linear system. These methods are based only on the matrix–vector product. The
performance of these methods is significantly improved by use of preconditioners,
which transform the linear system

AU = b

into

P−1AU = P−1b,

which is known as left preconditioning. The preconditioner P−1 may also be
applied from the right by recognizing that AU = AP−1(PU). To ensure good con-
vergence, the preconditioner P−1 should be a good approximation of A−1. Some
preconditioners are strictly algebraic, meaning they only use information avail-
able from the entries of A. Classical relaxation methods such as Gauss–Seidel
may be used as preconditioners, as can so-called incomplete factorizations (?).
If multigrid or AMG is available, it also can serve as a powerful preconditioner.
Other kinds of preconditioners require special knowledge about the differential
equations being solved and may require new matrices modeling related physi-
cal processes. Such methods are sometimes called physics-based precondition-
ers (?). An automated system, such as FEniCS, provides an interesting oppor-
tunity to assist with the development and implementation of these powerful but
less widely used methods.
◮ Author note: Missing reference for incomplete LU factorization and physics-based pre-

conditioners

Fortunately, many of the methods discussed here are included in modern
libraries such as PETSc (Balay et al., 2004) and Trilinos (Heroux et al., 2005).
FEniCS typically interacts with the solvers discussed here through these pack-
ages and so mainly need to be aware of the various methods at a high level, such
as when the various methods are appropriate and how to access them.

3.6 Finite Element Error Estimation and Adap-

tivity

The error e = uh − u in a computed finite element solution uh approximating the
exact solution u of (3.6) may be estimated either a priori or a posteriori. Both
types of estimates are based on relating the size of the error to the size of the
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(weak) residual r : V → R defined by

r(v) = a(v, uh)− L(v). (3.30)

We note that the weak residual is formally related to the strong residual R ∈ V ′

by r(v) = (v, R).
A priori error estimates express the error in terms of the regularity of the

exact (unknown) solution and may give useful information about the order of
convergence of a finite element method. A posteriori error estimates express
the error in terms of computable quantities like the residual and (possibly) the
solution of an auxiliary dual problem.

3.6.1 A priori error analysis

We consider the linear variational problem (3.6). We first assume that the bilin-
ear form a and the linear form L are continuous (bounded), that is, there exists
a constant C > 0 such that

a(v, w) ≤ C‖v‖V ‖w‖V , (3.31)

L(v) ≤ C‖v‖V , (3.32)

for all v, w ∈ V . For simplicity, we assume in this section that V̂ = V is a Hilbert
space. For (3.1), this corresponds to the case of homogeneous Dirichlet boundary
conditions and V = H1

0 (Ω). Extensions to the general case V̂ 6= V are possible, see
for example (Oden and Demkowicz, 1996). We further assume that the bilinear
form a is coercive (V -elliptic), that is, there exists a constant α > 0 such that

a(v, v) ≥ α‖v‖V , (3.33)

for all v ∈ V . It then follows by the Lax–Milgram theorem (Lax and Milgram,
1954) that there exists a unique solution u ∈ V to the variational problem (3.6).

To derive an a priori error estimate for the approximate solution uh defined
by the discrete variational problem (3.7), we first note that

a(v, uh − u) = a(v, uh)− a(v, u) = L(v)− L(v) = 0

for all v ∈ Vh ⊂ V . By the coercivity and continuity of the bilinear form a, we find
that

α‖uh − u‖2V ≤ a(uh − u, uh − u) = a(uh − v, uh − u) + a(v − u, uh − u)
= a(v − u, uh − u) ≤ C‖v − u‖V ‖uh − u‖V .

for all v ∈ Vh. It follows that

‖uh − u‖V ≤
C

α
‖v − u‖V ∀v ∈ Vh. (3.34)

114



Robert C. Kirby and Anders Logg

Figure 3.10: The finite element solution uh ∈ Vh ⊂ V is the a-projection of u ∈ V
onto the subspace Vh and is consequently the best possible approximation of u in
the subspace Vh.

The estimate (3.34) is referred to as Cea’s lemma. We note that when the bilinear
form a is symmetric, it is also an inner product. We may then take ‖v‖V =√
a(v, v) and C = α = 1. In this case, uh is the a-projection onto Vh and Cea’s

lemma states that

‖uh − u‖V ≤ ‖v − u‖V ∀v ∈ Vh, (3.35)

that is, uh is the best possible solution of the variational problem (3.6) in the
subspace Vh. This is illustrated in Figure 3.10.

Cea’s lemma together with a suitable interpolation estimate now yields the
a priori error estimate for uh. By choosing v = πhu, where πh : V → Vh is an
interpolation operator into Vh, we find that

‖uh − u‖V ≤
C

α
‖πhu− u‖V ≤

CCi
α
‖hpDq+1u‖, (3.36)

where Ci is an interpolation constant and the values of p and q depend on the
accuracy of interpolation and the definition of ‖ · ‖V . For the solution of Poisson’s
equation in H1

0 , we have C = α = 1 and p = q = 1.

3.6.2 A posteriori error analysis

Energy norm error estimates

The continuity and coercivity of the bilinear form a also allows a simple deriva-
tion of an a posteriori error estimate. In fact, it follows that the V -norm of the
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error e = uh − u is equivalent to the V ′-norm of the residual r. To see this, we
note that by the continuity of the bilinear form a, we have

r(v) = a(v, uh)− L(v) = a(v, uh)− a(v, u) = a(v, uh − u) ≤ C‖uh − u‖V ‖v‖V .

Furthermore, by coercivity, we find that

α‖uh − u‖2V ≤ a(uh − u, uh − u) = a(uh − u, uh)− L(uh − u) = r(uh − u).

It follows that
α‖uh − u‖V ≤ ‖r‖V ′ ≤ C‖uh − u‖V , (3.37)

where ‖r‖V ′ = supv∈V,v 6=0 r(v)/‖v‖V .
The estimates (3.36) and (3.37) are sometimes referred to as energy norm

error estimates. This is the case when the bilinear form a is symmetric and thus
defines an inner product. One may then take ‖v‖V =

√
a(v, v) and C = α = 1. In

this case, it follows that
‖e‖V = ‖r‖V ′ . (3.38)

The term energy norm refers to a(v, v) corresponding to physical energy in many
applications.

Duality-based error control

The classical a priori and a posteriori error estimates (3.36) and (3.37) relate
the V -norm of the error e = uh − u to the regularity of the exact solution u and
the residual r = a(v, uu) − L(v) of the finite element solution uh respectively.
However, in applications it is often necessary to control the error in a certain
output functional M : V → R of the computed solution to within some given
tolerance TOL > 0. In these situations, one would thus ideally like to choose the
finite element space Vh ⊂ V such that the finite element solution uh satisfies

|M(uh)−M(u)| ≤ TOL (3.39)

with minimal computational work. We assume here that both the output func-
tional and the variational problem are linear, but the analysis may be easily ex-
tended to the full nonlinear case, see (Becker and Rannacher, 2001, Eriksson et al.,
1995).

To estimate the error in the output functionalM, we introduce an auxiliary
dual problem: Find z ∈ V ∗ such that

a∗(v, z) =M(v) ∀v ∈ V̂ ∗. (3.40)

We note here that the functionalM enters as data in the dual problem. The dual
(adjoint) bilinear form a∗ : V̂ ∗ × V ∗ is defined by

a∗(v, w) = a(w, v).
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The dual trial and test spaces are given by

V ∗ = V̂ ,

V̂ ∗ = V0 = {v − w : v, w ∈ V },

that is, the dual trial space is the primal test space and the dual test space is
the primal trial space modulo boundary conditions. In particular, if V = u0 + V̂
and Vh = u0 + V̂h then V̂ ∗ = V̂ , and thus both the dual test and trial functions
vanish at Dirichlet boundaries. The definition of the dual problem leads us to
the following representation of the error:

M(uh)−M(u) =M(uh − u)
= a∗(uh − u, z)
= a(z, uh − u)
= a(z, uh)− L(z)

= r(z).

We thus find that the error is exactly represented by the residual of the dual
solution,

M(uh)−M(u) = r(z). (3.41)

3.6.3 Adaptivity

As seen above, one may thus estimate the error in a computed finite element
solution uh, either the error in the V -norm or the error in an output functional,
by estimating the size of the residual r. This may be done in several different
ways. The estimate typically involves integration by parts to recover the strong
element-wise residual of the original PDE, possibly in combination with the so-
lution of local problems over cells or patches of cells. In the case of the standard
piecewise linear finite element approximation of Poisson’s equation (3.1), one
may obtain the following estimate:

‖uh − u‖V = ‖∇e‖ ≤ C

(
∑

K∈T

h2
K‖R‖2K + hK‖[∂nuh]‖2∂K

)1/2

,

where R|K = −∆uh|K − f |K is the strong residual, hK denotes the mesh size
(diameter of smallest circumscribed sphere) and [∂nuh] denotes the jump of the
normal derivative across mesh facets. Letting η2

K = h2
K‖R‖2K + hK‖[∂nuh]‖2∂K , one

thus obtains the estimate

‖uh − u‖V ≤ E ≡
(
C
∑

K

η2
K

)1/2

.
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Figure 3.11: An adaptively refined mesh obtained by successive refinement of an
original coarse mesh.

An adaptive algorithm seeks to determine a mesh size h = h(x) such that E ≤
TOL. Starting from an initial coarse mesh, the mesh is successively refined in
those cells where the error indicator ηK is large. Several strategies are available,
such as refining the top fraction of all cells where ηK is large, say the first 20%
of all cells ordered by ηK . Other strategies include refining all cells where ηK is
above a certain fraction of maxK∈T ηK , or refining a top fraction of all cells such
that the sum of their error indicators account for a significant fraction of E.

◮ Author note: Find good reference for adaptive strategies.

Once the mesh has been refined, a new solution and new error indicators
can be computed. The process is then repeated until either E ≤ TOL (the stop-
ping criterion) or the available resources (CPU time and memory) have been ex-
hausted. The adaptive algorithm thus yields a sequence of successively refined
meshes as illustrated in Figure 3.11. For time-dependent problems, an adaptive
algorithm needs to distribute both the mesh size and the size of the time step
in both space and time. Ideally, the error estimate E is close to the actual error,
as measured by the efficiency index E/‖uh − u‖V which should be close to one by
bounded below by one.

3.7 Automating the Finite Element Method

The FEniCS project seeks to automate Scientific Computing as explained in
Chapter [intro]. This is a formidable task, but it may be solved in part by au-
tomating the finite element method. In particular, this automation relies on the
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following key steps:

(i) automation of discretization,

(ii) automation of discrete solution,

(iii) automation of error control.

Since its inception in 2003, the FEniCS project has been concerned mainly with
the automation of discretization, resulting in the development of the form com-
pilers FFC and SyFi/SFC, the code generation interface UFC and the form lan-
guage UFL. As a result, the first step towards a complete automation is now
close to complete; variational problems for a large class of partial differential
equations may now be automatically discretized by the finite element method
using FEniCS. For the automation of discrete solution, that is, the solution of
linear and nonlinear systems arising from the automated discretization of vari-
ational problems, interfaces to state-of-the-art libraries for linear algebra have
been implemented as part of DOLFIN. Ongoing work is now seeking to automate
error control by automated error estimation and adaptivity as part of FEniCS.

3.8 Outlook

In the following chapters, we return to specific aspects of the automation of the
finite element method. In the next chapter, we review a number of common
and unusual finite elements, including the standard Lagrange elements but also
some more exotic elements. In Chapter 5, we then discuss the automated genera-
tion of finite element nodal basis functions from a given finite element definition
(K,PK ,LK). In Chapter 6, we consider general finite element variational forms
arising from the discretization of PDEs and discuss the automated assembly of
the corresponding discrete operators in Chapter 7. We then discuss specific opti-
mization strategies for form evaluation in Chapters ??–??.
◮ Author note: This section needs to be reworked when the following chapters have ma-

terialized.

3.9 Historical Notes

In 1915, Boris Grigoryevich Galerkin formulated a general method for solving
differential equations. (Galerkin, 1915) A similar approach was presented some-
time earlier by Bubnov. Galerkin’s method, or the Bubnov–Galerkin method, was
originally formulated with global polynomials and goes back to the variational
principles of Leibniz, Euler, Lagrange, Dirichlet, Hamilton, Castigliano (Castigliano,
1879), Rayleigh (Rayleigh, 1870) and Ritz (Ritz, 1908). Galerkin’s method with
piecewise polynomial spaces (V̂h, Vh) is known as the finite element method. The
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Figure 3.12: Boris Galerkin (1871–1945), inventor of Galerkin’s method.

finite element method was introduced by engineers for structural analysis in the
1950s and was independently proposed by Courant in 1943 (Courant, 1943). The
exploitation of the finite element method among engineers and mathematicians
exploded in the 1960s. Since then, the machinery of the finite element method
has been expanded and refined into a comprehensive framework for design and
analysis of numerical methods for differential equations, see (Becker et al., 1981,
Brenner and Scott, 1994, Ciarlet, 1976, 1978, Hughes, 1987, Strang and Fix, 1973,
Zienkiewicz et al., 2005, first published in 1967) Recently, the quest for compati-
ble (stable) discretizations of mixed variational problems has led to the introduc-
tion of finite element exterior calculus. (Arnold et al., 2006a)

Work on a posteriori error analysis of finite element methods dates back to the
pioneering work of Babuška and Rheinboldt. (Babuška and Rheinboldt, 1978).
Important references include the works (Ainsworth and Oden, 1993, Bank and Weiser,
1985, Eriksson and Johnson, 1991, 1995a,b,c, Eriksson and Johnson, Eriksson et al.,
1998, Zienkiewicz and Zhu, 1987) and the reviews papers (Ainsworth and Oden,
2000, Becker and Rannacher, 2001, Eriksson et al., 1995, Verfürth, 1994, 1999).
◮ Author note: Need to check for missing/inaccurate references here.

◮ Editor note: Might use a special box/layout for historical notes if they appear in many

places.
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CHAPTER 4

Common and Unusual Finite Elements

By Robert C. Kirby, Anders Logg and Andy R. Terrel

Chapter ref: [kirby-6]

This chapter provides a glimpse of the considerable range of finite elements
in the literature and the challenges that may be involved with automating “all”
the elements. Many of the elements presented here are included in the FEniCS
project already; some are future work.

4.1 Ciarlet’s Finite Element Definition

As discussed in Chapter 3, a finite element is defined by a triple (K,PK ,LK),
where

• K ⊂ R
d is a bounded closed subset of R

d with nonempty interior and piece-
wise smooth boundary;

• PK is a function space on K of dimension nK <∞;

• LK = {ℓK1 , ℓK2 , . . . , ℓKnK
} is a basis for P ′

K (the bounded linear functionals on
PK).

This definition was first introduced by Ciarlet in a set of lecture notes (Ciarlet,
1975) and became popular after his 1978 book (Ciarlet, 1978, 2002a). It remains
the standard definition today, see for example (Brenner and Scott, 2008). Simi-
lar ideas were introduced earlier in (Ciarlet and Raviart, 1972) which discusses
unisolvence of a set of interpolation points Σ = {ai}i. This is closely related to the
unisolvence of LK . In fact, the set of functionals LK is given by ℓKi (v) = v(ai). It is
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also interesting to note that the Ciarlet triple was originally written as (K,P,Σ)
with Σ denoting LK . Conditions for uniquely determining a polynomial based on
interpolation of function values and derivatives at a set of points was also dis-
cussed in (Bramble and Zlámal, 1970), although the term unisolvence was not
used.

4.2 Notation

It is common to refer to the space of linear functionals LK as the degrees of free-

dom of the element (K,PK ,LK). The degrees of freedom are typically given by
point evaluation or moments of function values or derivatives. Other commonly
used degrees of freedom are point evaluation or moments of certain components
of function values, such as normal or tangential components, but also directional
derivatives. We summarize the notation used to indicate degrees of freedom
graphically in Figure 4.1. A filled circle at a point x̄ denotes point evaluation at
that point,

ℓ(v) = v(x̄).

We note that for a vector valued function v with d components, a filled circle de-
notes evaluation of all components and thus corresponds to d degrees of freedom,

ℓ1(v) = v1(x̄),

ℓ2(v) = v2(x̄),

ℓ3(v) = v3(x̄).

An arrow denotes evaluation of a component of a function value in a given di-
rection, such as a normal component ℓ(v) = v(x̄) · n or tangential component
ℓ(v) = v(x̄) · t. A plain circle denotes evaluation of all first derivatives, a line
denotes evaluation of a directional first derivative such as a normal derivative
ℓ(v) = ∇v(x̄) · n. A dotted circle denotes evaluation of all second derivatives. Fi-
nally, a circle with a number indicates a number of interior moments (integration
against functions over the domain K).
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3

point evaluation

point evaluation of directional component

point evaluation of all first derivatives

point evaluation of directional derivative

point evaluation of all second derivatives

interior moments

Figure 4.1: Notation
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4.3 The Argyris Element

4.3.1 Definition

The Argyris triangle (Argyris et al., 1968, Ciarlet, 2002a) is based on the space
PK = P5(K) of quintic polynomials over some triangle K. It can be pieced to-
gether with full C1 continuity between elements with C2 continuity at the ver-
tices of a triangulation. Quintic polynomials in R

2 are a 21-dimensional space,
and the dual basis LK consists of six degrees of freedom per vertex and one per
each edge. The vertex degrees of freedom are the function value, two first deriva-
tives to specify the gradient, and three second derivatives to specify the unique
components of the (symmetric) Hessian matrix.

Figure 4.2: The quintic Argyris triangle.

4.3.2 Historical notes

The Argyris element (Argyris et al., 1968) was first called the TUBA element
and was applied to fourth-order plate-bending problems. In fact, as Ciarlet
points out (Ciarlet, 2002a), the element also appeared in an earlier work by Fe-
lippa (Felippa, 1966).

The normal derivatives in the dual basis for the Argyris element prevent it
from being affine-interpolation equivalent. This prevents the nodal basis from
being constructed on a reference cell and affinely mapped. Recent work by
Dominguez and Sayas (Domı́nguez and Sayas, 2008) has developed a transfor-
mation that corrects this issue and requires less computational effort than di-
rectly forming the basis on each cell in a mesh.

The Argyris element can be generalized to polynomial degrees higher than
quintic, still giving C1 continuity with C2 continuity at the vertices (Šolı́n et al.,
2004). The Argyris element also makes an appearance in exact sequences of
finite elements, where differential complexes are used to explain the stability of
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many kinds of finite elements and derive new ones (Arnold et al., 2006a).
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4.4 The Brezzi–Douglas–Marini element

4.4.1 Definition

The Brezzi–Douglas–Marini element (Brezzi et al., 1985a) discretizesH(div). That
is, it provides a vector field that may be assembled with continuous normal com-
ponents so that global divergences are well-defined. The BDM space on a simplex
in d dimensions (d = 2, 3) consists of vectors of length d whose components are
polynomials of degree q for q ≥ 1.

3 8

Figure 4.3: The linear, quadratic and cubic Brezzi–Douglas–Marini triangles.

The degrees of freedom for the BDM triangle include the normal component
on each edge, specified either by integral moments against Pq or the value of the
normal component at q+1 points per edge. For q > 1, the degrees of freedom also
include integration against gradients of Pq(K) over K. For q > 2, the degrees of
freedom also include integration against curls of bKPq−2(K) over K, where bK is
the cubic bubble function associated with K.
◮ Author note: What about tets? Will also make up for the empty space on the next page.

The BDM element is also defined on rectangles and boxes, although it has
quite a different flavor. Unusually for rectangular domains, it is not defined
using tensor products of one-dimensional polynomials, but instead by supple-
menting polynomials of complete degree [Pq(K)]d with extra functions to make
the divergence onto Pq(K). The boundary degrees of freedom are similar to the
simplicial case, but the internal degrees of freedom are integral moments against
[Pq(K)]d.

4.4.2 Historical notes

The BDM element was originally derived in two dimensions (Brezzi et al., 1985a)
as an alternative to the Raviart–Thomas element using a complete polynomial
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space. Extensions to tetrahedra came via the “second-kind” elements of Nédélec (Nédélec,
1986) as well as in Brezzi and Fortin (Brezzi and Fortin, 1991). While Nédélec
uses quite different internal degrees of freedom (integral moments against the
Raviart–Thomas spaces), the degrees of freedom in Brezzi and Fortin are quite
similar to (Brezzi et al., 1985a).

A slight modification of the BDM element constrains the normal components
on the boundary to be of degree q − 1 rather than q. This is called the Brezzi–
Douglas–Fortin–Marini or BDFM element (Brezzi and Fortin, 1991). In similar
spirit, elements with differing orders on the boundary suitable for varying the
polynomial degree between triangles were derived in (Brezzi et al., 1985b). Be-
sides mixed formulations of second-order scalar elliptic equations, the BDM el-
ement also appears in elasticity (Arnold et al., 2007), where it is seen that each
row of the stress tensor may be approximated in a BDM space with the symmetry
of the stress tensor imposed weakly.
◮ Author note: Fill up the blank space here. Adding a discussion and possibly a figure

for tets should help.
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4.5 The Crouzeix–Raviart element

4.5.1 Definition

The Crouzeix–Raviart element (Crouzeix and Raviart, 1973) most commonly refers
to a linear non-conforming element. It uses piecewise linear polynomials, but un-
like the Lagrange element, the degrees of freedom are located at edge midpoints
rather than at vertices. This gives rise to a weaker form of continuity, but it
is still a suitable C0-nonconforming element. The extension to tetrahedra in R

3

replaces the degrees of freedom on edge midpoints by degrees of freedom on face
midpoints.
◮ Author note: What other element does it refer to? Sounds like there may be several, but

I just know about this one.

Figure 4.4: The linear Crouzeix–Raviart triangle.

4.5.2 Historical notes

Crouzeix and Raviart developed two simple Stokes elements, both using point-
wise evaluation for degrees of freedom. The second element used extra bubble
functions to enrich the typical Lagrange element, but the work of Crouzeix and
Falk (Crouzeix and Falk, 1989) later showed that the bubble functions were in
fact not necessary for quadratic and higher orders.
◮ Author note: The discussion in the previous paragraph should be expanded so it states

more explicitly what this has to do with the CR element.

The element is usually associated with solving the Stokes problem but has
been used for linear elasticity (Hansbo and Larson, 2003) and Reissner-Mindlin
plates (Arnold and Falk, 1989) as a remedy for locking. There is an odd order
extension of the element from Arnold and Falk.
◮ Author note: Missing reference here to odd order extension.
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4.6 The Hermite Element

4.6.1 Definition

The Hermite element (Ciarlet, 2002a) generalizes the classic cubic Hermite in-
terpolating polynomials on the line segment. On the triangle, the space of cubic
polynomials is ten-dimensional, and the ten degrees of freedom are point eval-
uation at the triangle vertices and barycenter, together with the components
of the gradient evaluated at the vertices. The generalization to tetrahedra is
analagous.

Figure 4.5: The cubic Hermite triangle.

Unlike the cubic Hermite functions on a line segment, the cubic Hermite tri-
angle and tetrahedron cannot be patched together in a fully C1 fashion.

4.6.2 Historical notes

Hermite-type elements appear in the finite element literature almost from the
beginning, appearing at least as early as the classic paper of Ciarlet and Raviart (Ciarlet and Raviart
1972). They have long been known as useful C1-nonconforming elements (Braess,
2007, Ciarlet, 2002a). Under affine mapping, the Hermite elements form affine-

interpolation equivalent families. (Brenner and Scott, 2008).
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4.7 The Lagrange Element

4.7.1 Definition

The best-known and most widely used finite element is the Lagrange P1 element.
In general, the Lagrange element uses PK = Pq(K), polynomials of degree q onK,
and the degrees of freedom are simply pointwise evaluation at an array of points.
While numerical conditioning and interpolation properties can be dramatically
improved by choosing these points in a clever way (?), for the purposes of this
chapter the points may be assumed to lie on an equispaced lattice.

◮ Author note: Missing reference for statement about node placement.

Figure 4.6: The linear Lagrange interval, triangle and tetrahedron.

Figure 4.7: The quadratic Lagrange interval, triangle and tetrahedron.

130



Robert C. Kirby, Anders Logg and Andy R. Terrel

Figure 4.8: The Lagrange Pq triangle for q = 1, 2, 3, 4, 5, 6.

4.7.2 Historical notes

Reams could be filled with all the uses of the Lagrange elements. The Lagrange
element predates the modern study of finite elements. The lowest-order trian-
gle is sometimes called the Courant triangle, after the seminal paper (Courant,
1943) in which variational techniques are considered and the P1 triangle is used
to derive a finite difference method. The rest is history.
◮ Author note: Expand the historical notes for the Lagrange element. As far as I can see,

Bramble and Zlamal don’t seem to be aware of the higher order Lagrange elements (only

the Courant triangle). Their paper from 1970 focuses only on Hermite interpolation.
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4.8 The Morley Element

4.8.1 Definition

The Morley triangle (Morley, 1968) is a simple H2-nonconforming quadratic ele-
ment that is used in fourth-order problems. The function space is simply PK =
P2(K), the six-dimensional space of quadratics. The degrees of freedom consist
of pointwise evaluation at each vertex and the normal derivative at each edge
midpoint. It is interesting that the Morley triangle is neither C1 nor even C0, yet
it is suitable for fourth-order problems, and is the simplest known element for
this purpose.

Figure 4.9: The quadratic Morley triangle.

4.8.2 Historical notes

The Morley element was first introduced to the engineering literature by Mor-
ley in 1968 (Morley, 1968). In the mathematical literature, Lascaux and Le-
saint (Lascaux and Lesaint, 1975) considered it in the context of the patch test
in a study of plate-bending elements.
◮ Author note: Fill up page.
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4.9 The Nédélec Element

4.9.1 Definition

The widely celebrated H(curl)-conforming elements of Nédélec (Nédélec, 1980,
1986) are much used in electromagnetic calculations and stand as a premier ex-
ample of the power of “nonstandard” (meaning not lowest-order Lagrange) finite
elements.

2 6

Figure 4.10: The linear, quadratic and cubic Nédélec triangles.

On triangles, the function space PK may be obtained by a simple rotation
of the Raviart–Thomas basis functions, but the construction of the tetrahedral
element is substantially different. In the lowest order case q = 1, the space PK
may be written as functions of the form

v(x) = α + β × x,

where α and β are vectors in R
3. Hence, PK contains all vector-valued constant

functions and some but not all linears. In the higher order case, the function
space may be written as the direct sum

PK = [Pq−1(K)]3 ⊕ Sq,

where
Sq = {v ∈ [P̃q(K)]3 : v · x = 0}.

Here, P̃q(K) is the space of homogeneous polynomials of degree q on K. An alter-
nate characterization of PK is that it is the space of polynomials of degree q + 1
on which the qth power of the elastic stress tensor vanishes. The dimension of Pq
is exactly

nK =
q(q + 2)(q + 3)

2
.
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◮ Author note: What is the qth power of the elastic stress tensor?

◮ Author note: What is the dimension on triangles?

The degrees of freedom are chosen to ensure tangential continuity between
elements and thus a well-defined global curl. In the lowest order case, the six
degrees of freedom are the average value of the tangential component along each
edge of the tetrahedron, hence the term “edge elements”. In the more general
case, the degrees of freedom are the q − 1 tangential moments along each edge,
moments of the tangential components against (Pq−2)

2 on each face, and mo-
ments against (Pq−3)

3 in the interior of the tetrahedron.
For tetrahedra, there also exists another family of elements known as Ned-

elec elements of the second kind, appearing in (Nédélec, 1986). These have a
simpler function space at the expense of more complicated degrees of freedom.
The second kind space of order q is simply vectors of polynomials of degree q.
The degrees of freedom are integral moments of degree q along each edge to-
gether with integral moments against lower-order first-kind bases on the faces
and interior.
◮ Author note: Note different numbering compared to RT, starting at 1, not zero.

4.9.2 Historical notes

Nédélec’s original paper (Nédélec, 1980) provided rectangular and simplicial el-
ements for H(div) and H(curl) based on incomplete function spaces. This built
on earlier two-dimensional work for Maxwell’s equations (Adam et al., 1980) and
extended the work of Raviart and Thomas for H(div) to three dimensions. The
second kind elements, appearing in (Nédélec, 1986), extend the Brezzi–Douglas–
Marini triangle (Brezzi et al., 1985a) to three dimensions and curl-conforming
spaces. We summarize the relation between the Nedelec elements of first and
second kind with the Raviart–Thomas and Brezzi–Douglas–Marini elements in
Table 4.1.

In many ways, Nédélec’s work anticipates the recently introduced finite ele-
ment exterior calculus (Arnold et al., 2006a), where the first kind spaces appear
as P−

q Λk spaces and the second kind as PqΛk. Moreover, the use of a differential
operator (the elastic strain) in (Nédélec, 1980) to characterize the function space
foreshadows the use of differential complexes (Arnold et al., 2006b).
◮ Author note: Should we change the numbering of the Nedelec elements and Raviart–

Thomas elements to start at q = 1?
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Simplex H(div) H(curl)

K ⊂ R
2

RTq−1 P−
q Λ1(K)

BDMq PqΛ1(K)

NEDq−1(curl) —

K ⊂ R
3

RTq−1 = NED1
q−1(div) P−

q Λ2(K)

BDMq = NED2
q(div) PqΛ2(K)

NED1
q−1(curl) P−

q Λ1(K)

NED2
q(curl) PqΛ1(K)

Table 4.1: Nedelec elements of the first and second kind and their relation to the
Raviart–Thomas and Brezzi–Douglas–Marini elements as well as to the notation
of finite element exterior calculus.

4.10 The PEERS Element

4.10.1 Definition

The PEERS element (Arnold et al., 1984) provides a stable tensor space for dis-
cretizing stress in two-dimensional mixed elasticity problems. The stress tensor
σ is represented as a 2× 2 matrix, each row of which is discretized with a vector-
valued finite element. Normally, one expects the stress tensor to be symmetric,
although the PEERS element works with a variational formulation that enforces
this condition weakly.

The PEERS element is based on the Raviart–Thomas element described in
Section 4.11. If RT0(K) is the lowest-order Raviart-Thomas function space on
a triangle K and bK is the cubic bubble function that vanishes on ∂K, then the
function space for the PEERS element is given by

PK = [RT0(K)⊕ span{curl(bK)}]2 .

?

Figure 4.11: The PEERS triangle. One vector-valued component is shown.
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◮ Author note: Which degrees of freedom in the interior? The curl?

◮ Author note: Is this really an element? We could also introduce other mixed elements

like Taylor–Hood. But perhaps it’s suitable to include it since it is not a trivial combina-

tion of existing elements (the extra curl part).

4.10.2 Historical notes

Discretizing the mixed form of planar elasticity is quite a difficult task. Poly-
nomial spaces of symmetric tensors providing inf-sup stability are quite rare,
only appearing in the last decade (Arnold and Winther, 2002). A common tech-
nique is to relax the symmetry requirement of the tensor, imposing it weakly
in a variational formulation. This extended variational form requires the intro-
duction of a new field discretizing the assymetric portion of the stress tensor.
When the PEERS element is used for the stress, the displacement is discretized
in the space of piecewise constants, and the asymmetric part is discretized in the
standard space of continuous piecewise linear elements.

The PEERS element was introduced in (Arnold et al., 1984), and some practi-
cal details, including postprocessing and hybridization strategies, are discussed
in (Arnold and Brezzi, 1985).
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4.11 The Raviart–Thomas Element

4.11.1 Definition

The Raviart–Thomas element, like the Brezzi–Douglas–Marini and Brezzi–Douglas–
Fortin–Marini elements, is an H(div)-conforming element. The space of order q
is constructed to be the smallest polynomial space such that the divergence maps
RTq(K) onto Pq(K). The function space PK is given by

PK = Pq−1(K) + xPq−1(K).

The lowest order Raviart–Thomas space thus consists of vector-valued functions
of the form

v(x) = α+ βx,

where α is a vector-valued constant and β is a scalar constant.
On triangles, the degrees of freedom are the moments of the normal compo-

nent up to degree q, or, alternatively, the normal component at q + 1 points per
edge. For higher order spaces, these degrees of freedom are supplemented with
integrals against a basis for [Pq−1(K)]2.

2 6

Figure 4.12: The zeroth order, linear and quadratic Raviart–Thomas triangles.

4.11.2 Historical notes

The Raviart–Thomas element was introduced in (Raviart and Thomas, 1977) in
the late 1970’s, the first element to discretize the mixed form of second order
elliptic equations. Shortly thereafter, it was extended to tetrahedra and boxes by
Nédélec (Nédélec, 1980) and so is sometimes referred to as the Raviart–Thomas–
Nédélec element or a first kind H(div) element.

On rectangles and boxes, there is a natural relation between the lowest order
Raviart–Thomas element and cell-centered finite differences. This was explored
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in (Russell and Wheeler, 1983), where a special quadrature rule was used to di-
agonalize the mass matrix and eliminate the flux unknowns. Similar techniques
are known for triangles (Arbogast et al., 1998), although the stencils are more
complicated.
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4.12 Summary

Notation Element family LK dimPK References

ARG5 Quintic Argyris 21

BDM1 Brezzi–Douglas–Marini 6

BDM2 Brezzi–Douglas–Marini 3 12

BDM3 Brezzi–Douglas–Marini
8

20

CR1 Crouzeix–Raviart 3

HERMq Hermite 10
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P1 Lagrange 3

P2 Lagrange 6

P3 Lagrange 10

MOR1 Morley 6

NED1 Nédélec 3

NED2 Nédélec

2

8

NED3 Nédélec

6

15
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PEERS PEERS
?

?

RT0 Raviart–Thomas 3

RT0 Raviart–Thomas 2 8

RT0 Raviart–Thomas 6 15
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◮ Author note: Add references to table.

◮ Author note: Indicate which elements are supported by FIAT and SyFi.

◮ Author note: Include formula for space dimension as function of q for all elements.
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CHAPTER 5

Constructing General Reference Finite Elements

By Robert C. Kirby and Kent-Andre Mardal

Chapter ref: [kirby-1]

◮ Editor note: Reuse color figures from chapter [kirby-7] for RT elements etc.

5.1 Introduction

The finite element literature contains a huge collection of approximating spaces
and degrees of freedom, many of which are surveyed in Chapter ??, Some appli-
cations, such as Cahn-Hilliard and other fourth-order problems, can benefit from
very smooth finite element bases. While porous media flow requires vector fields
discretized by piecewise polynomial functions with normal components continu-
ous across cell boundaries. Many problems in electromagnetism call for the tan-
gentially continuous vector fields obtained by using Nedelec elements (??). Many
elements are carefully designed to satisfy the inf-sup condition (??), originally
developed to explain stability of discretizations of incompressible flow problems.
Additionally, some problems call for low-order discretizations, while others are
effectively solved with high-order polynomials.

While the automatic generation of computer programs for finite elementmeth-
ods requires one to confront the panoply of finite element families found in the
literature, it also provides a pathway for wider employment of Raviart-Thomas,
Nedelec, and other difficult-to-program elements. Ideally, one would like to de-
scribe the diverse finite element spaces at an abstract level, whence a computer
code discerns how to evaluate and differentiate their basis functions. Such goals
are in large part accomplished by the FIAT and SyFi projects, whose implemen-
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tations are described in later chapters.

Projects like FIAT and SyFi may ultimately remain mysterious to the end
user of a finite element system, as interactions with finite element bases are
typically mediated through tools that construct the global finite element opera-
tors. The end user will typically be satisfied if two conditiones are met. First, a
finite element system should support the common elements used in the applica-
tion area of interest. Second, it should provide flexibility with respect to order of
approximation.

It is entirely possible to satisfy many users by a priori enumerating a list
of finite elements and implement only those. At certain times, this would even
seem ideal. For example, after the rash of research that led to elements such as
the Raviart-Thomas-Nedelec and Brezzi-Douglas-Marini families, development
of new families slowed considerably. Then, more recent work of lead forth by
Arnold, Falk, and Winther in the context of exterior calculus has not only led
to improved understanding of existing element families, but has also brought a
new wave of elements with improved proprerties. A generative system for finite
element bases can far more readily assimilate these and future developments.
Automation also provides generality with respect to the order of approximation
that standard libraries might not otherwise provide. Finally, the end-user might
even easilly define his own new element and test its numerical properties before
analyzing it mathematically.

In the present chapter, we describe the mathematical formulation underlying
such projects as FIAT (??), SyFi (Alnæs and Mardal, 2009, ?) and Exterior (?).
This formulation starts from definitions of finite elements as given classically by
Ciarlet (?). It then uses basic linear algebra to construct the appropriate nodal
basis for an abstract finite element in terms of polynomials that are easy to im-
plement and well-behaved in floating point arithmetic. We focus on constructing
nodal bases for a single, fixed reference element. As we will see in Chapter ??,
form compilers such as ffc (Logg, 2007) and sfc (?) will work in terms of this
single reference element.

Other approaches exist in the literature, such as the hierarchical bases stud-
ied by Szabo and Babuska (?) and extended to H(curl) and H(div) spaces in work
such as (?). These can provide greater flexibility for refining the mesh and poly-
nomial degree in finite element methods, but they also require more care during
assembly and are typically constructed on a case-by-case basis for each element
family. When they are available, they may be cheaper to construct than using
the technique studied here, but this present technique is easier to apply to an
“arbitrary” finite element and so is considered in the context of automatic soft-
ware.
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5.2 Preliminaries

Both FIAT and SyFi work a slightly modified version of the abstract definition of
a finite element introduced by Ciarlet (?).

Definition 5.1 (A Finite Element) A finite element is a triple (K,P,N) with

1. K ⊂ R
d a bounded domain with piecewise smooth boundary.

2. A finite-dimensional space P of BCm(K, V ), where V is some normed vector

space and BCm is the space of m-times bounded and continuosly differen-

tiable functions from K into V .

3. A dual basis for P , writtenN = {Li}dimP
i=1 . These are bounded linear function-

als in (BCm(K, V ))′ and frequently called the nodes or degrees of freedom.

In this definition, the term “finite element” refers not only to a particular
cell in a mesh, but also to the associated function space and degrees of freedom.
Typically, the domain K is some simple polygonal or polyhedral shape and the
function space P consists of polynomials.

Given a finite element, a concrete basis, often called the nodal basis, for this
element can be computed by using the following defintion.

Definition 5.2 The nodal basis for a finite element (K,P,N) be a finite element

is the set of functions {ψi}dimP
i=1 such that for all 1 ≤ i, j ≤ dimP ,

Li(ψj) = δi,j. (5.1)

The main issue at hand in this chapter is the construction of this nodal ba-
sis. For any given finite element, one may construct the nodal basis explicitly
with elementary algebra. However, this becomes tedious as we consider many
different familes of elements and want arbitrary order instances of each family.
Hence, we present a linear algebraic paradigm here that undergirds computer
programs for automating the construction of nodal bases.

In addition to the construction of the nodal base we need to keep in mind
that finite elements are patched together to form a piecewise polynomial field
over a mesh. The fitness (or stability) of a particular finite element method for
a particular problem relies on the continuity requirements of the problem. The
degrees of freedom of a particular element are often choosen such that these
continuity requirements are fulfilled.

Hence, in addition to computing the nodal basis, the mathematical structure
developed here simplifies software for the following tasks:

1. Evaluate the basis function and their derivatives at points.
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2. Associtate the basis function (or degree of freedom) with topological facets
of K such as its vertices, edges and its placement on the edges.

3. Associtate the basis function with additional metadata such as a sign or
a mapping that should be used together with the evaluation of the basis
functions or its derivatives.

4. Provide rules for the degrees of freedom applied to arbitrary input functions
determined at run-time.

The first of these is relatively simple in the framework of symbolic compu-
tation (SyFi), but they require more care if an implementation uses numerical
arithmetic (FIAT). The middle two encode the necessary information for a client
code to transform the reference element and assemble global degrees of freedom
when the finite element is either less or more than C0 continuous. The final task
may take the form of a point at which data is evaluated or differentiated or more
generally as the form of a sum over points and weights, much like a quadrature
rule.

A common practice, employed throuought the FEniCS software and in many
other finite element codes, is to map the nodal basis functions from this refer-
ence element to each cell in a mesh. Sometimes, this is as simple as an affine
change of coordinates; in other cases it is more complicated. For completeness,
we briefly describe the basics of creating the global finite elements in terms of a
mapped reference element. Let therefore T be a polygon and T̂ the correspond-
ing reference polygon. Between the coordinates x ∈ T and xi ∈ T̂ we use the
mapping

x = G(xi) + x0, (5.2)

and define the Jacobian determinant of this mapping as

J(x) =

∣∣∣∣
∂G(xi)

∂xi

∣∣∣∣ . (5.3)

The basis functions are defined in terms of the basis function on the reference
element as

Nj(x) = N̂j(xi), (5.4)

where N̂j is basis function number j on the reference element. The integral can
then be performed on the reference polygon,

∫

T

f(x) dx =

∫

T̂

f(xi) Jdxi, (5.5)

and the spatial derivatives are defined by the derivatives on the reference ele-
ment and the geometry mapping simply by using the chain rule,

∂N

∂xi
=
∂N

∂ξj

∂ξj
∂xi

. (5.6)
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The above definition of a global element is commonly called isoparametric and
is common for approximations in H1. For approximations in H(div) or H(curl) it
is neccessary to modify (5.4) with the Piola mapping. Furthermore, some ele-
ments like the Rannacher-Turek element (??) has far better properties when
defined globally compared its analogous definition in terms of a reference ele-
ment.

5.3 Mathematical Framework

5.3.1 Change of basis

◮ Editor note: Coordinate with notation in Chapter 3 where B is used for the Vander-

monde matrix. Perhaps we could use V? Also use ℓ for the functionals and α for the

expansion coefficients.

The fundamental idea in constructing nodal basis is from elementary linear
algebra: one constructs the desired (nodal) basis as a linear combination of a
basis one has “in hand”. We will start with some basis {φ}dimP

i=1 ⊂ P . From this,
we construct each nodal basis function

ψj = Ajkφk, (5.7)

where summation is implied over the repeated index k. The task is to compute
the matrix A. Each fixed ψj must satisfy

Li(ψj) = δi,j, (5.8)

and using the above expansion for ψj, we obtain

δi,j = Li(Ajkφk) = AjkLi(φk). (5.9)

So, for a fixed j, we have a system of dimP equations

VikAjk = ej , (5.10)

where
Vik = Li(φk) (5.11)

is a kind of generalized Vandermonde matrix and ej is the canonical basis vector.
Of course, (5.10) can be used to write a matrix equation for A as a linear system
with dimP right hand sides and obtain

V At = I. (5.12)

In practice, this, supposes that one has an implementation of the original basis
for which the actions of the nodes (evaluation, differentiation, and integration)
may be readily computed.

This discussion may be summarized as a proposition.

Proposition 5.3.1 Define V and A as above. Then

V = A−t. (5.13)
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5.3.2 Polynomial spaces

In Definition 5.1 we defined the finite element in terms of a finite dimensional
function space P . Although it is not strictly neccessary, the functions used in
finite elements are typically polynomials. While our general strategy will in
principle accomodate non-polynomial bases, we only deal with polynomials in
this chapter. A common space is P

d
n, the space of polynomials of degree n in R

d.
There are many different ways to represent P

d
n. We will discuss the power ba-

sis, orthogonal bases, and the Bernstein basis. Each of these bases has explicit
representations and well-known evaluation algorithms. In addition to P

d
n we will

also for some elements need H
d
n, the space of homogenous polynomials of degree

n in d variables.
Typically, the developed techniques here are used on simplices, where polyno-

mials do not have a nice tensor-product structure. Some rectangular elements
like the Brezzi-Douglas-Marini family (?), however, are not based on tensor-
product polynomial spaces, and the techniques described in this chapther apply
in that case as well. SyFi has explicit support for rectangular domains, but FIAT
does not.

Power basis

On a line segment, P
1
n = Pn the monomial, or power basis is {xi}ni=0, so that any

v ∈ Pn is written as

v = a0 + a1x+ . . . anx
n =

n∑

i=0

aix
i. (5.14)

In 2D on triangles, Pn is spanned by functions on the form {xiyj}i+j≤ni,j=0 , with a
similar definition in three dimensions.

This basis is quite easy to evaluate, differentiate, and integrate but is very
ill-conditioned in numerical calculations.

Legendre basis

A popular polynomial basis for polygons that are either intervals, rectangles or
boxes are the Legendre polynomials. This polynomial basis is also usable to
represent polynomials of high degree. The basis is defined on the interval [−1, 1],
as

Lk(x) =
1

2kk!

dk

dxk
(x2 − 1), k = 0, 1, . . . ,

A nice feature with these polynomials is that they are orthogonal with respect to
the L2 inner product, i.e.,

∫ 1

−1

Lk(x)Ll(x) dx =

{
2

2k+1
, k = l,

0, k 6= l,
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The Legendre polynomials are extended to rectangular domains in 2D and 3D
simply by taking the tensor product,

Lk,l,m(x, y, z) = Lk(x)Ll(y)Lm(z).

and P
n is defined by functions on the form (in 3D),

v =

k,l,m<=n∑

k,l,m=0

ak,l,mLk,l,m.

Dubiner basis

Orthogonal polynomials in simplicial domains are also known, although they
lack some of the rotational symmetry of the Legendre polynomials. The Dubiner
basis, frequently used in simplicial spectral elements (?), is known under many
names in the literature. It is an L2-orthogonal basis that can be constructed
by mapping particular tensor products of Jacobi polynomials on a square by a
singular coordinate change to a fixed triangle. Let P α,β

n denote the nth Jacobi
polynomial with weights α, β. Then, define the new coordinates

η1 = 2

(
1 + x

1− y

)
− 1

η2 = y,

(5.15)

whichmap the square [−1, 1]2 to the triangle with vertices (−1,−1), (−1, 1), (1,−1)
as shown in Figure ??. This is the natural domain for defining the Dubiner poly-
nomials, but they may easily be mapped to other domains like the the triangle
with vertices (0, 0), (0, 1), (1, 0) by an affine mapping. Then, one defines

φp,q(x, y) = P 0,0
p (η1)

(
1− η2

2

)p
P 2p+1,0
q (η2). (5.16)

Though it is not obvious from the definition, φp,q(x, y) is a polynomial in x and y
of degree p+ q. Moreover, for (p, q) 6= (i, j), φp,q is L2-orthogonal to φi,j.

While this basis is more complicated than the power basis, it is very well-
conditioned for numerical calculations even with high degree polynomials. The
polynomials can also be ordered hierarchically so that {φi}dimPk

i=1 forms a basis for
polynomials of degree k for each k > 0. As a possible disadvantage, the basis
lacks rotational symmetry that can be found in other bases.

Bernstein basis

The Bernstein basis is another well-conditioned basis that can be used in gener-
ating finite element bases. In 1D, the basis functions take the form,

Bi,n =

(
i

n

)
xi(1− x)n−i, i = 0, . . . , n,
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and then Pn is spanned by {Bi,n}ni=0 And with this basis, Pn can be spanned by
functions on the form,

The terms x and 1 − x appearing in Bi,n are the barycentric coordinates for
[0, 1], an observation that makes it easy to extend the basis to simplices in higher
dimensions.

Let b1, b2, and b3 be the barycentric coordinates for the triangle shown in
Figure ??, i.e., b1 = x, b2 = y, and b3 = 1− x− y. Then the basis is of the form,

Bi,j,k,n =
n!

i!j!k!
bi1b

j
2b
k
3 , for i+ j + k = n.

and a basis for Pn is simply.
{Bi,j,k,n}i+j+k=ni,j,k≥0 .

The Bernstein polynomials on the tetrahedron are completely analogous (?).
These polynomials, though less common in the finite element community, are

well-known in graphics and splines. They have a great deal of rotational symme-
try and are totally nonnegative and so give positive mass matrices, though they
are not hierarchical.

Homogeneous Polynomials

Another set of polynomials which sometimes are useful are the set of homoge-
neous polynomials H

n. These are polynomials where all terms have the same
degree. H

n is in 2D spanned by polynomials on the form:

v =
∑

i,j, i+j=n

ai,j,kx
iyj

with a similar definition in nD.

Vector or Tensor valued Polynomials

It is straightforward to generalize the scalar valued polynomials discussed ear-
lier to vector or tensor valued polynomials. Let {ei} be canonical basis in R

d.
Then a basis for the vector valued polynomials is

Pij = Pjei,

with a similar definition extending the basis to tensors.

5.4 Examples of Elements

We include some standard finite elements to illustrate the concepts and motivate
the need for different finite elements. Notice that the different continuity of the
elements result in different approximation properties. We refer the reader to
Chapter (?) for a more thorough review of elements.
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Figure 5.1: Lagrangian elements of order 1, 2, and 3.

Figure 5.2: Hermite elements of order 3.

Example 5.1 The Lagrange Element

The Lagrangian element shown in Figure 5.1 is the most common element,

where the black dots mean point evaluation. The first order element is shown in

the leftmost triangle, it consists of three degrees of freedom in each of the vertices.

The cooresponding basis functions are x, y, and 1−x−y. The second order element

is shown in middle triangle, it has six degrees of freedom, three at the vertices

and three at the edges. Finally, we have the third order Lagrangian element in

the rightmost triangle, with ten degrees of freedom.

The Lagrangian element produce piecewise continuous polynomials and they

are therefore well suited for approximation in H1. In general the number of

degress of freedom Pn in 2D is (n + 2)(n + 1)/2, which is the same as the num-

ber of degrees of freedom in the Lagrange element. In fact, on a simplex in any

dimension d the degrees of freedom of the Lagrange element of order n is the same

as P
d
n.

Example 5.2 The Hermite Element

In Figure 5.2 we show the Hermite element. The black dots mean point eval-

uation, while the white circles mean evaluation of derivatives in both x and y
direction. Hence, the degrees of freedom for this element is three point evaluations

at the vertices + six derivatives in the vertices + one internal point evaluation,

which in total is ten degrees of freedom, which is the same number of degrees of
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2 6

Figure 5.3: Triangular Raviart–Thomas elements of order 0, 1, and 2.

freedom as in P
2
3. The advantage of the Hermite element is that it has contin-

uous derivatives at the vertices (it will however not neccessarily result in a H2

conforming approximation).

Example 5.3 The Raviart-Thomas Element

In Figure 5.3 we illustrate the Raviart-Thomas element. In contrast to the

previous elements, this element has a vector-valued function space. The arrows

represent normal vectors while the double dots indicate pointwise evaluation in

both the x− and y− direction. Starting at n = 0, the dimension of RTn is (n +
1)(n + 3). The Raviart-Thomas element is typically used for approximations in

H(div).

Remark 5.4.1 Earlier we saw common bases for P
n
d , but elements like the Raviart-

Thomas element described above use function spaces other than P
n
d or vectors or

tensors thereof. To fix this, we must either construct a basis for the appropriate

polynomial space or work with a different element that includes full vectors of

P
n
d . In the case of H(div) elements, this corresponds to using the Brezzi-Douglas-

Fortin-Marini elements.

5.4.1 Bases for other polynomial spaces

The basis presented above are suitable for constructing many finite elements,
but as we have just seen, they do not work in all cases. The Raviart-Thomas
function space,

(
P

2
n

)2 ⊕
(
x
y

)
H

2
n,

requires a basis for vectors of polynomials to be supplemented with an extra
dim H

2
n = dim P

2
n − dim P

2
n−1 = n functions. In fact, any n polynomials in P

2
n\P2

n−1

will work, not just homogeneous polynomials, although the sum above will no
longer be direct.
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While the Raviart-Thomas element requires supplementing a standard basis
with extra functions, the Brezzi-Douglas-Fortin-Marini triangle uses the func-
tion space {

u ∈ (P2
n(K))2 : u · n ∈ P

1
n−1(γ), γ ∈ E(K)

}
.

Obtaining a basis for this space is somewhat more subtle. FIAT and SyFi have
developed different but mathematically equivalent solutions. Both rely on recog-
nizing that the required function space sits inside (P2

n)
2
and can be characterized

by certain functionals that vanish on this larger space.
Three such functionals describe the basis for the BDFM triangle. If µγn is the

Legendre polynomial of order n on an edge γ, then the functional

ℓγ(u) =

∫

γ

(u · n)µγn

acting on (P2
n)

2
must vanish on the BDFM space, for the nth degree Legendre

polynomial is orthogonal to all polynomials of lower degree.
Now, we define the matrix

V =

(
V 1

V 2

)
. (5.17)

Here, V 1 ∈ R
2 dim P

2
n−3,2 dim P

2
n and V 2 ∈ R

3,2 dim P
2
n are defined by

V 1
ij = Li(φj),

V 2
ij = ℓi(φj),

where {φj}2 dim P
2
n

j=1 is a basis for (P2
n)

2.
Consider now the matrix equation

V At = I2 dimPn,2 dimPn−3, (5.18)

where Im,n denotes the m × n identity matrix with Ii,j = δi,j. As before, the
columns of A still contain the expansion coefficients of the nodal basis functions
ψi in terms of {φj}. Moreover, V2A = 0, which imples that the nodal basis func-
tions are in fact in the BDFM space.

More generally, we can think of our finite element space P being embedded
in some larger space P̄ for which there is a readily usable basis. If we may
characterize P by

P = ∩dim P̄−dimP
i=1 ℓi,

where ℓi : P̄ → R are linear functionals, then we may apply this technique.
In this case, V1 ∈ R

dimP,dim P̄ and V2 ∈ R
dim P̄−dimP,dim P̄ . This scenario, though

somewhat abstract, is applicable not only to BDFM, but also to the Nédélec (?),
Arnold-Winther (Arnold and Winther, 2002), Mardal-Tai-Winther (?), Tai-Winther (?),
and Bell (?) element families.

Again, we summarize the discussion as a proposition.
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Proposition 5.4.1 Let (K,P,N) be a finite element with P ⊂ P̄ . Let {φi}dim P̄
i=1 be

a basis for P̄ . Suppose that there exist functionals {ℓi}dim P̄−dimP
i=1 on P̄ such that

P = ∩dim P̄−dimP
i=1 null(ℓi).

Define the matrix A as in (5.18). Then, the nodal basis for P may be expressed as

ψi = Aijφj,

where 1 ≤ i ≤ dimP and 1 ≤ j ≤ dim P̄ .

5.5 Operations on the Polynomial spaces

Here, we show various important operations may be cast in terms of linear alge-
bra, supposing that they may be done on original basis {φi}dimP

i=1 .

5.5.1 Evaluation

In order to evaluate the nodal basis {ψi}dimP
i=1 at a given point x ∈ K, one simply

computes the vector
Φi = φi(x)

followed by the product
ψi(x) ≡ Ψi = AijΦj .

Generally, the nodal basis functions are required at an array of points {xj}mj=1 ⊂
K. For performance reasons, performing matrix-matrix products may be advan-
tageous. So, define Φij = Φi(xj) and Ψij = Ψi(xj). Then all of the nodal basis
functions may be evaluated by the product

Ψij = AikΦkj .

5.5.2 Differentiation

Differentiation is more complicated, and also presents more options. We want
to handle the possibility of higher order derivatives. Let α = (α1, α2, . . . αd) be a
multiindex so that

Dα ≡ ∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

,

where |α| =
∑d

i=1 αi.
We want to compute the array

Ψα
i = Dαψi(x)

for some x ∈ K.
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One may differentiate the original basis functions {φi} to produce an array

Φα
i = Dαψi(x),

whence
Ψα
i = AijΦ

α
i .

This presupposes that one may conveniently compute all derivatives of the {φi}.
This is typically true in symbolic computation or when using the power basis.
Alternatively, automatic differentiation (?) could be used in the power or Bern-
stein basis. The Dubiner basis, as typically formulated, contains a coordinate
singularity that prevents automatic differentiation from working at the top ver-
tex. Recent work (?) has reformulated recurrence relations to allow for this
possibility.

If one prefers (or is required by the particular starting basis), one may also
compute matrices that encode first derivatives acting on the {φi} and construct
higher derivatives than these. For each coordinate direction xk, a matrix Dk is
constructed so that

∂φi
∂xi

= Dk
ijφj.

How to do this depends on which bases are chosen. For particular details on the
Dubiner basis, see (?). Then, Ψα may be computed by

Ψα
i = (DαA)ijΦj ,

5.5.3 Integration

Integration of basis functions overK, including products of basis functions and/or
their derivatives, may be performed numerically, symbolically, or exactly with
some known formula. An important aspect of automation is that it allows gen-
eral orders of approximation. While this is not difficult in symbolic calculations,
a numerical implementation like FIAT must work harder. If Bernstein polyno-
mials are used, we may use the formula

∫

K

bi1b
j
2b
k
3 dx =

i!j!k!

(i+ j + k + 2)!

|K|
2

on triangles and a similar formula for lines and tetrahedra to calculate integrals
of things expressed in terms of these polynomials exactly. Alternately, if the Du-
biner basis is used, orthogonality may be used. In either case, when derivatives
occur, it may be as efficient to use numerical quadrature. On rectangular do-
mains, tensor products of Gauss or Gauss-Lobatto quadrature can be used to give
efficient quadrature families to any order accuracy. On the simplex, however,
optimal quadrature is more difficult to find. Rules based on barycentric symme-
try (?) may be used up to a certain degree (which is frequently high enough in
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practice). If one needs to go beyond these rules, it is possible to use the map-
ping (5.15) to map tensor products of Gauss-Jacobi quadrature rules from the
square to the triangle.

5.5.4 Linear functionals

Integration, pointwise evaluation and differentiation all are examples of linear
functionals. In each case, the functionals are evaluated by their action on the
{φi}
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CHAPTER 6

Finite Element Variational Forms

By Robert C. Kirby and Anders Logg

Chapter ref: [kirby-5]

In Chapter [kirby-7], we introduced the following canonical variational prob-
lem: Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂ , (6.1)

where V̂ is a given test space and V is a given trial space. The bilinear form

a : V̂ × V → R

maps a pair of test and trial functions to a real number and is linear in both
arguments. Similarly, the linear form L : V̂ → R maps a given test function
to a real number. We also considered the discretization of nonlinear variational
problems: Find u ∈ V such that

F (v; u) = 0 ∀v ∈ V̂ .

Here, F : V̂ × V → R again maps a pair of functions to a real number. The
semilinear form F is linear in the test function v but possibly nonlinear in the
trial function u. Alternatively, we may consider the mapping

Lu ≡ F (·; u) : V̂ → R,

and note that Lu is a linear form on V̂ for any fixed value of u.
In Chapter [kirby-7], we also considered the estimation of the error in a given

functionalM : V → R. Here, the possibly nonlinear functionalM maps a given
function u to a real numberM(u).
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In all these examples, the central concept is that of a form that maps a given
tuple of functions to a real number. We shall refer to these as multilinear forms.
Below, we formalize the concept of a multilinear form, discuss the discretization
of multilinear forms, and related concepts such as the action of a multilinear
form.

Much of the FEniCS software is devoted to the formulation of multilinear
forms (UFL), the discretization of multilinear forms (FIAT, FFC, SyFi) and the
assembly of the corresponding discrete operators (DOLFIN).

6.1 Multilinear Forms

A form is a mapping from the product of a given sequence {Vj}ρj=1 of function
spaces to a real number,

a : V1 × V2 × · · · × Vρ → R.

If the form a is linear in each of its arguments, we say that the form is multilin-

ear. The number of arguments ρ of the form is the arity of the form.

Forms may often be parametrized over one or more coefficients. A typical
example is the right-hand side L of the canonical variational problem (6.1), which
is a linear form parametrized over a given coefficient f . We shall use the notation
a(v; f) ≡ Lf(v) ≡ L(v) and refer to the test function v as an argument and to the
function f as a coefficient. In general, we shall refer to forms which are linear in
each argument (but possibly nonlinear in its coefficients) as multilinear forms.
Such a multilinear form is a mapping from the product of a sequence of argument
spaces {Vj}ρj=1 and a sequence of coefficient spaces {Wj}nj=1,

a : V1 × V2 × · · · × Vρ × W1 ×W2 × · · · ×Wn → R,

a 7→ a(v1, v2, . . . , vρ;w1, w2, . . . , wn).

The argument spaces {Vj}ρj=1 and coefficient spaces {Wj}nj=1 may all be the same
space but they typically differ, when Dirichlet boundary conditions are imposed
on one or more of the spaces, or when the multilinear form arises from the dis-
cretization of a mixed problem such as in Section ??.

In finite element applications, the arity of a form is typically ρ = 2, in which
case the form is said to be bilinear, or ρ = 1, in which case the form is said to be
linear. In the special case of ρ = 0, we shall refer to the multilinear form as a
functional. It may sometimes also be of interest to consider forms of higher arity
(ρ > 2). Below, we give examples of some multilinear forms of different arity.
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6.1.1 Examples

Poisson’s equation

Consider Poisson’s equation with variable conductivity κ = κ(x),

−∇ · (κ∇u) = f.

Assuming Dirichlet boundary conditions on the boundary ∂Ω of the domain Ω,
the corresponding canonical variational problem is defined in terms of a pair
of multilinear forms, a(v, u) =

∫
Ω
κ∇v · ∇u dx and L(v) =

∫
Ω
vf dx. Here, a is

a bilinear form (ρ = 2) and L is a linear form (ρ = 1). Both forms have one
coefficient (n = 1) and the coefficients are κ and f respectively:

a = a(v, u; κ),

L = L(v; f).

We usually drop the coefficients from the notation and use the short-hand nota-
tion a = a(v, u) and L = L(v).

The incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations for the velocity u and pressure p of
an incompressible fluid read:

u̇+∇u · u−∇ · σ(u, p) = f,

∇ · u = 0,

where the stress tensor σ is given by σ(u, p) = 2µǫ(u)− pI and ǫ is the symmetric
gradient, ǫ(u) = 1

2
(∇u + (∇u)⊤). Consider here the form obtained by integrating

the nonlinear term ∇u · u against a test function v,

a(v; u) =

∫

Ω

v · ∇u · u dx.

This is a linear form (ρ = 1) with one coefficient (n = 1). We may linearize
u = ū+ δu around a fixed velocity ū:

a(v; u) = a(v; ū) + a′(v; ū)δu+O(δu2).

The linearized operator a′ is here given by

a′(v, δu; ū) ≡ a′(v; ū)δu = v · ∇δu · ū+ v · ∇ū · δu.

This is a bilinear form (ρ = 2) with one coefficient (n = 1). We may also consider
the trilinear form

a(v, u, w) =

∫

Ω

v · ∇u · w dx,
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where w may be a given (frozen) value for the convective velocity in a fixed point
iteration for the Navier–Stokes equations. Such a trilinear form may be assem-
bled into a rank three tensor and applied to a given vector of expansion coeffi-
cients for w to obtain a rank two tensor (a matrix) corresponding to the bilinear
form a(v, u;w). This is rarely done in practice due to the cost of assembling the
global rank three tensor. However, the corresponding local rank three tensor
may be contracted with the local expansion coefficients for w on each local cell to
compute the matrix corresponding to a(v, u;w). We return to this issue below in
Chapter [logg-4].

Lift and drag

When solving the Navier–Stokes equations, it may be of interest to compute the
lift and drag of some object immersed in the fluid. The lift and drag are given
by the z- and x-components of the force generated on the object (for a flow in the
x-direction):

Llift(; u, p) =

∫

Γ

σ(u, p) · n̂ · êz ds,

Ldrag(; u, p) =

∫

Γ

σ(u, p) · n̂ · êx ds.

Here, Γ is the boundary of the body, n̂ is the outward unit normal of Γ and êx, êz
are unit vectors in the x- and z-directions respectively. The arity of both forms is
ρ = 0 and both forms have two coefficients.

6.1.2 Canonical Form

FEniCS automatically handles the representation and evaluation of a large class
of multilinear forms, but not all. In particular, FEniCS is currently limited to
forms that may be expressed as a sum of integrals over the cells (the domain),
the exterior facets (the boundary) and the interior facets of a given mesh. In par-
ticular, FEniCS handles forms that may be expressed as the following canonical
form:

a(v1, v2, . . . , vρ;w1, w2, . . . , wn) =

nc∑

k=1

∫

Ωk

Ick dx+

nf∑

k=1

∫

∂Ωk

Ifk ds+

n0
f∑

k=1

∫

∂Ω0
k

If,0k dS. (6.2)

Here, each Ωk denotes a union of mesh cells covering a subset of the computa-
tional domain Ω. Similarly, each ∂Ωk denotes a subset of the facets on the bound-
ary of the mesh and ∂Ω0

k denotes a subset of the interior facets of the mesh.
The latter is of particular interest for the formulation of discontinuous Galerkin
methods that typically involve integrals across cell boundaries (interior facets).
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z

x

n̂
σ · n̂

Figure 6.1: The lift and drag of an object, here a NACA 63A409 airfoil, are the
integrals of the vertical and horizontal components respectively of the stress σ · n̂
over the surface Γ of the object. At each point, the product of the stress tensor σ
and the outward unit normal vector n̂ gives the force per unit area acting on the
surface.

One may consider extensions of (6.2) that involve point values or integrals
over subsets of cells or facets. Such extensions are currently not supported by
FEniCS but may be added in the future.

6.2 Discretizing Multilinear Forms

As we saw in Chapter [kirby-7], one may obtain the finite element approximation
uh =

∑N
j=1Ujφj ≈ u of the canonical variational problem (6.1) by solving a linear

system AU = b, where

Aij = a(φ̂i, φj), i, j = 1, 2, . . . , N,

bi = L(φ̂i), i = 1, 2, . . . , N.

Here, A and b are the discrete operators corresponding to the bilinear and linear
forms a and L for the given bases of the test and trial spaces. In general, we
may discretize a multilinear form a of arity ρ to obtain a tensor A of rank ρ. The
discrete operator A is defined by

Ai = a(φ1
i1
, φ2

i2
, . . . , φρiρ;w1, w2, . . . , wn),

where i = (i1, i2, . . . , iρ) is a multiindex of length ρ and {φjk}
Nj

k=1 is a basis for
V j
h ⊂ V j, j = 1, 2, . . . , ρ. The discrete operator is a typically sparse tensor of

rank ρ and dimension N1 ×N2 × · · · ×Nρ.
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Figure 6.2: The cell tensor AK , exterior facet tensor AS and interior facet tensor
AS,0 on a mesh are obtained by discretizing the local contribution to a multilinear
form on a cell, exterior facet or interior facet respectively.

The discrete operatorAmay be computed efficiently using an algorithm known
as assembly, which is the topic of the next chapter. As we shall see then, an im-
portant tool is the cell tensor obtained as the discretization of the bilinear form
on a local cell of the mesh. In particular, consider the discretization of a multilin-
ear form that may be expressed as a sum of local contributions from each cell K
of a mesh T = {K},

a(v1, v2, . . . , vρ;w1, w2, . . . , wn) =
∑

K∈T

aK(v1, v2, . . . , vρ;w1, w2, . . . , wn).

This corresponds to the case nc = 1, nf = n0
f = 0 and Ω1 = Ω in (6.2). Dis-

cretizing aK using the local finite element basis {φK,jj }
nj

j=1 on K, we obtain the cell
tensor

AKi = aK(φK,1i1
, φK,2i2

, . . . , φK,ρiρ
;w1, w2, . . . , wn). (6.3)

The cell tensor AK is a typically dense tensor of rank ρ and dimension n1 × n2 ×
· · · × nρ. The discrete operator A may be obtained by appropriately summing
the contributions from each cell tensor AK . We return to this in detail below in
Chapter [logg-3].

If Ωk ⊂ Ω, the discrete operator A may be obtained by summing the contri-
butions only from the cells covered by Ωk. One may similarly define the exterior
and interior facet tensors AS and AS,0 as the contributions from a facet on the

162



Robert C. Kirby and Anders Logg

boundary or the interior of the mesh. The exterior facet tensor AS is defined as
in (6.3) by replacing the domain of integration K by a facet S. The dimension of
AS is generally the same as that of AK . The interior facet tensor AS,0 is defined
slightly differently by considering the basis on a macro element consisting of the
two elements sharing the common facet S as depicted in Figure 6.2. For details,
we refer to (Ølgaard et al., 2008).

6.3 The Action of a Multilinear Form

Consider the bilinear form

a(v, u) =

∫

Ω

∇v · ∇u dx,

obtained from the discretization of the left-hand side of Poisson’s equation. Here,
v and u are a pair of test and trial functions. Alternatively, we may consider v to
be a test function and u to be a given solution to obtain a linear form parametrized
over the coefficient u,

(Aa)(v) ≡ a(v; u) =

∫

Ω

∇v · ∇u dx.

We refer to the linear form Aa as the action of the bilinear form a. In general,
the action of a ρ-linear form with n coefficients is a (ρ− 1)-linear form with n+ 1
coefficients. In particular, the action of a bilinear form is a linear form, and the
action of a linear form is a functional.

The action of a bilinear form plays an important role in the definition of
matrix-free methods for solving differential equations. Consider the solution of a
variational problem of the canonical form (6.1) by an Krylov subspace method
such as GMRES (Generalized Minimal RESidual method) (Saad and Schultz,
1986) or CG (Conjugate Gradient method) (Hestenes and Stiefel, 1952). Krylov
methods approximate the solution U ∈ R

N of the linear system AU = b by
finding an approximation for U in the subspace of R

N spanned by the vectors
b, Ab, A2b, . . . , Akb for some k ≪ N . These vectors may be computed by repeated
application of the discrete operator A defined as above by

Aij = a(φ1
i , φ

2
j).

For any given vector U ∈ R
N , it follows that

(AU)i =

N∑

j=1

AijUj =

N∑

j=1

a(φ1
i , φ

2
j)Uj = a

(
φ1
i ,

N∑

j=1

Ujφ
2
j

)
= a(φ1

i ; uh),

where uh =
∑N

j=1Ujφ
2
j is the finite element approximation corresponding to the

coefficient vector U . In other words, the application of the matrix A on a given
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vector U is given by the action of the bilinear form evaluated at the corresponding
finite element approximation,

(AU)i = (Aa)(φ2
i ; uh).

The variational problem (6.1) may thus be solved by repeated evaluation (assem-
bly) of a linear form (the actionAa of the bilinear form a) as an alternative to first
computing (assembling) the matrix A and then repeatedly computing matrix–
vector products with A. Which approach is more efficient depends on how effi-
ciently the action may be computed compared to matrix assembly, as well as on
available preconditioners. For a further discussion on the action of multilinear
forms, we refer to (Bagheri and Scott, 2004).

6.4 The Derivative of a Multilinear Form

When discretizing nonlinear variational problems, it may be of interest to com-
pute the derivative of a multilinear form with respect to one or more of its co-
efficients. Consider the nonlinear variational problem to find u ∈ V such that

F (v; u) = 0 ∀v ∈ V. (6.4)

To solve this problem by Newton’s method, we linearize u = ū+ δu around a fixed
value ū to obtain

0 = F (v; u) ≈ F (v; ū) + F ′(v; ū)δu.

Given an approximate solution ū of the nonlinear variational problem (6.4), we
may then hope to improve the approximation by solving the linear variational
problem

F ′(v, δu; ū) ≡ F ′(v, ū)δu = −F (v; ū).

Here, F ′ is a bilinear form with two arguments v and δu, and one coefficient ū,
and −F is a linear form with one argument v and one coefficient ū.

When there is more than one coefficient, we will use the notation Dw to denote
the derivative with respect to a specific coefficient w. In general, the derivative D
of a ρ-linear form with n > 0 coefficients is a (ρ+1)-linear form with n coefficients.
To solve the variational problem (6.4) using a matrix-free Newton method, we
would thus need to repeatedly evaluate the linear form (ADuF )(v; ūh, δuh) for a
given finite element approximation ūh and increment δuh.

Note that one may equivalently consider the application of Newton’s method
to the nonlinear discrete system of equations obtained by a direct application of
the finite element method to the variational problem (6.4) as discussed in Chap-
ter [kirby7].
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6.5 The Adjoint of a Bilinear Form

The adjoint a∗ of a bilinear form a is the form obtained by interchanging the two
arguments,

a∗(w, v) = a(v, w) ∀v ∈ V 1 ∀w ∈ V 2.

The adjoint of a bilinear form plays an important role in the error analysis of
finite element methods as we saw in Chapter [kirby-7] and as will be discussed
further in Chapter [massing] where we consider the linearized adjoint problem
(the dual problem) of the general nonlinear variational problem (6.4). The dual
problem takes the form

(DuF )∗(v, z; u) = DuM(v; u) ∀v ∈ V,

or simply
F ′∗(v, z) = M ′(v) ∀v ∈ V,

where (DuF )∗ is a bilinear form and DuM is a linear form (the derivative of the
functionalM).

6.6 A Note on the Order of Test and Trial Func-

tions

It is common in the literature to consider bilinear forms where the trial func-
tion u is the first argument, and the test function v is the second argument,

a = a(u, v).

With this notation, one is lead to define the discrete operator A as

Aij = a(φ2
j , φ

1
i ).

In this book and throughout the code and documentation of the FEniCS Project,
we have instead adopted the notation

a = a(v, u),

which leads to the more natural definition

Aij = a(φ1
i , φ

2
j),

which is particularly convenient when we consider multilinear forms of general
arity. This ordering follows naturally from the ordering of dimensions for a ma-
trix (rows before columns) and agrees with the fact that the rows of a matrix
correspond to equations (test functions) and the columns to unknowns (expan-
sion coefficients for the trial functions).
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CHAPTER 7

Finite Element Assembly

By Anders Logg

Chapter ref: [logg-3]

Overview of general assembly algorithm.
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CHAPTER 8

Quadrature Representation of Finite Element

Variational Forms

By Kristian B. Ølgaard and Garth N. Wells

Chapter ref: [oelgaard-2]

Summarise work on optimizing quadrature representation using automated
code generation and address automated selection of best representation.
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CHAPTER 9

Tensor Representation of Finite Element Variational

Forms

By Anders Logg and possibly others

Chapter ref: [logg-4]

Overview of tensor representation.
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CHAPTER 10

Discrete Optimization of Finite Element Matrix

Evaluation

By Robert C. Kirby, Matthew G. Knepley, Anders Logg, L. Ridgway Scott and Andy R.

Terrel

Chapter ref: [[kirby-4]]

The tensor contraction structure for the computation of the element tensorAK

obtained in Chapter [logg-4] enables not only the construction of a compiler for
variational forms, but an optimizing compiler. For typical variational forms, the
reference tensor A0 has significant structure that allows the element tensor AK

to be computed on an arbitrary elementK in a reduced amount of arithmetic. Re-
ducing the number of operations based on this structure leads naturally to sev-
eral problems in discrete mathematics. This chapter introduces the kind of opti-
mizations that are possible and discusses compile-time combinatorial optimiza-
tion problems that form the core of the FErari project. (Kirby, Kirby and Logg,
2008, Kirby and Scott, 2007, Kirby et al., 2006)

We consider two basic kinds of optimizations in this chapter. First, we con-
sider relations between pairs of rows in the reference tensor. This naturally
leads to a graph that models proximity among these pairs in the sense that if
two rows are ”close” together, then one may reuse results computed with the
first row to compute with the second. This gives rise to a weighted graph that
is (almost) a metric space, so we designate such optimizations ”topological”. Sec-
ond, we consider relations between more than two rows of the reference tensor.
Such relations typically rely on sets of rows, considered as vectors in Euclidean
space, lying in a lower-dimensional space. Because we are using planes and hy-
perplanes to reduce the amount of computation, we describe these optimizations
as ”geometric”.
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10.1 Optimization Framework

The tensor paradigm developed in Chapter [logg-4] arrives at the representation

AKi =
∑

α∈A

A0
iαG

α
K , i ∈ I,

or simply

AK = A0 : GK , (10.1)

where I is the set of admissible multiindices for the element tensor AK and A
is the set of admissible multiindices for the geometry tensor GK . The reference
tensor A0 can be computed at compile-time, and may then be contracted with a
GK to obtain the element tensor AK for each cell K in the finite element mesh at
run-time. The case of computing finite element stiffness matrices of size nK×nK ,
where nK is the dimension of the local finite element space on K, corresponds to
I consisting of |I| = n2

K multiindices of length two.

It is convenient to recast (10.1) in terms of a matrix–vector product:

A0 : GK ↔ Ã0g̃K . (10.2)

The matrix Ã lies in R
|I|×|A|, and the vector g̃K lies in R

|A|. The resulting matrix–
vector product can then be reshaped into the element tensor AK . As this compu-
tation must occur for each cell K in a finite element mesh, it makes sense to try
to make this operation efficient.

In the following, we will drop the subscripts and superscripts of (10.2) and
consider the problem of computing

y = Ax

efficiently, where A = Ã0 is a fixed matrix known a priori and x = gK is an
arbitrary vector. We will study structure of A that enables a reduction in the
amount of arithmetic required to form these products.

Before proceeding with the mathematical formulation, we give an example of
a matrix A that we would like to optimize. In (10.3), we display the 6× 6× 2× 2
reference tensor A0 for computing a standard stiffness matrix discretizing the
Laplacian with quadratic Lagrange elements on triangles. The rank four tensor
is here depicted as a 6 × 6 matrix of 2 × 2 matrices. Full analysis would use a
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corresponding flattened 36× 4 matrix A.

A0 =




3 0 0 −1 1 1 −4 −4 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 3 1 1 0 0 4 0 −4 −4
1 0 0 1 3 3 −4 0 0 0 0 −4
1 0 0 1 3 3 −4 0 0 0 0 −4
−4 0 0 0 −4 −4 8 4 0 −4 0 4
−4 0 0 0 0 0 4 8 −4 −8 4 0
0 0 0 4 0 0 0 −4 8 4 −8 −4
4 0 0 0 0 0 −4 −8 4 8 −4 0
0 0 0 −4 0 0 0 4 −8 −4 8 4
0 0 0 −4 −4 −4 4 0 −4 0 4 8




(10.3)

10.2 Topological Optimization

It is possible to apply the matrix A depicted in (10.3) to an arbitrary vector x in
fewer operations than a standard matrix–vector multiplication which requires
144 multiply–add pairs. This requires offline analysis of A and special-purpose
code generation that applies the particular A to a generic x. For A ∈ R

M×N , let
{ai}Mi=1 ⊂ R

N denote the rows of A. The vector y = Ax may then be computed by
M dot products of the form yi = aix. Below, we investigate relationships among
the rows of A to find an optimized computation of the matrix–vector product.

For examination of A, we consider the following small subset of (10.3) which
would only cost 40 multiply–add pairs but contains all the relations we use to
optimize the larger version:

A =




a1 ↔ A0
1,3

a2 ↔ A0
1,4

a3 ↔ A0
2,3

a4 ↔ A0
3,3

a5 ↔ A0
4,6

a6 ↔ A0
4,4

a7 ↔ A0
4,5

a8 ↔ A0
5,6

a9 ↔ A0
6,1

a10 ↔ A0
6,6




=




1 1 0 0
−4 −4 0 0
0 0 1 1
3 3 3 3
0 4 4 0
8 4 4 8
0 −4 −4 −8
−8 −4 −4 0
0 0 0 0
8 4 4 8




. (10.4)

A brief inspection of (10.4) shows that a9 is zero; therefore, it does not need to be
multiplied by the entries of x. In particular, if z entries of ai are zero, then the
dot product aix requires N − z multiply–add pairs rather than N .

175



Discrete Optimization of Finite Element Matrix Evaluation

Suppose ai = aj for some i 6= j, as seen in the sixth and tenth rows of A. Then
of course yi = yj, and only one dot product needs to be performed instead of two.
In other cases, αai = aj for some number α, as in the first and second rows of A.
This means that after yi has been computed, then yj = αyi may be computed with
a single multiplication.

In addition to equality and colinearity as above, one may also consider other
relations between the rows of A. A further inspection of A in (10.4) reveals rows
that have some entries in common but are neither equal nor colinear. Such rows
have a small Hamming distance, that is, the number of entries in which the two
rows differ is small. This occurs frequently, as seen in, e.g., rows five and six .
Write aj = ai + (aj − ai). Then aj − ai only has d nonzero entries, where d is the
Hamming distance between ai and aj. Once yi has been computed, one may thus
compute yj by

yj = yi +
(
aj − ai

)
x,

which requires only d ≤ N additional multiply–add pairs. If d is small compared
to N , the savings are considerable.

In a recent article (Wolf and Heath, 2009), Heath and Wolf extend binary re-
lations to include the partial colinearity of two vectors. For example, the sixth
and seventh rows have parts that are colinear, namely a6

2:4 = −a7
2:4. Such rela-

tionships reduce the computation of yj to two multiply–add pairs; first a scaling
of the result computed with yj and then an additional multiplication with the
non-matching entry in aj .

All of these examples of structure either relate to a single row of A or else to
a pair of rows of A. Such binary relations between pairs of rows are amenable
to the formulation of graph-theoretic structures, as is developed in Section 10.3.
Higher-order relations also occur between the rows of A. For example, the first
and third rowsmay be added and scaled to make the fourth row. In this case, once
a1x and a2x are known, the results may be used to compute a4x using one addition
and one multiplication, compared to four multiplications and three additions for
direct evaluation of the dot product a4x.

10.3 A Graph Problem

If we restrict consideration to binary relations between the rows of A, we are led
naturally to a weighted, undirected graph whose vertices are the rows ai of A.
An edge between ai and aj with weight d indicates that if aix is known for some
x, then that result may be used to compute ajx with d multiply–add pairs. In
practice, such edges also need to be labeled with information indicating the kind
of relationship such as equality, colinearity or low Hamming distance.

To find the optimal computation through the graph, we use Prim’s algorithm (?)
for computing a minimum-spanning tree. A minimum spanning tree is a tree
that connects all the vertices of the graph and has minimum total edge weight.
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a5a1 a7

a2 a6 a
8

1 2 2

23
a3

a4

3

4

Figure 10.1: Minimum spanning tree (forest) for the vectors in (10.4). The dashed
edges represent edges that do not reduce the number of operations and thus
disconnect the graph.

In (?), it is demonstrated that, under a given set of relationships between rows,
a minimum spanning tree in fact encodes an algorithm that optimally reduces
arithmetic. This discussion assumes that the initial graph is connected. In prin-
ciple, every ai is no more than a distance of N away from any aj . In practice,
however, only edges N − z are included in a graph since N is the cost of com-
puting yi without reference to yj. This often makes the graph unconnected and
thus one must construct a minimum spanning forest instead of a tree (a set of
disjoint trees that together touch all the vertices of the graph). An example of a
minimum spanning tree using the binary relations is shown in Figure 10.1.

Such a forest may then be used to determine an efficient algorithm for evalu-
ating Ax as follows. Start with some ai and compute yi = aix directly in at most
N multiply–add pairs. The number of multiply–add pairs may be less than one
if one or more entries of ai are zero. Then, if aj is a nearest neighbor of ai in the
forest, use the relationship between aj and ai to compute yj = ajx. After this,
take a nearest neighbor of aj , and continue until all the entries of y have been
computed.

Additional improvements may be obtained by recognizing that the input ten-
sor GK ↔ x is symmetric for certain operators like the Laplacian. In two space
dimensions, GK for the Laplacian is 2 × 2 with only 3 unique entries, and in
three space dimensions it is 3 × 3 with only 6 unique entries. This fact may be
used to construct a modified reference tensor A0 with fewer columns. For other
operators, it might have symmetry along some but not all of the axes.

Heath and Wolf proposed a slight variation on this algorithm. Rather than
picking an arbitrary starting row ai, they enrich the graph with an extra vertex
labeled IP for “inner product.” Each ai is a distance N − z from IP, where z is the
number of vanishing entries in ai. The IP vertex is always selected as the root
of the minimum spanning tree. It allows for a more robust treatment of unary
relations such as sparsity, and detection of partial colinearity relations.
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a6a4 a5

a8 a7

a1

a3

Figure 10.2: Generating graph for the vectors in (10.4).

10.4 Geometric Optimization

When relations between more than two rows are considered, the optimization
problem no longer may be phrased in terms of a graph, but requires some other
structure. In these cases, proving that one has found an optimal solution is
typically difficult, and it is suspected that the associated combinatorial problems
are NP -hard.

As a first attempt, one can work purely from linear dependencies among the
data as follows. Let B = {bi}i ⊆ {ai}Ni=1 be a maximal set of nonzero rows of A
such that no two rows are colinear. Then enumerate all triples which are linearly
dependent,

T =
{{
bi, bj, bk

}
⊆ B : ∃α1, α2, α3 6= 0 : α1b

i + α2b
j + α3b

k = 0
}
.

The idea is now to identify some subset C of B that may be used to recursively
construct the rest of the rows in B using the relationships in T .

Given some C ⊂ B, we may define the closure of C, denoted by C̄, as follows.
First of all, if b ∈ C, then b ∈ C̄. Second, if b ∈ B and there exist c, d ∈ C̄ such
that {b, c, d} ∈ T , then b ∈ C̄ as well. If C̄ = B, we say that C is a generator for B
or that C generates B.

The recursive definition suggests a process for constructing the closure of any
set C. In the course of constructing the closure, one may also construct a directed,
acyclic graph that indicates the linear dependence being used. Each b ∈ C will
have no out-neighbors, while each b ∈ C̄\C will point to two other members of C̄.
This graph is called a generating graph. Using (10.4), we have the following sets
B, T , and C, with the generating graph shown in Figure 10.2:

B = {a1, a3, a4, a5, a6, a7, a8}
T = {(a1, a3, a4), (a4, a5, a6), (a6, a7, a8)}
C = {a3, a4, a5, a7}

If C generates B, then the generating graph indicates an optimized (but per-
haps not optimal) process for computing {yi = bix}i. Take a topological ordering
of the vectors bi according to this graph. Then, for each bi in the topological order-
ing, if bi has no out neighbors, then bix is computed explicitly. Otherwise, bi will
point to two other vectors bj and bk for which the dot products with x will already
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triangles tetrahedra
degree M N MN MAPs

1 6 3 18 9
2 21 3 63 17
3 55 3 165 46

degree M N MN MAPs
1 10 6 60 27
2 55 6 330 101
3 210 6 1260 370

Table 10.1: Number of multiply–add pairs for graph-optimized Laplace operator
(MAPS) compared to the basic number of multiply–add pairs (MN).

be known. Since the generating graph has been built from the set of linearly
dependent triples T , there must exist some β1, β2 such that bi = β1b

j + β2b
k. We

may thus compute yi by
yi = bix = β1b

jx+ β2b
kx,

which requires only two multiply–add pairs instead of N .
To make best use of the linear dependence information, one would like to find

a generator C that has as few members as possible. We say that a generator C
is minimal for B if no C ′ ⊂ C also generates B. A stronger requirement is for a
generator to beminimum. A generator C is minimum if no other generatorC ′ has
lower cardinality. Heuristics for constructing minimal generators are considered
in (?), and it is not currently known whether such heuristics construct minimum
generators or how hard the problem of finding minimum generators is.

Given a minimal generator C for B, one may consider searching for higher
order linear relations among the elements of C, such as sets of four items that
have a three-dimensional span. The discussion of generating graphs and their
utilization is the same in this case.

Wolf and Heath (Wolf and Heath, 2009) study combining binary and higher-
order relations between the rows of A in a hypergraph model. While greedy
algorithms provide optimal solutions for a graph model, they demonstrate that
the obvious generalizations to hypergraphs can be suboptimal. While the hyper-
graph problems are most likely very hard, they develop heuristics that perform
well and provide additional optimizations beyond the graph models. So, even if a
non-optimal solution is found, it still provides improved reduction in arithmetic
requirements.

In Table 10.4, topological and geometric optimization is compared for the
Laplacian using quadratic through quartic polynomials on tetrahedra. In the
geometric case, the vectors ai were filtered for unique direction, i.e., only one
vector for each class of colinear vectors was retained. Then, a generating graph
was constructed for the remaining vectors using pairwise linear dependence. The
generator for this set was then searched for linear dependence among sets of four
vectors, and a generating graph constructed. Perhaps surprisingly, the geometric
optimization found flop reductions competitive with or better than graph-based
binary relations. These are shown in Table 10.4.
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2 3 4
topological 101 370 1118
geometric 105 327 1072

Table 10.2: Comparison of topological and geometric optimizations for the
Laplace operator on tetrahedra using polynomial degrees two through four. In
each case, the final number of MAPs for the optimized algorithm is reported. The
case q = 1 is not reported since then both strategies yield the same number of
operations.

10.5 Optimization by Dense Linear Algebra

As an alternative to optimizations that try to find a reduced arithmetic for com-
puting the element tensor AK , one may consider computing the element tensor
by efficient dense linear algebra. As above, we note that the entries of the ele-
ment tensor AK may be computed by the matrix–vector product Ã0g̃K . Although
zeros may appear in Ã0, this is typically a dense matrix and so the matrix–vector
product may be computed efficiently with Level 2 BLAS, in particular using a
call to dgemv. There exist a number of optimized implementations of BLAS, in-
cluding hand-optimized vendor implementations, empirically and automatically
tuned libraries (?) and formal methods for automatic derivation of algorithms (?).

The computation of the element tensor AK may be optimized further by recog-
nizing that one may compute the element tensor for a batch of elements {Ki}i ⊂
T in one matrix–matrix multiplication:

[
Ã0g̃K1 Ã0g̃K2 · · ·

]
= Ã0 [g̃K1 g̃K2 · · · ] .

This matrix-matrix product may be computed efficiently using a single Level 3
BLAS call (dgemm) instead of a sequence of Level 2 BLAS calls, which typically
leads to better floating-point performance.

10.6 Notes on Implementation

A subset of the optimizations discussed in this chapter are available as part of
the FErari Python module. The current version of FErari (0.2.0) implements op-
timization based on finding binary relations between the entries of the element
tensor. With optimizations turned on, FFC calls FErari at compile-time to gen-
erate optimized code. Optimization for FFC can be turned on either by the -O
parameter when FFC is called from Python, or by setting

parameters["form_compiler"]["optimization"] = True
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when FFC is called as a just-in-time compiler from the DOLFIN Python inter-
face. Note that the FErari optimizations are only used when FFC generates code
based on the tensor representation described in Chapter [logg-4]. When FFC
generates code based on quadrature, optimization is handled differently, as de-
scribed in Chapter [oelgaard-2].
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Parallel Adaptive Mesh Refinement

By Niclas Jansson, Johan Hoffman and Johan Jansson

Chapter ref: [hoffman-4]

For many interesting problems one is often interested in rather localized fea-
tures of a solution, for example separation or transition to turbulence in flow
problems. It is often the case that it is to expensive to uniformly refine a mesh
to such an extent that these features develops. The solution is to only refine the
mesh in the regions of most interest, or for example where the error is large.

This chapter is based on the work in (Jansson, 2008). First a brief summary
of the theory behind mesh refinement is given, followed by a discussion of the
issues with parallel refinement together with our proposed solution. The chapter
ends with a presentation of our implementation, of a fully distributed parallel
adaptive mesh refinement framework on a Blue Gene/L.

11.1 A brief overview of parallel computing

In this chapter, parallel computing refers to distributed memory systems with
message passing. It is assumed that the system is formed by linking compute
nodes together with some interconnect, in order to form a virtual computer (or
cluster) with a large amount of memory and processors.

It is also assumed that the data, the mesh in this case is distributed across
the available processors. Shared entities are duplicated or “ghosted” on adjacent
processors. In order to fully represent the original mesh from the smaller dis-
tributed sub meshes, it is essential that the information for the shared entities
are the same on all processors.
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11.2 Local mesh refinement

Local mesh refinement has been studied by several authors over the past years.
The general idea is to bisect an element into a set of new ones, with the con-
straint that the produced mesh must be valid. A mesh is usually valid if there
are no “hanging nodes”, that is no node should be on another element’s facet.
How element should be bisected in order to ensure this differs between different
methods. One common theme is edge bisection.

A common edge bisection algorithm bisects all edges in an element, introduc-
ing a new vertex on each edge, and connecting them together to form the new
elements (see for example (Bey, 1995)). Other methods bisects only one of the
edges, which edge depends on the method. For example one could select the edge
which where most recently refined, this method is often referred to as the newest
vertex approach and where described in (Bänsch, 1991). Another popular edge
bisection method is the longest edge (Rivara, 1984), where one always select the
longest edge for refinement. In order to ensure that the mesh is free of “hanging
nodes”, the algorithm recursively bisects elements until there are no “hanging
nodes” left.

11.2.1 The challenge of parallel mesh refinement

Performing the refinement in parallel adds additional constraints on the refine-
ment method. Not only should the method prevent “hanging nodes”, it must also
be guaranteed to terminate in a finite number of steps.

In the parallel case, each processor owns a small part of the distributed mesh.
So if a new vertex is introduced on the boundary between two processors, the
algorithm must ensure that the information propagates to all neighboring pro-
cessors.

For an algorithm that bisects all edges in an element, the problem reduces
to a global decision problem, deciding which of the processors information that
should be used on all the other processors. But for an algorithm that propagates
the refinement like the longest edge, the problem becomes a set of synchroniza-
tion problems i) to detect and handle refinement propagation between different
processors and ii) to detect global termination.

The first problem could easily be solved by dividing the refinement into two
different phases, one local refinement phase and one propagation phase. In the
first phase elements on the processor are refined with an ordinary serial refine-
ment method. This could create non conforming elements on the boundary be-
tween processors. These are fixed by propagating the refinement to the neighbor-
ing processor. This is done in the second propagation phase. But since the next
local refinement phase could create an invalid mesh, one could get another prop-
agation phase and the possibility of another and so forth. However, if the longest
edge algorithm is used, termination is guaranteed (Castaños and Savage, 1999).
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But the problem is to detect when all these local meshes are conforming, and also
when they are conforming at the same time. That means one has to detect global
termination, which is a rather difficult problem to solve efficiently, especially for
massively parallel systems for which we are aiming.

There has been some other work related to parallel refinement with edge
bisection. For example a parallel newest vertex algorithm has been done by
Zhang (Zhang, 2005). Since the algorithm does not need to solve the termina-
tion detection problem, scaling is simply a question of interconnect latency. An-
other work is the parallel longest edge algorithm done by Castaños and Savage
(Castaños and Savage, 1999). They solve the termination detection problem with
Dijkstras general distributed termination algorithm, which simply detects termi-
nation by counting messages sent and received from some controlling processor.
However, in both of these methods they only used a fairly small amount of proces-
sors, less then one hundred, so it is difficult to estimate how efficient and scalable
these algorithms are. For more processors, communication cost and concurrency
of communication patterns starts to become important factors. Therefore, we
tried to design an algorithm that would scale well for thousands of processors.

11.2.2 A modified longest edge bisection algorithm

Instead of trying to solve the termination detection problem, one could try to
modify the refinement algorithm in such a way that it would only require one
synchronization step, thus less communication. With less communication over-
head it should also scale better for a large number of processors.

1. 2. 3.

Figure 11.1: An example of the refinement algorithm used. First a set of ele-
ments are marked for refinement (1). The longest edges are found (2), and all
elements connected to these edges are finally bisected, the dashed lines in (3).

When this work started, DOLFIN did not have a pure longest edge imple-
mentation. Instead of recursively fixing “hanging nodes” it bisected elements in
pairs (or groups) (see figure 11.1). Since this algorithm always terminate the
refinement by bisecting all elements connected to the refined edge, it is a perfect
candidate for an efficient parallel algorithm. Since, if the longest edge is shared
by different processors, the algorithm must only propagate the refinement onto
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all elements (processors) connected to that edge, but then no further propagation
is possible (see figure 11.2).

Cpu 0

Cpu 1

Cpu 2

Figure 11.2: An example of the two simple cases of propagation. The dashed
lines refers to how processors wants to bisect the elements.

However, notifying an adjacent processor of propagation does not solve the
problem entirely. As mentioned in section 11.1, all mesh entities shared by sev-
eral processors must have the same information in order to correctly represent
the distributed mesh. The refinement process must therefore guarantee that
all newly created vertices are assigned the same unique information on all the
neighboring processors. Another problematic case arises when processors refine
the same edge and the propagation “collides” (see figure 11.2). In this case the
propagation is done implicitly but the processors must decide which new infor-
mation to use.

Cpu 0

Cpu 1

Cpu 2

Figure 11.3: An example of the problematic case with multiple propagations. The
dashed lines refers to how processors wants to bisect the elements.

A more complicated case is when an element receives multiple propagation
(possibly from different processors) on different edges (see figure 11.3). Since the
modified longest edge algorithm only allows one edge to be bisected per element,
one of the propagations must be selected and the other one rejected. This how-
ever adds a difficulty to the simple algorithm. How should the processors decide
upon which edge to be refined? Clearly this could not be done arbitrarily, since
when a propagation is forbidden, all refinement done around that edge must be
removed. Thus, in the worst case it could destroy the entire refinement.

To solve the edge selection problem perfectly one needs an algorithm with a
global view of the mesh. In two dimensions with a triangular mesh, the prob-
lem could be solved rather simple since each propagation could only come from
two different edges (one edge is always facing the interior). By exchanging the
desired propagation edges processors could match theirs selected edges with the
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propagated ones, in an attempt to minimize the number of forbidden propaga-
tions. However, in three dimensions the problem starts to be such complicated
that multiple exchange steps are needed in order to solve the problem. Hence, it
becomes too expensive to solve.

Instead we propose an algorithm which solves the problem using an edge vot-
ing scheme. Each processor refines the boundary elements, find their longest
edge and cast a vote for it. These votes are then exchanged between processors,
which add the received votes to its own set of votes. Now the refinement pro-
cess restarts, but instead of using the longest edge criteria, edges are selected
depending on the maximum numbers of votes. In the case of a tie, the edge is
selected depending on a random number assigned to all votes.

Once a set of edges has been selected from the voting phase, the actually
propagation starts by exchanging these with the other processors. However, the
voting could fail to “pair” refinements together. For example, an element could
lie between two processors which otherwise does not share any common face.
Each of these processors wants to propagate into the neighboring element but on
different edges (see figure 11.4). Since the processors on the left and right side of
the element do not receive edge votes from each other, the exchange of votes will
in this case not help with selecting an edge that would work for both processors.

Cpu 0

Cpu 1

Cpu 2

Figure 11.4: An example of the case when edge votes could be missed. The
dashed lines refers to how processors wants to bisect the elements.

To fix this, an additionally exchange step is needed and maybe another and
so forth, rendering the perfect fix impossible. Instead, the propagation step ends
by exchanging the refined edges which gave rise to a forbidden propagation. All
processors could then remove all refinements that these edges introduced, and
in the process, remove any hanging nodes on the boundary between processors.

11.3 The need of dynamic load balancing

For parallel refinement, there is an additional problem not present in the se-
rial setting. As one refines the mesh, new vertices are added arbitrarily at any
processor. Thus, rendering an initially good load balance useless. Therefore, in
order to sustain a good parallel efficiency the mesh must be repartitioned and
redistributed after each refinement, in other words dynamic load balancing is
needed.
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Figure 11.5: An example of load balancing were the locality of the data is consid-
ered. The mesh is refined three times around the cylinder, and for each step load
balancing is performed, shading refers to processor id.

In the worst case, the load balancing routine must be invoked every time a
mesh is adapted, so it has to be rather efficient, and for our aim, scale well for
a large number of processors. There are mainly two different load balancing
methods used today, diffusive and remapping methods. Diffusive methods, like
the physical meaning, by finding a diffusion solution a heavily loaded processor’s
vertices would move to another processor, and in that way smear out the im-
balance, described for example in (Hu and Blake, 1995, Schloegel et al., 1997).
Remapping methods relies on the partitioner’s efficiency of producing good par-
titions from an already partitioned dataset. In order to avoid costly data move-
ment, a remapping method tries to assign the new partitions to processors in
an optimal way. For problems where the imbalance occurs rather localized, the
remapping methods seems to perform better (Schloegel et al., 1998). Hence, it
maps perfectly to the localized imbalance caused by local mesh refinement.

In this work, we used the load balancing framework of PLUM (Oliker, 1998)
a remapping load balancer. The mesh is repartitioned according to an imbalance
model. Repartitioning is done before refinement, this would in theory minimize
data movement and speedup refinement, since a more balanced number of ele-
ment would be bisected on each processor.

11.3.1 Workload modelling

The workload is modelled by a weighted dual graph of the mesh. Let G = (V,E)
be the dual graph of the mesh, q be one of the partitions and let wi bet the compu-
tational work (weights) assigned to each graph vertex. The processor workload
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is then defined as

W (q) =
∑

∀wi∈q

wi (11.1)

where communication costs are neglected. LetWavg be the average workload and
Wmax be the maximum, then the graph is considered imbalanced if

Wmax/Wavg > κ (11.2)

where the threshold value κ is based on the problem or machine characteristics.
This model suits the modified longest edge algorithm (section 11.2.2) per-

fectly. Since the modifications reduces the algorithm to only have one propa-
gation and/or synchronization step. The workload calculation becomes a local
problem, thus it is rather cheap to compute. So if we let each element repre-
sent one unit of work, a mesh adapted by the modified algorithm would produce
a dual graph with vertex weights equal to one or two. Each element is only
bisected once, giving a computational weight of two elements for each element
marked for refinement.

11.3.2 Remapping strategies

Remapping of the new partitions could be done in numerous ways, depending
on what metric one tries to minimize. Usually one often talks about the metrics
TOTALV and MAXV. MAXV tries to minimize the redistribution time by lowering
the flow of data, while TOTALV lowers the redistribution time by trying to keep
the largest amount of data local, for a more detailed description see (Oliker,
1998). We have chosen to focus on the TOTALV metric, foremost since it much
cheaper to solve then MAXV, and it also produces equally good (or even better)
balanced partitions.

Independent of which metric one tries to solve. The result from the reparti-
tioning is placed in a similarity matrix S, where each entry Si,j is the number of
vertices on processor i which would be placed in the new partition j. In our case,
we want to keep the largest amount of data local, hence to keep the maximum
row entry in S local. This could be solved by transforming the matrix S into a bi-
partite graph where each edge ei,j is weighted with Si,j, the problem then reduces
to the maximally weighted bipartite graph problem (Oliker, 1998).

11.4 The implementation on a massively parallel

system

The adaptive refinement method described in this chapter was implemented us-
ing an early parallel version of DOLFIN, for a more detailed description see
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(Jansson, 2008). Parallelization was implemented for a message passing sys-
tem, and all the algorithms were designed to scale well for a large number of
processors.

The challenge of implementing a refinement algorithm on a massively par-
allel system is as always the communication latency. In order to avoid that the
message passing dominates the runtime, it is important that the communication
is kept at a minimum. Furthermore, in order to obtain a good parallel efficiency,
communication patterns must be design in such way that they are highly con-
current, reducing processors idle time etc.

11.4.1 The refinement method

Since element bisection is a local problem, without any communication, the only
part of the refinement algorithm that needs to be well designed for a parallel
system is the communication pattern, used for refinement propagation.

For small scale parallelism, one could often afford to do the naive approach,
loop over all processors and exchange messages without any problem. When the
number of processors are increased, synchronization, concurrency and deadlock
prevention starts to become important factors to considered when designing the
communication pattern. A simple and reliable pattern is easily implemented as
follows. If the processors send data to the left and receive data from the right
in a circular pattern, all processors would always be busy sending and receiving
data, thus no idle time.

Algorithm 1 Communication pattern

for i =1 to p-1 do

src← (rank - 1 + p) mod p
dest← (rank + 1) mod p
sendrecv(send sendbuff(dest) to dest and recv from src)

end for

The refinement algorithm outlined in 11.2.2 is easily implemented as a loop
over all elements marked for refinement. For each marked element it finds the
longest edge and bisect all elements connected to that edge. However, since an
element is only allowed to be bisected once, the algorithm is only allowed to
select the longest edge which is part of an unrefined element. In order to make
this work in parallel, one could structure the algorithm in such a way that it first
refines the shared elements, and propagate the refinements. After that it could
refine all interior elements without any communication.

If we let B be the set of elements on the boundary between processors, R the
set of elements marked for refinement. Then by using algorithm 1 we could ef-
ficiently express the refinement of shared entities in algorithm 2 with algorithm
3.
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Algorithm 2 Refinement algorithm

refine shared entities
for all c ∈ R do

find longest edge e not marked as forbidden
for all elements c1 connected to e do

bisect element c1
end for

end for

Algorithm 3 Refinement of shared entities

for all c ∈ B ∪R do

find longest edge e
if e is on the boundary then

vote(e)← vote(e) + 1
end if

end for

exchange votes with algorithm 1
mark all elements ∈ B with the maximum number of votes for refinement
for all received votes on edge e do

increase vote(e)
end for

for all c ∈ B do

mark maxe∈c (vote(e)) for refinement
end for

exchange refinement with algorithm 1
for all received refinement do

if e is not refined and not part of a refined element then
mark edge and propagate refinement

else

send back illegal propagation
end if

end for

for all received illegal propagations do

remove refinement and hanging nodes
end for
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11.4.2 The remapping scheme

The maximally weighted bipartite graph problem for the TOTALV metric could be
solved in an optimal way in O(V 2 log V +V E) steps (Oliker, 1998). Recall that the
vertices in the graph are the processors. Calculating the remapping could there-
fore become rather expensive if a large number of processors are used. Since
the solution does not need to be optimal, a heuristic algorithm with a runtime of
O(E) was used.

The algorithm starts by generating a sorted list of the similarity matrix S.
It then steps through the list and selects the largest value which belongs to an
unassigned partition. It was proven in (Oliker, 1998) that the algorithm’s so-
lution is always greater than half of the optimal solution, thus it should not be
a problem to solve the remapping problem in a sub optimal way. Sorting was
implemented (as in the original PLUM paper) by a serial binary radix sort (the
matrix S were gathered onto one processor), performing β passes and using 2r

“buckets” for counting. In order to save some memory the sorting was performed
per byte of the integer instead of the binary representation. Since each integer
is represented by 4 bytes (true even for most 64-bits architectures) the number
of passes required was β = 4, and since each byte have 8 bits the number of
“buckets” needed were 28.

However, since the similarity matrix S is of the size P × P where P is the
number of processors, the sorting will have a runtime of O(P 2). This should not
cause any problem on a small or medium size parallel computer, as the one used
in the fairly old PLUM paper. But after 128-256 processors the complexity of the
sorting starts to dominates in the load balancer. To solve this problem, instead
of sorting S on one processor we implemented a parallel binary radix sort. The
unsorted data of length N was divided into N/P parts which were assigned to
the available processors. The internal β sorting phases were only modified with
a parallel prefix calculation and a parallel swap phase (when the elements are
moved to the new “sorted” locations).

Algorithm 4 Parallel radix sort

for i = 0 to β do

for j = 0 to N do

count[i byte of data(j)]← count[i byte of data(j)] + 1
end for

count← Allreduce(count)
for j = 0 to 2r do

index(j)← ParallelPrefix(count(j))
end for

redistribute elements according to index
end for
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Figure 11.6: Two of the meshes used during evaluation.

11.4.3 Theoretical and experimental analysis

The adaptive refinement method described in this chapter has been successfully
tested on a 1024 node Blue Gene/L, each dual-processor node could either be used
to run two separate programs (virtual mode) or run in coprocessor mode where
one of the processor works as an offload engine, for example handling parts of
the message passing stack (Gara et al., 2005, Moreira et al., 2005).

As a test problem we used an unstructured mesh and refined all elements
inside a small local region, timed mesh refinement and load balancing times.
The problem were tested on P = 32, 128, 512 nodes both in virtual and copro-
cessor mode. Since the smallest number of nodes that could be allocated was
32, all speedup results are presented as a comparison against the time for 32
processors. To capture possible communication bottlenecks, three different un-
structured meshes were used. First a cylinder mesh with nv = 566888 vertices,
secondly a hill with nv = 94720 vertices and finally, the cylinder again but with
nv = 1237628 vertices instead.

The regions selected for refinement were around the cylinder and behind the
hill. Since these regions already had the most number of elements in the mesh,
refinement would certainly result in an workload imbalance. Hence, trigger the
load balancing algorithms. In order to analyze the experimental results we used
a performance model which decompose the total runtime T into one serial com-
putational cost Tcomp, and a parallel communication cost Tcomm.

T = Tcomp + Tcomm (11.3)

The mesh refinement has a local computational costs consisting of iterating
over and bisecting all elements marked for refinement, for a mesh with Nc ele-
ments O(Nc/P ) steps. Communication only occurs when the boundary elements
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needs to be exchanged. Thus, each processor would in the worst case communi-
cate with (P − 1) other processors. If we assume that there are Ns shared edges,
the total runtime with communication becomes,

Trefine = O

(
Nc

P

)
τf + (P − 1)(τs +Nsτb) (11.4)

where τf is the time to perform one (floating point) operation, τs is the latency and
τb the bandwidth. So based on the performance model, more processors would
lower the computational time, but in the same time increase the communication
time.

The most computationally expensive part of the load balancer is the remap-
ping or assignment of the new partitions. As discussed earlier, we used an heuris-
tic with a runtime of O(E), the number of edges in the bipartite graph. Hence,
in the worst case E ≈ P 2. The sorting phase is linear, and due to the parallel
implementation it runs in O(P ). Communication time for the parallel prefix cal-
culation is given by, for m data it sends and calculates in m/P steps. Since the
prefix consists of 2r elements, it would take 2r/P steps, and we have to do this for
each β sorting phases. In the worst case the reordering phase (during sorting)
needs to send away all the elements, thus P communication steps, which gives
the total runtime.

Tloadb = O(P 2)τf + β

(
τs +

(
2r

P
+ P

)
τb

)
(11.5)

According to this, load balancing should not scale well for a large number of
processors (due to the O(P 2) term). However, the more realistic average case
should be O(P ). So again, with more processors the runtime could go up due to
communication costs.

If we then compare with the experimental results presented in figure 11.7,
we see that the performance degenerates when a large number of processors are
used. The question is why? Is it solely due to the increased communication cost?
Or is the load balancer’s computational cost to blame?

First of all, one could observe that when the number of elements per proces-
sor is small. The communication costs starts to dominate, see for example the
results for the smaller hill mesh (represented by a triangle in the figure). The
result is better for the medium size cylinder (represented by a diamond), and
even better for the largest mesh (represented by a square). If the load balanc-
ing time was the most dominating part, a performance drop should have been
observed around 128 - 256 processors. Instead performance generally drops af-
ter 256 processors. A possible explanation for this could be the small amount of
local elements. Even for the larger 106 element mesh, with 1024 processors the
number of local elements is roughly 103, which is probably too few to balance the
communication costs.
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Figure 11.7: Refinement speedup (incl. load balancing)

Processors Execution time Speedup
256 33.50 1.0
512 23.19 1.44
1024 19.24 1.74

Table 11.1: Refinement time for a nine million vertices mesh

This illustrate the curse of massively parallel, distributed memory systems.
In order to gain anything from the large amount of processors, either one has
to have a large local computational cost, or one has to increase the problem size
in order to mask the communication latency. To illustrate how large the mesh
needs to be, we uniformly refined the larger cylinder, locally refined the same
region as before and timed it for 256,512 and 1024 processors. Now the refine-
ment performs better, as can be seen in table 11.1. But again performance drops
between 512 and 1024 processors.

However, despite the decrease in speedup, one could see that the algorithm
seems to scale well, given that the local amount of elements are fairly large. It
is close to linear scaling from 32 to 256 processors, and we see no reason for it
to not scale equally good between 256 and 1024 processors, given that the local
part of the mesh is large enough.
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11.5 Summary and outlook

In this chapter we presented some of the challenges with parallel mesh refine-
ment. How these could be solved and finally how these solutions were imple-
mented for a distributed memory system. In the final section some theoretical
and experimental performance results were presented and explained. One could
observe how well the implementation performs, until the curse of slow intercon-
nect starts to affect the results.

One aspect of the refinement problem that has not been touched upon in this
chapter is the mesh quality. The modification done to the longest edge algorithm
(see section 11.2.2), unfortunately destroys the good properties of the original
recursive algorithm. It was a trade off between efficiency and mesh quality. As
mentioned before, the problem with the original algorithm is the efficiency of
propagation and global termination detection. Currently our work is focused
in overcoming these problems, implementing an efficient parallel refinement
method with good quality aspects, which also performs well for thousands of
processors.
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CHAPTER 12

DOLFIN: A C++/Python Finite Element Library

By Anders Logg and Garth N. Wells

Chapter ref: [logg-2]

Overview and tutorial of DOLFIN.
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CHAPTER 13

FFC: A Finite Element Form Compiler

By Anders Logg and possibly others

Chapter ref: [logg-1]

◮ Editor note: Oelgaard/Wells might possibly write something here on FFC quadrature

evaluation, or it will be included in a separate chapter. Marie will possibly write some-

thing here on H(div)/H(curl), or it will be included in a separate chapter.

Overview and tutorial of FFC.
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CHAPTER 14

FErari: An Optimizing Compiler for Variational Forms

By Robert C. Kirby and Anders Logg

Chapter ref: [kirby-3]

We describe the implementation of an optimizing compiler for variational
forms based on the discrete optimization methodology described in an earlier
chapter. The major issues are communicating reference tensors from FFC to the
optimizer, FErari, performing the actual optimization, and communicating ab-
stract syntax for the optimized algorithm back to FFC for code generation. We
include some results indicating the kinds of speedups that may be achieved and
what factors influence the effectiveness of the optimizations.
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CHAPTER 15

FIAT: Numerical Construction of Finite Element Basis

Functions

By Robert C. Kirby

Chapter ref: [kirby-2]

15.1 Introduction

The FIAT project (??) implements the mathematical framework described in
Chapter ?? as a Python package, working mainly in terms of numerical linear
algebra. Although an implementation floating-point arithmetic presents some
challenges relative to symbolic computation, it can allow greater efficiency and
consume fewer resources, especially for high order elements. To obtain efficiency
in Python, the compute-intensive operations are expressed in terms of numerical
linear algebra and performed using the widely distributed numpy package.

The FIAT project is one of the first FEniCS projects, providing the basis func-
tion back-end for ffc and enabling high-order H1, H(div) and H(curl) elements.
It is widely distributed, with downloads on every inhabited continent and in over
sixty countries, averaging about 100 downloads per month.

This chapter works in the context of a Ciarlet triple (K,P,N) (?), where K
is a fixed reference domain, typically a triangle or tetrahedron. P is a finite-
dimensional polynomial space, though perhaps vector- or tensor-valued and not

coincident with polynomials of some fixed degree. N = {ℓi}|P |
i=1 is a set of linear

functionals spanning P ′. Recalling Chapter (?), the goal is first to enumerate

a convenient basis {φi}|P |
i=1 for P and then to form a generalized Vandermonde
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system
V A = I,

where Vij = ℓi(φj). The columns of A = V −1 store the expansion coefficients of the
nodal basis for (K,P,N) in terms of the basis {φi}.

15.2 Prime basis: Collapsed-coordinate polyno-

mials

High order polynomials in floating-point arithmetic require stable evaluation al-
gorithms. FIAT uses the so-called collapsed-coordinate polynomials (?) on the
triangle and tetrahedra. Let P α,β

i (x) denote the Jacobi polynomial of degree i
with weights α and β. On the triangle K with vertices (−1, 1), (1,−1), (−1, 1), the
polynomials are of the form

Dp,q(x, y) = P 0,0
p (η1)

(
1− η2

2

)i
P 2i+1,0
j (η2)

where

η1 = 2

(
1 + x

1− y

)
− 1

η2 = y

is called the collapsed-coordinate mapping is a singular transformation between
the triangle and the biunit square. The set {Dp,q(x, y)}p+q≤np,q≥0 forms a basis for
polynomoials of degree n. Moreover, they are orthogonal in the L2(K) inner
product. Recently (?), it has been shown that these polynomials may be com-
puted directly on the triangle without reference to the singular mapping. This
means that no special treatment of the singular point is required, allowing use
of standard automatic differentiation techniques to compute derivatives.

The recurrences are obtained by rewriting the polynomials as

Dp,q(x, y) = χp(x, y)ψp,q(y),

where

χp(x, y) = P 0,0
p (η1)

(
1− η2

2

)p

and
ψp,q(y) = P 2p+1,0

q (η2) = P 2p+1,0
q (y).

This representation is not separable in η1 and η2, which may seem to be a draw-
back to readers familiar with the usage of these polynomials in spectral methods.
However, they do still admit sum-factorization techniques. More importantly for
present purposes, each χp is in fact a polynomial in x and y and may be computed
by recurrence. ψp,q is just a Jacobi polynomial in y and so has a well-known three-
term recurrence. The recurrences derived in (?) are presented in Algorithm 5
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Algorithm 5 Computes all triangular orthogonal polynomials up to degree d by
recurrence
1: D0,0(x, y) := 1
2: D1,0(x, y) := 1+2x+y

2

3: for p← 1, d− 1 do

4: Dp+1,0(x, y) :=
(

2p+1
p+1

) (
1+2x+y

2

)
Dp,0(x, y)−

(
p
p+1

) (
1−y
2

)2
Dp−1,0(x, y)

5: end for

6: for p← 0, d− 1 do

7: Dp,1(x, y) := Dp,0(x, y)
(

1+2p+(3+2p)y
2

)

8: end for

9: for p← 0, d− 1 do

10: for q ← 1, d− p− 1 do

11: Dp,q+1(x, y) :=
(
a2p+1,0
q y + b2p+1,0

q

)
Dp,q(x, y)− c2p+1,0

q Dp,q−1(x, y)
12: end for

13: end for

15.3 Representing polynomials and functionals

Even using recurrence relations and numpy vectorization for arithmetic, further
care is required to optimize performance. In this section, standard operations
on polynomials will be translated into vector operations, and then batches of
such operations cast as matrix multiplication. This helps eliminate the inter-
pretive overhead of Python while moving numerical computation into optimized
library routines, since numpy.dot wraps level 3 BLAS and other functions such
as numpy.svd wrap relevant LAPACK routines.

Since polynomials and functionals over polynomials both form vector spaces,
it is natural to represent each of them as vectors representing expansion coeffi-
cients in some basis. So, let {φi} be the set of polynomials described above.

Now, any p ∈ P is written as a linear combination of the basis functions {φi}.
Introduce a mapping R from P into R

|P | by taking the expansion coefficients of p
in terms of {φi}. That is,

p = R(p)iφi,

where summation is implied over i.
A polynomial p may then be evaluated at a point x as follows. Let Φi be the

basis functions tabulated at x. That is,

Φi = φi(x). (15.1)

Then, evaluating p follows by a simple dot product:

p(x) = R(p)iΦi. (15.2)
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More generally in FIAT, a set of polynomials {pi} will need to be evaulated
simultaneously, such as evaluating all of the members of a finite element basis.
The coefficients of the set of polynomials may be stored in the rows of a matrix
C, so that

Cij = R(pi)j.

Tabulating this entire set of polynomials at a point x is simply obtained by
matrix-vector multiplication. Let Φi be as in (15.1). Then,

pi(x) = CijΦj .

The basis functions are typically needed at a set of points, such as those of a
quadrature rule. Let {xj} now be a collection of points in K and let

Φij = φi(xj),

where the rows of Φ run over the basis functions and the columns over the col-
lection of points. As before, the set of polynomials may be tabulated at all the
points by

pi(xj) = CikΦkj ,

which is just the matrix product CΦ and may may be efficiently carried out by a
library operation, such as the numpy.dot wrapper to level 3 BLAS.

Finite element computation also requires the evaluation of derivatives of
polynomials. In a symbolic context, differentiation presents no particular dif-
ficulty, but working in a numerical context requires some special care.

For some differential operator D, the derivatives Dφi are computed at apoint
x, any polynomial p = R(p)iφi may be differentiated at x by

Dp(x) = R(p)i(Dφi),

which is exactly analagous to (15.2). By analogy, sets of polynomials may be
differentiated at sets of points just like evaluation.

The formulae in Algorithm 5 and their tetrahedral counterpart are fairly easy
to differentiate, but derivatives may also be obtained through automatic differ-
entiation. Some experimental support for this using the AD tools in Scientific
Python has been developed in an unreleased version of FIAT.

The released version of FIAT currently evaluates derivatives in terms of lin-
ear operators, which allows the coordinate singularity in the standard recurrence
relations to be avoided. For each Cartesian partial derivative ∂

∂xk
, a matrix Dk is

calculated such that

R
(
∂p

∂xk

)

i

= Dk
ijR(p)j .

Then, derivatives of sets of polynomials may be tabulated by premultiplying the
coefficient matrix C with such a Dk matrix.
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This paradigm may also be extended to vector- and tensor-valued polynomi-
als, making use of the multidimensional arrays implemented in numpy. Let P be
a space of scalar-valued polynomials and n > 0 an integer. Then, a member of
(P )m, a vector withm components in P , may be represented as a two-dimensional
array. Let p ∈ (P )m and pi be the jth component of p. Then p = R(p)jkφk, so that
R(p)jk is the coefficient of φk for p

j .
The previous discussion of tabulating collections of functions at collections

of points is naturally extended to this context. If {pi} is a set of members of
Pm, then their coefficients may be stored in an array Cijk, where Ci is the two-
dimensional array R(p)jk of coefficients for pi. As before, Φij = φi(xj) contains the
of basis functions at a set of points. Then, the jth component of vi at the point xk
is naturally given by a three-dimensional array

pi(xk)
j = Cijlφlk.

Psychologically, this is just a matrix product if Cijl is stored contiguously in gen-
eralized row-major format, and the operation is readly cast as dense matrix mul-
tiplication.

Returning for the moment to scalar-valued polynomials, linear functionals
may also be represented as Euclidean vectors. Let ℓ : P → R be a linear func-
tional. Then, for any p ∈ P ,

ℓ(p) = ℓ(R(p)iφi) = R(p)iℓ(φi),

so that ℓ acting on p is determined entirely by its action on the basis {φi}. As
with R, define R′ : P ′ → R

|P | by

R′(ℓ)i = ℓ(φi),

so that
ℓ(p) = R′(ℓ)iR(p)i.

Note that the inverse of R′ is the Banach-space adjoint of R.
Just as with evaluation, sets of linear functionals can be applied to sets of

functions via matrix multiplication. Let {ℓi}Ni=1 ⊂ P ′ and {ui}Ni=1 ⊂ P . The func-
tionals are represented by a matrix

Lij = R′(ℓi)j

and the functions by
Cij = R(ui)j

Then, evaluating all of the functionals on all of the functions is computed by the
matrix product

Aij = LikCjk, (15.3)
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or A = LCt. This is especially useful in the setting of the next section, where the
basis for the finite element spaceneeds to be expressed as a linear combination
of orthogonal polynomials.

Also, the formalism ofR′ may be generalized to functionals over vector-valued

spaces. As before, let P be a space of degree n with basis {φi}|P |
i=1 and to each

v ∈ (P )m associate the representation vi = R(v)ijφj. In this notation, v = R(v)ijφj
is the vector indexed over i. For any functional ℓ ∈ ((P )m)

′
, a representation

R′(ℓ)ij must be defined such that

ℓ(v) = R′(ℓ)ijR(v)ij,

with summation implied over i and j. To determine the representation of R′(f),
let ej be the canonical basis vector with (ej)i = δij and write

ℓ(v) = ℓ(Rijφj)

= ℓ(R(v)ijδike
kφj)

= ℓ(R(v)ije
iφj)

= R(v)ijℓ(e
iφj).

(15.4)

From this, it is seen that R′(ℓ)ij = ℓ(eiφj).
Now, let {vi}Ni=1 be a set of vector-valued polynomials and {ℓi}Mi=1 a set of linear

functionals acting on them. The polynomials may be stored by a coefficient tensor
Cijk = R(vi)jk. The functionals may be represented by a tensor Lijk = R′(ℓi)jk.
The matrix Aij = ℓi(vj) is readily computed by the contraction

Aij = LiklCjkl.

Despite having three indices, this calculation may still be performed by matrix
multiplication. Since numpy stores arrays in row-major format, a simple reshap-
ing may be performed without data motion so that A = L̃C̃t, for L̃ and C̃ reshaped
to two-dimensional arrays by combining the second and third axes.

15.4 Other polynomial spaces

Many of the complicated elements that motivate the development of a tool like
FIAT polynomial spaces that are not polynomials of some complete degree (or
vectors or tensors of such). Once a process for providing bases for such spaces is
described, the techniques of the previous section may be applied directly. Most
finite element polynomial spaces are described either by adding a few basis func-
tions to some polynomials of complete degree or else by constraining such a space
by some linear functionals.
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15.4.1 Supplemented polynomial spaces

A classic example of the first case is the Raviart-Thomas element, where the
function space of order r is

RTr = (Pr(K))d ⊕
(
P̃r(K)

)
x,

where x ∈ R
d is the coordinate vector and P̃r is the space of homogeneous poly-

nomials of degree r. Given any basis {φi} for Pr(K) such as the Dubiner basis, it
is easy to obtain a basis for (Pr(K))d by taking vectors where one component is
some φi and the rest are zero. The issue is obtaining a basis for the entire space.

Consider the case d = 2 (triangles). While monomials of the form xiyr−i span
the space of homoegeneous polynomials, they are subject to ill-conditioning in

numerical computations. On the other hand, the Dubiner basis of order r, {φi}|Pr|
i=1

may be ordered so that the last r + 1 functions, {φi}|Pr|
i=|Pr|−r

, have degree exactly

r. While they do not span P̃r, the span of {xφi}|Pr|
i=|Pr|−r

together with a basis for

(Pr(K))2 does span RTr.
So, this gives a basis for the Raviart-Thomas space that can be evaluated

and differentiated using the recurrence relations described above. A similar
technique may be used to construct elements that consist of standard elements
augmented with some kind of bubble function, such as the PEERS element of
elasticity or MINI element for Stokes flow.

15.4.2 Constrained polynomial spaces

An example of the second case is the Brezzi-Douglas-Fortin-Marini element (?).
Let E(K) be the set of dimension one cofacets ofK (edges in 2d, faces in 3d). Then
the function space is

BDFMr(K) = {u ∈ (Pr(K))d : u · n|γ ∈ Pr−1(γ), γ ∈ E(K)}

This space is naturally interpreted as taking a function space, (Pr(K))d, and
imposing linear constraints. For the case d = 2, there are exactly three such
constraints. For γ ∈ E(K), let µγ be the Legendre polynomial of degree r mapped
to γ. Then, if a function u ∈ (Pr(K))d, it is in BDFMr(K) iff

∫

γ

(u · n)µγ ds = 0

for each γ ∈ E(K).
Number the edges by {γi}3i=1 and introduce linear functionals

ℓi(u) =
∫
γi

(u · n)µγi ds. Then,

BDFMr(K) = ∩3
i=1null(ℓi).
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This may naturally be cast into linear algebra and so evaluated with LAPACK.
Following the techniques for constructing Vandermonde matrices, a constraint

matrix may be constructed. Let {φ̄i} be a basis for (Pr(K))2. Define the 3× |(Pr)|2
matrix

Cij = ℓi(φj).

Then, a basis for the null space of this matrix is constructed using the singular
value decomposition (?). The vectors of this null-space basis are readily seen to
contain the expansion coefficients of a basis for BDFMr in terms of a basis for
Pr(K)2. With this basis in hand, the nodal basis for BDFMr(K) is obtained by
constructing the generalized Vandermonde matrix.

This technique may be generalized to three dimensions, and it also applies
to Nédélec (?), Arnold-Winther (?), Mardal-Tai-Winther (?), and many other ele-
ments.

15.5 Conveying topological information to clients

Most of this chapter has provided techniques for constructing finite element
bases and evaluating and differentiating them. FIAT must also indicate which
degrees of freedom are associated with which entities of the reference element.
This information is required when local-global mappings are generated by a form
compiler such as ffc .

The topological information is provided by a graded incidence relation and is
similar to the presentation of finite element meshes in (?). Each entity in the
reference element is labeled by its topological dimension (e.g. 0 for vertices and
1 for edges), and then the entities of the same dimension are ordered by some
convention. To each entity, a list of the local nodes is associated. For example,
the reference triangle with entities labeled is shown in Figure 15.5, and the cubic
Lagrange triangle with nodes in the dual basis labeled is shown in Figure 15.5.

Figure 15.1: The reference triangle, with vertices, edges, and the face numbered.
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Figure 15.2: The cubic Lagrange triangle, with nodes in the dual basis labelled.

For this example, the graded incidence relation is stored as

{ 0: { 0: [ 0 ] ,
1: [ 1 ] ,
2: [ 2 ] } ,

1: { 0: [ 3 , 4 ] ,
1: [ 5 , 6 ] ,
2: [ 7 , 8 ] } ,

2: { 0: [ 9 ] } }

15.6 Functional evaluation

In order to construct nodal interpolants or strongly enforce boundary conditions,
FIAT also provides information to numerically evaluate linear functionals. These
rules are typically exact for a certain degree polynomial and only approximate
on general functions. For scalar functions, these rules may be represented by a
collection of points and corresponding weights {xi}, {wi} so that

ℓ(f) ≈ wif(xi).

For example, pointwise evaluation at a point x is simply represented by the
coordinates of x together with a weight of 1. If the functional is an integral
moment, such as

ℓ(f) =

∫

K

gf dx,

then the points {xi} will be those of some quadrature rule and the weights will
be wi = ωig(xi), where the ωi are the quadrature weights.

This framework is extended to support vector- and tensor-valued function
spaces, by including a component corresponding to each point and weight. If v is
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a vector-valued function and vα is its component, then functionals are written in
the form

ℓ(v) ≈ wivαi
(xi),

so that the sets of weights, components, and points must be conveyed to the
client.

This framework may also support derivative-based degrees of freedom by in-
cluding a multiindex at each point corresponding to a particular partial deriva-
tive.

15.7 Overview of fundamental class structure

Many FEniCS users will never directly use FIAT; for them, interaction will be
moderated through a form compiler such as ffc . Others will want to use the
FIAT basis functions in other contexts. At a basic level, a user will access FIAT
through top-level classes such as Lagrange and RaviartThomas that imple-
ment the elements. Typically, the class constructors accept the reference ele-
ment and order of function space as arguments. This gives an interface that is
parametrized by dimension and degree. The classes such as Lagrange derive
from a base class FiniteElement that provides access to the three components
of the Ciarlet triple.

The currently released version of FIAT stores the reference element as a flag
indicating the simplex dimension, although a development version provides an
actual class describing reference element geometry and topology. This will allow
future releases of FIAT to be parametrized over the particular reference element
shape and topology.

The function space P is modelled by the base class PolynomialSet , while
contains a rule for constructing the base polynomials φi (e.g. the Dubiner basis)
and a multidimensional array of expansion coefficients for the basis of P . Special
subclasses of this provide (possibly array-valued) orthogonal bases as well as
the rules for constructing supplemented and constrained bases. These classes
provide mechanisms for tabulating and differentiating the polynomials at input
points as well as basic queries such as the dimension of the space.

The set of finite element nodes is similarly modeled by a class DualBasis .
This provides the functionals of the dual basis as well as their connection to
the reference element facets. The functionals are modeled by a FunctionalSet
object, which is a collection of Functional objects. Each Functional object
contains a reference to the PolynomialSet over which it is defined and the
array of coefficients representing it and owns a FunctionalType class providing
the information described in the previous section. The FunctionalSet class
batches these coefficients together in a single large array.

The constructor for the FiniteElement class takes a PolynomialSet mod-
eling the starting basis and a DualBasis defined over this basis and constructs
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a new PolynomialSet by building and inverting the generalized Vandermonde
matrix.

Beyond this basic finite element structure, FIAT provides quadrature such
as Gauss-Jacobi rules in one dimension and collapsed-coordinate rules in higher
dimensions. It also provides routines for constructing lattices of points on eah of
the reference element shapes and their facets.

In the future, FIAT will include the developments discussed already (more
general reference element geometry/topology and automatic differentiation). Au-
tomatic differentiation will make it easier to construct finite elements with deriva-
tive-type degrees of freedom such as Hermite, Morley, and Argyris. Aditionally,
we hope to expand the collection of quadrature rules and provide more advanced
point distributions, such as Warburton’s warp-blend points (?).
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CHAPTER 16

Instant: Just-in-Time Compilation of C/C++ Code in

Python

By Ilmar M. Wilbers, Kent-Andre Mardal and Martin S. Alnæs

Chapter ref: [wilbers]

16.1 Introduction

Instant is a small Python module for just-in-time compilation (or inlining) of
C/C++ code based on SWIG (SWIG software package) and Distutils1. Just-in-
time compilation can significantly speed up, e.g., your NumPy (Numerical Python software package
code in a clean and readable way. This makes Instant a very convenient tool in
combination with code generation. Before we demonstrate the use of Instant
in a series of examples, we briefly step through the basic ideas behind the im-
plementation. Instant relies on SWIG for the generation of wrapper code needed
for making the C/C++ code usable from Python (Python programming language).
SWIG is a mature and well-documented tool for wrapping C/C++ code in many
languages. We refer to its website for a comprehensive user manual and we also
discuss some common tricks and troubles in Chapter ??. The code to be inlined,
in addition to the wrapper code, is then compiled into a Python extension module
(a shared library with functionality as specified by the Python C-API) by using
Distutils. To check whether the C/C++ code has changed since the last execution,
Instant computes the SHA1 sum2 of the code and compares it to the SHA1 check-
sum of the code used in the previous execution. Finally, Instant has implemented

1http://www.python.org/doc/2.5.2/lib/module-distutils.html
2http://www.apps.ietf.org/rfc/rfc3174.html
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a set of SWIG typemaps, allowing the user to transfer NumPy arrays between
the Python code and the C/C++ code.

There exist several packages that are similar to Instant. Worth mentioning
here areWeave (Weave: Tools for inlining C/C++ in Python), Cython (Cython: C-Extensions for Python
and F2PY (Peterson). Weave allows us to inline C code directly in our Python
code. Unlike Instant, Weave does not require the specification of the function
signature and the return argument. For specific examples of Weave and the other
mentioned packages, we refer to (I. M. Wilbers and H. P. Langtangen and Å. Ødegård,
2009, Weave: Tools for inlining C/C++ in Python). Weave is part of SciPy (SciPy software package
F2PY is currently part of NumPy, and is primarily intended for wrapping Fortran
code. F2PY can also be used for wrapping C code. Cython is a rather new project,
branched from themore well-known Pyrex project (Pyrex – a Language for Writing Python Extension
Cython is attractive because of its integration with NumPy arrays. Cython dif-
fers from the other projects by being a programming language of its own. Cython
extends Python with concepts such as static typing, hence allowing the user to
incrementally speed up the code.

Instant accepts plain C/C++. This makes it particularly attractive to combine
Instant with tools capable of generating C/C++ code such as FFC (see Chap-
ter 13), SFC (see Chapter 17), Swiginac (Swiginac Python interface to GiNaC),
and Sympy (Certik et al., 2009). In fact, tools like these have been the main
motivation behind Instant, and both FFC and SFC employ Instant. Instant is
released under a BSD license, see the file LICENSE in the source directory.

In this chapter we will begin with several examples in Section 16.2. Section
16.3 explains how Instant works, while Section 16.4 gives a detailed description
of the API.

16.2 Examples

All code from the examples in this section can be found online3. We will refer to
this location as $examples .

16.2.1 Installing Instant

Before trying to run the examples, you need to install Instant. The latest Instant
release can be downloaded from the FEniCS website (FEniCS). It is available
both as a source code tarball and as a Debian package. In addition, the latest
source code can be checked out using Mercurial (Mercurial software package):

hg clone http://www.fenics.org/hg/instant

3http://www.fenics.org/pub/documents/book/instant/examples
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Installing Instant from the source code is done with a regular Distutils script,
i.e,

python setup.py install

After successfully installing Instant, one can verify the installation by running
the scripts run tests.py followed by rerun tests.py in the tests -directory
of the source code. The first will run all the examples after having cleaned the
Instant cache, the second will run all examples using the compiled modules found
in the Instant cache from the previous execution.

16.2.2 Hello World

Our first example demonstrate the usage of Instant in a very simple case:

from instant import inline
c_code = r’’’
double add(double a, double b)
{

printf("Hello world! C function add is being called...\n") ;
return a+b;

}’’’
add_func = inline(c_code)
sum = add_func(3, 4.5)
print ’The sum of 3 and 4.5 is’, sum

Here Instant will wrap the C-function add into a Python extension module by
using SWIG and Distutils. The inlined function is written in standard C. SWIG
supports almost all of C and C++, including object orientation and templates.
When running this Python snippet the first time, compiling the C code takes a
few seconds. Next time we run it, however, the compilation is omitted, given that
no changes are made to the C source code.

Note that a raw string is used in this example, to avoid Python interpreting
escape sequences such as ’\n ’. Alternatively, special characters can be escaped
using a backslash.

Although Instant notifies the user when it is compiling, it might sometimes
be necessary, e.g. when debugging, to see the details of the Instant internals. We
can do this by setting the logging level before calling any other Instant functions:

from instant import output
output.set_logging_level(’DEBUG’)
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The intrinsic Python module logging is used. First, the build function ar-
guments are displayed, whereafter the different steps performed by Instant are
shown in detail, e.g whether the module is found in cache and the arguments to
the Distutils file when building the module. This example can be found in the
file $examples/ex1.py .

16.2.3 NumPy Arrays

One basic problem with wrapping C and C++ code is how to handle dynami-
cally allocated arrays. Arrays allocated dynamically are typically represented
in C/C++ by a pointer to the first element of an array and a separate integer
variable holding the array size. In Python the array variable is itself an object
contains the data array, array size, type information etc. However, a pointer in
C/C++ does not necessarily represent an array. Therefore, SWIG provides the
typemap functionality that allows the user to specify a mapping between Python
and C/C++ types. We will not go into details on typemaps in this chapter, but
the reader should be aware that it is a powerful tool that may greatly enhance
your code, but also lead to mysterious bugs when used wrongly. Typemaps are
discussed in Chapter ?? and at length at the SWIG webpage. In this chapter,
it is sufficient to illustrate how to deal with arrays in Instant using the NumPy
module. More details on how Instant NumPy arrays can be found in Section
16.3.1.

16.2.4 Ordinary Differential Equations

We introduce a solver for an ordinary differential equation (ODE) modeling blood
pressure by using a Windkessel model. The ODE is as follows:

d

dt
p(t) = BQ(t)−Ap(t), t ∈ (0, 1), (16.1)

p(0) = p0. (16.2)

Here p(t) is the blood pressure, Q(t) is the volume flux of blood, A is . . . and B is
. . .. An explicit scheme is:

pi = pi−1 + ∆t(BQi − Api−1), for i = 1, . . . , N − 1, (16.3)

p0 = p0. (16.4)

The scheme can be implemented in Python as follows using NumPy arrays:

def time_loop_py(p, Q, A, B, dt, N, p0):
p[0] = p0
for i in range(1, N):

p[i] = p[i-1] + dt * (B * Q[i] - A * p[i-1])
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The C code given as argument to the Instant function inline with numpy looks
like:

void time_loop_c(int n, double * p,
int m, double * Q,
double A, double B,
double dt, int N, double p0)

{
if ( n != m || N != m )
{

printf("n, m and N should be equal\n");
return;

}

p[0] = p0;
for (int i=1; i<n; i++)
{

p[i] = p[i-1] + dt * (B * Q[i] - A * p[i-1]);
}

}

In this example, (int n, double * p) represents an array of doubles with
length n. However, this can not be determined by the function signature:

void time_loop_C(int n, double * p, int m, double * Q, ...)

For example, double * p may be an array of lengthm or it may simply be output.
In Instant you can specify 1-dimensional arrays as follows:

time_loop_c = inline_with_numpy(c_code,
arrays = [[’n’, ’p’],

[’m’, ’Q’]])

Here we tell Instant that (int n, double * p) and (int m, double * Q)
are NumPy arrays (and Instant then employs a few typemaps). We may then
call the time loop function as follows:

time_loop_c(p, Q, 1.0, 1.0, 1.0/(N-1), N, 1.0)

In the above example we obtain a speed-up of about a factor 400 when using
100000 time steps compared to the pure Python with NumPy version, see Table
16.1. This is about the same as a pure C program. The result of solving the
ODE can be seen in Figure 16.1. The comparison between NumPy and Instant is
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Figure 16.1: Plot of pressure and blood volume flux computed by solving the
Windkessel model.

not really fair, as NumPy primarily gives a speed-up for code that can be vector-
ized, something that is not the case with our current ODE. In fact, utilizing pure
Python lists instead of NumPy arrays, reduces the speed-up to a factor 100. For
code that can be vectorized, the speed-up is about one order of magnitude when
we use Instant instead (I. M. Wilbers and H. P. Langtangen and Å. Ødegård, 2009).

N 100 1000 10000 100000 1000000
CPU time with NumPy 3.9e-4 3.9e-3 3.8e-2 3.8e-1 3.8
CPU time with Python 0.7e-4 0.7e-3 0.7e-2 0.7e-1 0.7
CPU time with Instant 5.0e-6 1.4e-5 1.0e-4 1.0e-3 1.1e-2
CPU time with C 4.0e-6 1.1e-5 1.0e-4 1.0e-3 1.1e-2

Table 16.1: CPU times of Windkessel model for different implementations (in
seconds).

The complete code for this example can be found in $examples/ex2.py

16.2.5 Numpy Arrays and OpenMP

It is easy to speed up code on parallel computers with OpenMP. We will not de-
scribe OpenMP in any detail here, the reader is referred to (OpenMP Application Program Interface
However, note that preprocessor directives like ’#pragma omp ... ’ are OpenMP
directives and that OpenMP functions start with omp. In this example, we want
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to solve a standard 2-dimensional wave equation in a heterogeneous medium
with local wave velocity k:

∂2u

∂t2
= ∇ · [k∇u] . (16.5)

We set the boundary condition to u = 0 for the whole boundary of a rectangu-
lar domain Ω = (0, 1) × (0, 1). Further, u has the initial value I(x, y) at t = 0
while ∂u/∂t = 0. We solve the wave equation using the following finite difference
scheme:

uli,j =

(
∆t

∆x

)2

[ki+ 1
2
,j(ui+1,j − ui,j)− ki− 1

2
,j(ui,j − ui−1,j)]

l−1

+

(
∆t

∆y

)2

[ki,j+ 1
2
(ui,j+1 − ui,j)− ki,j− 1

2
(ui,j − ui,j−1)]

l−1. (16.6)

Here, uli,j represents u at the grid point xi and yj at time level tl, where

xi = i∆x, i = 0, . . . , n

yi = j∆y, j = 0, . . . , m and

tl = l∆t,

Also, ki+ 1
2
,j is short for k(xi+ 1

2
, yj).

The code for calculating the next time step using OpenMP looks like:

void stencil(double dt, double dx, double dy,
int ux, int uy, double * u,
int umx, int umy, double * um,
int kx, int ky, double * k,
int upn, double * up){

#define index(u, i, j) u[(i) * m + (j)]
int i=0, j=0, m = ux, n = uy;
double hx, hy, k_c, k_ip, k_im, k_jp, k_jm;
hx = pow(dt/dx, 2);
hy = pow(dt/dy, 2);
j = 0; for (i=0; i<m; i++) index(up, i, j) = 0;
j = n-1; for (i=0; i<m; i++) index(up, i, j) = 0;
i = 0; for (j=0; j<n; j++) index(up, i, j) = 0;
i = m-1; for (j=0; j<n; j++) index(up, i, j) = 0;
#pragma omp for
for (i=1; i<m-1; i++){

for (j=1; j<n-1; j++){
k_c = index(k, i, j);
k_ip = 0.5 * (k_c + index(k, i+1, j));
k_im = 0.5 * (k_c + index(k, i-1, j));
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k_jp = 0.5 * (k_c + index(k, i, j+1));
k_jm = 0.5 * (k_c + index(k, i, j-1));
index(up, i, j) = 2 * index(u, i, j) - index(um, i, j) +

hx * (k_ip * (index(u, i+1, j) - index(u, i, j)) -
k_im * (index(u, i, j) - index(u, i-1, j))) +

hy * (k_jp * (index(u, i, j+1) - index(u, i, j)) -
k_jm * (index(u, i, j) - index(u, i, j-1)));

}
}

}

We also need to add the OpenMP header omp.h and compile with the flag -fopenmp
and link with the OpenMP shared library, e.g. libgomp.so for Linux (specified
with -lgomp ). This can be done as follows:

instant_ext = \
build_module(code=c_code,

system_headers=[’numpy/arrayobject.h’,
’omp.h’],

include_dirs=[numpy.get_include()],
init_code=’import_array();’,
cppargs=[’-fopenmp’],
lddargs=[’-lgomp’],
arrays=[[’ux’, ’uy’, ’u’],
[’umx’, ’umy’, ’um’],
[’kx’, ’ky’, ’k’],
[’upn’, ’up’, ’out’]])

Note that the arguments include headers , init code , and the first element
of system headers could have been omitted had we chosen to use inline -
module with numpy instead of build module . We could also have used inline -
with numpy, which would have returned only the function, not the whole mod-
ule. For more details, see the next section. The complete code can be found in
$examples/ex3.py . It might very well be possible to write more efficient code
for many of these examples, but the primary objective is to examplify different
Instant features.

16.3 Instant Explained

The previous section concentrated on the usage of Instant and it may appear
mysterious how it actually works since it is unclear what files that are made
during execution and where they are located. In this section we explain this.
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We will again use our first example, but this time with the keyword argument
modulename set explicitely. The file can be found under $examples/ex4.py :

from instant import inline
code = r’’’
double add(double a, double b)
{

printf("Hello world! C function add is being called...\n") ;
return a+b;

}’’’
add_func = inline(code, modulename=’ex4_cache’)
sum = add_func(3, 4.5)
print ’The sum of 3 and 4.5 is’, sum

Upon calling Instant the first time for some C/C++ code, Instant compiles this
code and stores the resulting files in a directory ex4 cache . The output from
running the code the first time is:

--- Instant: compiling ---
Hello world! C function add is being called...
The sum of 3 and 4.5 is 7.5

Next time we ask Instant to call this code, it will check if the compiled files
are available either in cache or locally, and further whether we need to rebuild
these files based on the checksum of the source files and the arguments to the
Instant function. This means that Instant will perform the compile step only

if changes are made to the source code or arguments. More details about the
different caching options can be found in Section 16.3.2.

The resulting module files can be found in a directory reflecting the name of
the module, in this case ex4 cache :

ilmarw@multiboot:˜/instant_doc/code$ cd ex4_cache/
ilmarw@multiboot:˜/instant_doc/code/ex4_cache$ ls -g
total 224
drwxr-xr-x 4 ilmarw 4096 2009-05-18 16:52 build
-rw-r--r-- 1 ilmarw 844 2009-05-18 16:52 compile.log
-rw-r--r-- 1 ilmarw 183 2009-05-18 16:52 ex4_cache-0.0.0. egg-info
-rw-r--r-- 1 ilmarw 40 2009-05-18 16:52 ex4_cache.checksu m
-rw-r--r-- 1 ilmarw 402 2009-05-18 16:53 ex4_cache.i
-rw-r--r-- 1 ilmarw 1866 2009-05-18 16:52 ex4_cache.py
-rw-r--r-- 1 ilmarw 2669 2009-05-18 16:52 ex4_cache.pyc
-rwxr-xr-x 1 ilmarw 82066 2009-05-18 16:52 _ex4_cache.so
-rw-r--r-- 1 ilmarw 94700 2009-05-18 16:52 ex4_cache_wrap .cxx
-rw-r--r-- 1 ilmarw 23 2009-05-18 16:53 __init__.py
-rw-r--r-- 1 ilmarw 448 2009-05-18 16:53 setup.py
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When building a new module, Instant creates a new directory with a number of
files. The first file it generates is the SWIG interface file, named ex4 cache.i
in this example. Then the Distutils file setup.py is generated based and ex-
ecuted. During execution, setup.py first runs SWIG in the interface file, pro-
ducing ex4 cache wrap.cxx and ex4 cache.py . The first file is then compiled
into a shared library ex4 cache.so (note the leading underscore). A file
ex4 cache-0.0.0.egg-info and a directory build will also be present as a
result of these steps. The output from executing the Distutils file is stored in
the file compile.log . Finally, a checksum file named ex4 cache.checksum is
generated, containing a checksum based on the files present in the directory. The
final step consists of moving the whole directory from its temporary location to
either cache or a user-specified directory. The init .py imports the module
ex4 cache .

The script instant-clean removes compiled modules from the Instant cache,
located in the directory .instant in the home directory of the user running it.
In addition, all Instant modules located in the temporary directory where they
were first generated and compiled. It does not clean modules located elsewhere.

The script instant-showcache allow you to see the modules currently lo-
cated in the Instant cache:

Found 1 modules in Instant cache:
test_cache
Found 1 lock files in Instant cache:
test_cache.lock

Arguments to this script will output the files matching the specified pattern, for
example will instant-showcache ’test * .i’ show the content of the SWIG
interface file for any module beginning with the letters test .

16.3.1 Arrays and Typemaps

Instant has support for converting NumPy arrays to C arrays and vice versa.
For arrays with up to three dimensions, the SWIG interface file from NumPy is
used, with a few modifications. When installing Instant, this file is included as
well. arrays should be a list, each entry containing information about a specific
array. This entry should contain a list with strings, so the arrays argument is
a nested list.

Each array (i.e. each element in arrays ) is a list containing the names of
the variables describing that array in the C code. For a 1-dimensional array, this
means the names of the variables containing the length of the array (an int ),
and the array pointer (can have several tpes, but the default is double ). For 2-
dimensional arrays we need three strings, two for the length in each dimension,
and the third for the array pointer. For 3-dimensional arrays, there will be three
variables first. This example should make things clearer
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arrays = [[’len’, ’a’],
[’len_bx’, ’len_by’, ’b’],
[’len_cx’, ’len_cy’, ’len_cz’, ’c’]]

These variables names specified reflect the variable names in the C function
signature. It is important that the order of the variables in the signature is
retained for each array, e.g. one cannot write:

c_code = """
double sum (int len_a, int len_bx, int len_by,

double * a, double * b)
{

...
}
"""

The correct code would be:

c_code = """
double sum (int len_a, double * a,

int len_bx,
int len_by, double * b)

{
...

}
"""

The order of the arrays can be changed, as long as the arguments in the Python
function are changed as well accordingly.

Data Types

Default, all arrays are assumed to be of type double , but several other types are
supported. These are float , short , int , long , long long , unsigned short ,
unsigned int , unsigned long , and unsigned long long . The type can be
specified by adding an additional element to the list describing the array, e.g.

arrays = [[’len’, ’a’, ’long’]]

It is important that there is correspondance between the type of the NumPy
array and the type in the signature of the C function. For arrays that are changed
in-place, the types have to match exactly. For arrays that are input or output
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(see next section), one has to make sure that the implicit casting is done to a
type with higher accuracy. For input arrays, the C type must be of higher (or the
same) accuracy than the NumPy array, while for output arrays the NumPy array
type must be of higher (or the same) accuracy than the C array. The NumPy
type float32 corresponds to the C type float , while float64 corresponds to
double . The NumPy type float is the same as float64 . For integer arrays,
the mapping between NumPy types and C types depends on your system. Using
long as the C type will work in most cases.

Input/Output Arrays

All arrays are assumed to be both input and output arrays, i.e. any changes
to arrays in the C code result in the NumPy array being changed in-place. For
performace purposes, this is desirable, as we avoid unecessary copying of data.
The NumPy SWIG interface file has support for both input and output arrays
in addition to changing arrays in-place. Input arrays do not need to be NumPy
arrays, but can be any type of sequence, e.g. lists and tuples. The default be-
haviour of the NumPy SWIG interface file is to create new objects for sequences
that are not NumPy arrays, while using mere pointers to the data of NumPy
arrays. Instant deviates from this behaviour by taking copies of all input data,
allowing for the modification of the array in the C code, as might be necessary
for certain applications, while retaining the array as seen from the Python code.
An array is marked as input only by adding the additional element ’in’ to the
list describing the array:

arrays = [[’len’, ’a’, ’in’]]

It is also possible to create output arrays in the C code. Instead of creating
an array in the Python code and sending it as an in-place array to the C code,
the array is created by the wrapper code and returned. If there are are multiple
output arrays or the C function has a return argument, the wrapper function
returns a tuple with the different arguments. This approach is more Python-like
than changing arrays in-place.

We only need to specify the length of the array when calling the wrapper
function. The limitation is that only 1-dimensional arrays are supported, which
means that we need to set the shape of the array manually after calling the
wrapper function. In the C code all arrays are treated as 1-dimensional, so this
does not affect the C code. An array is marked as input only by adding the
additional element ’out’ to the list describing the array. The following code
shows an example where we calculate matrix-vector multiplication x = Ab. The
matrix A is marked as input, the vector b as in-place, and the vector x as output.
The example is only meant for illustrating the use of the different array options,
and can be found in the file $examples/ex5.py . We verify that the result is
correct by using the dot product from NumPy:
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from instant import inline_with_numpy
from numpy import arange, dot

c_code = ’’’
void dot_c(int Am, int An, long * A, int bn, int * b,

int xn, double * x)
{

for (int i=0; i<Am; i++)
{

x[i] = 0;
for (int j=0; j<An; j++)
{

x[i] += A[i * Am + j] * b[j];
}

}
}
’’’
dot_c = \

inline_with_numpy(c_code,
arrays = [[’Am’, ’An’, ’A’, ’in’, ’long’],

[’bn’, ’b’, ’int’],
[’xn’, ’x’, ’out’]])

a = arange(9)
a.shape = (3, 3)
b = arange(3)

c1 = dot_c(a, b, a.shape[1])
c2 = dot(a, b)
print c1
print c2

Multi-dimensional Arrays

If one needs to work with arrays that are more than 3-dimensional, this is pos-
sible. However, the typemaps used for this employ less error checking, and can
only be used for the C type double . The list describing the array should contain
the variable name for holding the number of dimensions, the variable name for
an integer arrays holding the size in each dimension, the variable name for the
array, and the argument ’multi’ , indicating that it has more than 3 dimen-
sions. The arrays argument could for example be:
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arrays = [[’m’, ’mp’, ’ar1’, ’multi’],
[’n’, ’np’, ’ar2’, ’multi’]]

In this case, the C function signature should look like:

void sum (int m, int * mp, double * ar1, int n,
int * np, double * ar2)

In the C code, all arrays are 1-dimensional. Indexing a 3-dimensional arrays
becames rather complicated because of striding. For instance, instead of writing
u(i,j,k) we need to write u[i * ny * nz + j * ny + k] , where nx , ny , and nz
are the lengths of the array in each direction. One way of achieving a simpler
syntax is to use the #define macro in C:

#define index(u, i, j, k) u[(i) * nz * ny + (j) * ny + (k)]

which allows us to write index(u, i, j, k) instead.

16.3.2 Module name, signature, and cache

The Instant cache resides in the directory .instant in the directory of the user.
It is possible to specify a different directory, but the instant-clean script will
not remove these when executed. The three keyword arguments modulename ,
signature , and cache dir are connected. If none of them are given, the default
behaviour is to create a signature from the contents of the files and arguments
to the build module function, resulting in a name starting with instant -
module followed by a long checksum. The resulting code is copied to Instant
cache unless cache dir is set to a specific directory. Note that changing the
arguments or any of the files will result in a new directory in the Instant cache,
as the checksum no longer is the same. Before compiling a module, Instant will
always check if it is cached in both the Instant cache and in the current working
directory.

If modulename is used, the directory with the resulting code is named ac-
cordingly, but not copied to the Instant cache. Instead, it is stored in the current
working directory. Any changes to the argument or the source files will automat-
ically result in a recompilation. The argument cache dir is ignored.

When signature is given as argument, Instant uses this instead of calculat-
ing checksums. The resulting directory has the same name as the signature, pro-
vided the signature does not contain more than 100 characters containing only
letters, numbers, or a underscore. If the signature contains any of these char-
acters, the module name is generated based on the checksum of this string, re-
sulting in a module name starting with instant module followed by the check-
sum. Because the user specifies the signature herself, changes in the arguments
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or source code will not cause a recompilation. The use of signatures is primarily
intended for external software making use of Instant, e.g. SFC. Sometimes, the
code output by this software might be different from the code used previously
by Instant, without these changes affecting the result of running this code (e.g.
comments are inserted to the code). By using signatures, the external program
can decide when recompilation is necessary instead of leaving this to Instant.
Unless otherwise specified, the modules is stored in the Instant cache.

It is not possible to specify both the module name and the signature. If both
are given, Instant will issue an error.

In addition to the disk cache discussed so far, Instant also has a memory
cache. All modules used during the life-time of a program are stored in memory
for faster access. The memory cache is always checked before the disk cache.

16.3.3 Locking

Instant provides file locking functionality for cache modules. If multiple pro-
cesses are working on the same module, race conditions could potentially occur
whre two or more processes believe the module is missing from the cache and try
to write it simultaneously. To avoid race conditions, lock files were introduced.
The lock files reside in the Instant cache, and locking is only enabled for modules
that should be cached, i.e. where the module name is not given explicitely as
argument to build module or one of its wrapper functions. The first process to
reach the stage where the module is copied from its temporary location to the
Instant cache, will aquire a lock, and other processes cannot access this module
while it is being copied.

16.4 Instant API

In this section we will describe the various Instant functions and their argu-
ments visible to the user. The first ten functions are the core Instant functions,
with build module being the main one, while the next eight are wrapper func-
tions around this function. Further, there are four more helper functions avail-
able, intended for using Instant with other applications.

16.4.1 build module

This function is the most important one in Instant, and for most applications
the only one that developers need to use, combined with the existing wrapper
functions around this function. The return argument is the compiled module,
hence it can be used directly in the calling code (rather then importing it as a
Python module). It is also possible to import the module manually if compiled in
the same directory as the calling code.
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There are a number of keyword arguments, and we will explain them in detail
here. Although one of the aims of Instant is to minimize the direct interaction
with SWIG, some of the keywords require a good knowledge of SWIG in order to
make sense. In this way, Instant can be used both by programmers new to the
use of extension languages for Python, as well as by experienced SWIG program-
mers. The keywords arguments are as follows:

• modulename

– Default: None

– Type: String

– Comment: The name you want for the module. If specified, the module
will not be cached. If missing, a name will be constructed based on a
checksum of the other arguments, and the module will be placed in the
global cache. See Section 16.3.2 for more details.

• source directory

– Default: ’.’

– Type: String

– Comment: The directory where user supplied files reside. The files
given in sources , wrap headers , and local headers are expected
to exist in this directory.

• code

– Default: ’’

– Type: String

– Comment: The C or C++ code to be compiled and wrapped.

• init code

– Default: ’’

– Type: String

– Comment: Code that should be executed when the Instant module is
imported. This code is inserted in the SWIG interface file, and is used
for instance for calling import array() used for the initialization of
NumPy arrays.

• additional definitions

– Default: ’’

– Type: String
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– Comment: Additional definitions (typically needed for inheritance) for
interface file. These definitions should be given as triple-quoted strings
in the case they span multiple lines, and are placed both in the initial
block for C/C++ code (%{,%}-block), and the main section of the inter-
face file.

• additional declarations

– Default: ’’

– Type: String

– Comment: Additional declarations (typically needed for inheritance)
for interface file. These declarations should be given as triple-quoted
strings in the case they span multiple lines, and are placed in the main
section of the interface file.

• sources

– Default: []

– Type: List of strings

– Comment: Source files to compile and link with the module. These
files are compiled togehter with the SWIG-generated wrapper file into
the final library file. Should reside in directory specified in source -
directory .

• wrap headers

– Default: []

– Type: List of strings

– Comment: Local header files that should be wrapped by SWIG. The
files specified will be included both in the initial block for C/C++ code
(with a C directive) and in the main section of the interface file (with
a SWIG directive). Should reside in directory specified in source -
directory .

• local headers

– Default: []

– Type: List of strings

– Comment: Local header files required to compile the wrapped code.
The files specified will be included in the initial block for C/C++ code
(with a C directive). Should reside in directory specified in source -
directory .
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• system headers

– Default: []

– Type: List of strings

– Comment: System header files required to compile the wrapped code.
The files specified will be included in the initial block for C/C++ code
(with a C directive).

• include dirs

– Default: []

– Type: List of strings

– Comment: Directories to search for header files for building the exten-
sion module. Needs to be absolute path names.

• library dirs

– Default: []

– Type: List of strings

– Comment: Directories to search for libraries (-l ) for building the ex-
tension module. Needs to be absolute paths.

• libraries

– Default: []

– Type: List of strings

– Comment: Libraries needed by the Instant module. The libraries will
be linked in from the shared object file. The initial -l is added auto-
matically.

• swigargs

– Default: [’-c++’, ’-fcompact’, ’-O’, ’-I.’, ’-small’]

– Type: List of strings

– Comment: Arguments to swig, e.g. [’-lpointers.i’] to include the
SWIG pointers.i library.

• swig include dirs

– Default: []

– Type: List of strings

– Comment: Directories to include in the ’swig’ command.
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• cppargs

– Default: [’-O2’]

– Type: List of strings

– Comment: Arguments to the C++ compiler, other than include directo-
ries, e.g. [’-Wall’, ’-fopenmp’] .

• lddargs

– Default: []

– Type: List of strings

– Comment: Arguments to the linker, other than libraries and library
directories, e.g. [’-E’, ’-U’] .

• arrays

– Default: []

– Type: List of strings

– Comment: A nested list describing the C arrays to be made fromNumPy
arrays. The SWIG interface for fil NumPy is used. For 1D arrays,
the inner list should contain strings with the variable names for the
length of the arrays and the array itself. 2D matrices should contain
the names of the dimensions in the two directions as well as the name
of the array, and 3D tensors should contain the names of the dimen-
sions in the three directions in addition to the name of the array. If
the NumPy array har more than four dimensions, the inner list should
contain strings with variable names for the number of dimensions, the
length in each dimension as a pointer, and the array itself, respectively.
For more details, see Section 16.3.1.

• generate interface

– Default: True

– Type: Boolean

– Comment: Indicate whether you want to generate the interface files.

• generate setup

– Default: True

– Type: Boolean

– Comment: Indicate if you want to generate the setup.py file.

• signature
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– Default: None

– Type: String

– Comment: A signature string to identify the form instead of the source
code. See Section 16.3.2.

• cache dir

– Default: None

– Type: String

– Comment: A directory to look for cached modules and place new ones.
If missing, a default directory is used. Note that the module will not
be cached if modulename is specified. The cache directory should not
be used for anything else.

16.4.2 inline

The function inline creates a module given that the input is a valid C/C++ func-
tion. It is only possible to inline one C/C++ function each time. One mandatory
argument, which is the C/C++ code to be compiled.

The default keyword arguments from build module are used, with c code
as the C/C++ code given as argument to inline . These keyword argument can
be overridden, however, by giving them as arguments to inline , with the obvi-
ous exception of code . The function tries to return the single C/C++ function to
be compiled rather than the whole module, if it fails, the module is returned.

16.4.3 inline module

The same as inline , but returns the whole module rather than a single func-
tion. Except for the C/C++ code being a mandatory argument, the exact same as
build module .

16.4.4 inline with numpy

The difference between this function and the inline function is that C-arrays
can be used. This means that the necessary arguments (init code , system -
headers , and include dirs ) for converting NumPy arrays to C arrays are set
by the function.

16.4.5 inline module with numpy

The difference between this function and the inline module function is that
C-arrays can be used. This means that the necessary arguments (init code ,
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system headers , and include dirs ) for converting NumPy arrays to C arrays
are set by the function.

16.4.6 import module

This function can be used to import cached modules from the current work di-
rectory or the Instant cache. It has one mandatory argument, moduleid , and
one keyword argument cache dir . If the latter is given, Instant searches the
specified directory instead of the Instant cache, if this directory exists. If the
module is not found, None is returned. The moduleid arguments can be either
the module name, a signature, or an object with a function signature .

Using the module name or signature, assuming the module instant ext
exists in the current working directory or the Instant cache, we import a module
in the following way:

instant_ext = import_module(’instant_ext’)

Using an object as argument, assuming this object includes a function signature()
and the module is located in the directory /tmp :

instant_ext = import_module(signature_object, ’/tmp’)

The imported module, if found, is also placed in the memory cache.

16.4.7 header and libs from pkgconfig

This function returns a list of include files, flags, libraries and library directories
obtain from a pkg-config (pkg-config software package) file. It takes any num-
ber of arguments, one string for every package name. It returns four or five
arguments. Unless the keyword argument returnLinkFlags is given with the
value True , it returns lists with the include directories, the compile flags, the
libraries, and the library directories of the package names given as arguments.
If returnLinkFlags is True , the link flags are returned as a fifth list. Let’s
look at an example:

inc_dirs, comp_flags, libs, lib_dirs, link_flags = \
header_and_libs_from_pkgconfig(’ufc-1’, ’libxml-2.0’ ,

’numpy-1’,
returnLinkFlags=True)

This makes it a easy to write C code that makes use of a package providing a
pkg-config file, as we can use the returned lists for compiling and linking our
module correctly.
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16.4.8 get status output

This function provides a platform-independent way of running processes in the
terminal and extracting the output using the Python module subprocess 4. The
one mandatory argument is the command we want to run. Further, there are
three keyword arguments. The first is input , which should be a string contain-
ing input to the process once it is running. The other two are cwd and env .
We refer to the documentation of subprocess for a more detailes description of
these, but in short the first is the directory in which the process should be exe-
cuted, while the second is used for setting the necessary environment variables.

16.4.9 get swig version

Returns the SWIG version installed on the system as a string, for instance ’1.3.36’.
Accepts no arguments.

16.4.10 check swig version

Takes a single argument, which should be a string on the same format as the
output of get swig version . Returns True if the version of the installed SWIG
is equal or greater than the version passed to the function. It also has one key-
word argument, same. If it is True , the function returns True if and only if the
two versions are the same.

4http://docs.python.org/library/subprocess.html
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CHAPTER 17

SyFi: Symbolic Construction of Finite Element Basis

Functions

By Martin S. Alnæs and Kent-Andre Mardal

Chapter ref: [alnes-3]

SyFi is a C++ library for definition of finite elements based on symbolic com-
putations. By solving linear systems of equations symbolically, symbolic expres-
sions for the basis functions of a finite element can be obtained. SyFi contains a
collection of such elements.

The SyFi Form Compiler, SFC, is a Python module for generation of fi- nite
element code based on symbolic computations. Using equations in UFL format
as input and basis functions from SyFi, SFC can generate C++ code which im-
plements the UFC interface for computation of the discretized element tensors.
SFC supports generating code based on quadrature or using symbolic integration
prior to code generation to produce highly optimized code.
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CHAPTER 18

UFC: A Finite Element Code Generation Interface

By Martin S. Alnæs, Anders Logg and Kent-Andre Mardal

Chapter ref: [alnes-2]

When combining handwritten libraries with automatically generated code
like we do in FEniCS, it is important to have clear boundaries between the two.
This is best done by having the generated code implement a fixed interface, such
that the library and generated code can be as independent as possible. Such an
interface is specified in the project Unified Form-assembly Code (UFC) for finite
elements and discrete variational forms. This interface consists of a small set of
abstract classes in a single header file, which is well documented. The details
of the UFC interface should rarely be visible to the end-user, but can be im-
portant for developers and technical users to understand how FEniCS projects
fit together. In this chapter we discuss the main design ideas behind the UFC
interface, including current limitations and possible future improvements.
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CHAPTER 19

UFL: A Finite Element Form Language

By Martin Sandve Alnæs

Chapter ref: [alnes-1]

◮ Editor note: Sort out what to do with all UFL specific macros and bold math fonts.

The Unified Form Language – UFL (??) – is a domain specific language for the
declaration of finite element discretizations of variational forms and functionals.
More precisely, the language defines a flexible user interface for defining finite el-
ement spaces and expressions for weak forms in a notation close to mathematical
notation.

The FEniCS project (FEniCS, ?, ?) provides a framework for building appli-
cations for solving partial differential equations (PDEs). UFL is one of the core
components of this framework. It defines the language you express your PDEs
in. It is the input language and front-end of the form compilers FFC (??????)
and SFC (??). The UFL implementation provides algorithms that the form com-
pilers can use to simplify the compilation process. The output from these form
compilers is UFC (???) conforming C++ (?) code. This code can be used with the
C++ library DOLFIN1 (???) to efficiently assemble linear systems and compute
solution to PDEs.

The combination of domain specific languages and symbolic computing with
finite element methods has been pursued from other angles in several other
projects. Sundance (???) implements a symbolic engine directly in C++ to define
variational forms, and has support for automatic differentiation. The Life (??)
project uses a domain specific language embedded in C++, based on expression
template techniques to specify variational forms. SfePy (?) uses SymPy as a

1Note that in PyDOLFIN, some parts of UFL is wrapped to blend in with other software
components and make the compilation process hidden from the user. This is not discussed here.
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symbolic engine, extending it with finite element methods. GetDP (??) is another
project using a domain specific language for variational forms. The Mathematica
package AceGen (??) uses the symbolic capabilities of Mathematica to generate
efficient code for finite element methods. All these packages have in common a
focus on high level descriptions of partial differential equations to achive higher
human efficiency in the development of simulation software.

UFL almost resembles a library for symbolic computing, but its scope, goals
and priorities are different from generic symbolic computing projects such as
GiNaC (??), swiginac (Swiginac Python interface to GiNaC) and SymPy (?). In-
tended as a domain specific language and form compiler frontend, UFL is not
suitable for large scale symbolic computing.

This chapter is intended both for the FEniCS user who wants to learn how
to express her equations, and for other FEniCS developers and technical users
who wants to know how UFL works on the inside. Therefore, the sections of
this chapter are organized with an increasing amount of technical details. Sec-
tions 19.1-19.5 give an overview of the language as seen by the end-user and
is intended for all audiences. Sections 19.6-19.9 explain the design of the im-
plementation and dive into some implementation details. Many details of the
language has to be omitted in a text such as this, and we refer to the UFL man-
ual (?) for a more thorough description. Note that this chapter refers to UFL
version 0.3, and both the user interface and the implementation may change in
future versions.

Starting with a brief overview, we mention the main design goals for UFL and
show an example implementation of a non-trivial PDE in Section 19.1. Next we
will look at how to define finite element spaces in Section 19.2, followed by the
overall structure of forms and their declaration in Section 19.3. The main part
of the language is concerned with defining expressions from a set of data types
and operators, which are discussed in Section 19.4. Operators applying to entire
forms is the topic of Section 19.5.

The technical part of the chapter begins with Section 19.6 which discusses
the representation of expressions. Building on the notation and data structures
defined there, how to compute derivatives is discussed in Section 19.7. Some cen-
tral internal algorithms and key issues in their implementation are discussed
in Section 19.8. Implementation details, some of which are specific to the pro-
gramming language Python (Python programming language), is the topic of Sec-
tion 19.9. Finally, Section 19.10 discusses future prospects of the UFL project.

19.1 Overview

19.1.1 Design goals

UFL is a unification, refinement and reimplementation of the form languages
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used in previous versions of FFC and SFC. The development of this language
has been motivated by several factors, the most important being:

• A richer form language, especially for expressing nonlinear PDEs.

• Automatic differentiation of expressions and forms.

• Improving the performance of the form compiler technology to handle more
complicated equations efficiently.

UFL fulfils all these requirements, and by this it represents a major step forward
in the capabilities of the FEniCS project.

Tensor algebra and index notation support is modeled after the FFC form lan-
guage and generalized further. Several nonlinear operators and functions which
only SFC supported before have been included in the language. Differentiation
of expressions and forms has become an integrated part of the language, and is
much easier to use than the way these features were implemented in SFC be-
fore. In summary, UFL combines the best of FFC and SFC in one unified form
language and adds additional capabilities.

The efficiency of code generated by the new generation of form compilers
based onUFL has been verified to match previous form compiler benchmarks (??).
The form compilation process is now fast enough to blend into the regular appli-
cation build process. Complicated forms that previously required too much mem-
ory to compile, or took tens of minutes or even hours to compile, now compiles in
seconds with both SFC and FFC.

19.1.2 Motivational example

One major motivating example during the initial development of UFL has been
the equations for elasticity with large deformations. In particular, models of bi-
ological tissue use complicated hyperelastic constitutive laws with anisotropies
and strong nonlinearities. To implement these equations with FEniCS, all three
design goals listed above had to be adressed. Below, one version of the hypere-
lasticity equations and their corresponding UFL implementation is shown. Keep
in mind that this is only intended as an illustration of the close correspondence
between the form language and the natural formulation of the equations. The
meaning of equations is not necessary for the reader to understand. Note that
many other examples are distributed together with UFL.

In the formulation of the hyperelasticity equations presented here, the un-
known function is the displacement vector field u. The material coefficients c1
and c2 are scalar constants. The second Piola-Kirchoff stress tensor S is com-
puted from the strain energy function W (C). W defines the constitutive law,
here a simple Mooney-Rivlin law. The equations relating the displacement and
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stresses read:

F = I + (∇u)T ,

C = FTF,

IC = tr(C),

IIC =
1

2
(tr(C)2 − tr(CC)),

W = c1(IC − 3) + c2(IIC − 3),

S = 2
∂W

∂C
,

P = FS.

(19.1)

Approximating the displacement field as u =
∑

k ukφ
1
k, the weak forms of the

equations are as follows (ignoring boundary conditions):

L(φ0;u, c1, c2) =

∫

Ω

P : (∇φ0)T dx, (19.2)

a(φ0,φ1
k;u, c1, c2) =

∂L

∂uk
. (19.3)

Figure 19.1.2 shows an implementation of these equations in UFL. Notice the
close relation between the mathematical notation and the UFL source code. In
particular, note the automated differentiation of both the constitutive law and
the residual equation. This means a new material law can be implemented by
simply changingW , the rest is automatic. In the following sections, the notation,
definitions and operators used in this implementation are explained.

19.2 Defining finite element spaces

A polygonal cell is defined by a basic shape and a degree2, and is declared

cell = Cell(shape, degree)

UFL defines a set of valid polygonal cell shapes: “interval”, “triangle”, “tetra-
hedron”, “quadrilateral”, and “hexahedron”. Linear cells of all basic shapes are
predefined and can be used instead by writing

cell = tetrahedron

2Note that at the time of writing, the other components of FEniCS does not yet handle higher
degree cells.
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# Finite element spaces
cell = tetrahedron
element = VectorElement("CG", cell, 1)

# Form arguments
phi0 = TestFunction(element)
phi1 = TrialFunction(element)
u = Function(element)
c1 = Constant(cell)
c2 = Constant(cell)

# Deformation gradient Fij = dXi/dxj
I = Identity(cell.d)
F = I + grad(u).T

# Right Cauchy-Green strain tensor C with invariants
C = variable(F.T * F)
I_C = tr(C)
II_C = (I_C ** 2 - tr(C * C))/2

# Mooney-Rivlin constitutive law
W = c1* (I_C-3) + c2 * (II_C-3)

# Second Piola-Kirchoff stress tensor
S = 2* diff(W, C)

# Weak forms
L = inner(F * S, grad(phi0).T) * dx
a = derivative(L, u, phi1)

Figure 19.1: UFL implementation of hyperelasticity equations with a Mooney-
Rivlin material law.
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In the rest of this chapter, a variable name cell will be used where any cell
is a valid argument, to make the examples dimension independent wherever
possible.

UFL defines syntax for declaring finite element spaces, but does not know
anything about the actual polynomial basis or degrees of freedom. The poly-
nomial basis is selected implicitly by choosing among predefined basic element
families and providing a polynomial degree, but UFL only assumes that there
exists a basis with a fixed ordering for each finite element space Vh, i.e.

Vh = span {φj}nj=1 . (19.4)

Basic scalar elements can be combined to form vector elements or tensor ele-
ments, and elements can easily be combined in arbitrary mixed element hierar-
chies.

The set of predefined3 element family names in UFL includes “Lagrange”
(short name “CG”), representing scalar Lagrange finite elements (continuous
piecewise polynomial functions), “Discontinuous Lagrange” (short name “DG”),
representing scalar discontinuous Lagrange finite elements (discontinuous piece-
wise polynomial functions), and a range of other families that can be found in
the manual. Each family name has an associated short name for convenience.
To print all valid families to screen from Python, call show elements() .

The syntax for declaring elements is best explained with some examples.

cell = tetrahedron

P = FiniteElement("Lagrange", cell, 1)
V = VectorElement("Lagrange", cell, 2)
T = TensorElement("DG", cell, 0, symmetry=True)

TH = V + P
ME = MixedElement(T, V, P)

In the first line a polygonal cell is selected from the set of predefined linear cells.
Then a scalar linear Lagrange element P is declared, as well as a quadratic vector
Lagrange element V. Next a symmetric rank 2 tensor element T is defined, which
is also piecewise constant on each cell. The code pproceeds to declare a mixed
element TH, which combines the quadratic vector element V and the linear scalar
element P. This element is known as the Taylor-Hood element. Finally another
mixed element with three sub elements is declared. Note that writing T + V +
Pwould not result in a mixed element with three direct sub elements, but rather
MixedElement(MixedElement(T + V), P) .

3Form compilers can register additional element families.
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19.3 Defining forms

Consider Poisson’s equation with two different boundary conditions on ∂Ω0 and
∂Ω1,

a(v, u;w) =

∫

Ω

w∇u · ∇v dx, (19.5)

L(v; f, g, h) =

∫

Ω

fv dx+

∫

∂Ω0

g2v ds+

∫

∂Ω1

hv ds. (19.6)

These forms can be expressed in UFL as

a = dot(grad(u), grad(v)) * dx
L = f * v* dx + g ** 2* v* ds(0) + h * v* ds(1)

where multiplication by the measures dx , ds(0) and ds(1) represent the inte-
grals

∫
Ω0

(·) dx,
∫
∂Ω0

(·) ds, and
∫
∂Ω1

(·) ds respectively.
Forms expressed in UFL are intended for finite element discretization fol-

lowed by compilation to efficient code for computing the element tensor. Consid-
ering the above example, the bilinear form a with one coefficient function w is
assumed to be evaluated at a later point with a range of basis functions and the
coefficient function fixed, that is

V 1
h = span

{
φ1
k

}
, V 2

h = span
{
φ2
k

}
, V 3

h = span
{
φ3
k

}
, (19.7)

w =

|V 2
h
|∑

k=1

wkφ
3
k, {wk} given, (19.8)

Aij = a(φ1
i , φ

2
j ;w), i = 1, . . . , |V 1

h |, j = 1, . . . , |V 2
h |. (19.9)

In general, UFL is designed to express forms of the following generalized
form:

a(φ1, . . . , φr;w1, . . . , wn) =
nc∑

k=1

∫

Ωk

Ick dx+
ne∑

k=1

∫

∂Ωk

Iek ds+

ni∑

k=1

∫

Γk

I ik dS. (19.10)

Most of this chapter deals with ways to define the integrand expressions Ick, I
e
k

and I ik. The rest of the notation will be explained below.
The form arguments are divided in two groups, the basis functions φ1, . . . , φr

and the coefficient functions w1, . . . , wn. All {φk} and {wk} are functions in some
discrete function space with a basis. Note that the actual basis functions {φkj}
and the coefficients {wk} are never known to UFL, but we assume that the or-
dering of the basis for each finite element space is fixed. A fixed ordering only
matters when differentiating forms, explained in Section 19.7.

Each term of a valid form expression must be a scalar-valued expression in-
tegrated exactly once, and they must be linear in {φk}. Any term may have
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nonlinear dependencies on coefficient functions. A form with one or two basis
function arguments (r = 1, 2) is called a linear or bilinear form respectively, ig-
noring its dependency on coefficient functions. These will be assembled to vectors
and matrices when used in an application. A form depending only on coefficient
functions (r = 0) is called a functional, since it will be assembled to a real number.

The entire domain is denoted Ω, the external boundary is denoted ∂Ω, while
the set of interior facets of the triangulation is denoted Γ. Sub domains are
marked with a suffix, e.g., Ωk ⊂ Ω. As mentioned above, integration is expressed
by multiplication with a measure, and UFL defines the measures dx , ds and dS.
In summary, there are three kinds of integrals with corresponding UFL repre-
sentations

•
∫
Ωk

(·) dx↔ (·)* dx(k) , called a cell integral,

•
∫
∂Ωk

(·) ds↔ (·)* ds(k) , called an exterior facet integral,

•
∫
Γk

(·) dS ↔ (·)* dS(k) , called an interior facet integral,

Defining a different quadrature order for each term in a form can be achieved by
attaching meta data to measure objects, e.g.,

dx02 = dx(0, { "integration_order": 2 })
dx14 = dx(1, { "integration_order": 4 })
dx12 = dx(1, { "integration_order": 2 })
L = f * v* dx02 + g * v* dx14 + h * v* dx12

Meta data can also be used to override other form compiler specific options sep-
arately for each term. For more details on this feature see the manuals of UFL
and the form compilers.

19.4 Defining expressions

Most of UFL deals with how to declare expressions such as the integrand ex-
pressions in Equation 19.10. The most basic expressions are terminal values,
which do not depend on other expressions. Other expressions are called opera-
tors, which are discussed in sections 19.4.2-19.4.5.

Terminal value types in UFL include form arguments (which is the topic of
Section 19.4.1), geometric quantities, and literal constants. Among the literal
constants are scalar integer and floating point values, as well as the d by d iden-
tity matrix I = Identity(d) . To get unit vectors, simply use rows or columns
of the identity matrix, e.g., e0 = I[0,:] . Similarly, I[i,j] represents the
Dirac delta function δij (see Section 19.4.2 for details on index notation). Avail-
able geometric values are the spatial coordinates x↔ cell.x and the facet nor-
mal n↔ cell.n . The geometric dimension is available as cell.d .
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19.4.1 Form arguments

Basis functions and coefficient functions are represented by BasisFunction
and Function respectively. The ordering of the arguments to a form is decided
by the order in which the form arguments were declared in the UFL code. Each
basis function argument represents any function in the basis of its finite element
space

φj ∈ {φjk}, V j
h = span

{
φjk
}
. (19.11)

with the intention that the form is later evaluated for all φk such as in equation
(19.9). Each coefficient function w represents a discrete function in some finite
element space Vh; it is usually a sum of basis functions φk ∈ Vh with coefficients
wk

w =

|Vh|∑

k=1

wkφk. (19.12)

The exception is coefficient functions that can only be evaluated pointwise, which
are declared with a finite element with family “Quadrature”. Basis functions are
declared for an arbitrary element as in the following manner:

phi = BasisFunction(element)
v = TestFunction(element)
u = TrialFunction(element)

By using TestFunction and TrialFunction in declarations instead of Basis-
Function you can ignore their relative ordering. The only time BasisFunction
is needed is for forms of arity r > 2.

Coefficient functions are declared similarly for an arbitrary element, and
shorthand notation exists for declaring piecewise constant functions:

w = Function(element)
c = Constant(cell)
v = VectorConstant(cell)
M = TensorConstant(cell)

If a form argument u in a mixed finite element space Vh = V 0
h ×V 1

h is desired, but
the form is more easily expressed using sub functions u0 ∈ V 0

h and u1 ∈ V 1
h , you

can split the mixed function or basis function into its sub functions in a generic
way using split :

V = V0 + V1
u = Function(V)
u0, u1 = split(u)
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The split function can handle arbitrary mixed elements. Alternatively, a handy
shorthand notation for argument declaration followed by split is

v0, v1 = TestFunctions(V)
u0, u1 = TrialFunctions(V)
f0, f1 = Functions(V)

19.4.2 Index notation

UFL allows working with tensor expressions of arbitrary rank, using both tensor
algebra and index notation. A basic familiarity with tensor algebra and index
notation is assumed. The focus here is on how index notation is expressed in
UFL.

Assuming a standard orthonormal Euclidean basis 〈ek〉dk=1 for R
d, a vector can

be expressed with its scalar components in this basis. Tensors of rank two can be
expressed using their scalar components in a dyadic basis {ei⊗ej}di,j=1. Arbitrary
rank tensors can be expressed the same way, as illustrated here.

v =
d∑

k=1

vkek, (19.13)

A =

d∑

i=1

d∑

j=1

Aijei ⊗ ej, (19.14)

C =

d∑

i=1

d∑

j=1

∑

k

Cijkei ⊗ ej ⊗ ek. (19.15)

Here, v, A and C are rank 1, 2 and 3 tensors respectively. Indices are called
free if they have no assigned value, such as i in vi, and fixed if they have a fixed
value such as 1 in v1. An expression with free indices represents any expression
you can get by assigning fixed values to the indices. The expression Aij is scalar
valued, and represents any component (i, j) of the tensor A in the Euclidean ba-
sis. When working on paper, it is easy to switch between tensor notation (A)
and index notation (Aij) with the knowledge that the tensor and its components
are different representations of the same physical quantity. In a programming
language, we must express the operations mapping from tensor to scalar compo-
nents and back explicitly. Mapping from a tensor to its components, for a rank 2
tensor defined as

Aij = A : (ei ⊗ ej), (19.16)

(19.17)

252



Martin Sandve Alnæs

is accomplished using indexing with the notation A[i,j] . Defining a tensor A

from component values Aij is defined as

A = Aijei ⊗ ej , (19.18)

and is accomplished using the function as vector(Aij, (i,j)) . To illustrate,
consider the outer product of two vectors A = u ⊗ v = uivjei ⊗ ej , and the corre-
sponding scalar components Aij . One way to implement this is

A = outer(u, v)
Aij = A[i, j]

Alternatively, the components of A can be expressed directly using index nota-
tion, such as Aij = uivj. Aij can then be mapped to A in the following manner:

Aij = v[j] * u[i]
A = as_tensor(Aij, (i, j))

These two pairs of lines are mathematically equivalent, and the result of either
pair is that the variable A represents the tensor A and the variable Aij repre-
sents the tensor Aij . Note that free indices have no ordering, so their order of
appearance in the expression v[j] * u[i] is insignificant. Instead of as tensor ,
the specialized functions as vector and as matrix can be used. Although a
rank two tensor was used for the examples above, the mappings generalize to
arbitrary rank tensors.

When indexing expressions, fixed indices can also be used such as in A[0,1]
which represents a single scalar component. Fixed indices can also be mixed
with free indices such as in A[0,i] . In addition, slices can be used in place of an
index. An example of using slices is A[0,:] which is is a vector expression that
represents row 0 of A. To create new indices, you can either make a single one or
make several at once:

i = Index()
j, k, l = indices(3)

A set of indices i , j , k , l and p, q, r , s are predefined, and these should suffice
for most applications.

If your components are not represented as an expression with free indices,
but as separate unrelated scalar expressions, you can build a tensor from them
using as tensor and its peers. As an example, lets define a 2D rotation matrix
and rotate a vector expression by π

2
:

th = pi/2
A = as_matrix([[ cos(th), -sin(th)],

[ sin(th), cos(th)]])
u = A* v
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When indices are repeated in a term, summation over those indices is im-
plied in accordance with the Einstein convention. In particular, indices can be
repeated when indexing a tensor of rank two or higher (A[i,i] ), when differen-
tiating an expression with a free index (v[i].dx(i) ), or when multiplying two
expressions with shared free indices (u[i] * v[i] ).

Aii ≡
∑

i

Aii, viui ≡
∑

i

viui, vi,i ≡
∑

i

vi,i. (19.19)

An expression Aij = A[i,j] is represented internally using the Indexed
class. Aij will reference A, keeping the representation of the original tensor
expression A unchanged. Implicit summation is represented explicitly in the
expression tree using the class IndexSum . Many algorithms become easier to
implement with this explicit representation, since e.g. a Product instance can
never implicitly represent a sum. More details on representation classes are
found in Section 19.6.

19.4.3 Algebraic operators and functions

UFL defines a comprehensive set of operators that can be used for composing
expressions. The elementary algebraic operators +, - , * , / can be used between
most UFL expressions with a few limitations. Division requires a scalar expres-
sion with no free indices in the denominator. The operands to a sum must have
the same shape and set of free indices.

The multiplication operator * is valid between two scalars, a scalar and any
tensor, a matrix and a vector, and two matrices. Other products could have been
defined, but for clarity we use tensor algebra operators and index notation for
those rare cases. A product of two expressions with shared free indices implies
summation over those indices, see Section 19.4.2 for more about index notation.

Three often used operators are dot(a, b) , inner(a, b) , and outer(a,
b) . The dot product of two tensors of arbitrary rank is the sum over the last
index of the first tensor and the first index of the second tensor. Some examples
are

v · u = viui, (19.20)

A · u = Aijujei, (19.21)

A ·B = AikBkjeiej , (19.22)

C ·A = CijkAkleiejel. (19.23)

The inner product is the sum over all indices, for example

v : u = viui, (19.24)

A : B = AijBij, (19.25)

C : D = CijklDijkl. (19.26)
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Some examples of the outer product are

v⊗ u = viujeiej , (19.27)

A⊗ u = Aijukeiejek, (19.28)

A⊗B = AijBkleiejekel (19.29)

Other common tensor algebra operators are cross(u,v) , transpose(A) (or
A.T ), tr(A) , det(A) , inv(A) , cofac(A) , dev(A) , skew(A) , and sym(A) . Most
of these tensor algebra operators expect tensors without free indices. The de-
tailed definitions of these operators are found in the manual.

A set of common elementary functions operating on scalar expressions with-
out free indices are included, in particular abs(f) , pow(f, g) , sqrt(f) , exp(f) ,
ln(f) , sin(f) , cos(f) , and sign(f) .

19.4.4 Differential operators

UFL implements derivatives w.r.t. three different kinds of variables. The most
used kind is spatial derivatives. Expressions can also be differentiated w.r.t.
arbitrary user defined variables. And the final kind of derivatives are derivatives
of a form or functional w.r.t. the coefficients of a Function . Form derivatives are
explained in Section 19.5.1.

Note that derivatives are not computed immediately when declared. A dis-
cussion of how derivatives are computed is found in Section 19.7.

Spatial derivatives

Basic spatial derivatives ∂f
∂xi

can be expressed in two equivalent ways:

df = Dx(f, i)
df = f.dx(i)

Here, df represents the derivative of f in the spatial direction xi. The index i can
either be an integer, representing differentiation in one fixed spatial direction xi,
or an Index , representing differentiation in the direction of a free index. The
notation f.dx(i) is intended to mirror the index notation f,i, which is shorthand
for ∂f

∂xi
. Repeated indices imply summation, such that the divergence of a vector

can be written vi,i, or v[i].dx(i) .
Several common compound spatial derivative operators are defined, namely

div , grad , curl and rot (rot is a synonym for curl). The definition of these
operators in UFL follow from the vector of partial derivatives

∇ ≡ ek
∂

∂xk
, (19.30)
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and the definition of the dot product, outer product, and cross product. Hence,

div(C) ≡ ∇ · C, (19.31)

grad(C) ≡ ∇⊗ C, (19.32)

curl(v) ≡ ∇× v. (19.33)

Note that there are two common ways to define grad and div. This way of defining
these operators correspond to writing the convection term from, e.g., the Navier-
Stokes equations as

w · ∇u = (w · ∇)u = w · (∇u) = wiuj,i, (19.34)

which is expressed in UFL as

dot(w, grad(u))

Another illustrative example is the anisotropic diffusion term from, e.g., the bido-
main equations, which reads

(A∇u) · v = Aiju,jvi, (19.35)

and is expressed in UFL as

dot(A * grad(u), v)

In other words, the divergence sums over the first index of its operand, and the
gradient prepends an axis to the tensor shape of its operand. The above defi-
nition of curl is only valid for 3D vector expressions. For 2D vector and scalar
expressions the definitions are:

curl(u) ≡ u1,0 − u0,1, (19.36)

curl(f) ≡ f,1e0 − f,0e1. (19.37)

User defined variables

The second kind of differentiation variables are user-defined variables, which can
represent arbitrary expressions. Automating derivatives w.r.t. arbitrary quanti-
ties is useful for several tasks, from differentiation of material laws to computing
sensitivities. An arbitrary expression g can be assigned to a variable v. An ex-
pression f defined as a function of v can be differentiated f w.r.t. v:

v = g, (19.38)

f = f(v), (19.39)

h(v) =
∂f(v)

∂v
. (19.40)

Setting g = sin(x0) and f = ev
2
, gives h = 2vev

2
= 2 sin(x0)e

sin2(x0), which can be
implemented as follows:
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g = sin(cell.x[0])
v = variable(g)
f = exp(v ** 2)
h = diff(f, v)

Try running this code in a Python session and print the expressions. The result
is

>>> print v
var0(sin((x)[0]))
>>> print h
d/d[var0(sin((x)[0]))] (exp((var0(sin((x)[0]))) ** 2))

Note that the variable has a label 0 (“var0”), and that h still represents the ab-
stract derivative. Section 19.7 explains how derivatives are computed.

19.4.5 Other operators

A few operators are provided for the implementation of discontinuous Galerkin
methods. The basic concept is restricting an expression to the positive or neg-
ative side of an interior facet, which is expressed simply as v(’+’) or v(’-’)
respectively. On top of this, the operators avg and jump are implemented, de-
fined as

avg(v) =
1

2
(v+ + v−), (19.41)

jump(v) = v+ − v−. (19.42)

These operators can only be used when integrating over the interior facets (* dS).
The only control flow construct included in UFL is conditional expressions. A

conditional expression takes on one of two values depending on the result of a
boolean logic expression. The syntax for this is

f = conditional(condition, true_value, false_value)

which is interpreted as

f =

{
t, if condition is true,

f, otherwise.
(19.43)

The condition can be one of
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• lt(a, b) ↔ (a < b)

• le(a, b) ↔ (a ≤ b)

• eq(a, b) ↔ (a = b)

• gt(a, b) ↔ (a > b)

• ge(a, b) ↔ (a ≥ b)

• ne(a, b) ↔ (a 6= b)

19.5 Form operators

Once you have defined some forms, there are several ways to compute related
forms from them. While operators in the previous section are used to define ex-
pressions, the operators discussed in this section are applied to forms, producing
new forms. Form operators can both make form definitions more compact and
reduce the chances of bugs since changes in the original form will propagate to
forms computed from it automatically. These form operators can be combined
arbitrarily; given a semi-linear form only a few lines are needed to compute the
action of the adjoint of the Jacobi. Since these computations are done prior to
processing by the form compilers, there is no overhead at run-time.

19.5.1 Differentiating forms

The form operator derivative declares the derivative of a form w.r.t. coef-
ficients of a discrete function (Function ). This functionality can be used for
example to linearize your nonlinear residual equation (linear form) automati-
cally for use with the Newton-Raphson method. It can also be applied multiple
times, which is useful to derive a linear system from a convex functional, in or-
der to find the function that minimizes the functional. For non-trivial equations
such expressions can be tedious to calculate by hand. Other areas in which this
feature can be useful include optimal control and inverse methods, as well as
sensitivity analysis.

In its simplest form, the declaration of the derivative of a form L w.r.t. the
coefficients of a function w reads

a = derivative(L, w, u)

The form a depends on an additional basis function argument u, which must
be in the same finite element space as the function w. If the last argument is
omitted, a new basis function argument is created.

Let us step through an example of how to apply derivative twice to a func-
tional to derive a linear system. In the following, Vh is a finite element space
with some basis, w is a function in Vh, and f is a functional we want to minimize.
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Derived from f is a linear form F , and a bilinear form J .

Vh = span {φk} , (19.44)

w(x) =

|Vh|∑

k=1

wkφk(x), (19.45)

f : Vh → R, (19.46)

F (φi;w) =
∂

∂wi
f(w), (19.47)

J(φi, φj;w) =
∂

∂wj
F (φi;w). (19.48)

For a concrete functional f(w) =
∫
Ω

1
2
w2 dx, we can implement this as

v = TestFunction(element)
u = TrialFunction(element)
w = Function(element)
f = 0.5 * w** 2 * dx
F = derivative(f, w, v)
J = derivative(F, w, u)

This code declares two forms F and J . The linear form F represents the standard
load vector w* v* dx and the bilinear form J represents the mass matrix u* v* dx .

Derivatives can also be defined w.r.t. coefficients of a function in a mixed
finite element space. Consider the Harmonic map equations derived from the
functional

f(x, λ) =

∫

Ω

∇x : ∇x + λx · x dx, (19.49)

where x is a function in a vector finite element space V d
h and λ is a function in

a scalar finite element space Vh. The linear and bilinear forms derived from the
functional in Equation 19.49 have basis function arguments in the mixed space
V d
h + Vh. The implementation of these forms with automatic linearization reads

Vx = VectorElement("CG", triangle, 1)
Vy = FiniteElement("CG", triangle, 1)
u = Function(Vx + Vy)
x, y = split(u)
f = inner(grad(x), grad(x)) * dx + y * dot(x,x) * dx
F = derivative(f, u)
J = derivative(F, u)
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Note that the functional is expressed in terms of the subfunctions x and y , while
the argument to derivative must be the single mixed function u. In this exam-
ple the basis function arguments to derivative are omitted and thus provided
automatically in the right function spaces.

Note that in computing derivatives of forms, we have assumed that

∂

∂wk

∫

Ω

I dx =

∫

Ω

∂

∂wk
I dx, (19.50)

or in particular that the domain Ω is independent of w. Furthermore, note that
there is no restriction on the choice of element in this framework, in particular
arbitrary mixed elements are supported.

19.5.2 Adjoint

Another form operator is the adjoint a∗ of a bilinear form a, defined as a∗(u, v) =
a(v, u), which is similar to taking the transpose of the assembled sparse matrix.
In UFL this is implemented simply by swapping the test and trial functions, and
can be written:

a = inner(M * grad(u), grad(v)) * dx
ad = adjoint(a)

which corresponds to

a(M ; v, u) =

∫

Ω

(M∇u) : ∇v dx =

∫

Ω

Mikuj,kvj,i dx, (19.51)

a∗(M ; v, u) = a(M ; u, v) =

∫

Ω

(M∇v) : ∇u dx. (19.52)

This automatic transformation is particularly useful if we need the adjoint of
nonsymmetric bilinear forms computed using derivative , since the explicit ex-
pressions for a are not at hand. Several of the form operators below are most
useful when used in conjunction with derivative .

19.5.3 Replacing functions

Evaluating a form with new definitions of form arguments can be done by re-
placing terminal objects with other values. Lets say you have defined a form L
that depends on some functions f and g. You can then specialize the form by
replacing these functions with other functions or fixed values, such as

L(f, g; v) =

∫

Ω

(f 2/(2g))v dx, (19.53)

L2(f, g; v) = L(g, 3; v) =

∫

Ω

(g2/6)v dx. (19.54)

This feature is implemented with replace , as illustrated in this case:
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L = f ** 2 / (2 * g) * v * dx
L2 = replace(L, { f: g, g: 3})
L3 = g ** 2 / 6 * v * dx

Here L2 and L3 represents exactly the same form. Since they depend only on g,
the code generated for these forms can be more efficient.

19.5.4 Action

Sparse matrix-vector multiplication is an important operation in PDE solver ap-
plications. In some cases the matrix is not needed explicitly, only the action of
the matrix on a vector, the result of the matrix-vector multiplication. You can
assemble the action of the matrix on a vector directly by defining a linear form
for the action of a bilinear form on a function, simply writing L = action(a,
w) or L = a* w, with a any bilinear form and w being any Function defined on
the same finite element as the trial function in a.

19.5.5 Splitting a system

If you prefer to write your PDEs with all terms on one side such as

a(v, u)− L(v) = 0, (19.55)

you can declare forms with both linear and bilinear terms and split the equations
afterwards:

pde = u * v* dx - f * v* dx
a, L = system(pde)

Here system is used to split the PDE into its bilinear and linear parts. Alterna-
tively, lhs and rhs can be used to obtain the two parts separately.

19.5.6 Computing the sensitivity of a function

If you have found the solution u to Equation (19.55), and u depends on some
constant scalar value c, you can compute the sensitivity of u w.r.t. changes in c.
If u is represented by a coefficient vector x that is the solution to the algebraic
linear system Ax = b, the coefficients of ∂u

∂c
are ∂x

∂c
. Applying ∂

∂c
to Ax = b and

using the chain rule, we can write

A
∂x

∂c
=
∂b

∂c
− ∂A

∂c
x, (19.56)
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and thus ∂x
∂c

can be found by solving the same algebraic linear system used to
compute x, only with a different right hand side. The linear form corresponding
to the right hand side of Equation (19.56) can be written

u = Function(element)
sL = diff(L, c) - action(diff(a, c), u)

or you can use the equivalent form transformation

sL = sensitivity_rhs(a, u, L, c)

Note that the solution u must be represented by a Function , while u in a(v, u)
is represented by a BasisFunction .

19.6 Expression representation

19.6.1 The structure of an expression

Most of the UFL implementation is concerned with expressing, representing, and
manipulating expressions. To explain and reason about expression representa-
tions and algorithms operating on them, we need an abstract notation for the
structure of an expression. UFL expressions are representations of programs,
and the notation should allow us to see this connection without the burden of
implementation details.

The most basic UFL expressions are expressions with no dependencies on
other expressions, called terminals. Other expressions are the result of apply-
ing some operator to one or more existing expressions. All expressions are im-
mutable; once constructed an expression will never change. Manipulating an
expression always results in a new expression being created.

Consider an arbitrary (non-terminal) expression z. This expression depends
on a set of terminal values {ti}, and is computed using a set of operators {fi}.
If each subexpression of z is labeled with an integer, an abstract program can
be written to compute z by computing a sequence of subexpressions 〈yi〉ni=1 and
setting z = yn. Algorithm 6 shows such a program.

Algorithm 6 Program to compute an expression z

for i = 1, . . . , m:
yi = ti = terminal expression

for i = m+ 1, . . . , n:
yi = fi(〈yj〉j∈Ii

)
z = yn
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Each terminal expression yi = ti is a literal constant or input arguments to the
program. A non-terminal subexpression yi is the result of applying an operator
fi to a sequence of previously computed expressions 〈yj〉j∈Ii

, where Ii is a set of
expression labels. Note that the order in which subexpressions are computed
can be arbitrarily chosen, except that we require j < i ∀j ∈ Ii, such that all
dependencies of a subexpression yi has been computed before yi. In particular,
all terminals are numbered first in this algorithm for notational convenience
only.

The program can be represented as a graph, where each expression yi corre-
sponds to a graph vertex and each direct dependency between two expressions is
a graph edge. More formally,

G = (V,E), (19.57)

V = 〈vi〉ni=1 = 〈yi〉ni=1 , (19.58)

E = {ei} =

n⋃

i=1

{(i, j)∀j ∈ Ii} . (19.59)

This graph is clearly directed, since dependencies have a direction. It is acyclic,
since an expression can only be constructed from existing expressions and never
be modified. Thus we can say that an UFL expression represents a program, and
can be represented using a directed acyclic graph (DAG). There are two ways this
DAG can be represented in UFL, a linked representation called the expression
tree, and a linearized representation called the computational graph.

19.6.2 Tree representation

◮ Editor note: Redraw these figures in Inkscape.

An expression is usually represented as an expression tree. Each subexpres-
sion is represented by a tree node, which is the root of a tree of its own. The
leaves of the tree are terminal expressions, and operators have their operands
as children. An expression tree for the stiffness term ∇u : ∇v is illustrated in
Figure 19.3. The terminals u and v have no children, and the term ∇u is itself
represented by a tree with two nodes. The names in this figure, Grad , Inner
and BasisFunction , reflect the names of the classes used in UFL to represent
the expression nodes. Taking the gradient of an expression with grad(u) gives
an expression representation Grad(u) , and inner(a, b) gives an expression
representation Inner(a, b) . In general, each expression node is an instance
of some subclass of Expr . The class Expr is the superclass of a hierarchy con-
taining all terminal types and operator types UFL supports. Expr has two direct
subclasses, Terminal and Operator , as illustrated in Figure 19.2.

Each expression node represents a single vertex vi in the DAG. Recall from
Algorithm 6 that non-terminals are expressions yi = fi(〈yj〉j∈Ii

). The operator
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BasisFunction ... Inner ...

Expr

Terminal Operator

Figure 19.2: Expression class hierar-
chy.

Inner

Grad Grad

BasisFunction(element, 0) BasisFunction(element, 1)

Figure 19.3: Expression tree for ∇u :
∇v.

fi is represented by the class of the expression node, while the expression yi is
represented by the instance of this class. The edges of the DAG is not stored
explicitly in the tree representation. However, from an expression node repre-
senting the vertex vi, a tuple with the vertices 〈yj〉j∈Ii

can be obtained by calling
yi.operands() . These expression nodes represent the graph vertices that have
edges pointing to them from yi. Note that this generalizes to terminals where
there are no outgoing edges and t.operands() returns an empty tuple.

19.6.3 Expression node properties

Any expression node e (an Expr instance) has certain generic properties, and
the most important ones will be explained here. Above it was mentioned that
e.operands() returns a tuple with the child nodes. Any expression node can
be reconstructed with modified operands using e.reconstruct(operands) ,
where operands is a tuple of expression nodes. The invariant e.reconstruct(e.operands())
== e should always hold. This function is required because expression nodes are
immutable, they should never be modified. The immutable property ensures that
expression nodes can be reused and shared between expressions without side ef-
fects in other parts of a program.
◮ Editor note: Stick ugly text sticking out in margin.

In Section 19.4.2 the tensor algebra and index notation capabilities of UFL
was discussed. Expressions can be scalar or tensor-valued, with arbitrary rank
and shape. Therefore, each expression node has a value shape e.shape() ,
which is a tuple of integers with the dimensions in each tensor axis. Scalar ex-
pressions have shape () . Another important property is the set of free indices in
an expression, obtained as a tuple using e.free indices() . Although the free
indices have no ordering, they are represented with a tuple of Index instances
for simplicity. Thus the ordering within the tuple carries no meaning.
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UFL expressions are referentially transparent with some exceptions. Ref-
erential transparency means that a subexpression can be replaced by another
representation of its value without changing the meaning of the expression. A
key point here is that the value of an expression in this context includes the ten-
sor shape and set of free indices. Another important point is that the derivative
of a function f(v) in a point, f ′(v)|v=g, depends on function values in the vicin-
ity of v = g. The effect of this dependency is that operator types matter when
differentiating, not only the current value of the differentiation variable. In par-
ticular, a Variable cannot be replaced by the expression it represents, because
diff depends on the Variable instance and not the expression it has the value
of. Similarly, replacing a Function with some value will change the meaning of
an expression that contains derivatives w.r.t. function coefficients.

The following example illustrate this issue.

e = 0
v = variable(e)
f = sin(v)
g = diff(f, v)

Here v is a variable that takes on the value 0, but sin(v) cannot be simplified
to 0 since the derivative of f then would be 0. The correct result here is g =
cos(v) .

19.6.4 Linearized graph representation

A linearized representation of the DAG is useful for several internal algorithms,
either to achieve a more convenient formulation of an algorithm or for improved
performance. UFL includes tools to build a linearized representation of the DAG,
the computational graph, from any expression tree. The computational graph
G = V,E is a data structure based on flat arrays, directly mirroring the defini-
tion of the graph in equations (19.57)-(19.59). This simple data structure makes
some algorithms easier to implement or more efficient than the recursive tree
representation. One array (Python list) V is used to store the vertices 〈vi〉ni=1 of
the DAG. For each vertex vi an expression node yi is stored to represent it. Thus
the expression tree for each vertex is also directly available, since each expres-
sion node is the root of its own expression tree. The edges are stored in an array
E with integer tuples (i,j) representing an edge from vi to vj, i.e. that vj is an
operand of vi. The graph is built using a post-order traversal, which guarantees
that the vertices are ordered such that j < i∀j ∈ Ii.

From the edges E, related arrays can be computed efficiently; in particular
the vertex indices of dependencies of a vertex vi in both directions are useful:

Vout = 〈Ii〉ni=1 ,

Vin = 〈{j|i ∈ Ij}〉ni=1

(19.60)
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These data structures can be easily constructed for any expression:

G = Graph(expression)
V, E = G
Vin = G.Vin()
Vout = G.Vout()

A nice property of the computational graph built by UFL is that no two vertices
will represent the same identical expression. During graph building, subexpres-
sions are inserted in a hash map (Python dict) to achieve this.

Free indices in expression nodes can complicate the interpretation of the lin-
earized graph when implementing some algorithms. One solution to that can be
to apply expand indices before constructing the graph. Note however that free
indices cannot be regained after expansion.

19.6.5 Partitioning

UFL is intended as a front-end for form compilers. Since the end goal is gener-
ation of code from expressions, some utilities are provided for the code genera-
tion process. In principle, correct code can be generated for an expression from
its computational graph simply by iterating over the vertices and generating
code for each operation separately, basically mirroring Algorithm 6. However, a
good form compiler should be able to produce better code. UFL provides utili-
ties for partitioning the computational graph into subgraphs (partitions) based
on dependencies of subexpressions, which enables quadrature based form com-
pilers to easily place subexpressions inside the right sets of loops. The function
partition implements this feature. Each partition is represented by a simple
array of vertex indices.

19.7 Computing derivatives

When a derivative expression is declared by the end-user of the form language,
an expression node is constructed to represent it, but nothing is computed. The
type of this expression node is a subclass of Derivative . Differential opera-
tors cannot be expressed natively in a language such as C++. Before code can
be generated from the derivative expression, some kind of algorithm to evaluate
derivatives must be applied. Computing exact derivatives is important, which
rules out approximations by divided differences. Several alternative algorithms
exist for computing exact derivatives. All relevant algorithms are based on the
chain rule combined with differentiation rules for each expression node type. The
main differences between the algorithms are in the extent of which subexpres-
sions are reused, and in the way subexpressions are accumulated.

266



Martin Sandve Alnæs

Below, the differences and similarities between some of the simplest algo-
rithms are discussed. After the algorithm currently implemented in UFL has
been explained, extensions to tensor and index notation and higher order deriva-
tives are discussed. Finally, the section is closed with some remarks about the
differentiation rules for terminal expressions.

19.7.1 Relations to form compiler approaches

Before discussing the choice of algorithm for computing derivatives, let us con-
cider the context in which the results will be used. Although UFL does not gen-
erate code, some form compiler issues are relevant to this context.

Mixing derivative computation into the code generation strategy of each form
compiler would lead to a significant duplication of implementation effort. To
separate concerns and keep the code manageable, differentiation is implemented
as part of UFL in such a way that the form compilers are independent of the
chosen differentiation strategy. Before expressions are interpreted by a form
compiler, differential operators should be evaluated such that the only operators
left are non-differential operators4. Therefore, it is advantageous to use the same
representation for the evaluated derivative expressions and other expressions.

The properties of each differentiation algorithm is strongly related to the
structure of the expression representation. However, UFL has no control over
the final expression representation used by the form compilers. The main dif-
ference between the current form compilers is the way in which expressions are
integrated. For large classes of equations, symbolic integration or a specialized
tensor representation have proven highly efficient ways to evaluate element ten-
sors (???). However, when applied to more complex equations, the run-time per-
formance of both these approaches is beaten by code generated with quadrature
loops (??). To apply symbolic differentiation, polynomials are expanded which
destroys the structure of the expressions, gives potential exponential growth of
expression sizes, and hides opportunities for subexpression reuse. Similarly, the
tensor representation demands a canonical representation of the integral expres-
sions.

In summary, both current non-quadrature form compiler approaches change
the structure of the expressions they get from UFL. This change makes the in-
teraction between the differentiation algorithm and the form compiler approach
hard to control. However, this will only become a problem for complex equations,
in which case quadrature loop based code is more suitable. Code generation
using quadrature loops can more easily mirror the inherent structure of UFL
expressions.

4An exception is made for spatial derivatives of terminals which are unknown to UFL because
they are provided by the form compilers.
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19.7.2 Approaches to computing derivatives

Algorithms for computing derivatives are designed with different end goals in
mind. Symbolic Differentiation (SD) takes as input a single symbolic expression
and produces a new symbolic expression for the derivative of the input. Auto-
matic Differentiation (AD) takes as input a program to compute a function and
produces a new program to compute the derivative of the function. Several vari-
ants of AD algorithms exist, the two most common being Forward Mode AD and
Reverse Mode AD (?). More advanced algorithms exist, and is an active research
topic.is a symbolic expression, represented by an expression tree. But the ex-
pression tree is a directed acyclic graph that represents a program to evaluate
said expression. Thus it seems the line between SD and AD becomes less distinct
in this context.

Naively applied, SD can result in huge expressions, which can both require a
lot of memory during the computation and be highly inefficient if written to code
directly. However, some illustrations of the inefficiency of symbolic differentia-
tion, such as in (?), are based on computing closed form expressions of deriva-
tives in some stand-alone computer algebra system (CAS). Copying the resulting
large expressions directly into a computer code can lead to very inefficient code.
The compiler may not be able to detect common subexpressions, in particular
if simplification and rewriting rules in the CAS has changed the structure of
subexpressions with a potential for reuse.

In general, AD is capable of handling algorithms that SD can not. A tool for
applying AD to a generic source code must handle many complications such as
subroutines, global variables, arbitrary loops and branches (???). Since the sup-
port for program flow constructs in UFL is very limited, the AD implementation
in UFL will not run into such complications. In Section 19.7.3 the similarity
between SD and forward mode AD in the context of UFL is explained in more
detail.

19.7.3 Forward mode Automatic Differentiation

Recall Algorithm 6, which represents a program for computing an expression z
from a set of terminal values {ti} and a set of elementary operations {fi}. As-
sume for a moment that there are no differential operators among {fi}. The
algorithm can then be extended to compute the derivative dz

dv
, where v represents

a differentiation variable of any kind. This extension gives Algorithm 7.
This way of extending a program to simultaneously compute the expression

z and its derivative dz
dv

is called forward mode automatic differentiation (AD).

By renaming yi and
dyi

dv
to a new sequence of values 〈ŷj〉n̂j=1, Algorithm 7 can be

rewritten as shown in Algorithm 8, which is isomorphic to Algorithm 6 (they
have exactly the same structure).

Since the program in Algorithm 6 can be represented as a DAG, and Algo-
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Algorithm 7 Forward mode AD on Algorithm 6

for i = 1, . . . , m:
yi = ti
dyi

dv
= dti

dv

for i = m+ 1, . . . , n:
yi = fi(〈yj〉j∈Ii

)
dyi

dv
=
∑

k∈Ii

∂fi

∂yk

dyk

dv

z = yn
dz
dv

= dyn

dv

Algorithm 8 Program to compute dz
dv

produced by forward mode AD

for i = 1, . . . , m̂:
ŷi = t̂i

for i = m̂+ 1, . . . , n̂:
ŷi = f̂i(〈ŷj〉j∈Îi

)
dz
dv

= ŷn̂

rithm 8 is isomorphic to Algorithm 6, the program in Algorithm 8 can also be
represented as a DAG. Thus a program to compute dz

dv
can be represented by an

expression tree built from terminal values and non-differential operators.

The currently implemented algorithm for computing derivatives in UFL fol-
lows forward mode AD closely. Since the result is a new expression tree, the
algorithm can also be called symbolic differentiation. In this context, the differ-
ences between the two are implementation details. To ensure that we can reuse
expressions properly, simplification rules in UFL avoids modifying the operands
of an operator. Naturally repeated patterns in the expression can therefore be de-
tected easily by the form compilers. Efficient common subexpression elimination
can then be implemented by placing subexpressions in a hash map. However,
there are simplifications such as 0∗f → 0 and 1∗f → f which simplify the result
of the differentiation algorithm automatically as it is being constructed. These
simplifications are crucial for the memory use during derivative computations,
and the performance of the resulting program.

19.7.4 Extensions to tensors and indexed expressions

So far we have not considered derivatives of non-scalar expression and expres-
sions with free indices. This issue does not affect the overall algorithms, but it
does affect the local derivative rules for each expression type.

Consider the expression diff(A, B) with A and B matrix expressions. The
meaning of derivatives of tensors w.r.t. to tensors is easily defined via index
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notation, which is heavily used within the differentiation rules:

dA

dB
=
dAij
dBkl

ei ⊗ ej ⊗ ek ⊗ el (19.61)

Derivatives of subexpressions are frequently evaluated to literal constants.
For indexed expressions, it is important that free indices are propagated cor-
rectly with the derivatives. Therefore, differentiated expressions will some times
include literal constants annotated with free indices.

There is one rare and tricky corner case when an index sum binds an index i
such as in (vivi) and the derivative w.r.t. xi is attempted. The simplest example of
this is the expression (vivi),j, which has one free index j. If j is replaced by i, the
expression can still be well defined, but you would never write (vivi),i manually.
If the expression in the parenthesis is defined in a variable e = v[i] * v[i] ,
the expression e.dx(i) looks innocent. However, this will cause problems as
derivatives (including the index i) are propagated up to terminals. If this case is
encountered it will be detected and an error message will be triggered. To avoid
it, simply use different index instances. In the future, this case may be handled
by relabeling indices to change this expression into (vjvj),iui.

19.7.5 Higher order derivatives

A simple forward mode AD implementation such as Algorithm 7 only considers
one differentiation variable. Higher order or nested differential operators must
also be supported, with any combination of differentiation variables. A simple
example illustrating such an expression can be

a =
d

dx

(
d

dx
f(x) + 2

d

dy
g(x, y)

)
. (19.62)

Considerations for implementations of nested derivatives in a functional5 frame-
work have been explored in several papers (???).

In the current UFL implementation this is solved in a different fashion. Con-
sidering Equation (19.62), the approach is simply to compute the innermost
derivatives d

dx
f(x) and d

dy
g(x, y) first, and then computing the outer derivatives.

This approach is possible because the result of a derivative computation is repre-
sented as an expression tree just as any other expression. Mainly this approach
was chosen because it is simple to implement and easy to verify. Whether other
approaches are faster has not been investigated. Furthermore, alternative AD
algorithms such as reverse mode can be experimented with in the future without
concern for nested derivatives in the first implementations.

An outer controller function apply ad handles the application of a single
variable AD routine to an expression with possibly nested derivatives. The AD

5Functional as in functional languages.
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routine is a function accepting a derivative expression node and returning an
expression where the single variable derivative has been computed. This routine
can be an implementation of Algorithm 8. The result of apply ad is mathemati-
cally equivalent to the input, but with no derivative expression nodes left6.

The function apply ad works by traversing the tree recursively in post-order,
discovering subtrees where the root represents a derivative, and applying the
provided AD routine to the derivative subtree. Since the children of the deriva-
tive node has already been visited by apply ad , they are guaranteed to be free
of derivative expression nodes and the AD routine only needs to handle the case
discussed above with algorithms 7 and 8.

The complexity of the ad routine should be O(n), with n being the size of
the expression tree. The size of the derivative expression is proportional to the
original expression. If there are d derivative expression nodes in the expression
tree, the complexity of this algorithm is O(dn), since ad routine is applied to
subexpressions d times. As a result the worst case complexity of apply ad is
O(n2), but in practice d ≪ n. A recursive implementation of this algorithm is
shown in Figure 19.4.

def apply_ad(e, ad_routine):
if isinstance(e, Terminal):

return e
ops = [apply_ad(o, ad_routine) for o in e.operands()]
e = e.reconstruct( * ops)
if isinstance(e, Derivative):

e = ad_routine(e)
return e

Figure 19.4: Simple implementation of recursive apply ad procedure.

19.7.6 Basic differentiation rules

To implement the algorithm descriptions above, we must implement differenti-
ation rules for all expression node types. Derivatives of operators can be imple-
mented as generic rules independent of the differentiation variable, and these
are well known and not mentioned here. Derivatives of terminals depend on
the differentiation variable type. Derivatives of literal constants are of course
always zero, and only spatial derivatives of geometric quantities are non-zero.
Since form arguments are unknown to UFL (they are provided externally by the

form compilers), their spatial derivatives (∂φ
k

∂xi
and ∂wk

∂xi
) are considered input ar-

guments as well. In all derivative computations, the assumption is made that

6Except direct spatial derivatives of form arguments, but that is an implementation detail.
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form coefficients have no dependencies on the differentiation variable. Two more
cases needs explaining, the user defined variables and derivatives w.r.t. the coef-
ficients of a Function .

If v is a Variable , then we define dt
dv
≡ 0 for any terminal t. If v is scalar

valued then dv
dv
≡ 1. Furthermore, ifV is a tensor valued Variable , its derivative

w.r.t. itself is

dV

dV
=
dVij
dVkl

ei ⊗ ej ⊗ ek ⊗ el = δikδjlei ⊗ ej ⊗ ek ⊗ el. (19.63)

In addition, the derivative of a variable w.r.t. something else than itself equals
the derivative of the expression it represents:

v = g, (19.64)

dv

dz
=
dg

dz
. (19.65)

Finally, we consider the operator derivative , which represents differenti-
ation w.r.t. all coefficients {wk} of a function w. Consider an object element
which represents a finite element space Vh with a basis {φk}. Next consider form
arguments defined in this space:

v = BasisFunction(element)
w = Function(element)

The BasisFunction instance v represents any v ∈ {φk}, while the Function in-
stance w represents the sum

w =
∑

k

wkφk(x). (19.66)

The derivative of ww.r.t. any wk is the corresponding basis function in Vh,

∂w

∂wk
= φk, k = 1, . . . , |Vh|, (19.67)

(19.68)

which can be represented by v , since

v ∈ 〈φk〉|Vh|
k=1 =

〈
∂w

∂wk

〉|Vh|

k=1

. (19.69)

Note that v should be a basis function instance that has not already been used
in the form.
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19.8 Algorithms

In this section, some central algorithms and key implementation issues are dis-
cussed, much of which relates to the Python programming language. Thus, this
section is mainly intended for developers and others who need to relate to UFL
on a technical level.

19.8.1 Effective tree traversal in Python

Applying some action to all nodes in a tree is naturally expressed using recursion:

def walk(expression, pre_action, post_action):
pre_action(expression)
for o in expression.operands():

walk(o)
post_action(expression)

This implementation simultaneously covers pre-order traversal, where each node
is visited before its children, and post-order traversal, where each node is visited
after its children.

A more “pythonic” way to implement iteration over a collection of nodes is
using generators. A minimal implementation of this could be

def post_traversal(root):
for o in root.operands():

yield post_traversal(o)
yield root

which then enables the natural Python syntax for iteration over expression nodes:

for e in post_traversal(expression):
post_action(e)

For efficiency, the actual implementation of post traversal in UFL is not using
recursion. Function calls are very expensive in Python, which makes the non-
recursive implementation an order of magnitude faster than the above.

19.8.2 Type based function dispatch in Python

◮ Editor note: Make code fit in box.

A common task in both symbolic computing and compiler implementation is
the selection of some operation based on the type of an expression node. For a
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class ExampleFunction(MultiFunction):
def __init__(self):

MultiFunction.__init__(self)

def terminal(self, expression):
return "Got a Terminal subtype %s." % type(expression)

def operator(self, expression):
return "Got an Operator subtype %s." % type(expression)

def basis_function(self, expression):
return "Got a BasisFunction."

def sum(self, expression):
return "Got a Sum."

m = ExampleFunction()

cell = triangle
element = FiniteElement("CG", cell, 1)
x = cell.x
print m(BasisFunction(element))
print m(x)
print m(x[0] + x[1])
print m(x[0] * x[1])

Figure 19.5: Example declaration and use of a multifunction

selected few operations, this is done using overloading of functions in the sub-
classes of Expr , but this is not suitable for all operations.

In many cases type-specific operations must be implemented together in the
algorithm instead of distributed across class definitions. One way to implement
type based operation selection is to use a type switch, or a sequence of if-tests
such as this:

if isinstance(expression, IntValue):
result = int_operation(expression)

elif isinstance(expression, Sum):
result = sum_operation(expression)

# etc.

There are several problems with this approach, one of which is efficiency when
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there are many types to check. A type based function dispatch mechanism with
efficiency independent of the number of types is implemented as an alternative
through the class MultiFunction . The underlying mechanism is a dict lookup
(which is O(1)) based on the type of the input argument, followed by a call to
the function found in the dict. The lookup table is built in the MultiFunction
constructor. Functions to insert in the table are discovered automatically using
the introspection capabilites of Python.

A multifunction is declared as a subclass of MultiFunction . For each type
that should be handled particularly, a member function is declared in the sub-
class. The Expr classes use the CamelCaps naming convention, which is auto-
matically converted to underscore notation for corresponding function names,
such as BasisFunction and basis function . If a handler function is not de-
clared for a type, the closest superclass handler function is used instead. Note
that the MultiFunction implementation is specialized to types in the Expr
class hierarchy. The declaration and use of a multifunction is illustrated in Fig-
ure 19.5. Note that basis function and sumwill handle instances of the exact
types BasisFunction and Sum, while terminal and operator will handle the
types SpatialCoordinate and Product since they have no specific handlers.

19.8.3 Implementing expression transformations

Many transformations of expressions can be implemented recursively with some
type-specific operation applied to each expression node. Examples of operations
are converting an expression node to a string representation, an expression rep-
resentation using an symbolic external library, or an UFL representation with
some different properties. A simple variant of this pattern can be implemented
using a multifunction to represent the type-specific operation:

def apply(e, multifunction):
ops = [apply(o, multifunction) for o in e.operands()]
return multifunction(e, * ops)

The basic idea is as follows. Given an expression node e, begin with applying
the transformation to each child node. Then return the result of some operation
specialized according to the type of e, using the already transformed children as
input.

The Transformer class implements this pattern. Defining a new algorithm
using this pattern involves declaring a Transformer subclass, and implement-
ing the type specific operations as member functions of this class just as with
MultiFunction . The difference is that member functions take one additional
argument for each operand of the expression node. The transformed child nodes
are supplied as these additional arguments. The following code replaces termi-
nal objects with objects found in a dict mapping , and reconstructs operators with
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the transformed expression trees. The algorithm is applied to an expression by
calling the function visit , named after the similar Visitor pattern.

class Replacer(Transformer):
def __init__(self, mapping):

Transformer.__init__(self)
self.mapping = mapping

def operator(self, e, * ops):
return e.reconstruct( * ops)

def terminal(self, e):
return self.mapping.get(e, e)

f = Constant(triangle)
r = Replacer({f: f ** 2})
g = r.visit(2 * f)

After running this code the result is g = 2f 2. The actual implementation of the
replace function is similar to this code.

In some cases, child nodes should not be visited before their parent node.
This distinction is easily expressed using Transformer , simply by omitting the
member function arguments for the transformed operands. See the source code
for many examples of algorithms using this pattern.

19.8.4 Important transformations

There are many ways in which expression representations can be manipulated.
Here, we describe a few particularly important transformations. Note that each
of these algorithms removes some abstractions, and hence may remove some
opportunities for analysis or optimization.

Some operators in UFL are termed “compound” operators, meaning they can
be represented by other elementary operators. Try defining an expression e =
inner(grad(u), grad(v)) , and print repr(e) . As you will see, the repre-
sentation of e is Inner(Grad(u), Grad(v)) (with some more details for u and
v ). This way the input expressions are easier to recognize in the representation,
and rendering of expressions to for example LATEX format can show the original
compound operators as written by the end-user.

However, since many algorithms must implement actions for each operator
type, the function expand compounds is used to replace all expression nodes
of “compound” types with equivalent expressions using basic types. When this
operation is applied to the input forms from the user, algorithms in both UFL
and the form compilers can still be written purely in terms of basic operators.
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Another important transformation is expand derivatives , which applies
automatic differentiation to expressions, recursively and for all kinds of deriva-
tives. The end result is that most derivatives are evaluated, and the only deriva-
tive operator types left in the expression tree applies to terminals. The precon-
dition for this algorithm is that expand compounds has been applied.

Index notation and the IndexSum expression node type complicate inter-
pretation of an expression tree in some contexts, since free indices in its sum-
mand expression will take on multiple values. In some cases, the transformation
expand indices comes in handy, the end result of which is that there are no
free indices left in the expression. The precondition for this algorithm is that
expand compounds and expand derivatives have been applied.

19.8.5 Evaluating expressions

Even though UFL expressions are intended to be compiled by form compilers,
it can be useful to evaluate them to floating point values directly. In particular,
this makes testing and debugging of UFL much easier, and is used extensively
in the unit tests. To evaluate an UFL expression, values of form arguments and
geometric quantities must be specified. Expressions depending only on spatial
coordinates can be evaluated by passing a tuple with the coordinates to the call
operator. The following code from an interactive Python session shows the syn-
tax:

>>> cell = triangle
>>> x = cell.x
>>> e = x[0]+x[1]
>>> print e((0.5,0.7))
1.2

Other terminals can be specified using a dictionary that maps from terminal
instances to values. This code extends the above code with a mapping:

c = Constant(cell)
e = c * (x[0]+x[1])
print e((0.5,0.7), { c: 10 })

If functions and basis functions depend on the spatial coordinates, the mapping
can specify a Python callable instead of a literal constant. The callable must
take the spatial coordinates as input and return a floating point value. If the
function being mapped is a vector function, the callable must return a tuple of
values instead. These extensions can be seen in the following code:

element = VectorElement("CG", cell, 1)
f = Function(element)
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e = c * (f[0] + f[1])
def fh(x):

return (x[0], x[1])
print e((0.5,0.7), { c: 10, f: fh })

To use expression evaluation for validating that the derivative computations are
correct, spatial derivatives of form arguments can also be specified. The callable
must then take a second argument which is called with a tuple of integers spec-
ifying the spatial directions in which to differentiate. A final example code com-
puting g2 + g2

,0 + g2
,1 for g = x0x1 is shown below.

element = FiniteElement("CG", cell, 1)
g = Function(element)
e = g** 2 + g.dx(0) ** 2 + g.dx(1) ** 2
def gh(x, der=()):

if der == (): return x[0] * x[1]
if der == (0,): return x[1]
if der == (1,): return x[0]

print e((2, 3), { g: gh })

19.8.6 Viewing expressions

Expressions can be formatted in various ways for inspection, which is partic-
ularly useful while debugging. The Python built in string conversion opera-
tor str(e) provides a compact human readable string. If you type print e
in an interactive Python session, str(e) is shown. Another Python built in
string operator is repr(e) . UFL implements repr correctly such that e ==
eval(repr(e)) for any expression e. The string repr(e) reflects all the ex-
act representation types used in an expression, and can therefore be useful for
debugging. Another formatting function is tree format(e) , which produces an
indented multi-line string that shows the tree structure of an expression clearly,
as opposed to repr which can return quite long and hard to read strings. Infor-
mation about formatting of expressions as LATEX and the dot graph visualization
format can be found in the manual.

19.9 Implementation issues

19.9.1 Python as a basis for a domain specific language

Many of the implementation details detailed in this section are influenced by
the initial choice of implementing UFL as an embedded language in Python.
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Therefore some words about why Python is suitable for this, and why not, are
appropriate here.

Python provides a simple syntax that is often said to be close to pseudo-code.
This is a good starting point for a domain specific language. Object orientation
and operator overloading is well supported, and this is fundamental to the de-
sign of UFL. The functional programming features of Python (such as generator
expressions) are useful in the implementation of algorithms and form compil-
ers. The built-in data structures list , dict and set play a central role in fast
implementations of scalable algorithms.

There is one problem with operator overloading in Python, and that is the
comparison operators. The problem stems from the fact that eq or cmp are
used by the built-in data structures dict and set to compare keys, meaning that a
== b must return a boolean value for Expr to be used as keys. The result is that

eq can not be overloaded to return some Expr type representation such as
Equals(a, b) for later processing by form compilers. The other problem is that
and and or cannot be overloaded, and therefore cannot be used in conditional
expressions. There are good reasons for these design choices in Python. This
conflict is the reason for the somewhat non-intuitive design of the comparison
operators in UFL.

19.9.2 Ensuring unique form signatures

The form compilers need to compute a unique signature of each form for use in a
cache system to avoid recompilations. A convenient way to define a signature is
using repr(form) , since the definition of this in Python is eval(repr(form))
== form . Therefore repr is implemented for all Expr subclasses.

Some forms are equivalent even though their representation is not exactly
the same. UFL does not use a truly canonical form for its expressions, but takes
some measures to ensure that trivially equivalent forms are recognized as such.

Some of the types in the Expr class hierarchy (subclasses of Counted ), has
a global counter to identify the order in which they were created. This counter
is used by form arguments (both BasisFunction and Function ) to identify
their relative ordering in the argument list of the form. Other counted types are
Index and Label , which only use the counter as a unique identifier. Algorithms
are implemented for renumbering of all Counted types such that all counts start
from 0.

In addition, some operator types such as Sumand Product maintains a sorted
list of operands such that a+b and b+a are both represented as Sum(a, b) .
The numbering of indices does not affect this ordering because a renumbering of
the indices would lead to a new ordering which would lead to a different index
renumbering if applied again. The operand sorting and renumbering combined
ensure that the signature of equal forms will stay the same. To get the signature
with renumbering applied, use repr(form.form data().form) . Note that the
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representation, and thus the signature, of a form may change with versions of
UFL.

19.9.3 Efficiency considerations

By writing UFL in Python, we clearly do not put peak performance as a first pri-
ority. If the form compilation process can blend into the application build process,
the performance is sufficient. We do, however, care about scaling performance
to handle complicated equations efficiently, and therefore about the asymptotic
complexity of the algorithms we use.

To write clear and efficient algorithms in Python, it is important to use the
built in data structures correctly. These data structures include in particular
list , dict and set . CPython (Python programming language), the reference
implementation of Python, implements the data structure list as an array,
which means append, and pop, and random read or write access are all O(1)
operations. Random insertion, however, is O(n). Both dict and set are im-
plemented as hash maps, the latter simply with no value associated with the
keys. In a hash map, random read, write, insertion and deletion of items are
all O(1) operations, as long as the key types implement hash and eq effi-
ciently. Thus to enjoy efficient use of these containers, all Expr subclasses must
implement these two special functions efficiently. The dict data structure is used
extensively by the Python language, and therefore particular attention has been
given to make it efficient (?).

19.10 Future directions

Many additional features can be introduced to UFL. Which features are added
will depend on the needs of FEniCS users and developers. Some features can
be implemented in UFL alone, while other features will require updates to other
parts of the FEniCS project.

Improvements to finite element declarations is likely easy to do in UFL. The
added complexity will mostly be in the form compilers. Among the current sug-
gestions are space-time elements and related time derivatives, and enrichment of
finite element spaces. Additional geometry mappings and finite element spaces
with non-uniform cell types are also possible extensions.

Additional operators can be added to make the language more expressive.
Some operators are easy to add because their implementation only affects a small
part of the code. More compound operators that can be expressed using elemen-
tary operations is easy to add. Additional special functions are easy to add as
well, as long as their derivatives are known. Other features may require more
thorough design considerations, such as support for complex numbers which may
affect many parts of the code.
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User friendly notation and support for rapid development are core values in
the design of UFL. Having a notation close to the mathematical abstractions
allows expression of particular ideas more easily, which can reduce the proba-
bility of bugs in user code. However, the notion of metaprogramming and code
generation adds another layer of abstraction which can make understanding the
framework more difficult for end-users. Good error checks everywhere are there-
fore very important, to detect user errors as close as possible to the user input.
The error messages, documentation, and unit test suite should be improved to
help avoid frequently repeated errors and misunderstandings among new users.

Several algorithms in UFL can probably be optimized if bottlenecks are found
as more complicated applications are attempted. The focus in the development
has not been on achieving peak performance, which is not important in a tool
like UFL.

To support form compiler improvements, algorithms and utilities for generat-
ing better code more efficiently can be implemented in UFL. In this area, more
work on alternative automatic differentiation algorithms (??) can be useful. An-
other possibility for code improvement is operation scheduling, or reordering of
the vertices of a graph partition to improve the efficiency of the generated code
by better use of hardware cache and registers. Since modern C++ compilers are
quite good at optimizing low level code, the focus should be on high level opti-
mizations when considering potential code improvement in UFL and the form
compilers. At the time of writing, operation scheduling is not implemented in
UFL, and the value of implementing such an operation is an open question.
However, results from (?) indicates that a high level scheduling algorithm could
improve the efficiency of the generated code.

To summarize, UFL brings important improvements to the FEniCS frame-
work: a richer form language, automatic differentiation and improved form com-
piler efficiency. These are useful features in rapid development of applications
for efficiently solving partial differential equations. UFL improves upon the Au-
tomation of Discretization that has been the core feature of this framework, and
adds Automation of Linearization. In conclusion, UFL brings FEniCS one step
closer to its overall goal Automation of Mathematical Modeling.

19.11 Acknowledgements

This work has been supported by the Norwegian Research Council (grant 162730)
and Simula Research Laboratory. I wish to thank everyone who has helped im-
proving UFL with suggestions and testing, in particular Anders Logg, Kristian
Ølgaard, Garth Wells, and Harish Narayanan. Both Kent-André Mardal and
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CHAPTER 20

Unicorn: A Unified Continuum Mechanics Solver

By Johan Hoffman, Johan Jansson, Niclas Jansson and Murtazo Nazarov

Chapter ref: [hoffman-2]

20.1 Introduction

Unicorn is solver technology (models, methods, algorithms and software imple-
mentations) with the goal of automated simulation of realistic continuum me-
chanics applications, such as drag/lift computation for fixed or flexible objects
(fluid-structure interaction) in turbulent incompressible or compressible flow (air-
plane/bird flight, car aerodynamics). The basis for Unicorn is Unified Continuum
(UC) modeling formulated in Euler (laboratory) coordinates, together with a G2
(General Galerkin) adaptive stabilized FEM discretization with a moving mesh
for tracking the phase interfaces. The UC model consists of canonical conserva-
tion equations for mass, momentum, energy and phase over the whole domain
as one continuum, together with a Cauchy stress and phase variable as data
for defining material properties and constitutive equation. Unicorn formulates
and implements the adaptive G2 method applied to the UC model, and inter-
faces to other components in the FEniCS chain (FIAT, FFC, DOLFIN) providing
representation of finite element function spaces, weak forms and mesh, and al-
gorithms such as automated parallel assembly and linear algebra.

Unicorn as part of the FEniCS framework realizes automated computational
modeling for general continuum mechanics applications in the form of canonical
UC formulation in Euler coordinates, duality-based adaptive error control, ten-
sor assembly, time-stepping, adaptive fixed-point iteration for solving discrete

283



Unicorn: A Unified Continuum Mechanics Solver

systems, mesh adaptivity by local cell operations (split, collapse, swap) (through
MAdLib) and cell quality optimization (smoothing).

This chapter provides a description of the technology in Unicorn focusing on
simple, efficient and general algorithms and software implementation of the UC
concept and the adaptive G2 discretization. We describe how Unicorn fits into
the FEniCS framework, how it interfaces to other FEniCS components and what
interfaces and functionality Unicorn provides itself and how the implementation
is designed. We also give use case application examples in fluid-structure inter-
action and adaptivity.

For a more detailed discussion on turbulence and adaptive error control in
continuum mechanics we refer to chapter ??.

Figure 20.1: A fluid-structure example application of a flag mounted behind a
cube in turbulent flow. The fluid-structure interface, an isosurface of the pressure
and a cut of the mesh is plotted.

The Unicorn software is organized into three parts:

Library The Unicorn library publishes interfaces to and implements common
solver technology such as automated time-stepping, error estimation/adap-
tivity, mesh smoothing/adaptation interface and slip/friction boundary con-
dition.

Solver The Unicorn solver implements the G2 adaptive discretization method
for the UC model by formulating the relevant weak forms and using the
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solver technology in the library and from other components of FEniCS. Cur-
rently there are two primary solvers: incompressible fluid/solid (including
fluids-structure interaction) and compressible Euler (only fluid), where the
long term goal is a unification of the incompressible/compressible formula-
tions as well.

Applications Associated to the solver(s) are applications such as computational
experiments/benchmarks with certain geometries, coefficients and param-
eters. These are represented as stand-alone programs built on top of the
Unicorn solver/library, running in either serial or parallel (restricted to
adaptive incompressible flow currently).

Figure 20.2: Example application of adaptive computation of 3D compressible
flow around a sphere.
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Stöckli and Rodrigo Vilela de Abreu.

285



Unicorn: A Unified Continuum Mechanics Solver

Figure 20.3: Example application of 3D turbulent incompressible flow around a
cylinder with parallel adaptive computation.

20.3 Notation

We occasionally use an indexed Einstein notation with the derivative of a func-
tion f with regard to the variable x denoted as Dxf , and the derivative with re-
gard to component xi of component fj denoted as Dxi

fj = ∇fj. Repeated indices

denote a sum: Dxi
fi =

∑d
i=1Dxi

fi = ∇ · f . Similarly we can express derivatives
with respect to any variable: Duu = 1.

20.4 Unified Continuum modeling

We define a unified continuum model in a fixed Euler coordinate system consist-
ing of:

• conservation of mass

• conservation of momentum

• conservation of energy

• phase convection equation

• constitutive equations for stress as data

where the stress is the Cauchy (laboratory) stress and the phase variable is used
to define material data such as constitutive equation for the stress and material
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parameters. Note that in this continuum description the coordinate system is
fixed (Euler), and a phase function (marker) is convected according to the phase
convection equation.

We define two variants of this model: incompressible and compressible, where
a future aim is to construct a unified incompressible/compressible model and
solver.

We start with a model for conservation of mass, momentum and energy, to-
gether with a convection equation for a phase function θ over a space-time do-
main Q = Ω× [0, T ] with Ω an open domain in R3 with boundary Γ:

Dtρ+Dxj
(ujρ) = 0 (Mass conservation)

Dtmi +Dxj
(ujmi) = Dxj

σi (Momentum conservation)

Dte+Dxj
(uje) = Dxj

σiui (Energy conservation)

Dtθ +Dxj
ujθ = 0 (Phase convection equation)

(20.1)

together with initial and boundary conditions. We can then pose constitutive
relations between the constitutive (Cauchy) stress component σ and other vari-
ables such as the velocity u.

We define incompressibility as:

Dtρ+ ujDxj
ρ = 0

which together with mass and momentum conservation gives:

ρ(Dtui + ujDjui) = Dxj
σij

Dxj
uj = 0

where now the energy equation is decoupled and we can omit it.
We decompose the total stress into constitutive and forcing stresses:

Dxj
σij = Dxj

σij +Dxj
σfij = Dxj

σij + fi

Summarizing, we end up with the incompressible UC formulation:

ρ(Dtui + ujDxj
ui) = Dxj

σij + fi

Dxj
uj = 0

Dtθ +Dxj
ujθ = 0

(20.2)

The UC modeling framework is simple and compact, close to the formulation of
the original conservation equations, without mappings between coordinate sys-
tems. This allows simple manipulation and processing for error estimation and
implementation. It is also general, we can choose the constitutive equations to
model simple or complex solids and fluids, possibly both in interaction, with in-
dividual parameters.
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20.4.1 Automated computational modeling and software de-

sign

One key design choice of UC modeling is to define the Cauchy stress σ as data,
which means the conservation equations are fixed regardless of the choice of con-
stitutive equation. This gives a generality in method and software design, where
a modification of constitutive equation impacts the formulation/implementation
of the constitutive equation, but not the formulation/implementation of the con-
servation equations.

In Unicorn we choose an Euler coordinate system and moving mesh, allow-
ing a unified/canonical formulation of conservation equations. This enables au-
tomated computational modeling (with discretization and error control) for full
fluid-structure (or multi-phase) problems, rather than to one component at a
time, with unclear strategy how to combine them. We believe this is a unique
method/software system in this respect.

20.5 Space-time General Galerkin discretization

The General Galerkin (G2) method has been developed as an adaptive stabilized
finite element method for turbulent incompressible/compressible flow (Hoffman,
2005, 2006a,b, 2009, Hoffman and Johnson, 2006b, Nazarov, 2009) G2 has been
shown to be cheap, since the adaptive mesh refinement is minimizing the num-
ber of degrees of freedom, general, since there are no model parameters to fit,
and reliable, since the method is based on quantitative error control in a cho-
sen output. The G2 method has been shown to accurately compute quantities
of interest in both laminar and turbulent flow (Hoffman, 2005, 2006a,b, 2009,
Hoffman and Johnson, 2006b, Hoffman et al., 2009).

We begin by describing the standard FEM applied to the model to establish
basic notation, and proceed to describe streamline diffusion stabilization and
local ALE map over a mesh T h with mesh size h together with adaptive error
control based on duality.

20.5.1 Standard Galerkin

We begin by formulating the standard cG(1)cG(1) FEM (Eriksson et al., 1996)
with piecewise continuous linear solution in time and space for 28.5 by defin-
ing the exact solution: w = [u, p, θ], the discrete solution W = [U, P,Θ], the test
function v = [vu, vp, vθ] and the residual R(W ) = [Ru(W ), Rp(W ), Rθ(W )]:
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Ru(W ) = ρ(DtUi + UjDxj
Ui)−Dxj

Σij − fi
Rp(W ) = Dxj

Uj

Rθ(W ) = DtΘ + ujDxj
Θ

where R(w) = 0 and Σ denotes a discrete piecewise constant stress.
To determine the degrees of freedom ξ we enforce the Galerkin orthogonality

(R(W ), v) = 0, ∀v ∈ Vh where v are test functions in the space of piecewise linear
continuous functions in space and piecewise constant discontinuous functions in
time and (·, ·) denotes the space-time L2 inner product over Q. We thus have the
weak formulation:

(Ru(W ), vu) = (ρ(DtUi + UjDjUi)− fi, vui ) + (Σij , Dxj
vui )−

∫ tn

tn−1

∫

Γ

Σijv
u
i njdsdt = 0

(Rp(W ), vp) = (Dxj
Uj, v

p) = 0

(Rθ(W ), vθ) = (DtΘ + ujDxj
Θ, vθ) = 0

for all v ∈ Vh, where the boundary term on Γ arising from integration by parts
vanishes if we assume a homogenous Neumann boundary condition for the stress
Σ.

This standard finite element formulation is unstable for convection-dominated
problems and due to choosing equal order for the pressure and velocity. Thus
we cannot use the standard finite element formulation by itself but proceed to
a streamline diffusion stabilization formulation. We also describe a local ALE
discretization for handling the phase interface.

20.5.2 Local ALE

If the phase function Θ has different values on the same cell it would lead to an
undesirable diffusion of the phase interface. By introducing a local ALE coor-
dinate map (Eriksson et al., 1996) on each discrete space-time slab based on a
given mesh velocity (i.e. the material velocity of one of the phases) we can define
the phase interface at cell facets, allowing the interface to stay discontinuous.
We describe the details of the coordinate map and its influence on the FEM dis-
cretization in (Hoffman et al., 2009). The resulting discrete phase equation is:

DtΘ(x) + (U(x)− βh(x)) · ∇Θ(x) = 0 (20.3)

with βh(x) the mesh velocity.
We thus choose the mesh velocity βh to be the discrete material velocity U

in the structure part of the mesh (vertices touching structure cells) and in the
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rest of the mesh we use mesh smoothing to determine βh to maximize the mesh
quality according to a chosen objective, alternatively use local mesh modification
operations (refinement, coarsening, swapping) on the mesh to maintain the qual-
ity (Compère et al., 2009). Note that we still compute in Euler coordinates, but
with a moving mesh.

20.5.3 Streamline diffusion stabilization

For the standard FEM formulation of the model we only have stability of U but
not of spatial derivatives of U . This means the solution can be oscillatory, caus-
ing inefficiency by introducing unnecessary error. We instead choose a weighted
standard Galerkin/streamline diffusion method of the form (R(W ), v + δR(v)) =
0, ∀v ∈ Vh (see (Eriksson et al., 1996)) with δ > 0 a stabilization parameter. We
here also make a simplification where we only introduce necessary stabilization
terms and drop terms not contributing to stabilization. Although not fully consis-
tent, the streamline diffusion stabilization avoid unnecessary smearing of shear
layers as the stabilization is not based on large (≈ h−

1
2 ) cross flow derivatives).

For the UC model the stabilized method thus looks like:

(Ru(W ), vu) = (ρ(DtUi + UjDjUi)− fi, vui ) + (Σij , Dxj
vui ) + SDu(W, vu) = 0

(Rp(W ), vp) = (Dxj
Uj , v

p) + SDp(W, vp) = 0

for all v ∈ Vh, and:

SDu(W, vu) = δ1(UjDjUi, U
u
j Djv

u
i ) + δ2(Dxj

Uj , Dxj
vuj )

SDp(W, vp) = δ1(Dxi
P,Dxi

vp)

where we only include the dominating stabilization terms to reduce complex-
ity in the formulation.

20.5.4 Duality-based adaptive error control

We give a summary for illustrative purposes of the mathematical framework for
duality based error estimation in the context of the UC formulation.

We consider an equation (such as the UC) in residual form R(u) = 0. We
define a linearized operator satisfying: A(Ū)e = R(U). We can then construct an
error estimate as follows, where ψ is the quantity of interest.

It is of critical importance in science and engineering to be able to bound the
computational error e = u− U , we can phrase this as requiring that e satisfies:

|(e, ψ)| < TOL (20.4)
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We define:

(Aw, v) = (w,A∗v) (adjoint definition)

A∗φ = ψ (dual equation)

We can then express the error in terms of the residual and dual solution:

(e, ψ) = (e, A∗φ) = (Ae, φ) = (−R(U), φ) (error representation)

We note we could alternatively start from the weak formulation:

(e, ψ) = a∗(φ, e) = a(e, φ) = (−R(U), φ)

We thus have a canonical formula for the error estimate:

|(e, ψ)| ≤
∑

K

‖hR(U)‖K‖Dφ‖K =
∑

K

EK (error bound)

where EK is an error indicator on each cell K.

We can thus define an adaptive algorithm for controlling |(e, ψ)| by making
sure that U satisfies:

∑

K

EK < TOL

⇒
|(e, ψ)| < TOL

by iteratively reducing h in cells with large EK until the tolerance condition is
satisfied.

20.5.5 Unicorn/FEniCS software implementation

We implement the G2 discretization of the UC (including adaptive error con-
trol) in a general interface for time-dependent PDE where we give the forms
a(U, v) = (DUFU , v) and L(v) = (FU , v) for assembling the linear system given
by Newton’s method for a time step for the incompressible UC with Newtonian
fluid constitutive equation in figure 20.4. The language used is the FEniCS Form
Compiler (FFC) (Kirby and Logg, 2006) form notation. In the adaptive error con-
trol, we similarly represent residuals as forms in the form language, which then
allows us to compute error indicators using basic programming constructs.

An overview of the interfaces and implementations of the Unicorn data struc-
tures and algorithms are presented below.
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. . .

def ugradu (u , v ) :
return [dot (u , grad (v [i ] ) ) for i in range (d ) ]

def epsilon (u ) :
return 0.5 ∗ (grad (u ) + transp (grad (u ) ) )

def S (u , P ) :
return mult (P , Identity (d ) ) − mult (nu , grad (u ) )

def f (u , v ) :
return −dot (ugradu (Uc , Uc ) , v ) + \

dot (S (Uc , P ) , grad (v ) ) + \
−mult (d1 , dot (ugradu (Um , u ) , ugradu (Um , v ) ) ) + \
−mult (d2 , dot (div (u ) , div (v ) ) ) + \
dot (ff , v )

def dfdu (u , k , v ) :
return −dot (ugradu (Um , u ) , v ) + \

−dot (mult (nu , grad (u ) ) , grad (v ) ) + \
−mult (d1 , dot (ugradu (Um , u ) , ugradu (Um , v ) ) ) + \
−mult (d2 , dot (div (u ) , div (v ) ) )

# cG (1 )
def F (u , u0 , k , v ) :

uc = 0.5 ∗ (u + u0 )
return (−dot (u , v ) + dot (u0 , v ) + mult (k , f (u , v ) ) )

def dFdu (u , u0 , k , v ) :
uc = 0.5 ∗ u
return (−dot (u , v ) + mult ( 1 .0 ∗ k , dfdu (uc , k , v ) ) )

a = (dFdu (U1 , U0 , k , v ) ) ∗ dx
L = −F (UP , U0 , k , v ) ∗ dx

Figure 20.4: Source code for bilinear and linear forms for incompressible UC one
time step with a Newton-type method (approximation of Jacobian).

20.6 Unicorn solver

The Unicorn solver: UCSolver ties together the technology in the Unicorn li-
brary with other parts of FEniCS to expose an interface (see listing 20.5) for
simulating applications in continuum mechanics. The main part of the solver
implementation is the weak forms for the G2 discretization of the UC model (see
listing 20.4), together with forms for the stress and residuals for the error esti-
mation. Coefficients from the application are connected to the form, and then
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time-stepping is carried out by TimeDependentPDE . Certain coefficients, such
as the δ stabilization coefficients are also computed as part of the solver (not as
forms), where we aim to compute them as part of the forms. The solver computes
one iteration of the adaptive algorithm (primal solve, dual solve and mesh refine-
ment), where the adaptive loop is implemented by iteratively running the solver
for a sequence of meshes.

The UCSolver implementation is parallel, where we can show scaling on
hundreds of processes on a BlueGene L (see (Jansson, 2008)). The entire adap-
tive algorithm is parallel (including Rivara mesh refinement) and Unicorn can
simulate massively parallel applications for turbulent incompressible flow. Mesh
smoothing and adaptivity are not yet enabled in parallel (and thus no fluid-
structure interaction is possible) but this is work in progress.

A compressible variant of the UCSolver exists as the CNSSolver for adaptive
G2 for compressible Euler flow. The general method and algorithm is very close
to that of the UCSolver , aside from the incompressibility. The long term goal is
a unification of the incompressible/compressible formulations as well. We refer
to (Nazarov, 2009) for implementation details of the compressible CNSSolver .

There also exists variants of the UC solver as part of the Unicorn source
code representing older formulations of the method, or pure incompressible fluid
formulations. These are used to verify that the general UCSolver does not in-
troduce performance overhead or implementation errors.

20.7 Unicorn library classes: data types and al-

gorithms

20.7.1 Unicorn software design

We can view an adaptive simulator of continuum mechanics as the root of a tree
where each node is a technology (method/algorithm/implementation) with edges
representing dependencies. Unicorn implements the levels of the tree closest to
the root (application at the root, solver, library above), below Unicorn are other
components of FEniCS and other libraries such as MAdLib. If the technology at
the root is to produce a meaningful simulation, every technology at each node in
the tree needs to fit into the theoretical framework, be free of critical bugs, be
reasonably efficient and keep a stable interface for its parents for maintainabil-
ity. If any of the nodes fail in any of these perspectives, the simulator at the root
will likely not run at all or consist of garbage and be meaningless.

Since software engineering is a discipline where more manpower may not in-
crease productivity, but can actually decrease it (Brooks, 1995), there is a critical
need to control the complexity in the tree. To achieve this, Unicorn follows two
basic design principles:
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/ / / Unicorn G2 method implementation for the incompressible UC model
class UCSolver : public TimeDependentPDE , public MeshAdaptInterface
{
public :

/ / / Constructor : give boundary conditions , c o e f f i c i en t s , parameters
UCSolver (Function& U , Function& U0 , Function∗∗ bisect , Mesh& mesh ,

Array <BoundaryCondition∗>& bc_mom ,
Array <BoundaryCondition∗>& bc_con ,
Function∗∗ f ,
real T , real nu , real mu , real rho_f , real rho_s ,
real u_bar , TimeDependent& t , PDEData∗ pdedata ) ;

/ / / Prescribe mesh s i ze for MeshAdaptInterface
virtual void updateSizeField ( ) ;

/ / / Al locate / deal locate PDE data for dynamic mesh adapt iv i ty (MeshAdaptInterface )
virtual void allocateAndComputeData ( ) ;
virtual void deallocateData ( ) ;

/ / / Compute mesh vertex coordinates and ve loc i ty
void computeX ( ) ;
void computeW ( ) ;

/ / / Compute density , pressure , s tress
void computeRho ( ) ;
void computeP ( ) ;
void computeStress ( ) ;

/ / Compute i n i t i a l theta by ei ther a given xml f i l e or a b i sec t function
void computeTheta0 ( ) ;

/ / / From TimeDependentPDE : time−stepping control
void shift ( ) ;
void preparestep ( ) ;
bool update (real t , bool end ) ;

/ / / From TimeDependentPDE : computeW , Um, Wm, Stabi l izat ion , computeP , computeB
void prepareiteration ( ) ;

/ / / Assemble time step res idual (L ) / r ight hand side of Newton
void rhs (const Vector& x , Vector& dotx , real T ) ;

/ / / Compute i n i t i a l value
void u0 (Vector& x ) ;

/ / / Save solut ion / output quant i t ies
void save (Function& U , real t ) ;

/ / / Compute least−squares s t ab i l i z a t i on parameter ( delta )
void computeStabilization(Mesh& mesh , Function& w ,

real nu , real k , real t ,
Vector& d1vector , Vector& d2vector ) ;

/ / / Deform /move mesh
void deform (Mesh& mesh , Function& W , Function& W0 ) ;

/ / / Smooth / optimize qual i ty of a l l or part of the mesh
void smoothMesh (bool bAdaptive ) ;

}

Figure 20.5: C++ class interface for the Unicorn solver: UCSolver.
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(v1 , v2 , v3 ) = TestFunctions (TH ) # t es t basis function
(rho , m , e ) = TrialFunctions(TH ) # t r i a l basis function
(rho0 , m0 , e0 ) = Functions (TH ) # solut ion from previous time step
. . .
# S pre f i x denotes s t ab i l i z a t i on : a1 a i s Galerkin , S1 a i s s t ab i l i z a t i on

# Bi l inear form for density
a1_a = v1∗rho∗dx − k∗0.5∗dot (grad (v1 ) ,u )∗rho∗dx + \

k∗0.5∗v1∗rho∗udotnormal∗ds
S1_a = k∗0.5∗delta∗dot (grad (v1 ) ,U )∗dot (U , grad (rho ) )∗dx + \

k∗0.5∗nu_rho∗dot (grad (v1 ) ,grad (rho ) )∗dx

# Linear form for the density
a1_L = v1∗rho0∗dx + k∗0.5∗dot (grad (v1 ) ,u )∗rho0∗dx − \

k∗0.5∗v1∗rho0∗udotnormal∗ds
S1_L = − k∗0.5∗delta∗dot (grad (v1 ) ,U)∗dot (U , grad (rho0 ) )∗dx − \

k∗0.5∗nu_rho∗dot (grad (v1 ) ,grad (rho0 ) )∗dx

a2_a , S2_a , a2_L , S2_L = 0 , 0 , 0 , 0

for i in range (0 , d ) :
# Bi l inear form for momentum m i
a2_a += v2 [i ]∗m [i ]∗dx − k∗0.5∗dot (grad (v2 [i ] ) ,u )∗m [i ]∗dx + \

k∗0.5∗v2 [i ]∗m [i ]∗udotnormal∗ds
S2_a += k∗0.5∗delta∗dot (grad (v2 [i ] ) ,U )∗dot (U , grad (m [i ] ) ) ∗dx + \

k∗0.5∗nu_m [i ]∗dot (grad (v2 [i ] ) ,grad (m [i ] ) ) ∗dx

# Linear form for the momentum
a2_L += v2 [i ]∗m0 [i]∗dx + k∗0.5∗dot (grad (v2 [i ] ) ,u )∗m0 [i ]∗dx + \

k∗v2 [i ] . dx (i )∗P∗dx − k∗0.5∗v2 [i ]∗m0 [i ]∗udotnormal∗ds
S2_L += −k∗0.5∗delta∗dot (grad (v2 [i ] ) ,U)∗dot (U , grad (m0 [i ] ) ) ∗dx − \

k∗0.5∗nu_m [i ]∗dot (grad (v2 [i ] ) ,grad (m0 [i ] ) ) ∗dx

# Bi l inear form for energy
a3_a = v3∗e∗dx − k∗0.5∗dot (grad (v3 ) ,u )∗e∗dx + k∗0.5∗v3∗e∗udotnormal∗ds
S3_a = k∗0.5∗delta∗dot (grad (v3 ) ,U )∗dot (U , grad (e ) )∗dx + \

k∗0.5∗nu_e∗dot (grad (v3 ) ,grad (e ) )∗dx

# Linear form for energy
a3_L = v3∗e0∗dx + k∗0.5∗dot (grad (v3 ) ,u )∗e0∗dx + k∗dot (grad (v3 ) ,u )∗P∗dx − \

k∗0.5∗v3∗e0∗udotnormal∗ds
S3_L = − k∗0.5∗delta∗dot (grad (v3 ) ,U)∗dot (U ,grad (e0 ) )∗dx − \

k∗0.5∗nu_e∗dot (grad (v3 ) ,grad (e0 ) )∗dx

# Weak form of G2 for the Euler equations :
a = a1_a + S1_a + a2_a + S2_a + a3_a + S3_a
L = a1_L + S1_L + a2_L + S2_L + a3_L + S3_L

Figure 20.6: Source code for bilinear and linear forms for G2 for compressible
Euler one time step with a Picard fixed-point iteration.

Prioritize simplicity of interfaces and implementation

We can rephrase this as the KISS principle: Keep It Simple and Stupid

Avoid premature optimization

“Premature optimization is the root of all evil” (Donald Knuth)]

Together, these two principles enforce generality and understandability of in-
terfaces and implementations. Unicorn re-uses other existing implementations
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and chooses straightforward, sufficiently efficient (optimize bottlenecks) stan-
dard algorithms for solving problems. This leads to small, simple and maintain-
able implementations. High performance is achieved by reducing the computa-
tional load on the method level (adaptivity and fixed-point iteration).

20.7.2 Unicorn classes/interfaces

Unicorn consists of key concepts abstracted in the following classes/interfaces:

TimeDependentPDE : time-stepping

In each time-step a non-linear algebraic system is solved by fixed-point it-
eration.

ErrorEstimate : adaptive error control

The adaptive algorithm is based on computing local error indicators of the
form ǫK = ‖hR(U)‖K‖Dφ‖K.

SpaceTimeFunction : space-time coefficient

Storage and evaluation of a space-time function/coefficient.

SlipBC : friction boundary condition

Efficient computation of turbulent flow in Unicorn is based on modeling of
turbulent boundary layers by a friction model, where the normal condition:
u · n = 0, x ∈ Γ, is implemented as a strong boundary condition in the
algebraic system.

ElasticSmoother : elastic mesh smoothing/optimization

Optimization of cell quality according to an elastic analogy.

MeshAdaptInterface : mesh adaptation interface

Abstraction of the interface to the MAdLib package for mesh adaptation
using local mesh operations.

20.7.3 TimeDependentPDE

We consider time-dependent equations of the type f(u) = −Dtu+g(u) = 0 where g
can include differential operators in space, where specifically the UC model is of
this type. In weak form the equation type looks like(f(u), v) = (−Dtu+ g(u), v) =
0, possibly with partial integration of terms

We want to define a class (datatype and algorithms) abstracting the time-
stepping of the G2 method, where we want to give the equation (possibly in weak
form) as input and generate the time-stepping automatically. cG(1)cG(1) (Crank-
Nicolson-type discretization in time) gives the equation for the (possibly non-
linear) algebraic system F (U) (in Python notation):
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# cG (1 )
def F (u , u0 , k , v ) :

uc = 0.5 ∗ (u + u0 )
return (−dot (u , v ) + dot (u0 , v ) + mult (k , g (uc , v ) ) )

With v: ∀v ∈ Vh generating the equation system.
We solve this system by Newton-type fixed-point iteration:

(F ′(UP )U1, v) = (F ′(UP )− F (UP ), v) (20.5)

where UP denotes the value in the previous iterate and F ′ = DUF the Ja-
cobian matrix or an approximation. Note that the choice of F ′ only affects the
convergence of the fixed-point iteration, and does not introduce approximation
error.

We define the bilinear form a(U, v) and linear form L(v) corresponding to the
left and right hand sides respectively (in Python notation):

def dFdu (u , u0 , k , v ) :
uc = 0.5 ∗ u
return (−dot (u , v ) + mult (k , dgdu (uc , k , v ) ) )

a = (dFdu (U , U0 , k , v ) ) ∗ dx
L = (dFdu (UP , U0 , k , v ) − F (UP , U0 , k , v ) ) ∗ dx

Thus, in each time step we need to solve the system given in eq. 20.5 by
fixed-point iteration by repeatedly computing a and L, solving a linear system
and updating U .

We now encapsulate this in a C++ class interface in fig. 20.7 which we call
TimeDependentPDE where we give a and L, an end time T , a mesh (defining Vh)
and boundary conditions.

The skeleton of the time-stepping with fixed-point iteration is implemented
in listing 20.7.3.

To simplify the discussion, we consider Newton’s method as a linearization of
the continuum model, where we then compute the discretization of each succes-
sive iteration. A more general formulation would be to compute Newton’s method
of the discretization. For many cases this would be equivalent formulations, since
DU(F (U), v) = (DUF (U), v), but for a stabilized method these formulations may
not be the same.

We use a block-diagonal Newton method, where we start by formulating the
full Newton method and then drop terms. We also use the constitutive law as an
identity to remove instability caused by iterating between σ and U . We formulate
Newton’s method for the system F (X) = (Fu(X), Fσ(X), Fp(X))⊤ = 0, with X =
(U, σ, P )⊤, where the three components are decoupled.

See (Jansson, 2009) for a dicussion about the efficiency of the fixed-point iter-
ation and its implementation.
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/ / / Represent and solve time dependent PDE.
class TimeDependentPDE
{
/ / / Public in te r face
public :

TimeDependentPDE(
/ / Computational mesh
Mesh& mesh ,
/ / Bil inear form for Jacobian approx .
Form& a ,
/ / Linear form for time−step residual
Form& L ,
/ / List o f boundary condit ions
Array <BoundaryCondition∗>& bcs ,
/ / End time
real T ) ;

/ / / Solve PDE
virtual uint solve ( ) ;

protected :
/ / / Compute i n i t i a l value
virtual void u0 (Vector& u ) ;
/ / / Called before each time step
virtual void preparestep ( ) ;
/ / / Called before each fixed−point i te rat ion
virtual void prepareiteration ( ) ;
/ / / Return the b i l inear form a
Form& a ( ) ;
/ / / Return the l inear form L
Form& L ( ) ;
/ / / Return the mesh
Mesh& mesh ( ) ;

} ;

Figure 20.7: C++ class interface for TimeDependentPDE.

20.7.4 ErrorEstimate

The duality-based adaptive error control algorithm requires the following primi-
tives:

Residual computation We compute the mean-value in each cell of the contin-
uous residual R(U) = f(U) = −DtU + g(U), this is computed as the L2-
projection into the space of piecewise constants Wh: (R(U), v) = (−DtU +
g(U), v), ∀v ∈ Wh (the mean value in each cell) as a form representing the
continuous residual.

Dual solution We compute the solution of the dual problem using the same
technology as the primal problem. The dual problem is solved backward
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void TimeDependentPDE : : solve ( )
{

/ / Time−stepping
while (t < T )
{
U = U0 ;
preparestep ( ) ;
step ( ) ;

}
}

void TimeDependentPDE : : step ( )
{

/ / Fixed−point i te rat ion
for ( int iter = 0; iter < maxiter ; iter++)
{
prepareiteration ( ) ;
step_residual = iter ( ) ;

if (step_residual < tol )
{

/ / I te rat ion converged
break ;

}
}

}

void TimeDependentPDE : : iter ( )
{

/ / Compute one f ixed−point i te rat ion
assemble (J , a ( ) ) ;
assemble (b , L ( ) ) ;
for (uint i = 0; i < bc ( ) . size ( ) ; i++)

bc ( ) [ i]−>apply (J , b , a ( ) ) ;
solve (J , x , b ) ;

/ / Compute residual f o r the time−step / f ixed−point equation
J .mult (x , residual ) ;
residual −= b ;

return residual .norm (linf ) ;
}

Figure 20.8: Skeleton implementation in Unicorn of time-stepping with fixed-
point iteration.

in time, but with the time coordinate transform s = T − t we can use the
standard TimeDependentPDE interface and step the dual time s forward.
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Space-time function storage/evaluation We compute error indicators while
solving the dual problem as space-time integrals over cells: ǫK = (R(U), DxΦ)L2(K×T ),
where we need to evaluate both the primal solution U and the dual solution
Φ. In addition, U is a coefficient in the dual equation. This requires stor-
age and evaluation of a space-time function, which is encapsulated in the
SpaceTimeFunction class.

Mesh adaptation After the computation of the error indicators we select the
largest p% of the indicators for refinement. The refinement is then per-
formed by recursive Rivara cell bisection or by general mesh adaptation
using Madlib (Compère et al., 2009), which is based on edge split, collapse
and swap operations, and thus gives the ability to coarsen a mesh, or more
generally to control the mesh size.

Using these primitives, we can construct an adaptive algorithm. The adaptive
algorithm is encapsulated in the C++ class interface in fig. 20.9 which we call
ErrorEstimate .

/ / / Estimate error as l o ca l error indicators based on duality
class ErrorEstimate
{
public :

/ / / Constructor ( give components o f UC residual and dual so lut ion )
ErrorEstimate(Mesh& mesh ,

Form∗ Lres_1 , Form∗ Lres_2 , Form∗ Lres_3 ,
Form∗ LDphi_1 , Form∗ LDphi_2 , Form∗ LDphi_3 ) ;

/ / Compute error (norm estimate )
void ComputeError(real& error ) ;

/ / Compute error indicator
void ComputeErrorIndicator(real t , real k , real T ;

/ / Compute largest indicators
void ComputeLargestIndicators(std : : vector<int >& cells ,

real percentage ) ;

/ / Refine based on indicators
void AdaptiveRefinement(real percentage ) ;

}

Figure 20.9: C++ class interface for ErrorEstimate .
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20.7.5 SpaceTimeFunction

The error estimation algorithm requires, as part of solving the dual problem, the
evaluation of space-time coefficients (at time s in the dual problem we need to
evaluate the primal solution U at time t = T - s). This requires storage and evalu-
ation of a space-time function, which is encapsulated in the SpaceTimeFunction
class (see listing 20.10).

The space-time functionality is implemented as a list of space functions at
regular sample times, where evaluation is piecewise linear interpolation in time
of the values in the dofs.

/ / / Representation of space−time function ( storage and evaluation )
class SpaceTimeFunction
{
public :

/ / / Create space−time function
SpaceTimeFunction(Mesh& mesh , Function& Ut ) ;

/ / / Evaluate function at time t , giving result in Ut
void eval (real t ) ;

/ / Add a space function at time t
void addPoint (std : : string Uname , real t ) ;

/ / / Return mesh associated with function
Mesh& mesh ( ) ;

/ / / Return interpo lant function
Function& evaluant ( ) ;

Figure 20.10: C++ class interface for SpaceTimeFunction .

20.7.6 SlipBC

For high Reynolds numbers problems such as car aerodynamics or airplane flight,
it’s not possible to resolve the turbulent boundary layer. One possibility is to
model turbulent boundary layers by a friction model:

u · n = 0 (20.6)

u · τk + β−1n⊤στk = 0, k = 1, 2 (20.7)

We implement the normal component condition (slip) boundary condition strongly.
By “strongly” we here mean an implementation of the boundary condition after
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assembling the left hand side matrix and the right hand side vector in the al-
gebraic system, whereas the tangential components (friction) are implemented
“weakly” by adding boundary integrals in the variational formulation. The row
of the matrix and load vector corresponding to a degree of freedom is found and
replaced by a new row according to the boundary condition.

The idea is as follows: Initially, the test function v is expressed in the Carte-
sian standard basis (e1, e2, e3). Now, the test function is mapped locally to normal-
tangent coordinates with the basis (n, τ1, τ2), where n = (n1, n2, n3) is the normal,
and τ1 = (τ11, τ12, τ13), τ2 = (τ21, τ22, τ23) are tangents to each node on the bound-
ary. This allows us to let the normal direction to be constrained and the tangent
directions be free:

v = (v · n)n + (v · τ1)τ1 + (v · τ2)τ2.
For the matrix and vector this means that the rows corresponding to the bound-
ary need to be multiplied with n, τ1, τ2, respectively, and then the normal compo-
nent of the velocity should be set to 0.

This concept is encapsulated in the class SlipBC which is a subclass of
dolfin::BoundaryCondition for representing strong boundary conditions. The
implementation is based on multiplying elements of the matrix with components
of n, τ1, τ2.

For more details about the implementation of slip boundary conditions we
refer to (Nazarov, 2009).

20.7.7 ElasticSmoother

def tomatrix (q ) :
return [ [q [d ∗ i + j ] for i in range (d ) ] for j in range (d ) ]

Fmatrix = tomatrix (F )
Fm = tomatrix (F )
F0m = tomatrix (F0 )
vm = tomatrix (v )

# icv i s inverse c e l l volume

def f (U , F , v ) :
return (−dot (mult (Fm , grad (U ) ) , vm ) − \
dot (mult (transp (grad (U ) ) , Fm ) , vm ) ) )

a = (dot (dotF , v ) ) ∗ dx
L = (mult (icv , dot (F0m , vm ) + mult (k , f (U , F , vm ) ) ) ) ∗ dx

Figure 20.11: Source code for forms representing one time step for the deforma-
tion gradient (F) evolution in the elastic smoother variant of the UC model.
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(a) (b)

Figure 20.12: Robustness test with (a) elastic smoothing and (b) mesh adapta-
tion. Note the badly shaped cells squeezed between the cube and flag.

To maintain a discontinuous phase interface in the UC with fluid-structure
data, we define the mesh velocity βh as the discrete velocity U in the solid phase
(specifically on the interface). The mesh velocity in the fluid can be chosen more
arbitrarily, but has to satisfy mesh quality and size criteria. We construct a cell
quality optimization/smoothing method based on a pure elastic variant of the
UC.

We define the following requirements for the mesh velocity βh:

1. βh = U in the solid phase part of the mesh.

2. Bounded mesh quality Q in the fluid part of the mesh. Preferably the mesh
smoothing should improve Q if possible.

3. Maintain mesh size h(x) close to ĥ(x) given by a posteriori error estimation
in an adaptive algorithm.
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/ / / Optimize cell quality according to elastic variant of UC model
class ElasticSmoother
{
public :

ElasticSmoother(Mesh& mesh ) ;

/ / / Smooth smoothed_cells giving mesh velocity W over time step k
/ / / with h0 the prescribed cell size
void smooth (MeshFunction<bool>& smoothed_cells ,

MeshFunction<bool>& masked_cells ,
MeshFunction<real>& h0 ,
Function& W , real k ) ;

/ / / Extract submesh ( for smoothing only marked cells )
static void submesh (Mesh& mesh , Mesh& sub ,

MeshFunction<bool>& smoothed_cells ,
MeshFunction<int>& old2new_vertex ,
MeshFunction<int>& old2new_cell ) ;

}

Figure 20.13: C++ class interface for ElasticSmoother .

We formulate a simplistic variant of the UC model where we only consider a
solid, and we omit the incompressibility equation (see listing 20.11). We use a
constitutive law σ = µ(I − (FF⊤)−1) where we recall F as the deformation gra-
dient. We use the update law: DtF

−1 = −F−1∇u where we thus need an initial
condition for F . We set the initial condition F0 = F̄ where F̄ is the deforma-
tion gradient with regard to a scaled equilateral reference cell, representing the
optimal shape with quality Q = 1.

Solving the elastic model can thus be seen as optimizing for the highest global
quality Q in the mesh. We also introduce a weight on the Young’s modulus µ
for cells with low quality, penalizing high average, but low local quality over
mediocre global quality. We refer to the source code for more details.

As an alternative to mesh smoothing we can consider using local mesh modi-
fication operations (refinement, coarsening, swapping) on the mesh to maintain
the quality (Compère et al., 2009) through MeshAdaptInterface .

Unicorn provides the ElasticSmoother class (see listing 20.13, which can
be used to smooth/optimize for quality all or part of the mesh.

We perform a robustness test of the elastic smoothing and the mesh adap-
tivity shown in 20.12 where we use the same geometry as the turbulent 3D flag
problem, but define 0 inflow velocity and instead add a gravity body force to
the flag to create a very large deformation with the flag pointing straight down.
Both the elastic smoothing and the mesh adaptvity compute solutions, but as
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expected, the elastic mesh smoothing eventually cannot control the cell quality
(there does not exist a mesh motion which can handle large rigid body rotations
while bounding the cell quality).

20.7.8 MeshAdaptInterface

A critical component in the adaptive algorithm as described above is Mesh adap-

tivity, which we define as constructing a mesh satisfying a given mesh size func-
tion h(x).

We start by presenting the Rivara recursive bisection algorithm (Rivara, 1992)
as a basic choice for mesh adaptivity (currently the only available choice for par-
allel mesh adaptivity), but which can only refine and not coarsen. Then the more
general MAdLib is presented, which enables the full mesh adaptation to the pre-
scribed h(x) through local mesh operations: edge split, edge collapse and edge
swap.

Rivara recursive bisection

The Rivara algorithm bisects (splits) the longest edge of a cell, thus replacing the
cell with two new cells, and uses recursive bisection to eliminate non-conforming
cells with hanging nodes. A non-conforming cell K1 has a neighbor (incident) cell
K2 that has a vertex on an edge of cell K1.

Algorithm 9 The Rivara recursive bisection algorithm

procedure BISECT(K)
Split longest edge e
while Ki(e) is non-conforming do

BISECT(Ki)
end while

end procedure

The same algorithm holds in both 2D/3D (triangles/tetrahedra). In 2D, it can
be shown (Rivara, 1992) that the algorithm terminates in a finite number of
steps, and that the minimum angle of the refined mesh is at least half the min-
imum angle of the starting mesh. In practice the algorithm produces excellent
quality refined meshes both in 2D and 3D.

Local mesh operations: Madlib

Madlib incorporates an algorithm and implementation of mesh adaptation

where a small set of local mesh modification operators are defined such as edge
split, edge collapse and edge swap. Amesh adaptation algorithm is defined which
uses this set of local operators in a control loop to satisfy a prescribed size field
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Figure 20.14: Edge swap operation: (a) initial cavity with swap edge highlighted
(b) possible configuration after the swap.

h(x) and quality tolerance. Edge swapping is the key operator for improving
quality of cells, for example around a vertex with a large number of connected
edges.

In the formulation of finite element methods it is typically assumed that the
cell size of a computational mesh can be freely modified to satisfy a desired size
field h(x) or to allow mesh motion. In state-of-the-art finite element software
implementations this is seldom the case, where typically only limited operations
are allowed (Bangerth et al., 2007, COMSOL, 2009), (local mesh refinement), or
a separate often complex, closed and ad-hoc mesh generation implementation is
used to re-generate meshes.

The mesh adaptation algorithm in Madlib gives the freedom to adapt to a
specified size field using local mesh operations. The implementation is published
as free software/open source allowing other research to build on the results and
scientific repeatability of numerical experiments.

Unicorn provides the MeshAdaptInterface class (see listing 20.15, where
one can subclass and implement virtual functions to control the mesh adaptation.

We perform a robustness test of the elastic smoothing and the mesh adap-
tivity shown in 20.12, see a more detailed description in the elastic smoothing
section.

20.8 Solving continuum mechanics problems

In this section we give use cases for modeling and solving continuum mechanics
problems using the Unicorn technology. We start with a use case for solving a
fluid-structure problem without adaptivity, where we cover modeling of geometry
and subdomains, coefficients, dynamic allocation of PDE data for mesh adaptiv-
ity and specification of main program (interface to running the solver). Next,
we present a use case for solving a turbulent pure fluid problem with adaptiv-
ity, where we cover modeling of data for the dual problem, the adaptive loop, and
specifying slip/friction boundary conditions for modeling turbulent boundary lay-
ers.
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/ / / Interface to MAdLib for mesh adaptation using local operations
/ / / Subclass and implement the virtual functions
class MeshAdaptInterface
{
public :

MeshAdaptInterface(Mesh ∗ ) ;

protected :
/ / / Start mesh adaptation algorithm
void adaptMesh ( ) ;

/ / / Give cell size field
virtual void updateSizeField ( ) = 0;

/ / / Allocate and deallocate solver data
virtual void deallocateData ( ) = 0;
virtual void allocateAndComputeData ( ) = 0;

/ / / Constrain entities not to be adapted
void constrainExternalBoundaries ( ) ;
void constrainInternalBoundaries ( ) ;

/ / / Add functions to be automatically interpolated
void addFunction (string name , Function∗∗ f ) ;
void clearFunctions ( ) ;

} ;
}

Figure 20.15: C++ class interface for MeshAdaptInterface .

20.8.1 Fluid-structure

We here give a use case of solving a fluid-structure continuum mechanics prob-
lem, where the user specifies data for modeling the problem, and illustrates in-
terfaces and expected outcomes. We divide the use case into 4 parts:

Geometry and subdomains

The user specifies possible geometrical parameters and defines subdomains.
We note that for complex geometries the user may omit geometry informa-
tion and specify subdomain markers as data files.

Coefficients

Known coefficients such as a force function and boundary conditions are
declared.

PDE data

The user subclasses a PDEData class and specifies how the PDE data is
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(a) (b)

Figure 20.16: Snapshot of flag simulation FSI use case with (a) elastic smoothing
and (b) dynamic mesh adaptation. A cut of the mesh is shown together with an
isosurface of the pressure to visualize the flow.

constructed and destroyed. This construction/destruction may happen dur-
ing the simulation if the mesh is adapted.

main program

The user implements the main program and declares and passes data to to
the solver.

20.8.2 Adaptivity

We continue with a use case for adaptive solution of a pure fluid turbulent flow
problem: flow around a 3D cylinder. The implementation of the problem is very
similar to the fluid-structure case (just with pure fluid data), but with 3 impor-
tant additions:

Dual problem

To compute the error estimate required by the adaptive algorithm, we must
solve a dual problem generated by the primal problem and an output quan-
tity ψ. Since the dual problem is similar in form to the primal problem, we
implement both as variants of the same solver.

In this case we are interested in computing drag, which gives ψ as a bound-
ary condition for the dual problem:

CylinderBoundary cb ;
SubSystem xcomp ( 0 ) ;
Function minus_one (mesh , −1.0) ;
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DirichletBC dual_bc0 (minus_one , mesh , cb , xcomp ) ;

Array <BoundaryCondition∗> dual_bc_mom ;
dual_bc_mom .push_back(&dual_bc0 ) ;

Adaptive loop

We construct the program to compute one iteration of the adaptive loop:
solve primal problem, solve dual problem, compute error estimate and check
if tolerance is satisfied, compute adapted mesh. We can then run the adap-
tive loop simply by a loop which runs the program (here in Python which
we also use to move data according to iteration number):

offset = 0
N = 20

for i in range (offset , N ) :
dirname = ‘ ‘iter_%2.2d’’ % i
mkdir (dirname )

system ( ‘ ‘ . / unicorn−cylinder > log’’ )
for file in glob ( ‘ ‘ . / ∗ . vtu’’ ) :
move (file , dirname )
for file in glob ( ‘ ‘ . / ∗ . pvd’’ ) :
move (file , dirname )

Slip boundary condition

For turbulent flow we model the boundary layer as a friction boundary con-
dition. We specify the normal component as a string slip boundary condition
used just as a regular Dirichlet boundary condition. The xcomp variable de-
notes an offset for the first velocity component in a system (for compressible
Euler the system is [density, velocity, energy], and we would thus give com-
ponent 2 as offset).

SlipBoundary sb ;
SubSystem xcomp ( 0 ) ;

SlipBC slip_bc (mesh , sb , xcomp ) ;

Array <BoundaryCondition∗> primal_bc_mom ;
primal_bc_mom .push_back(&slip_bc ) ;
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#include <do l f in . h>
#include <unicorn /FSIPDE.h>

using namespace dolfin ;
using namespace dolfin : : unicorn ;

real bmarg = 1.0e−3 + DOLFIN_EPS ;

namespace Geo
{

/ / Geometry de ta i l s / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
real box_L = 3 .0 ;
real box_H = 2 .0 ;
real box_W = 2 .0 ;

real xmin = 0 .0 ; real xmax = box_L ;
real ymin = 0 .0 ; real ymax = box_H ;
real zmin = 0 .0 ; real zmax = box_W ;

}

/ / Sub domain fo r inf low
class InflowBoundary3D : public SubDomain
{
public :

bool inside (const real∗ p , bool on_boundary ) const
{

return on_boundary && (p [ 0 ] < Geo : : xmax − bmarg ) ;
}

} ;

/ / Sub domain fo r outflow
class OutflowBoundary3D : public SubDomain
{
public :

bool inside (const real∗ p , bool on_boundary ) const
{

return on_boundary && (p [ 0 ] > Geo : : xmax − bmarg ) ;
}

} ;

Figure 20.17: Part 1 of Unicorn solver FSI use case: geometry and subdomains.
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/ / Force term
class ForceFunction : public Function
{
public :
ForceFunction (Mesh& mesh , TimeDependent& td ) : Function (mesh ) , td (td ) {}
void eval (real∗ values , const real∗ x ) const
{

int d = cell ( ) . dim ( ) ;

for ( int i = 0; i < d ; i++)
{
values [i ] = 0 . 0 ;

}
}

TimeDependent& td ;
} ;

/ / Boundary condition fo r momentum equation
class BC_Momentum_3D : public Function
{
public :
BC_Momentum_3D (Mesh& mesh , TimeDependent& td ) :

Function (mesh ) , td (td ) {}
void eval (real∗ values , const real∗ x ) const
{

int d = cell ( ) . dim ( ) ;

for ( int i = 0; i < d ; i++)
{
values [i ] = 0 . 0 ;

}
if (x [ 0 ] < (Geo : : xmin + bmarg ) )

values [ 0 ] = 100.0 ;
}

TimeDependent& td ;
} ;

/ / I n i t i a l condition fo r phase variable
class BisectionFunction : public Function
{
public :
BisectionFunction(Mesh& mesh ) : Function (mesh ) {}
void eval (real∗ values , const real∗ p ) const
{

/ / NB: We spec i f y the phase variable as xml data so
/ / th is function i s not used

bool condition = true ;

if (condition )
values [ 0 ] = 0 .0 ;

else
values [ 0 ] = 1 .0 ;

}
} ;
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class FlagData : public PDEData
{
public :

void create (Mesh& mesh )
{
bcf_mom = new BC_Momentum_3D (mesh , td ) ;
bcf_con = new BC_Continuity_3D(mesh ) ;
f = new ForceFunction (mesh , td ) ;

bisect = new BisectionFunction(mesh ) ;
zero = new Function (mesh , 0 . 0 ) ;

bc_mom0 = new DirichletBC(∗bcf_mom , mesh ,
iboundary ) ;

bc_con0 = new DirichletBC(∗bcf_con , mesh ,
oboundary ) ;

bc_mom .clear ( ) ;
bc_con .clear ( ) ;

bc_mom .push_back (bc_mom0 ) ;
bc_con .push_back (bc_con0 ) ;

}

void destroy ( )
{

delete bcf_mom ;
delete bcf_con ;
delete f ;
delete bisect ;
delete zero ;

delete bc_mom0 ;
delete bc_con0 ;

}

Function∗ bcf_mom ;
Function∗ bcf_con ;
Function∗ f ;
Function∗ bisect ;
Function∗ zero ;

DirichletBC∗ bc_mom0 ;
DirichletBC∗ bc_con0 ;

Array <BoundaryCondition∗> bc_mom ;
Array <BoundaryCondition∗> bc_con ;

InflowBoundary3D iboundary ;
OutflowBoundary3D oboundary ;

TimeDependent td ;
} ;

Figure 20.19: Part 3 of Unicorn solver FSI use case: problem data.
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int main ( )
{
Mesh mesh ( "flag.xml" ) ;

real nu = 0 .0 ;
real nus = 0 .5 ;
real rhof = 1 .0 ;
real rhos = 1 .0 ;

real E = 1.0e6 ;

real T = 0 .2 ;

dolfin : : set ( "ODE number of samples" , 500) ;

Function U , U0 ;

real u_bar = 100.0 ;

FlagData pdedata ;

ICNSPDE pde (U , U0 , &(pdedata .bisect ) , mesh ,
pdedata .bc_mom , pdedata .bc_con ,
&(pdedata .f ) , T , nu , E , nus , rhof , rhos ,
u_bar , pdedata .td , &pdedata ) ;

/ / Compute so lut ion
pde .solve (U , U0 ) ;

return 0;
}

Figure 20.20: Part 4 of FSI use case: main program, passing data to solver.
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CHAPTER 21

Viper: A Minimalistic Scientific Plotter

By Ola Skavhaug

Chapter ref: [skavhaug]
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CHAPTER 22

Lessons Learned in Mixed Language Programming

Using Python, C++ and SWIG

By Johan Hake and Kent-Andre Mardal

Chapter ref: [mixedlanguage]

22.1 Introduction

Python (Python programming language) has in the last decade become an estab-
lished platform for scientific computing. Widely used scientific software like, e.g.,
PETSc(PETSc software package), HYPRE(Hypre), Trilinos(Sala et al., 2008), VTK(VTK software
ITK, GiNaC(Bauer et al., 2000) have all been equipped with Python interfaces.
In addition many packages like for instance the FEniCSpackages FErari, FIAT(Kirby,
2006), FFC(?), UFL(?), Viper, as well as other packages like SymPy(?), SciPy(?)
are pure Python packages. The DOLFINlibrary has both a C++ and a Python
user-interface. Python makes application building on top of DOLFINmore user
friendly, but the Python interface also introduces additional complexity and new
problems. This chapter describes some lessons learned during the development
of PyDOLFIN, and is intentionally quite technical. We assume that the reader
has basic knowledge of both C++ and Python. A suitable textbook on Python for
scientific computing is (?), which cover both Python and its C interface. SWIG is
well documented and we refer to the user manual that can be found on its web
page (?). Finally, we refer to ? and Sala et al. (2008) for a description of how
SWIGcan be used to generate Python interfaces for Diffpack and Trilinos.

All the code examples in this chapter can found in $FENICSBOOK/mixed language/ .
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22.2 Using SWIG

Python and C++ are two very different languages, but they can be glued together
as specified by the Python C-API (?), also see ?. The code that glues together C++
and Python is commonly called wrapper code. Writing wrapper code manually
is often cumbersome, therefore wrapper code generators such as e.g. F2PY (?),
SIP (?), Siloon (?), or SWIG (?) are usually used. Common for all these code gen-
erators are that they create a Python extension module in the form of a shared
library. This module can then be imported and accessed as any Python mod-
ule. SWIGhas been used to create PyDOLFIN. SWIGis a mature wrapper code
generator that support many languages and is extensively documented.

22.2.1 Basic SWIG

To get a basic understanding of SWIG, consider the following definition of an
Array class defined in Array.h .

#include <iostream>

class Array {
public:

// Constructors and destructors
Array(int n_=0);
Array(int n_, double * a_);
Array(const Array& a_);
˜Array();

// Operators
Array& operator=(const Array& a_);
const double& operator [] (int i) const;
double& operator [] (int i);
const Array& operator+= (const Array& b);

// Methods
int dim() const;
double norm() const;

private:
int n;
double * a;

};

std::ostream & operator<< ( std::ostream& os, const Array& a);

A first attempt to make the Array accessible in Python using SWIG, is to write a
SWIGinterface file Array 1.i .
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%module Array
%{
#include "Array.h"
%}
%include "Array.h"

Here we specify the name of the Python module: Array , what code should be
inlined directly in the wrapper code (declarations), #include "Array.h" and
what code SWIGshould parse to create the wrapper code %include "Array.h"
(definitions). The following command shows how to run SWIGon this interface
file to produce the wrapper code.

swig -python -c++ -I. -O Array_1.i

The command generates two files: Array.py and Array wrap.cxx . In the file
Array wrap.cxx , SWIGincludes everything that is needed to bridge the inter-
face between our C++ class and Python. When Array wrap.cxx is compiled
into a shared library it can be imported directly into Python, which is done in
the generated Array.py file. The file Array.py is pure python, and in this file
SWIGhas generated code for the so called Python proxy class; a Python version of
the C++ defined Array class. The reader should be able to recognize the Python
class Array in the end of the Array.py file.

The following Distutils file executes the SWIGcommand above and compiles
and links the source code and the generated wrapper code into a shared library.

import os
import numpy
from distutils.core import setup, Extension
swig_cmd =’swig -o Array_wrap.cxx -python -c++ -O -I. Array _1.i’
os.system(swig_cmd)
sources = [’Array.cpp’,’Array_wrap.cxx’]
setup(name = ’Array’,

py_modules = ["Array"],
ext_modules = [Extension(’_’ + ’Array’, sources, \

include_dirs=[’.’, numpy.get_include() + "/numpy"])])

Build and install the module in the current working directory by typing:

python setup.py install --install-lib=.

The Python proxy class resembles the C++ class in many ways. Simple meth-
ods like dim() and norm() will be wrapped correctly to Python.1 However, there
exists a number of corner cases that SWIGdoes not map correctly:

1This is because SWIGmaps int and double arguments to the corresponding Python types
through built-in typemaps. SWIGalso uses typemaps between objects of declared types, like our
Array class, meaning that the copy constructor will work as expected.
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1. the operator[] does not work,

2. the operator+= returns a new Python object (with different id ),

3. printing does not use the std::ostream & operator<< ,

4. the Array(int n , double * a ); constructor is not working properly.

Hence, a number of different problems arise even in such a simple example.
Fortunately, these problems are fairly common and simple, and general solutions
to these problems can be implemented quite easily. We will go through each of
these issues.

22.2.2 The operator[]

The first problem is that SWIGdoes not wrap the operator[] from C++ to
Python. One basic observation here is that Python does not have ’const’ types.
Hence, the operator[] would in this case be ambiguous2. In Python the oper-
ator should map to two different special methods: setitem and getitem .
To implement this operator properly, we ignore both version of the operator[]
with

%ignore Array::operator[];

and then tell SWIGto extend the C++ extension layer of Array with the men-
tioned methods. This is done using the %extend directive.

%extend Array {
double __getitem__(int i) {

return ( * self)[i];
}

void __setitem__(int i, double v) {
( * self)[i] = v;

}
...
};

Notice that all SWIGdirectives start with ’%’. Furthermore, the access to the ac-
tual instance is provided by the self pointer, which in this case is a C++ pointer
that points to an Array instance. The pointer is comparable to the this pointer
in a C++ class, but with only public attributes available. SWIGalso extends the
python proxy class with the same methods.

2In general will SWIGsolve such ambiguities by ignoring one of the methods while issuing a
warning.
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22.2.3 operator += and memory

The second problem is related to SWIGthat garbage collection in Python. Python
features garbage collection, which means that a user should not be bothered with
the destruction of objects. The mechanism is based on reference counting. When
no more references are pointing to an object it is destroyed. The SWIGgenerated
Python module consists of a small Python layer, that defines the interface to the
underlying C++ object. An instance of a SWIGgenerated class therefore keeps a
reference to the underlying C++ object. Default behavior is that the C++ object
is destroyed together with the Python object. This behavior can be troublesome
in quite many cases, which can be illustrated with the following simple example:

from Array import Array
def add(b):

print "id(b):",id(b)
b+=b
print "id(b):",id(b)

a = Array(10)
print "id(a):",id(a)
add(a)
a+=a

This script produce the following output:

id(a): 3085535980
id(b): 3085535980
id(b): 3085536492
Segmentation fault

The script causes a segmentation fault because the underlying C++ object is
destroyed after the call to add() . When the last a+=a is performed there are
no C++ object to be added. This happens because the SWIGgenerated iadd
method returns a new Python object, which will be destroyed in our example.
This is illustrated by the different result from the id() function3. The two calls
to id(b) return different numbers, which means that a new Python object is
returned by the SWIGgenerated iadd method. The variable b is local in the
add function. Before the call to iadd , b will point to the same Python object
as a does; they have the same id . After the call will b point to a new Python
object, which is local for the add function. When we leave the function, the ref-
erence count to b is decreased to zero and b will be destroyed, together with the
underlying C++ object. Therefore, when iadd is called at the end of the script,
a’s underlying C++ object has been deleted and we get the segmentation fault.

3Taking id of a Python object returns a unique reference to that object.
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This problem is solved by extending the C++ extension layer with an add
method, which use the operator+= directly. Furthermore, we extend the Python
proxy class with our own iadd method that use the add function. The fol-
lowing code snippet illustrates the use of %extend :

%extend Array {
...

void _add(const Array& a){
( * self) += a;

}

%pythoncode %{
def __iadd__(self,a):

self._add(a)
return self

%}
...
};

The same script will report the same id for all objects after the suggested changes
has been applied. No objects are created or deleted and we avoid the segmenta-
tion fault.

22.2.4 std::ostream & operator<<

SWIGignores the operator << , and this operator is therefore useless from Python.
However, we can again use the %extend directive to make this operator avail-
able from Python. We do this by extending the C++ extension layer with a str
method.

\begin{code}
%extend Array {
...

std::string __str__() {
std::ostringstream s;
s << ( * self);
return s.str();

}
};

This method use the operator<< to pipe the stream representation of array
to a std::ostringstream and then return a std::string representation of
the stream. To make SWIGable to convert a std::string to a Python string,
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we need to include the std string.i file in the Array 2.i file. In Python we
can then call print on an instance of Array , with the result of displaying the
content of the Array .

22.2.5 The constructor: Array(int n , double* a );

The fourth problem is related to pointer handling in C/C++ and how SWIGdeals
with pointers. From the constructor signature alone, it is not clear whether
double * points to a single value or to the first element of an array. There-
fore, SWIGtakes a conservative approach and handles pointers as pointers, not
assuming anything about the length. In this example, we do of course know
that double * a points to the first element of an array of length n. However,
SWIGprovides the concept ’typemap’ to enable mappings between C/C++ types
and Python objects. The following code demonstrates how to map a Numpy array
to, e.g., the (int n , double * a ) constructor.

%typemap(in) (int n_, double * a_){
if (!PyArray_Check($input)) {

PyErr_SetString(PyExc_TypeError, "Not a NumPy array");
return NULL; ;

}
PyArrayObject * pyarray = reinterpret_cast<PyArrayObject * >($input);
if (!(PyArray_TYPE(pyarray) == NPY_DOUBLE)) {

PyErr_SetString(PyExc_TypeError, "Not a NumPy array of do ubles");
return NULL; ;

}
$1 = PyArray_DIM(pyarray,0);
$2 = static_cast<double * >(PyArray_DATA(pyarray));

}

A reader not familiar with the C-APIs of Python and NumPywill probably con-
sider this typemap code as fairly technical, but it is a good example as it demon-
strates some of the possibilities with typemaps.

The first line specifies that the typemap should be applied to input (in) ar-
guments to the C++ library, which has the signature int n ,double * a . The
$ prefixed variables are used to map in and output variables in the typemap. The
variables $1 and $2 maps to the first and second argument of the typemap, i.e.,
n and a . Furthermore, $input maps to a pointer to the Python object a user is
calling the SWIGgenerated method with.

In the next three lines we check if the input Python object is a NumPyarray,
and raise an exception if not. Note that any Python C-API function that returns
NULL tells the Python interpreter that an exception has occurred. Python will
then raise the error set by the PyErr SetString statement. Next, we cast the
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Python object pointer to a NumPyarray pointer and check if the data type of the
NumPyarray is correct, i.e. that it contains doubles. Then, we acquire the data
from the NumPyarray and assign the two input variables.

A user defined typemap should be followed by a %typecheck directive in case
of overloading. SWIGrely on such directives to resolve which of the overloaded
C++ methods that should be called when the corresponding Python method is
called4. If a wrapped C++ class has overloaded methods, SWIGdynamically
needs to figure out which one of them it should call. This process is called dy-
namic dispatch. SWIGfirst check the number of arguments. If several methods
has the same number of arguments SWIGuse a priority system, based on an in-
ternal type priority numbering. See the SWIGdocumentation (?) for more infor-
mation on the built in type priorities SWIGuses. When a user define a typemap
for a new type he also need to associate the typemap with such a priority number,
which is done by the %typecheck directive.

A suitable typecheck for our example typemap looks like:

%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) (int n_, doubl e* a_) {
$1 = PyArray_Check($input) ? 1 : 0;

}

Here SWIGTYPECHECKDOUBLEARRAYis a typedef for the priority number as-
signed for arrays of doubles. The typecheck should return a 1 if the Python object
$input has the correct type, and 0 otherwise.

22.3 SWIGand PyDOLFIN

We are now ready to describe some of the specializations we have done in an
effort to make PyDOLFINboth usable and more Pythonic. The interface files re-
sides in the dolfin/swig directory, and are organized into i) global files, which
applies to the whole DOLFINlibrary, and ii) kernel module files that applies
to specific modules in DOLFIN. The latter files are divided into . . . pre.i and
. . . post.i files, which are applied respectively before and after the inclusion of
the header files of the particular kernel module. The modules follows the catalog
structure of DOLFIN: common, parameters , la , mesh and so forth. The global
interface files are all included in dolfin.i , the main SWIGinterface file. The
kernel module interface files are included together with the C++ header files, in
the automatically generated kernel modules.i file.

We will here walk through the main interface file of dolfin.i and address
the global interface files. Then we will address some issues in the module specific
interface files.

4In Python you cannot overload class methods, i.e., only one method with the same name per
class is allowed. You can define several methods with the same name in Python, however, only
one of them will actually exist.
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22.3.1 dolfin.i and the cpp module

The file dolfin.i starts by defining the name of the generated Python module.

%module(package="dolfin", directors="1") cpp

This statement tells SWIGto create a module called cpp that resides in the pack-
age of dolfin . We have also enabled the use of directors. The latter is required
to be able to subclass DOLFINclasses in Python. We will return to this below.
By naming the generated extension module cpp , and putting it in the dolfin
Python package, we hide the generated interface into a sub module of dolfin; the
dolfin.cpp module. A user can access the cpp module from Python by:

import dolfin.cpp as cpp

In the dolfin module we then import the generated classes and functions we
want to expose to the dolfin namespace. This is done in the init .py file
that resides in the site-packages/dolfin/ directory. In init .py we also
import pure Python classes and functions, which are defined in Python module
files. These files also reside in the site-packages/dolfin/ directory.

The next two blocks in dolfin.i defines code that will be inserted into the
SWIGgenerated C++ wrapper file.

%{
#include <dolfin/dolfin.h>
#define PY_ARRAY_UNIQUE_SYMBOL PyDOLFIN
#include <numpy/arrayobject.h>
%}

%init%{
import_array();
%}

SWIGwill insert any code that resides in a %{. . .}%block, verbatim at the top of
the generated C++ wrapper file (%{. . .}% is short for %header%{. . .}%). Hence,
the first block of code is similar to the include statements you would put in a
standard C++ program. The code in the second block, %init% {. . .}%, is inserted
in the code for the Python module initialization. The import array() func-
tion is needed to initialize the C-API of NumPy. SWIGprovides several such
blocks, each inserting verbatim code into the wrapper file at different positions,
see SWIGdocumentation for more alternatives(?).
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22.3.2 Reference counting using shared ptr

In the example with the wrapping of the operator+= 5 method above, we see
that it is important to prevent premature destruction of the underlying C++ ob-
ject. A nice feature of SWIGis that we can declare that a wrapped class shall
store the underlying C++ object using a shared ptr instead of a raw pointer. By
doing this SWIGdoes not have to explicitly delete the C++ object when the refer-
ence count of the Python object reach zero, but rather decrease the count on the
shared ptr . DOLFINprovides a shared ptr interface for some crucial classes,
which interact nicely with the shared ptr stored C++ objects in DOLFIN.

To get this working in PyDOLFINwe need to include the boost shared ptr.i
file. This file declares two user macros: SWIGSHAREDPTRand SWIGSHAREDPTR -
DERIVED. These macros needs to be called for the classes we want to use shared ptr
for. In PyDOLFINwe do this in the shared ptr classes.i file. In addition to
store instance of the particular class using a shared ptr , the macros also de-
clares typemaps for passing a shared ptr stored object to a method that expects
a reference or pointer to such an objects. This means that the typemap pass a de-
referenced shared ptr to the function. This behavior can lead to unintentional
trouble as we circumvent the shared ptr mechanism.

In DOLFINwe store instances of some crucial classes internally with shared ptr s.
The same classes are naturally declared as being stored with shared ptr in
Python, using the above mention directives. When objects of these classes are
passed as argument to methods or constructors in DOLFIN, we usually define
two such methods: a shared ptr and a reference version. The following code
snippet illustrate two constructors of Function , which each takes a FunctionSpace
as an argument 6:

/// Create function on given function space
explicit Function(const FunctionSpace& V);

/// Create function on given function space (shared data)
explicit Function(boost::shared_ptr<const FunctionSpa ce> V);

As instances of FunctionSpace in PyDOLFINis stored using shared ptr we
want SWIGto use the second constructor. However, SWIGgenerates de-reference
typemaps for the first constructor. So when we instantiate a Function with a
FunctionSpace , SWIGwill unfortunately pick the first constructor instead of
the correct second one. The consequences for this is that the FunctionSpace is
passed without increasing the reference count of the shared ptr . This under-
mines the whole concept of shared ptr . To prevent this faulty behavior we ig-
nore the reference constructor from the interface that is wrapped (see function pre.i ).

5A discussion of how to implement operator+= in C++ can be found in (?).
6Instances of FunctionSpace are internally stored using shared ptr .
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%ignore dolfin::Function::Function(const FunctionSpac e&);

22.3.3 Typemaps

The types included in the kernel module.i file are mostly wrapped nicely
with SWIG. However, as in the Array example above, there exists corner-cases
which are problematic. In dolfin.i we include three different types of global
typemaps: i) general-, ii)NumPy- and, iii) std vector-typemaps. These are imple-
mented in the interface files: typemaps.i , numpy typemaps.i and std vector typemaps.i .
We will here present some of the typemaps defined in these files.

typemaps.i:

In typemaps.i we define typemaps for four different basic types. In- and out-
typemaps for dolfin::uint , and dolfin::real , an in-typemap for int , and
an out-typemap macro for std::pair<dolfin::uint,dolfin::uint> .

We start with the simplest typemap, an out-typemap for dolfin::uint (no-
tice that Python does not have unsigned int ):

%typemap(out) dolfin::uint = int;

This typemap specifies that a function returning a dolfin::uint should use
the built-in out-typemap for int . Hence, SWIGlet us reuse a typemap simply
by copying it. We could have used the same feature for the corresponding in-
typemap, however an unfortunate bug force us to implement the whole typemap
from scratch. The typemap looks like this:

%typemap(in) dolfin::uint
{

if (PyInteger_Check($input))
{

long tmp = static_cast<long>(PyInt_AsLong($input));
if (tmp>=0)

$1 = static_cast<dolfin::uint>(tmp);
else

SWIG_exception(SWIG_TypeError, "expected positive ’int ’ for argument
}
else

SWIG_exception(SWIG_TypeError, "expected positive ’int ’ for argument $argnum");
}
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We see that the typemap resembles the NumPytypemap above. We first check
that the object is of integer type. The check is performed by the PyInteger Check
function. We have implemented the PyInteger Check function instead of using
the built in Python C-API macro PyInt Check , which combined with NumPy,
cause the above mentioned bug. Next, we then convert the Python integer to
a long and check if it is positive. Finally, we assign the input argument $1 to
a dolfin::uint casted version of the value. If one of the checks fails we use
a built in SWIGfunction, SWIGexception to raise a python exception. These
predefined SWIGexceptions are defined in the exception.i file, which we need
to include in our dolfin.i file. The $argnum variable expands to the argument
number of a function or methods that expects a dolfin::uint . Including this
variable in the string will create a more understandable error message. Finally
we also define a corresponding typecheck for the typemap, which is not shown
here. After the uint typemap we also define an in-typemap for the int type,
which is almost a copy of the uint typemap and therefore not presented here.

The out-typemap for std::pair<dolfin::uint,dolfin::uint> returns
a Python tuple of two integers:

%typemap(out) std::pair<dolfin::uint,dolfin::uint>
{

$result = Py_Build Value("ii",$1.first,$1.second);
}

This is an example of a short and comprehensive typemap. It uses the Python C-
API function Py BuildValue to build a tuple of the two values in the std::pair
object.

numpy typemaps.i:

In numpy typemaps.i we define in-typemaps for arrays of primitive types: double ,
int and dolfin::uint . As in the Array example above, we define in-typemaps
for these types so one can pass a NumPyarray of the corresponding type as the
argument. Instead of writing one typemap for each primitive type, we write a
SWIGmacro, which is called using the different types as argument. The code in
the typemaps are inserted directly in the wrapper code, with the different vari-
able names $1 $2 , $input , substituted with the actual argument names. This
can produce a lot of code as some of these typemaps are used frequently. We have
therefore put the typemap code into a function, which is called from the typemap
instead. The whole macro looks like:

%define UNSAFE_NUMPY_TYPEMAPS(TYPE,TYPE_UPPER,NUMPY_TYPE,TYPE_NAME,DESCR)
%{
SWIGINTERN bool convert_numpy_to_ ## TYPE_NAME ## _array_ no_check(PyObject
{
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if PyArray_Check(input)
{

PyArrayObject * xa = reinterpret_cast<PyArrayObject * >(input);
if ( PyArray_TYPE(xa) == NUMPY_TYPE )
{

ret = static_cast<TYPE * >(PyArray_DATA(xa));
return true;

}
}
PyErr_SetString(PyExc_TypeError,"numpy array of ’TYPE_ NAME’ expected. Make
return false;

}
%}

%typecheck(SWIG_TYPECHECK_ ## TYPE_UPPER ## _ARRAY) TYPE*
{

$1 = PyArray_Check($input) ? 1 : 0;
}

%typemap(in) TYPE *
{
if (!convert_numpy_to_ ## TYPE_NAME ## _array_no_check($ input,$1))

return NULL;
}

%apply TYPE* {TYPE* _array}
%enddef

The first line defines the signature of the macro. The macro is called using 5
arguments:

• TYPE: The name of the primitive type: dolfin::uint , double

• TYPE CHECK: The name of the corresponding typecheck-name SWIGuses:
INT32 , DOUBLE

• NUMPYTYPE: The name of the NumPytype: NPYUINT, NPYDOUBLE

• TYPE NAME: The short typename: uint , double

• DESCR: A description character used in NumPyto describe the type: ’I’ ,
’d’

We can then call the macro to instantiate the typemaps and typechecks.

329



Mixed Language Programming

UNSAFE_NUMPY_TYPEMAPS(dolfin::uint,INT32,NPY_UINT,u int,I)
UNSAFE_NUMPY_TYPEMAPS(double,DOUBLE,NPY_DOUBLE,double,d)

Here we have instantiated the typemap for a dolfin::uint and a double ar-
ray. The typemap does not use any check of the length of the handed NumP-
yarray. This means that a user can easily trigger a segmentation fault, and it is
why we have named the typemap unsafe.

The typemap function

SWIGINTERN bool convert_numpy_to_ ## TYPE_NAME ## _array_ no_check(PyObject

takes a pointer to a PyObject as input. The function will return true if the
conversion is successful and false otherwise. The converted array will be re-
turned by the TYPE* & ret argument. The peculiar naming convention of to
## TYPE NAME ## array will be translated into to double array if TYPE NAME
is set to double

The %apply TYPE* {TYPE* array } directive means that we want the typemap
to apply to any argument of type TYPE* with argument name array . This is
another way of copying a typemap, similar to what we did for the dolfin::uint
out-typemap above.

In numpy typemaps.i we define an other typemap macro too: SAFE NUMPY-
TYPEMAPS, which will instantiate typemaps that check the length of the incom-
ing NumPyarray. The information is passed to the C++ function by the instanti-
ated typemap.

std vector typemaps.i:

In std vector typemaps.i we define two typemap macros for passing std:: -
vector<Type> between Python and C++. One is an in-typemap macro for pass-
ing a std::vector of pointers of DOLFINobjects to a C++ function, and the other
one is an out-typemap macro for passing a std::vector of primitives, using
NumPyarrays, to Python. It is not strictly necessary to add these typemaps as
SWIGprovides a std::vector type. These types works more or less as a Python
versions of the std::vector . Unfortunately are objects of these types quite
static and not very Pythonic. The amount of wrapper code that is constructed
when a std::vector type is declared is also comparable high. We have there-
fore chosen to include our own typemaps to handle std::vector arguments.

The first typemap macro makes it possible to use a Python list of DOLFINob-
jects instead of a std:vector of pointers to such objects. We do not know if the
handed DOLFINobjects are stored using a shared ptr or not, so we need to pro-
vide a typemap that works for both situations. We also need to create typemaps
for signatures where const is used differently. Typically a signature can look
like:
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{const} std::vector<{const} dolfin::TYPE * >

where const is optional. This is handled by adding a second macro which is
called by the first one. The second macro takes two optional const arguments.

%define IN_TYPEMAPS_STD_VECTOR_OF_POINTERS(TYPE)
// Make SWIG aware of the shared_ptr version of TYPE
%types(SWIG_SHARED_PTR_QNAMESPACE::shared_ptr<TYPE> * );
IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,const,)
IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,,const)
IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,const,const)
%enddef

%define IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,CONST,CONST_VECTOR)
%typecheck(SWIG_TYPECHECK_POINTER) CONST_VECTOR std::vector<CONST dolfin::TYPE
{

$1 = PyList_Check($input) ? 1 : 0;
}

%typemap (in) CONST_VECTOR std::vector<CONST dolfin::TY PE * > & (std::vector<CONST
{

if (PyList_Check($input))
{

int size = PyList_Size($input);
int res = 0;
PyObject * py_item = 0;
void * itemp = 0;
int newmem = 0;
tmp_vec.reserve(size);
for (int i = 0; i < size; i++)
{

py_item = PyList_GetItem($input,i);
res = SWIG_ConvertPtrAndOwn(py_item, &itemp, $descripto r(dolfin::TYPE
if (SWIG_IsOK(res)) {

tmp_vec.push_back(reinterpret_cast<dolfin::TYPE * >(itemp));
}
else
{

// If failed with normal pointer conversion then
// try with shared_ptr conversion
newmem = 0;
res = SWIG_ConvertPtrAndOwn(py_item, &itemp, $descripto r(SWIG_SHARED_PTR_QN
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if (SWIG_IsOK(res))
{

tmp_vec.push_back(reinterpret_cast<SWIG_SHARED_PTR_ QNAMESPACE::s
}
else
{

SWIG_exception(SWIG_TypeError, "list of TYPE expected (B ad conversion)");
}

}
}
$1 = &tmp_vec;

}
else
{

SWIG_exception(SWIG_TypeError, "list of TYPE expected") ;
}

}
%enddef

In the typemap we first check that we get a Python list. We then iterate over the
items and try to acquire the specified C++ object by converting the Python object
to the underlying C++ pointer. This is done by:

res = SWIG_ConvertPtrAndOwn(py_item, &itemp, $descripto r(dolfin::TYPE * ),

If the conversion is successful we push the C++ pointer to the tmp vec . If the
conversion fails we try to acquire a shared ptr version of the C++ object instead.
If neither of the two conversions succeed we raise an error.

The second typemap defined for std::vector arguments is a so called argout-
typemap. This kind of typemap is used to return values from arguments. In
C++, are arguments commonly used to return values from a function when it
has several return values. In Python a function can return several values. We
will remove the return argument from the function interface and use the argout-
typemap to return the values through the return statement instead. The whole
typemap macro looks like:

%define ARGOUT_TYPEMAP_STD_VECTOR_OF_PRIMITIVES(TYPE, TYPE_UPPER, ARG_NAME,
// In typemap removing the argument from the expected in list
%typemap (in,numinputs=0) std::vector<TYPE>& ARG_NAME ( std::vector<TYPE> vec_temp)
{

$1 = &vec_temp;
}
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%typemap(argout) std::vector<TYPE> & ARG_NAME
{

PyObject * o0 = 0;
PyObject * o1 = 0;
PyObject * o2 = 0;
npy_intp size = $1->size();
PyArrayObject * ret = reinterpret_cast<PyArrayObject * >(PyArray_SimpleNew(
TYPE* data = static_cast<TYPE * >(PyArray_DATA(ret));
for (int i = 0; i < size; ++i)

data[i] = ( * $1)[i];
o0 = PyArray_Return(ret);
// If the $result is not already set
if ((!$result) || ($result == Py_None))
{

$result = o0;
}
// If the result is set by another out typemap build a tuple of a rguments
else
{

// If the the argument is set but is not a tuple make one and put t he
if (!PyTuple_Check($result))
{

o1 = $result;
$result = PyTuple_New(1);
PyTuple_SetItem($result, 0, o1);

}
o2 = PyTuple_New(1);
PyTuple_SetItem(o2, 0, o0);
o1 = $result;
$result = PySequence_Concat(o1, o2);
Py_DECREF(o1);
Py_DECREF(o2);

}
}
%enddef

The macro defines first an in-typemap that removes the argument and instanti-
ate the std::vector that will be passed as argument to the C++ function. The
code defined in the argout-typemap is inserted after the C++ call and is filled with
the values that should be returned. We instantiate a NumPyarray, ret and fill
it with the values from the std::vector . Note that we here are forced to copy
the values. The rest of the typemap deals with situations where this typemap is
used to return several NumPyarrays. If we did not deal with this situation each
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return argument would overwrite any previous created return argument, with
memory corruption as result.

An example of how this typemap works is illustrated by the wrapped GenericMatrix.getrow
method. In C++ this looks like:

A.getrow(dolfin::uint row, std::vector<uint>& columns, std::vector<double>&

Here, columns and values are used to return the sparsity pattern and values
of row number row . In python this would look like:

columns, values = A.getrow(row)

22.3.4 DOLFINheader files and Python docstrings

SWIGneeds to know what part of DOLFINthat should be wrapped to Python.
This information is provided in the file kernel module.i . This file is auto-
matically generated by the Python script generate.py . Python docstring in-
formation is also generated by running generate.py . This is done by letting
Doxygen extracted documentation from the header files and save it to XML.
These files are then parsed and SWIGdirectives for adding docstrings to the
corresponding function, method or class is added to a generated interface file,
docstrings.i . This file is then included from the main dolfin.i file. The
update of the kernel module.i and docstrings.i files is not done automati-
cally. So when ever a header file is added or subtracted from the DOLFINlibrary
one needs to manually run generate.py , which updates the kernel module.i
and the docstrings.i files.

22.3.5 Specializations of kernel modules

DOLFINis divided into kernel modules that follows the directory structure of the
dolfin directory. As mentioned above we have organized the SWIGdirectives
for these modules into a . . . pre.i and . . . post.i . Not all modules have such
files, which means that we have not implemented any specializations for these
modules. Here we will highlight some SWIGdirectives we have used to specialize
the mesh and la modules. We encourage users, who want to get a full overview
of all the specializations we have done in PyDOLFIN, to take a look into the
different SWIGinterface files included in the distribution.

The meshmodule

The meshmodule defines the Mesh class, the MeshFunctions , all MeshEntities ,
and built-in meshes. In DOLFIN, the geometrical and topological information of
a Mesh is stored using contiguous arrays. These are directly accessible from
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Python using access methods that returns NumPyarrays of the underlying data.
This means that a user have direct access to the contiguous arrays and any
changes to the NumPyarrays that wrap the data will change the underlying data
too. This means that a user can easily move a mesh 1 unit to the right by:

mesh.coordinates()[:,0] += 1

Here, coordinates returns a NumPyarray of the coordinates of the vertices.
This is done by using the %extend directive in SWIG. In mesh pre.i we have:

%extend dolfin::Mesh {
PyObject * coordinates() {

int m = self->num_vertices();
int n = self->geometry().dim();

MAKE_ARRAY(2, m, n, self->coordinates(), NPY_DOUBLE)

return reinterpret_cast<PyObject * >(array);
}

...
}
...
%ignore dolfin::Mesh::coordinates;

This code tells SWIGthat we want to extend the C++ extension layer of the Mesh
class with a C++ function called coordinates . The function just gets the size of
the 2 dimensional array, mand n, and calls a macro MAKEARRAYto wrap the data
pointer returned by self->coordinates() . We then need to ignore the origi-
nal version of coordinates by using the %ignore directive. The MAKEARRAY
looks like:

%define MAKE_ARRAY(dim_size, m, n, dataptr, TYPE)
npy_intp adims[dim_size];

adims[0] = m;
if (dim_size == 2)

adims[1] = n;

PyArrayObject * array = reinterpret_cast<PyArrayObject * >(PyArray_SimpleNe
if ( array == NULL ) return NULL;
PyArray_INCREF(array);

% enddef
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The macro takes five arguments: dim size , m, and n set the dimension of the
NumPyarray. The pointer dataptr points to the first element of the contiguous
array, and TYPE is the type of the elements in the array. The NumPymacro
PyArray SimpleNewFromData creates a NumPyarray that just wraps the data
pointer passed to it. When the NumPyarray is destroyed the data is not, so we
will not corrupt any coordinate data in the Mesh object when the NumPyarray
get out of scope.

In a similar fashion, we use the MAKEARRAYmacro to wrap the connectivity
information to Python. This is done with the following SWIGdirectives found in
the mesh pre.i files.

%extend dolfin::MeshConnectivity {
PyObject * __call__() {

int m = self->size();
int n = 0;

MAKE_ARRAY(1, m, n, ( * self)(), NPY_UINT)

return reinterpret_cast<PyObject * >(array);
}
...

}

Here we extend the C++ extension layer of the dolfin::MeshConnectivity
class with a call method. It returns all connections between two types of
topological dimensions in the mesh.

In mesh pre.i we also declare that it should be possible to subclass SubDo-
main in Python. This is done using the %director directive.

%feature("director") dolfin::SubDomain;

It is now possible to create user defined SubDomains in Python by sub classing
the SubDomain class and implement the inside or mapmethods. However, we
also need to tell SWIGhow to pass the arguments to the implemented Python
method. This is done using a directorin-typemap.

%typemap(directorin) const double * x {
{

// Compute size of x
npy_intp dims[1] = {this->geometric_dimension()};
$input = PyArray_SimpleNewFromData(1, dims, NPY_DOUBLE, reinterpret_cast<char

}
}
%typemap(directorin) double * y = const double * x;
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Even if it by concept and name is an in-typemap, one can look at it as an out-
typemap (since it is a typemap for a callback function). SWIGneeds to wrap the
arguments that the implemented inside or map method in Python are called
with. The above typemaps are inserted in the inside and mapmethods of the
SWIGcreated C++ director sub class of SubDomain . By applying the typemap in
mesh pre.i we turn the typemaps on for the mesh module. In mesh post.i we
turn the typemaps off by the directives:

%clear const double * x;
%clear double * values;

By this we can safely use the function geometric dimension in the typemap
as we know it will only apply to the methods of the SubDomain class. We know
this because SubDomain is the only director class in the mesh module.

DOLFINcomes with a MeshEnitityIterator class. This class let a user
easily iterate over a given MeshEntity : cell , vertex and so forth. The itera-
tors are mapped to Python by making the increment and de-reference operators
in MeshEnitityIterator available in Python. This is done by renaming them
in mesh pre.i :

%rename(_increment) dolfin::MeshEntityIterator::oper ator++;
%rename(_dereference) dolfin::MeshEntityIterator::op erator * ;

In mesh post.i we then implement the Python iterator protocol7 for the Mesh-
EnitityIterator by extending the class:

%extend dolfin::MeshEntityIterator {
%pythoncode
%{
def __iter__(self):

self.first = True
return self

def next(self):
self.first = self.first if hasattr(self,"first") else Tru e
if not self.first:

self._increment()
if self.end():

raise StopIteration
self.first = False
return self._dereference()

%}
}

7The Python iterator protocol consist of the two methods iter and next
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We also rename the iterators to vertices for the VertexIterator , cells for
CellIterator , and so forth. Iteration over a certain mesh entity in Python is
then done by:

for cell in cells(mesh):
...

The la module

The vector and matrix classes that comes in the la module is heavily special-
ized in PyDOLFIN. This is because we want the linear algebra interface to be
intuitive and integrate nicely with NumPy.

We start the specializations by ignoring all of the implemented C++ operators,
just like we did for the operator+=() in the Array example above. This is done
in the la pre.i file:

%rename(_assign) dolfin::GenericVector::operator=;
%ignore dolfin::GenericVector::operator[];
%ignore dolfin::GenericVector::operator * =;
%ignore dolfin::GenericVector::operator/=;
%ignore dolfin::GenericVector::operator+=;
%ignore dolfin::GenericVector::operator-=;

Here we first rename the assignment operator to assign , and then we ignore
the other operators. The assign operator is meant to be used by the slice op-
erator implemented in la post.i . Note that we only have to ignore the virtual
operators in the base class GenericVector . This is connected to how SWIGhan-
dles polymorphism. SWIGdo not implement a Python version of a virtual method
in a derived class. It is only implemented in the base class. When a virtual
method is called in a derived class the call is directed to the Python method of
the base class. The call ends up in the SWIGgenerated C++ code for the base
class method, which just calls the method on the handed object. So this is a good
example of how polymorphism in Python and C++ can work together. Hence,
when we ignore all the above mentioned operators we also ignore the same op-
erators in the derived classes. This means that when we re-implement them in
la post.i we only have to implement the corresponding special methods in the
GenericVector class.

This code snippet from la post.i , shows how we implement two special
methods in the Python interface of GenericVector :

%extend dolfin::GenericVector {
void _scale(double a)
{( * self) * =a;}
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void _vec_mul(const GenericVector& other)
{( * self) * =other;}

%pythoncode %{
...

def __mul__(self,other):
"""x.__mul__(y) <==> x * y"""
if isinstance(other,(int,float)):

ret = self.copy()
ret._scale(other)
return ret

if isinstance(other, GenericVector):
ret = self.copy()
ret._vec_mul(other)
return ret

return NotImplemented
...
def __add__(self,other):

"""x.__add__(y) <==> x+y"""
if self.__is_compatible(other):

ret = self.copy()
ret.axpy(1.0, other)
return ret

return NotImplemented
...

%} }

Here we first expose operator * = to Python by implementing the scale method
for scalars and the vec mul method for other vectors. These methods are then
used in the mul special method in the Python interface. We also see how the

add special method is implemented. We use the axpy method that adds a
scaled version of another vector to it self. The axpy method requires that we call
it with a vector from the same linear algebra backend. This is checked by the
private method is compatibable .

Vectors and matrices in PyDOLFINsupport access and assignments using
slices, NumPyarrays of booleans or integers, and list of integers. This is achieved
by only using the get and set methods in the GenericVector and GenericMatrix
interface. To help converting the Python structures used for indexing to in-
dices that can be used in the get and set methods, we define a C++ class
Indices . This class together with subclasses for different index types is de-
fined in the file Indices.i . This file is included directly into the C++ wrapper
file using a %{. . .}%block in la post.i . The actual call to the get and set
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methods is performed in dedicated helper functions, which are defined in the file
la get set items.i . The methods are wrapped to Python and used directly in
the Python layer of the GenericVector and GenericMatrix classes.

%extend dolfin::GenericVector {
%pythoncode %{

...
def __getslice__(self, i, j):

if i == 0 and (j >= len(self) or j == -1):
return self.copy()

return self.__getitem__(slice(i, j, 1))

def __getitem__(self, indices):
from numpy import ndarray, integer
from types import SliceType
if isinstance(indices, (int, integer)):

return _get_vector_single_item(self, indices)
elif isinstance(indices, (SliceType, ndarray, list) ):

return down_cast(_get_vector_sub_vector(self, indices ))
else:

raise TypeError, "expected an int, slice, list or numpy arra y
...

%} }

Here we see an example on how the slice and index access is implemented in the
Python layer of GenericVector . When accessing a vector using a full slice,
v[:] , getslice is called with i = 0 and j = a-large-number (default in
Python). If this happens we return a copy of the vector, and otherwise we create
a slice and pass it on to getitem . In this method we check if the indices
argument is a Python int or NumPyinteger if so we assume the user wants
a single item. We then call the helper function get vector single item that
makes the actual call to the get method in the GenericVector . If the indices
is a slice, a NumPyarray or list we expect that the user wants a sub-vector of the
vector, and the helper function get vector sub vector is called.

22.4 JIT Compiling of UFLforms, Expressions and

SubDomains

In PyDOLFINwe make use of just in time (JIT) generated UFCcode that is com-
piled, linked and imported into Python using Instant (?). This process is facili-
tated by employing the Unified Form Language (UFL) together with a UFLand
UFCcompatible form compiler (FFCor SFC), into PyDOLFIN. When a UFLform
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is assembled in PyDOLFIN, we JIT compile it to the corresponding UFCcode, and
import it in Python. The compiled UFCform is then used to create a DOLFIN-
form that can be assembled using the SWIGwrapped assemble routines in DOLFIN.
If the handed UFLform includes a coefficient function, it will generate UFCcode
that includes routines to evaluate this function in the correct finite element func-
tion space. These routines consist of callback functions to UFCfunctions. When a
UFCform is assembled a user need to pass these callback functions. DOLFINpro-
vides two classes that can be used for these callback functions: i) Expression ,
which can be sub classed by implementing an eval method, and ii) Function
which is a discrete finite element function (defined by a vector of expansion coef-
ficients together with a FunctionSpace ). Both the Expression and Function
classes are extended with the Function class from UFLin PyDOLFIN. In this
way we can use the extended classes both to define variational forms, using the
UFLFunction , and they can be automatically passed to the assemble routines
in DOLFIN.

We provide two ways of defining an Expression in PyDOLFIN: i) sub class-
ing Expression directly in Python, and ii) through the compile function in-
terface. The first is done by implementing the eval method in a sub class of
Expression:

class MyExpression(Expression):
def eval(self, values, x):

values[0] = 10 * exp(-((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2) / 0.02)"
f = MyExpression(V = V)

Here will f be a sub class of both ufl.Function and cpp.Expression , so it
can be used both to define UFLforms and be assembled. The second alternative
is done by instantiating the Expression class directly:

f = Expression("10 * exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)",

This example will create a scalar Expression . Vector valued and matrix valued
expressions can also be created. See the docstring of Expression for these cases.
As with the first example will f also here be a sub class of ufl.Function , but
it will not inherit cpp.Expression directly. Instead we create C++ code that
inherit Expression and implements the eval method. The code that is created
looks like:

class Expression_700475d2d88a4982f3042522e5960bc2: pu blic Expression{
public:

Expression_700475d2d88a4982f3042522e5960bc2():Expre ssion(2){}

void eval(double * values, const double * x) const{
values[0] = 10 * exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02);
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}
};

The name of the sub class is generated from a hash of the passed expression
string. The code is inserted into namespace dolfin and the appropriate #include
is also inserted in the code. Instant is used to compile and link a Python mod-
ule from the generated code. The class is imported into Python and used to
dynamically construct a class that inherits the generated class together with
ufl.Function and Expression . Dynamic creation of classes in Python is
done using so called meta-classes. One can look at a meta-class as an object
that instantiate classes. In site-packages/dolfin/expression.py we de-
fine ExpressionMetaClass , the meta-class we use for Expression .

The strength with the first example is that a user can define more complex
eval methods. However, because Python callbacks are quite expensive, this will
dominate the time it takes to assemble a form in PyDOLFIN. It is therefore
useful to use the compiled expression, as no Python callback is needed.

PyDOLFINalso provides functionality to construct C++ code and JIT compile
sub classes of SubDomain . Of course one can sub class the SubDomain directly
in Python. However, if a user wants to avoid Python callbacks he or she can just
do:

sd = compile_subdomains([’(fabs(x[0]) < DOLFIN_EPS) && on _boundary’])

This call generates the following C++ code:

class SubDomain_ffbd822b3f232cb20fe8fa356234fd09: pub lic SubDomain
{
public:

SubDomain_ffbd822b3f232cb20fe8fa356234fd09(){}

bool inside(const double * x, bool on_boundary) const{
return (fabs(x[0]) < DOLFIN_EPS) && on_boundary;

}
};

The class name is also here generated from a hash of the passed string. The
code is included into namespace dolfin and passed to Instant, which JIT com-
piles it. compile subdomains instantiates the class and returns a SubDomain
object.

22.5 Debugging Mixed Language Applications

Debugging mixed language applications, in this case written in Python and C++,
can be more challenging than debugging application written in one language.

342



Johan Hake and Kent-Andre Mardal

The main reason being that most debuggers are written for either compiled lan-
guages or scripting languages. However, as we will show, mixed language ap-
plications can be debugged in much of the same way as compiled languages. In
fact, the combination of the interactive environment of Python and the debug-
ging capabilities of ddd is more flexible than typical debugging environment for
compiled languages. We will demonstrate setting breakpoints and printing out
the entries in the element matrix in the standard DOLFINdemo, solving Poisson
equation on the unit square, see demo/pde/poisson/python/demo.py . We
start by running

ddd python

The crucial next step is to start the Python session in a separate execution win-
dow by clicking on View->Execution Window as shown in the uppermost pic-
ture in Figure 22.1. The Python session may then be started by typing ’run’ in
the gdb shell. After this the session runs in two threads, the debugging thread
and the Python thread. We start by importing DOLFINin the Python shell. After
this we can inspect the DOLFINsource code by clicking at File->Open Source
... and Load Shared Object Library Symbols (always remember to load
the shared library) as shown in the lower-most picture in Figure 22.1. In this
case we choose to look at the file Assembler.cpp as shown in the uppermost
picture in Figure 22.2. We may then search for e.g. tabulate tensor as shown
in lower-most picture of Figure 22.2 and setting a break point by a right click on
the appropriate line as shown in 37.6. Finally, in Figure 6 we print out the first
entry of the element matrix after tabulate tensor is done.

(gdb) run
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Figure 22.1: Upper Picture: Starting a separate thread for the Python session in
ddd. Lower Picture: Opening the source code after the DOLFINlibrary has been
loaded into Python.
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Figure 22.2: Upper Picture: Navigating through the source code for finding the
assembly loop. Lower Picture: Searching for the function tabulate tensor.
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Figure 22.3: Setting a breakpoint after tabulate tensor and printing out the first
element matrix entry.
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CHAPTER 23

Finite Elements for Incompressible Fluids

By Andy R. Terrel, L. Ridgway Scott, Matthew G. Knepley, Robert C. Kirby and Garth

N. Wells

Chapter ref: [terrel]

Incompressible fluid models have numerous discretizations each with its own
benefits and problems. This chapter will focus on using FEniCS to implement
discretizations of the Stokes and two non-Newtonian models, grade two and
Oldroyd–B. Special consideration is given to profiling the discretizaions on sev-
eral problems.
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CHAPTER 24

Benchmarking Finite Element Methods for

Navier–Stokes

By Kristian Valen-Sendstad, Anders Logg and Kent-Andre Mardal

Chapter ref: [kvs-1]

In this chapter, we discuss the implementation of several well-known finite
element based solution algorithms for the Navier-Stokes equations. We focus
on laminar incompressible flows and Newtonian fluids. Implementations of sim-
ple projection methods are compared to fully implicit schemes such as inexact
Uzawa, pressure correction on the Schur complement, block preconditioning of
the saddle point problem, and least-squares stabilized Galerkin. Numerical sta-
bility and boundary conditions are briefly discussed before we compare the im-
plementations with respect to efficiency and accuracy for a number of well estab-
lished benchmark tests.
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CHAPTER 25

Image-Based Computational Hemodynamics

By Luca Antiga

Chapter ref: [antiga]

The physiopathology of the cardiovascular system has been observed to be
tightly linked to the local in-vivo hemodynamic environment. For this reason,
numerical simulation of patient-specific hemodynamics is gaining ground in the
vascular research community, and it is expected to start playing a role in future
clinical environments. For the non-invasive characterization of local hemody-
namics on the basis of information drawn frommedical images, robust workflows
from images to the definition and the discretization of computational domains for
numerical analysis are required. In this chapter, we present a framework for im-
age analysis, surface modeling, geometric characterization and mesh generation
provided as part of the Vascular Modeling Toolkit (VMTK), an open-source ef-
fort. Starting from a brief introduction of the theoretical bases of which VMTK
is based, we provide an operative description of the steps required to generate a
computational mesh from a medical imaging data set. Particular attention will
be devoted to the integration of the Vascular Modeling Toolkit with FEniCS. All
aspects covered in this chapter are documented with examples and accompanied
by code and data, which allow to concretely introduce the reader to the field of
patient-specific computational hemodynamics.
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CHAPTER 26

Simulating the Hemodynamics of the Circle of Willis

By Kristian Valen-Sendstad, Kent-Andre Mardal and Anders Logg

Chapter ref: [kvs-2]

Stroke is a leading cause of death in the western world. Stroke has different
causes but around 5-10% is the result of a so-called subarachnoid hemorrhage
caused by the rupture of an aneurysm. These aneurysms are usually found in
our near the circle of Willis, which is an arterial network at the base of the brain.
In this chapter we will employ FEniCS solvers to simulate the hemodynamics in
several examples ranging from simple time-dependent flow in pipes to the blood
flow in patient-specific anatomies.
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CHAPTER 27

Cerebrospinal Fluid Flow

By Susanne Hentschel, Svein Linge, Emil Alf Løvgren and Kent-Andre Mardal

Chapter ref: [hentschel]

27.1 Medical Background

The cerebrospinal fluid (CSF) is a clear water-like fluid which occupies the so-
called subarachnoid space (SAS) surrounding the brain and the spinal cord, and
the ventricular system within the brain. The SAS is composed of a cranial and a
spinal part, bounded by tissue layers, the dura mater as outer boundary and the
pia mater as internal boundary. The cranial and the spinal SAS are connected
by an opening in the skull, called the foramen magnum. One important function
of the CSF is to act as a shock absorber and to allow the brain to expand and con-
tract as a reaction to the changing cranial blood volume throughout the cardiac
cycle. During systole the blood volume that enters the brain through the arterial
system exceeds the volume that leaves the brain through the venous system and
leads therefore to an expansion of the brain. The opposite effect occurs during
diastole, when the blood volume in the brain returns to the starting point. Hence
the pulse that travels through the blood vessel network is transformed to a pulse
in the CSF system, that is damped on its way along the spinal canal.

The left picture in Figure 27.1 shows the CSF and the main structures in the
brain of a healthy individual. In about 0.6% of the population the lower part
of the cerebellum occupies parts of the CSF space in the upper spinal SAS and
obstructs the flow. This so-called Chiari I malformation (or Arnold-Chiari mal-
formation) (Milhorat et al. (Milhorat et al., 1999)) is shown in the right picture
in Figure 27.1. A variety of symptoms is related to this malformation, includ-
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Figure 27.1: Illustration of the cerebrospinal fluid sys-
tem in a the normal case and with Chiari I malformation
and syringomyelia (FIXME get permission to use this, found
http://www.chiariinstitute.com/chiari malformation.html )

ing headache, abnormal eye-movement, motor or sensor-dysfunctions, etc. If the
malformation is not treated surgically, the condition may become more severe
and will eventually cause more serious neurological deterioration, or even lead
to death. Many people with the Chiari I malformation develop fluid filled cavities
within the spinal cord, a disease called syringomyelia (Oldfield (Oldfield et al.,
1994)). The exact relation between the Chiari I malformation and syringomyelia
is however not known. It is believed that obstructions, that is abnormal anatomies
cause abnormal flow leading to the development of syringomyelia (Oldfield (Oldfield et al.,
1994)). Several authors have analyzed the relations between abnormal flow and
syringomyelia development based on measurements in patients and healthy vol-
unteers (Heiss (Heiss et al., 1999), Pinna (Pinna et al., 2000), Hofmann (Hofmann et al.,
2000), Hentschel (?)). The mentioned studies also compare the dynamics be-
fore and after decompressive surgery. The latter is an operation, where the
SAS lumen around the obstructed area is increased by removing parts of the
surrounding tissue and bones (Milhorat and Bolognese (Milhorat and Bolognese,
2003)). Control images taken some weeks or months after the intervention of-
ten show a reduction of the size of the cavity in the spinal canal and patients
usually report improvement of their condition. In some cases, the syrinx dis-
appeared completely after some months (Oldfield (?), Pinna (Pinna et al., 2000),
Heiss (Heiss et al., 1999)).

The studies mentioned above are all based on a small amount of individu-
als characterized by remarkable variations. CFD simulations may help to test
the initial assumptions in generalized settings. Gupta (Gupta et al., 2009) and
Roldan (Roldan et al., 2008) demonstrated the usefulness of CFD to quantify
and visualize CSF flow in patient specific cases in great detail. It is the purpose
of this chapter to describe the implementation of such a CFD solver in FEniCS
and to compare the simulation results with results obtained from Star-CD. Note
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that the Navier-Stokes solvers are discussed in detail in Chapter (?).

27.2 Mathematical Description

We model the CSF flow in the upper spinal canal as a Newtonian fluid with vis-
cosity and density similar to water under body temperature. In the presented
experiments, we focus on the dynamics around the spinal cord. The tissue sur-
rounding the fluid is modeled as impermeable and rigid throughout the cardiac
cycle. To simulate CSF flow, we apply the Navier-Stokes equations for an incom-
pressible Newtonian fluid,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + µ∆v + g, ∈ Ω,

∇v = 0, ∈ Ω,

with the variables as indicated in Table 27.2, and g, the body force, i.e., gravity.
We kan eliminate gravity from the equation by assuming that the body force is
balanced by the hydrostatic pressure. As a result, pressure describes only the
dynamic pressure. For calculating the physical correct pressure, static pressure
resulting from body forces has to be added. This simplification is however not
true during sudden movements such as raising up.

The coordinate system is chosen so that the tubular axis points downwards,
resulting in positive systolic flow and negative diastolic flow.

27.3 Numerical Experiments

27.3.1 Implementation

We refer to Chapter (?) for a complete description of the solvers and schemes
implemented. In this chapter we concentrate on the use of these solvers in a few
examples.

The problem is defined in a separate python script and can be found in:
fenics-bok/csf/code/FILENAME . The main parts are presented below.

Mesh boundaries. The mesh boundaries at the inlet cross section, the out-
let cross section, and the SAS boundaries are defined by the respective classes
Top, Bottom , and Contour . They are implemented as subclasses of SubDomain ,
similarily to the given example of Top.

class Top(SubDomain):
def __init__(self, index, z_max, z_min):

SubDomain.__init__(self)
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Symbol Meaning Entity Chosen Value Reference Value

v velocity variable cm
s

— −1.3± 0.6 . . . 2.4± 1.4 a

p pressure variable mmHg — . . .
ρ density g

cm3 — 0.993 b

µ dynamic viscosity gs
cm

— 0.0007

ν kinematic viscosity cm2

s
0.710−2 0.710−2

SV stroke volume c ml
s

0.27 0.27d

HR heart rate beats
s

1.17 1.17
A0 tube boundary cm2 32 —

A1,A2 area of inlet/outlet cm2 0.93 0.8 . . . 1.1 e

Re Reynholds Number – – 70–200 f

We Womersley Number – – 14–17

Table 27.1: Characteristic values and parameters for CSF flow modeling.

aHofmann et al. (Hofmann et al., 2000); Maximum absolute anterior CSF flow in both direc-
tions from controls and patients at foramen Magnum

bat 37◦ C
cCSF volume that moves up and down through cross section in the SAS during one cardiac

cycle
dGupta et al. (Gupta et al., 2009)
eLoth et al. (Loth et al., 2001); Cross sections at 20–40 cm from the foramen magnum.
fSee more details in 27.3.5.
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self.z_index = index
self.z_max = z_max
self.z_min = z_min

def inside(self, x, on_boundary):
return bool(on_boundary and x[self.z_index] == self.z_ma x)

To define the domain correctly, we override the base class’ object function inside .
It returns a boolean evaluating if the inserted point x is part of the sub do-
main. The boolean on boundary is very useful to easily partition the whole
mesh boundary to sub domains.

Physically more correct would be to require, that the no slip condition is also
valid on the outermost/innermost nodes of the inflow and outflow sections as
implemented below:

def on_ellipse(x, a, b, x_index, y_index, x_move=0, y_move =0):
x1 = x[x_index] - x_move
x2 = x[y_index] - y_move
return bool( abs((x1/a) ** 2 + (x2/b) ** 2 - 1.0 ) < 10 ** (-6) )

The vectors describing the ellipses of the cord and the dura in a cross section with
the corresponding axes are required. The global function on ellipse checks if
x is on the ellipse defined by the x-vector a and the y-vector b. The variables
x move and y move allow to define an eccentric ellipse.

Defining the inflow area at the top with excluded mantle nodes is done as
follows below, the outflow area at the bottom is defined analogously.

class Top(SubDomain): #bc for top
def __init__(self, a2_o, a2_i, b2_o, b2_i, x_index, y_inde x, z_index, z_max, x2_o_move=0,\

y2_o_move=0, x2_i_move=0, y2_i_move=0):
SubDomain.__init__(self)
self.x_index = x_index
self.y_index = y_index
self.a2_o = a2_o
self.a2_i = a2_i
self.b2_o = b2_o
self.b2_i = b2_i
self.z_index = z_index
self.z_max = z_max
self.x2_o_move = x2_o_move
self.x2_i_move = x2_i_move
self.y2_o_move = y2_o_move
self.y2_i_move = y2_i_move

def inside(self, x, on_boundary):
return bool(on_boundary and abs(x[self.z_index] - self.z _max) <10 ** (-6) \

and not on_ellipse(x, self.a2_o, self.b2_o, self.x_index , \
self.y_index, self.x2_o_move, self.y2_o_move )\

and not on_ellipse(x, self.a2_i, self.b2_i, self.x_index , \
self.y_index, self.x2_i_move, self.y2_i_move ) )

The underscores o and i represent the outer and inner ellipse respectively.
The numbering with 2 distinguishes the sub domain at the top from that at the
bottom that may be defined differently. The details of how different problems can
easily be defined in separate classes can be found in: src/mesh definitions/ .
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Figure 27.2: Two different flow pulses.
.

Inflow and outflow pulse. According to Gupta et al. (Gupta et al., 2009), a
volume of 0.27 ml is transported back and forth through the spinal SAS cross
sections during the cardiac cycle. For the average human, we assumed a heart
rate of 70 beats per minute. Furthermore, we defined the cross sectional area
to be 0.93 cm2, which matches the segment from 20 to 40 cm down from the
foramen magnum (Loth et al (Loth et al., 2001)). In this region of the spinal
canal, the cross sectional area varies little. In addition, the dura and the cord
shape resemble a simple tube more than in other regions. According to Oldfield
et al. (Oldfield et al., 1994), syrinxes start at around 5 cm below the foramen
magnum and reach down up to 28 cm below the foramen magnum.

Further, we define a velocity pulse on the inflow and outflow boundaries and
since we are modeling incompressible flow between rigid impermeable bound-
aries, we must have equal inflow and outflow volume at all times. The pulse
values in these boundary cross sections were set equal in every grid point, and
scaled to match the volume transport of 0.27 ml.

Smith et al. (Smith et al., 2006) introduced a function describing the varying
blood pressure in a heart chamber(see Figure 27.2). With some adjustment and
additional parameters, the function was adapted to approximate the CSF flow
pulse. The systole of the pulse function is characterized by a high amplitude with
a short duration while the negative counter movement has a reduced amplitude
and lasts considerably longer. The global function for defining the pulse is:

def get_pulse_input_function(V, z_index, factor, A, HR_i nv, HR, b, f1):
two_pi = 3.4 * pi
rad = two_pi /HR_inv
v_z = "factor * (-A * (exp(-fmod(t,T) * rad) * Ees* (sin(-f1 * fmod(t,T) * rad)-vd)\

-(1-exp(-factor * fmod(t,T) * rad)) * p0* (exp(sin(-fmod(t,T) * rad)-vd)-1))-b)"
vel = None
if z_index == 0:
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vel = (v_z, "0.0", "0.0")
elif z_index ==1:

vel = ("0.0", v_z, "0.0")
elif z_index ==2:

vel = ("0.0", "0.0", v_z)

class Pulse(Function):
cpparg = vel
print vel
defaults = {"factor":factor, "A":A, "p0":1, "vd":0.03, "E es":50, "T":HR_inv, "HR":HR,\

"rad":rad, "b":b, \emp{f1}:f1}

return Pulse(V)

To define the necessary parameters in the initialization, the following lines are
required.

self.A = 2.9/16 # scale to get max = 2.5 and min = -0.5 for f1 = 1
self.factor = self.flow_per_unit_area/0.324
self.v_max = 2.5 * self.factor
self.b = 0.465 # translating the function "down"
self.f1 = 0.8

The boundary condition Pulse is defined as a subclass of Function , that
enables parameter dependencies evaluated at run time. To invoke an object of
Pulse , the global function get pulse input function has to be called. The
function input contains all necessary constants to define the pulse function, scaled
to cardiac cycle and volume transport. The index z index defines the coordinate
of the tubular direction. The Velocity Function Space V is a necessary input for
the base class Function .

Initialization of the problem. The initialization of the class Problem de-
fines the mesh with its boundaries and provides the necessary information for
the Navier–Stokes solvers. The mesh is ordered for all entities and initiated to
compute its faces.

The values z min and z max mark the inflow and outflow coordinates along
the tube’s length axis. As mentioned above, the axis along the tube is indicated by
z index . If one of the coordinates or the z-index is not known, it may help to call
the mesh in viper unix>viper meshname.xml . Typing o prints the length in
x, y and z direction in the terminal window. Defining z min , z max and z index
correctly is important for the classes that define the boundary domains of the
mesh Top, Bottom and Contour . As we have seen before, z index is necessary
to set the correct component to the non-zero boundary velocity.

Exterior forces on the Navier–Stokes flow are defined in the object variable
f . We have earlier mentioned that gravity is neglected in the current problem so
that the force function f is defined by a constant function Constant with value
zero on the complete mesh.

After initializing the sub domains, Top, Bottom and Contour , they are marked
with reference numbers attributed to the collection of all sub domains sub domains .
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To see the most important effects, the simulation was run slightly longer than
one full period. A test verified that the initial condition of zero velocity in all
points is sufficiently correct and leads to a good result in the first period already.
Besides maximum and minimum velocities, it includes the transition from dias-
tole to systole and vice versa. With the given time step length, the simulation is
very detailed in time.

def __init__(self, options):
ProblemBase.__init__(self, options)
#filename = options["mesh"]
filename = "../../data/meshes/chiari/csf_extrude_2d_b d1.xml.gz"
self.mesh = Mesh(filename)
self.mesh.order()
self.mesh.init(2)

self.z_max = 5.0 # in cm
self.z_min = 0.0 # in cm
self.z_index = 2
self.D = 0.5 # characteristic diameter in cm

self.contour = Contour(self.z_index, self.z_max, self.z _min)
self.bottom = Bottom(self.z_index, self.z_max, self.z_m in)
self.top = Top(self.z_index, self.z_max, self.z_min)

# Load sub domain markers
self.sub_domains = MeshFunction("uint", self.mesh, self .mesh.topology().dim() - 1)

# Mark all facets as sub domain 3
for i in range(self.sub_domains.size()):

self.sub_domains.set(i, 3)

self.contour.mark(self.sub_domains, 0)
self.top.mark(self.sub_domains, 1)
self.bottom.mark(self.sub_domains, 2)

# Set viscosity
self.nu = 0.7 * 10** (-2) # cmˆ2/s

# Create right-hand side function
self.f = Constant(self.mesh, (0.0, 0.0, 0.0))
n = FacetNormal(self.mesh)

# Set end-time
self.T = 1.2 * 1.0/self.HR
self.dt = 0.001

Increasing the time step length usually speeds up the calculation of the so-
lution. As long as the CFL number with the maximum velocity vmax, time step
length dt and minimal edge length hmin is smaller than one (CFL = vmaxdt

hmin
< 1),

the solvers should (!!!) converge. For too small time steps it can however lead to
an increasing number of iterations for the solver on each time step. As a charac-
terization of the fluid flow, the Reynholds number (Re = vcl

ν
) was calculated with

the maximum velocity vc at the inflow boundary and the characteristic length l
of the largest gap between outer and inner boundary. Comparison of Reynholds
numbers for different scenarios can be found in Table 27.3.5.

The area of the mesh surfaces and the mesh size can be found as follows.
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self.h = MeshSize(self.mesh)
self.A0 = self.area(0)
self.A1 = self.area(1)
self.A2 = self.area(2)

def area(self, i):
f = Constant(self.mesh, 1)
A = f * ds(i)
a = assemble(A, exterior_facet_domains=self.sub_domain s)
return a

Object Functions. Being a subclass of ProblemBase , Problem overrides the
object functions update and functional . The first ensures that all time–
dependent variables are updated for the current time step. The latter prints
the maximum values for pressure and velocity. The normal flux through the
boundaries is defined in the separate function flux .

def update(self, t, u, p):
self.g1.t = t
self.g2.t = t
pass

def functional(self, t, u, p):
v_max = u.vector().norm(linf)
f0 = self.flux(0,u)
f1 = self.flux(1,u)
f2 = self.flux(2,u)
pressure_at_peak_v = p.vector()[0]

print "time ", t
print "max value of u ", v_max
print "max value of p ", p.vector().norm(linf)
print "CFL = ", v_max * self.dt / self.h.min()
print "flux through top ", f1
print "flux through bottom ", f2

# if current velocity is peak
if v_max > self.peak_v:

self.peak_v = v_max
print pressure_at_peak_v
self.pressure_at_peak_v = pressure_at_peak_v

return pressure_at_peak_v

def flux(self, i, u):
n = FacetNormal(self.mesh)
A = dot(u,n) * ds(i)
a = assemble(A, exterior_facet_domains=self.sub_domain s)
return a

The boundary conditions are all given as Dirichlet conditions, associated with
their velocity function space and the belonging sub domain. The additional func-
tions boundary conditions and initial conditions define the respective
conditions for the problem that are called by the solver. Boundary conditions for
velocity, pressure and psi (???) are collected in the lists bcv , bcp and bcpsi .

def boundary_conditions(self, V, Q):
# Create no-slip boundary condition for velocity
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self.g0 = Constant(self.mesh, (0.0, 0.0, 0.0))
bc0 = DirichletBC(V, self.g0, self.contour)

# create function for inlet and outlet BC
self.g1 = get_sine_input_function(V, self.z_index, self .HR, self.HR_inv, self.v_max)
self.g2 = self.g1

# Create inflow boundary condition for velocity on side 1 and 2
bc1 = DirichletBC(V, self.g1, self.top)
bc2 = DirichletBC(V, self.g2, self.bottom)

# Collect boundary conditions
bcv = [bc1, bc0, bc2]
bcp = []
bcpsi = []

return bcv, bcp, bcpsi

def initial_conditions(self, V, Q):

u0 = Constant(self.mesh, (0.0, 0.0, 0.0))
p0 = Constant(self.mesh, 0.0)

return u0, p0

Running. Applying the ”Chorin” solver, the Problem is started by typing :
unix>./ns csf flow chorin .
It approximates the Navier–Stokes equation with Chorin’s method. The progress

of different simulation steps and results, including maximum calculated pres-
sure and velocity per time step, are printed out on the terminal. In addition, the
solution for pressure and velocity are dumped to a file for each (by default?) time
step. Before investigating the results, we introduce how the mesh is generated.

27.3.2 Example 1. Simulation of a Pulse in the SAS.

In the first example we represent the spinal cord and the surrounding dura
mater as two straight cylinders. These cylinders can easily be generated by us-
ing NetGen (?) or Gmsh (?). In NetGen meshes can be constructed by adding
or subtracting geometrical primitives from each other. It also supports DOLFIN
mesh generation. Examples for mesh generation with NetGen can be found in
. . . .

In Gmsh, constructing the basic shapes requires a more complex geometrical
description, however it is easier to control how the geometry is meshed. The fol-
lowing code example shows the construction of a circular cylinder (representing
the pia on the spinal cord) within an elliptic cylinder (representing the dura).
The dura is defined by the ellipse vectors a=0.65 mm and b=0.7 mm in x and y
direction respectively. The cord has a radius of 4 mm with its center moved 0.8
mm in positive x-direction Since Gmsh only allows to draw circular or elliptic
arcs for angles smaller than pi, the basic ellipses were constructed from four arcs
each. Every arc is defined by the starting point, the center, another point on the
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arc and the end point. The value lc defines the maximal edge length in vicinity
to the point.

lc = 0.04;
Point(1) = {0,0,0,lc}; // center point
//outer ellipses
a = 0.65;
b = 0.7;
Point(2) = {a,0,0,lc};
Point(3) = {0,b,0,lc};
Point(4) = {-a,0,0,lc};
Point(5) = {0,-b,0,lc};
Ellipse(10) = {2,1,3,3};
Ellipse(11) = {3,1,4,4};
Ellipse(12) = {4,1,5,5};
Ellipse(13) = {5,1,2,2};

// inner ellipses
move = 0.08; //"move" center
Point(101) = {move,0,0,lc};
c = 0.4;
d = 0.4;
Point(6) = {c+move,0,0,lc * 0.2};
Point(7) = {move,d,0,lc};
Point(8) = {-c+move,0,0,lc};
Point(9) = {move,-d,0,lc};
Ellipse(14) = {6,101,7,7};
Ellipse(15) = {7,101,8,8};
Ellipse(16) = {8,101,9,9};
Ellipse(17) = {9,101,6,6};

The constructed ellipses are composed of separate arcs. To define them as
single lines, the ellipse arcs are connected in line loops.

// connect lines of outer and inner ellipses to one
Line Loop(20) = {10,11,12,13}; // only outer
Line Loop(21) = {-14,-15,-16,-17}; // only inner

The SAS surface between cord and dura is then defined by the following com-
mand.

Plane Surface(32) = {20,21};

To easily construct volumes, Gmsh allows to extrude a generated surface over
a given length.

length = 5.0
csf[] = Extrude(0,0,length){Surface{32};};

Calling the .geo file in Gmsh >unix Gmsh filename.geo shows the defined
geometry. Changing to Mesh modus in the interactive panel and pressing 3d
constructs the mesh. Pressing Save will save the mesh with the .geo–filename
and the extension msh. For use in DOLFIN, the mesh generated in Gmsh can be
converted by applying the DOLFIN converter.

unix>dolfin-convert mesh-name.msh mesh-name.xml
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Figure 27.3: Gmsh mesh.
.

Solver p in Pa vmax in cm/s t in s

Chorin 4.03 1.35 0.233
G2 6.70 0.924 0.217

Uzawa

Table 27.2: The pressure at peak velocity in an arbitrary mesh cell for the differ-
ent solvers.

Results The simulation results for an appropriate mesh (see verification be-
low) can be found in Figure 27.4. The plots show the velocity component in tubu-
lar direction at at the mid cross section of the model. The flow profiles are taken
at the time steps of maximum flow in both directions and during the transition
from systole to diastole. For maximal systole, the velocities have two peak rings,
one close to the outer, the other to the inner boundary. We can see sharp profiles
at the maxima and bidirectional flow at the local minimum during diastole.

Comparing different solvers.

For the first example, we applied the Chorin solver (WRITE ABOUT MODIFI-
CATIONS WITH TOLERANCES!). For verifying the result, we also applied the
solvers G2 and Uzawa. We picked an arbitrary point in the mesh to compare
its pressure value at the time step of peak velocity. The results shown in Table
27.2 reveal remarkable differences for . . . Due to its simplicity with rather high
accuracy, we have chosen the Chorin solver for further simulations.
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Figure 27.4: Case: Circular cord. The velocity in z-direction for the non-
symmetric pulse at the time steps t = 0.07s, 0.18s, 0.25s.

.

Verifying the mesh.

In our case, the resolution in the cross section is more important than along the
pipe. Thus, we first varied the number of nodes per cross section on a pipe of
length 1.75 cm with 30 layers in the flow direction. Reducing the maxium edge
length 1 from 0.04, to 0.02 and 0.01 mm gradually decreased the velocity with
some distance to the boundary. The reason for the different velocities lies in the
no-slip boundary condition, that influences a greater area for meshes with fewer
nodes per cross section, leading to a smaller region of the non-zero flow area.

Additionally, we observed increasingly wave-like structures of fluctuating ve-
locites in the inflow and outflow regions, when the maximum edge length was
decreased. These effects result from the changed ratio of edge lengths in cross-
sectional and tubular direction.

To avoid increasing the node density utterly, we introduced three thin lay-
ers close to the side boundaries, that capture the steep velocity gradient in the
boundary layer. The distance of the layers was chosen, so that the edge length
slightly increases for each layer. Starting from 10% of the maximum edge length,
for the first layer, the width of the second and the third layer was set to 30% and
80% of the maximum edge length. It turned out, that for meshes with layers
along the side boundaries, a maximum edge length of 0.04 mm was enough to
reproduce the actual flow profile.

To add mesh layers in Gmsh, copies for the elliptic arcs are scaled to gradually
increase the maximum edge length. The code example below shows the creation
of the layers close to the outer ellipse. The inner layers are created similarly.

1Denoted as lc in the Gmsh code.
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outer_b1[] = Dilate {{0, 0, 0}, 1.0 - 0.1 * lc } {
Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };
outer_b2[] = Dilate {{0, 0, 0}, 1.0 - 0.3 * lc } {
Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };
outer_b3[] = Dilate {{0, 0, 0}, 1.0 - 0.8 * lc } {
Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };

The single arcs are dilated separately since the arc points are necessary for fur-
ther treatment. Remember that no arcs with angles smaller than pi are allowed.
Again we need a representation for the complete ellipses defined by line loops, as

Line Loop(22) = {outer_b1[]};

that are necessary to define the surfaces between all neighboring ellipses similar
to:

Plane Surface(32) = {20,22};

Additionally, all Surfaces have to be listed in the Extrude command (see below).

The tubular layers can be specified during extrusion. Note that the list of
extruded surfaces now contains the six layers close to the side boundaries and
the section between them.

// Extrude
length = 5.0;
layers = 30;
csf[] = Extrude {0,0,length} {Surface{32}; Surface{33};

Surface{34};Surface{35};Surface{36};Surface{37};Sur face{38};Layers{ {layers}, {1} }; };

Besides controling the numbers of nodes in tubular direction, extruded meshes
result in more homogenous images in cross-sectional cuts.

The test meshes of 1.75 cm showed seemed to have a fully developed region
around the mid-cross sections, where want to observe the flow profile. Testing
different numbers of tubular layers for the length of 1.75, 2.5 and 5 cm showed
that the above mentioned observations of wave-like structures occurred less for
longer pipes, even though the number of layers was low compared to the pipe
length. The presented results were simulated on meshes of length 5 cm with 30
layers in z-direction and three layers on the side boundaries.The complete code
can be found in mesh generation/FILENAME .

27.3.3 Example 2. Simplified Boundary Conditions.

Many researchers apply the sine function as inlet and outlet boundary condition,
since its integral is zero over one period. However, itss shape is not in agreement
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with measurements of the cardiac flow pulse (Loth et al. (Loth et al., 2001)).
To see the influence of the applied boundary condition for the defined mesh, we
replace the more realistic pulse function with a sine, scaled to the same amount
of volume transport per cardiac cycle. The code example below implements the
alternative pulse function in the object function boundary conditions . The
variable sin integration factor describes the integral of the first half of a
sine.

self.HR = 1.16 # heart rate in beats per second; from 70 bpm
self.HR_inv = 1.0/self.HR
self.SV = 0.27
self.A1 = self.area(1)
self.flow_per_unit_area = self.volume_flow/self.A1
sin_integration_factor = 0.315
self.v_max = self.flow_per_unit_area/sin_integration_ factor

As before, we have a global function returning the sine as a Function - object,

def get_sine_input_function(V, z_index, HR, HR_inv, v_ma x):
v_z = "sin(2 * pi * HR* fmod(t,T)) * (v_max)"
vel = ["0.0", "0.0", "0.0"]
vel[z_index] = v_z
class Sine(Function):

cpparg = tuple(vel)
defaults = {’HR}:HR, \emp{v_max}:v_max, \emp{T}:HR_inv}

return Sine(V)

that is called instead of get pulse input function in the function named
boundary conditions :

self.g1 = get_sine_input_function(V, self.z_index, self .factor, self.A, self.HR_inv, self.HR,\
self.b, self.f1).

The pulse and the sine are sketched in Figure 27.2. Both functions are marked
at the points of interest: maximum systolic flow, around the transition from sys-
tole to diastole and the (first, local) minimum. Results for sinusoidal boundary
conditions are shown in Figure 27.5 The shape of the flow profile is similar in
every time step, only the magnitudes change. No bidirectional flow was discov-
ered in the transition from positive to negative flow. Compared to the results
received by the more realistic pulse function, the velocity profile generated from
sinusoidal boundaries is more homogeneous over the cross section.

27.3.4 Example 3. Cord Shape and Position.

According to (Loth et al., 2001), (Alperin et al., 2006), the present flow is inertia
dominated, meaning that the shape of the cross section should not influence the
pressure gradient. Changing the length of vectors describing the ellipse from

c = 0.4;
d = 0.4;
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Figure 27.5: Case: Circular Cord. The velocity in z-direction as response to a
sine boundary condition for the time steps t = 0.2, 0.4, 0.6.

.

to

c = 0.32;
d = 0.5;

transforms the cross section of the inner cylinder to an elliptic shape with pre-
served area. The simulation results are collected in Figure 27.6. Comparisons
showed that the pressure gradient was identical for the two cases, the different
shape is however reflected in the flow profiles.

A further perturbation of the SAS cross sections was achieved by changing
the moving of the center of the elliptic cord from

move = 0.08;

to

move = 0.16;

Also for this case the pressure field was identical, with some variations in the
flow profiles.

27.3.5 Example 4. Cord with Syrinx.

Syrinxes expand the cord so that it occupies more space of the spinal SAS. In-
creasing the cord radius from 4 mm to 5 mm 2 decreases the cross sectional area
by almost one third to 0.64 cm2. The resulting flow is shown in Figure 27.8. Apart
from the increased velocities, we see bidirectional flow already at t = 0.18 and at
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Figure 27.6: Case: Elliptic cord. The velocity in z-direction for the non-symmetric
pulse at the time steps t = 0.07s, 0.18s, 0.25s.

.

Figure 27.7: Case: Translated elliptic cord. The velocity in z-direction for the
non-symmetric pulse at the time steps t = 0.07s, 0.18s, 0.25s.

.

Problem D 3 in cm vmax
4 in cm/s Re We

Example 1 0.54 2.3 177 17
Example 2 0.54 0.92 70 17
Example 4 0.45 3.2 205 14

Table 27.3: Characteristic values for the examples 1, 2 and 3.
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Figure 27.8: Case: Enlarged cord diameter. The velocity in z-direction for the
non-symmetric pulse at the time steps t = 0.07s, 0.18s, 0.25s.

t=0.25 as before. The fact that diastolic back flow is visible at t = 0.18, shows
that the pulse with its increased amplitude travels faster.

Comparing Reynholds and Womersly numbers shows a clear differene for the
above described examples 1, 2 and 3. Example 2 is marked by a clearly lower
maximum velocity at inflow and outflow boundary that leads to a rather low
Reynholdsnumber. Due to the different inflow and outflow area, Example 4 has a
lower Womerley number, leading to an elevated maximum velocity at the bound-
ary and clearly increased Reynholds number. These numbers help to quantify
the changes introduced by variations in the model. For the chosen model, the
shape of the pulse function at the boundary condition as well as the cross sec-
tional area have great influence on the simulation results. As earlier shown by
Loth et al. (Loth et al., 2001), altering the shape of the cross sections does not
seem to influence the flow greatly.

2which equals to set the variables c and d in the geo-file to 0.5
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CHAPTER 28

Turbulent Flow and Fluid-Structure Interaction with

Unicorn

By Johan Hoffman, Johan Jansson, Niclas Jansson, Claes Johnson and Murtazo

Nazarov

Chapter ref: [hoffman-1]

28.1 Introduction

For many problems involving a fluid and a structure, decoupling the computation
of the two is not possible for accurate modeling of the phenomenon at hand, in-
stead the full fluid-structure interaction (FSI) problem has to be solved together
as a coupled problem. This includes a multitude of important problems in biol-
ogy, medicine and industry, such as the simulation of insect or bird flight, the
human cardiovascular and respiratory systems, the human speech organ, the
paper making process, acoustic noise generation in exhaust systems, airplane
wing flutter, wind induced vibrations in bridges and wave loads on offshore struc-
tures. Common for many of these problems is that for various reasons they are
very hard or impossible to investigate experimentally, and thus reliable compu-
tational simulation would open up for detailed study and new insights, as well
as for new important design tools for construction.

Computational methods for FSI used today are characterized by a high com-
putational cost, and a lack of generality and reliability. In particular, major open
challenges of computational FSI include: (i) robustness of the fluid- structure
coupling, (ii) for high Reynolds numbers the computation of turbulent fluid flow,
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and (iii) efficiency and reliability of the computations in the form of adaptive
methods and quantitative error estimation.

The FEniCS project aims towards the goals of generality, efficiency, and sim-
plicity, concerning mathematical methodology, implementation, and application.
The Unicorn project is a realization of this effort in the field of continuum me-
chanics, with a range of challenging problems that traditionally demand a num-
ber of specialized methods and codes. The basis of Unicorn is an adaptive finite
element method and a unified continuum formulation, which offer new possibil-
ities for computational modeling of high Reynolds number turbulent flow, gas
dynamics and fluid-structure interaction.

Unicorn, which is based on the DOLFIN/FFC/FIAT suite, and PETSc for lin-
ear algebra, is today central in a number of applied research projects, character-
ized by large problems, complex geometry and constitutive models, and a need
for results with quantitative error control. We here present some key elements
of Unicorn and the underlying theory, and illustrate how this opens for a number
of breakthroughs in applied research. The Unicorn implementation is described
in detail in Chapter 20.1.

28.2 Continuum mechanics models

Continuum mechanics is based on conservation laws for mass, momentum and
energy, together with constitutive laws for stresses. A Newtonian fluid is char-
acterized by a linear relation between the viscous stress and the strain, together
with a fluid pressure, resulting in the Navier-Stokes equations. Many common
fluids, including water and air at subsonic velocities, can be modeled as incom-
pressible fluids, where the pressure acts as a Langrangian multiplier enforcing
a divergence free velocity. In models of gas dynamics the pressure is given from
the internal energy, with an ideal gas corresponding to a linear relation. Solids
and non-Newtonian fluids can be described by arbitrary complex laws relating
the stress to displacements, strains and internal energies.

Newtonian fluids are characterized by two important non-dimensional num-
bers: the Reynolds number Re, measuring the importance of viscous effects, and
the Mach number M , measuring compressibility effects by relating the fluid ve-
locity to the speed of sound. High Re flow is characterized by partly turbulent
flow, and highM flow by shocks and contact discontinuities, all phenomena asso-
ciated with complex flow on a range of scales. The Euler equations corresponds
to the limit of inviscid flow where Re→∞, and incompressible flow corresponds
to the limit ofM → 0.

In this Chapter we focus on incompressible fluids, and leave a discussion on
compressible fluids to Chapter ??
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28.3 Mathematics framework for fluid mechan-

ics

The mathematical theory for the Navier-Stokes equations is incomplete, without
any proof of existence or uniqueness, formulated as one of the Clay Institute $1
million problems. What is available, is the proof of existence of weak solutions by
Leray from 1934, but this proof does not extend to the inviscid case of the Euler
equations. No general uniqueness result is available for weak solutions, which
limit the usefulness of the concept.

In (Hoffman and Johnson, 2008a), weak (output) uniqueness is introduced, to
characterize well-posedness of weak solutions with respect to functionals M(u)
of the solution u. This framework extends to the Euler equations, and also to
compressible flow. The basic result takes the form

|M(u)−M(U)| ≤ S(‖R(u)‖−1 + ‖R(U)‖−1) (28.1)

with ‖ · ‖−1 a weak norm measuring residuals R(·) of two weak solutions u and U ,
and with S a stability factor given by a duality argument connecting local errors
to output errors inM(·).

28.4 Adaptive computational fluid modeling

Computational methods in fluid mechanics are typically very specialized; for a
certain range of Re or M , or for a particular class of geometries. In particular,
there is a wide range of turbulence models and shock capturing techniques.

The goal of Unicorn is to design one method with one implementation, capa-
ble of modeling general geometry and the whole range of parameters Re and M .
We use the mathematical framework of well-posedness as a general foundation
for Newtonian fluid mechanics, where a General Galerkin (G2) finite element
method offers a robust algorithm to compute weak solutions (Hoffman and Johnson,
2006a). The UFL implementation of a G2method in Unicorn is shown in Fig.28.1.

Adaptive G2methods developed in (Hoffman, 2005, 2006a, 2009, Hoffman and Johnson,
2006b) are based on a posteriori error estimates of the form:

|M(u)−M(U)| ≤
∑

K

EK (28.2)

with M(u) the target output to compute and M(U) the approximation, with u
and U G2 solutions, and EK a local error indicator for cell K. The error indicator
EK is constructed as from the residual, measuring local errors, weighted by the
solution to a dual (adjoint) problem measuring the effect of local errors on the
output M(·). The UFL implementation of the dual problem in Unicorn is shown
in Fig.28.2
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The computational mesh is then modified according to EK , by mesh refine-
ment, coarsening or smoothing. The algorithms underlying the parallel imple-
mentation the adaptive algorithm is described in detail in Chapter ??.

28.5 Turbulent boundary layers

The choice of boundary conditions at a solid wall is critical for accurate modeling
of fluid flow, in particular to capture flow separation phenomena. Since full reso-
lution of a turbulent boundary layers is out of reach, the standard way to handle
the problem is to divide the computational domain into: (i) an interior part Ω,
and (ii) a boundary layer. In the boundary layer a simplified model of the flow is
used to provide boundary conditions to the Navier-Stokes equations to be solved
in the interior part Ω. Boundary conditions may be in the form of velocities or
stresses, and the coupling between (i) and (ii) may be one-way from (ii) to (i), or
more closely coupled. Boundary layer models are developed based on experimen-
tal data, theory or computation (in a multiscale framework). For an overview of
boundary layer modeling, see e.g. (Sagaut, 2005, Sagaut et al., 2006).

Turbulent boundary layer modeling in Unicorn is based on recent work (Hoffman,
2006c, 2009, Hoffman and Johnson, 2008b, Jansson and Hoffman, 2009) where
the turbulent boundary layer is modelled by a skin friction stress at the bound-
ary. That is, we append the Navier-Stokes equations with the following boundary
conditions for the velocity u and stress σ:

u · n = 0, (28.3)

u · τk + β−1nTστk = 0, k = 1, 2, (28.4)

for (x, t) ∈ Γsolid × [0, T ], with n = n(x) an outward unit normal vector, and τk =
τk(x) orthogonal unit tangent vectors of Γsolid. We use matrix notation with all
vectors v being column vectors and the corresponding row vector is denoted vT .
For a tangent velocity u · τk ∼ 1, the friction parameter β ∼ Ff , with Ff the skin
friction stress. The weak implementation of the skin friction boundary condition
in Unicorn is shown in Fig.28.1.

28.6 Unified Continuum model

For robust fluid-structure interaction Unicorn is based on Unified Continuum
(UC) modeling (Hoffman et al., 2009), where the combined fluid-structure con-
tinuum is described by conservation laws for mass, momentum and energy, and
a stress σ and phase variable θ are kept as data for defining properties of the
continuum, such as constitutive laws and material parameters. The equations
are evaluated in the fixed actual (Euler or laboratory) coordinate system.
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The current version of Unicorn implements an incompressible continuum,
which simplifies modeling by decoupling the energy equation from conservation
of mass and momentum. The extension to a compressible continuum is under
way, based on the compressible solver of Unicorn, described in Chapter ??.

We start with conservation of mass, momentum and energy, together with a
convection equation for a phase function θ over a space-time domain Q = [Ω ×
[0, T ]] with Ω an open domain in R3 with boundary Γ:

Dtρ+Dxj
(ujρ) = 0 (Mass conservation)

Dtmi +Dxj
(ujmi) = Dxj

σi (Momentum conservation)

Dte+Dxj
(uje) = Dxj

σiui (Energy conservation)

Dtθ +Dxj
ujθ = 0 (Phase convection equation)

(28.5)

together with initial and boundary conditions, where the stress is the Cauchy
(laboratory) stress and the phase variable is used to define material data such
as constitutive law for the stress and material parameters. Note that in this
continuum description the coordinate system is fixed (Euler).

Above an indexed Einstein notation is used with the derivative of a function
f with regard to the variable x denoted as Dxf , and the derivative with regard to
component xi of component fj denoted as Dxi

fj = ∇fj . Repeated indices denote

a sum: Dxi
fi =

∑d
i=1Dxi

fi = ∇ · f . Similarly we can express derivatives with
respect to any variable: Duu = 1.

For an incompressible continuum we have:

ρ(Dtui + ujDjui) = Dxj
σij

Dxj
uj = 0

where now the energy equation is decoupled and we can omit it. The total stress
can be decomposed into constitutive and forcing stresses:

Dxj
σij = Dxj

σij +Dxj
σfij = Dxj

σij + fi

We can then pose constitutive relations between the constitutive (Cauchy) stress
component σ and other variables such as the velocity u.

This continuum modeling framework is simple and compact, close to the for-
mulation of the original conservation laws, without mappings between coordi-
nate systems. This allows simple manipulation and processing for error estima-
tion and implementation. It is also general, constitutive laws can be chosen to
model simple or complex solids and fluids in interaction, with individual param-
eters.

We choose a G2 discretization of the UC, based on streamline diffusion stabi-
lization and a local ALE map over the mesh T h. The implementation in Unicorn
is shown in Fig. ??, and for details on the method see (Hoffman et al., 2009).

379



Turbulent Flow and Fluid-Structure Interaction with Unicorn

28.7 Constitutive laws

The UC model allows us to choose different constitutive laws describing the be-
haviour of the particular material for each phase.

28.7.1 Fluid laws

The current version of Unicorn implements only Newtonian fluids, although
non-Newtonian fluids are expected to be compatible with the UC framework and
the Unicorn implementation, where they could be seen as relatives of viscous
and plastic solid constitutive laws as given below.

• For a fluid phase we typically choose a Newtonian law: σ = 2νǫ− pI

28.7.2 Solid laws

For a solid phase there exists a multitude of choices for constitutive laws.
Several possible laws are listed below. The primitives for describing laws is the
deformation gradient F and the velocity u. The main relations between u and F
are summarized as:

DtF = ∇uF
DtF

−1 = −F−1∇u
B = FF T

(28.6)

Using the above relation to compute F , constitutive laws can be expressed
coupling the stress σ to the deformation F , typically in the form B = FF T . F
could also be eliminated to formulate stress rate laws only in terms of the stress
σ and the velocity u. We here present some possible choices, with extension to
plasticity through a stress rate law:

• A common example is a Neo-Hookean law: σ = µB − pI.

• Selecting the component σD = µB and differentiating with regard to time
B can be eliminated so that DtσD = 2µǫ(u) +∇uσD + σD∇u⊤.

• A (compressible) elasto-plastic variant of this model is: Dtσ+ ν−1(σ− πσ) =
Eǫ(u), where ν is a viscosity coefficient and πσ denotes the projection of σ
onto a (convex) set of plastically admissible stresses.

380



Johan Hoffman, Johan Jansson, Niclas Jansson, Claes Johnson and Murtazo
Nazarov

28.8 Applications

We now illustrate the capabilities of the Unicorn solver by showing snapshots
from simulations, described in detail elsewhere. The chosen simulations couple
to the following challenges of computational mechanics: simulation of turbulent
flow and turbulent flow separation, and robust fluid-structure interaction.

28.8.1 Turbulent separation

Viscous effects in the boundary layer is traditionally used as a mechanism to
explain flow separation, not only for low Reynolds numbers Re but also for high
Re where otherwise inertial effects dominate. In particular, viscous effects in
the boundary layer is often presented as the resolution of the d’Alembert para-
dox (Stewartson, 1981), seemingly disqualifying the inviscid Euler equations
with slip boundary conditions as a model for high Re flow. The significance of
the boundary layer for explaining turbulent flow separation was questioned in
(Hoffman and Johnson, 2008b), where instead a mechanism for inviscid separa-
tion was suggested based on exponential growth of streamwise vorticity at sepa-
ration. In particular, a new resolution of the d’Alembert paradox was presented
based on this instability of potential flow at separation.

In (Jansson and Hoffman, 2009) a computational study is presented using
Unicorn, where the drag force of a circular cylinder is computed adaptively based
on a posteriori error estimation. In particular, the phenomenon of drag crisis is
targeted, characterized by a sudden drop in the non-dimensional drag coefficient
for a cylinder for Re increasing beyond a critical size of about 105. By decreasing
the skin friction parameter β, modeling an increasing Re, the drag crisis scenario
is reproduced using Unicorn, in agreement with the high Re experimental data
available in the literature (Zdravkovich, 2003). In particular, for vanishing skin
friction the flow approaches a state independent of the skin friction parameter,
which thus correspond to a free slip boundary condition, see Fig.28.4-28.6.

If indeed a slip boundary condition, without the boundary layer, is a good
model for high Re flow separation, this represents a major breakthrough for tur-
bulence simulation, which opens for new advanced simulations in aero- and hy-
drodynamics. In Fig.28.7-28.8 this is exemplified by modeling the turbulent flow
past a NACA 0012 airfoil under increasing angle of attack, and the turbulent
flow past a realistic geometry of a full car (Hoffman and Johnson, 2006a), for
which Unicorn allows for time resolved simulations using the capacity of a lap-
top computer.

28.8.2 Robust fluid-structure interaction

Amain challenge of fluid-structure interaction is the stability of the fluid-structure
coupling. The unified continuum model of Unicorn provide a monolitic method
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which is robust, and also allows for a flexible constitutive modeling. As a special
case of the FSI solver, Unicorn also offers a robust solver for flow problems in
deforming domains.

There is a multitude of areas in which fluid-structure interaction plays an
important role, not the least in biomedicine that poses a number of complex
fluid-structure interaction problems. One such challenge is the human heart,
where cardiac muscle contracts to pump the blood through the cardiovascular
system. Depending on the context various computational models of the heart
can be constructed. To study the fluid dynamics of the blood inside the heart,
one can reconstruct the deformation of the heart from medical imaging, to be
used as basis for a deforming domain fluid dynamics model of the blood flow.
This is the approach underlying the simulation in Fig.28.9, where the blood flow
in the left ventricle is modeled using Unicorn. The blood is here assumed to be
incompressible, and the deforming domain is based on patient specific medical
image data. See (Aechtner, 2009) for more details on this model.

Unicorn is designed to be able to handle large structure deformations inter-
acting with complex fluid flow. In Fig.28.10 we present a model problem of a
flexible structure interacting with turbulent flow in 3D, in the form of a fixed
cube in high Re flow with a thin flexible flag mounted in the downstream wake.
Violent bending and torsion motion along the long axis of the flag is observed,
and we note that the method is robust for these large structure deformations
and highly fluctuating flow.
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scalar = FiniteElement("Lagrange", tetrahedron, 1)
vector = VectorElement("Lagrange", tetrahedron, 1)
constant_scalar = FiniteElement("Discontinuous Lagrang e", tetrahedron, 0)
constant_vector = VectorElement("Discontinuous Lagrang e", tetrahedron, 0)

v = TestFunction(vector) # test basis function
U = TrialFunction(vector) # trial basis function
um = Function(vector) # cell mean linearized velocity
u0 = Function(vector) # velocity from previous time step
f = Function(vector) # force term
p = Function(scalar) # pressure
delta1 = Function(constant_scalar) # stabilization param eter
delta2 = Function(constant_scalar) # stabilization param eter
tau_1 = Function(vector) # force term
tau_2 = Function(vector) # force term
beta = Function(scalar) # friction parameter

k = Constant(tetrahedron) # time step
nu = Constant(tetrahedron) # viscosity

i0 = Index() # index for tensor notation
i1 = Index() # index for tensor notation
i2 = Index() # index for tensor notation

# Galerkin discretization of bilinear form
G_a = (inner(v, U) + k * nu* 0.5 * inner(grad(v), grad(U)) \

+ 0.5 * k* v[i0] * um[i1] * U[i0].dx(i1)) * dx \
+ 0.5 * k* beta * (inner(U,tau_1) * inner(v,tau_1) \
+ inner(U,tau_2) * inner(v,tau_2)) * ds

# Least squares stabilization of bilinear form
SD_a = (delta1 * k* 0.5 * um[i1] * v[i0].dx(i1) * um[i2] * U[i0].dx(i2) \

+ delta2 * k* 0.5 * div(v) * div(U)) * dx

# Galerkin discretization of linear form
G_L = (inner(v, u0) + k * inner(v, f) + k * div(v) * p \

- k * nu* 0.5 * inner(grad(v), grad(u0)) \
- 0.5 * k* v[i0] * um[i1] * u0[i0].dx(i1)) * dx \
- 0.5 * k* beta * (inner(u0,tau_1) * inner(v,tau_1) \
+ inner(u0,tau_2) * inner(v,tau_2)) * ds

# Least squares stabilization of linear form
SD_L = (- delta1 * k* 0.5 * um[i1] * v[i0].dx(i1) * um[i2] * u0[i0].dx(i2) \

- delta2 * k* 0.5 * div(v) * div(u0)) * dx

# Bilinear and linear forms
a = G_a + SD_a
L = G_L + SD_L

Figure 28.1: Source code for bilinear and linear forms for solving the incom-
pressible Navier-Stokes equations.
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scalar = FiniteElement("Lagrange", tetrahedron, 1)
vector = VectorElement("Lagrange", tetrahedron, 1)
constant_scalar = FiniteElement("Discontinuous Lagrang e", tetrahedron, 0)
constant_vector = VectorElement("Discontinuous Lagrang e", tetrahedron, 0)

v = TestFunction(vector) # test basis function
U = TrialFunction(vector) # trial basis function
um = Function(vector) # primal velocity
u0 = Function(vector) # velocity from previous time step
f = Function(vector) # force term
p = Function(scalar) # pressure
delta1 = Function(constant_scalar) # stabilization param eter
delta2 = Function(constant_scalar) # stabilization param eter

k = Constant(cell) # time step
nu = Constant(cell) # viscosity

up = Function(vector) # cell mean linearized primal velocit y

i0 = Index() # index for tensor notation
i1 = Index() # index for tensor notation
i2 = Index() # index for tensor notation

# Galerkin discretization of bilinear form
G_a = (inner(v, U) + k * nu* 0.5 * inner(grad(v), grad(U)) \

- 0.5 * k* v[i0] * up[i1] * U[i0].dx(i1) \
+ 0.5 * k* v[i0] * up[i1].dx(i0) * U[i1]) * dx

# Least squares stabilization of bilinear form
SD_a = (delta1 * k* 0.5 * um[i1] * v[i0].dx(i1) * um[i2] * U[i0].dx(i2) \

+ delta1 * k* 0.5 * up[i1].dx(i0) * v[i1] * up[i2].dx(i0) * U[i2] \
+ delta2 * k* 0.5 * div(v) * div(U)) * dx

# Galerkin discretization of linear form
G_L = (inner(v, u0) + k * inner(v, f) + k * div(v) * p \

- k * nu* 0.5 * inner(grad(v), grad(u0)) \
+ 0.5 * k* v[i0] * up[i1] * u0[i0].dx(i1) \
- 0.5 * k* v[i0] * up[i1].dx(i0) * u0[i1]) * dx

# Least squares stabilization of linear form
SD_L = (- delta1 * k* 0.5 * um[i1] * v[i0].dx(i1) * um[i2] * u0[i0].dx(i2) \

- delta1 * k* 0.5 * up[i1].dx(i0) * v[i1] * up[i2].dx(i0) * u0[i2] \
- delta2 * k* 0.5 * div(v) * div(u0)) * dx

# Bilinear and linear forms
a = G_a + SD_a
L = G_L + SD_L

Figure 28.2: Source code for bilinear and linear forms for solving the dual in-
compressible Navier-Stokes equations.
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def tomatrix(q):
return [ [q[d * i + j] for i in range(d)] for j in range(d) ]

def ugradu(u, v):
return [dot(u, grad(v[i])) for i in range(d)]

def epsilon(u):
return 0.5 * (grad(u) + transp(grad(u)))

def E(e, mu, lmbda):
Ee = mult(2.0 * mu, e) + mult(lmbda, mult(trace(e), Identity(d)))
return Ee

UPale = UP - WP
UPalem = UPm - WPm

sigmaM = tomatrix(sigma)

Sf = mult(P, Identity(d)) - mult(nu, grad(UP))
Ss = mult(P, Identity(d)) - mult(1.0, sigmaM)
S = mult(phi, Sf) + mult(1.0 - phi, Ss)

def f(u, v):
return -(dot(ugradu(UPale, u), v) - dot(S, grad(v))) + \

-dot(mult(d2, div(u)), div(v)) + \
-mult(d1, dot(ugradu(UPalem, u), ugradu(UPalem, v))) + \
dot(mult(1.0 - phi, ff), v)

def dfdu(u, k, v):
return -dot(ugradu(UPale, u), v) + \

-mult(1 - phi, mult(k, dot(E(epsilon(u), mu, lmbda), grad( v)))) + \
-mult(phi, mult(nu, dot(grad(u), grad(v)))) + \
-mult(d2, dot(div(u), div(v))) + \
-mult(d1, dot(ugradu(UPalem, u), ugradu(UPalem, v)))

# cG(1)
def F(u, u0, k, v):

uc = mult(0.5, u + u0)
return (-dot(u, v) + dot(u0, v) + mult(k, f(uc, v)))

def dFdu(u, u0, k, v):
uc = mult(0.5, u)
return (-dot(u, v) + mult(k, dfdu(uc, k, v)))

a = (dFdu(U1, U0, k, v)) * dx
L = (dFdu(UP, U0, k, v) - F(UP, U0, k, v)) * dx

Figure 28.3: Source code for bilinear and linear forms for a unified continuum
model. 385
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Figure 28.4: Turbulent flow separation (Jansson and Hoffman, 2009): velocity
vectors at surface of cylinder; for β = 10−1, β = 10−2, β = 10−3 and β = 0 (from
upper left to bottom right).

Figure 28.5: Turbulent flow separation (Jansson and Hoffman, 2009): pressure
isosurfaces; for β = 10−1, β = 10−2, β = 10−3 and β = 0 (from upper left to bottom
right).
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Figure 28.6: Turbulent flow separation (Jansson and Hoffman, 2009): velocity
streamlines; for β = 10−1, β = 10−2, β = 10−3 and β = 0 (from upper left to bottom
right).
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Figure 28.7: Flow past NACA 0012 airfoil (Hoffman and Johnson, 2006a): veloc-
ity magnitude (upper), pressure (middle), and non-transversal vorticity (lower),
for angles of attack 4, 10, 18◦.
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Figure 28.8: Streamlines of turbulent flow around a car (simulations by Murtazo
Nazarov, with geometry by courtesy of Volvo Cars).

Figure 28.9: Blood flow simulation of the left ventricle of a human heart: snap-
shots of surface pressure (upper) and velocity (lower). The geometrical model is
constructued by Ulf Gustafsson och Per Vesterlund at Umeå Universty, and the
simulations performed by Matthias Aechtner at KTH (Aechtner, 2009).
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Figure 28.10: Simulation of turbulent flow past a square cylinder with an elastic
flag attached downstream (Hoffman et al., 2009): plot of cut of the mesh, isosur-
face of pressure and fluid-structure phase interface. Going from initial state top
left to illustrating violent bending and torsion motion along the long axis of the
flag.
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CHAPTER 29

Fluid–Structure Interaction using Nitsche’s Method

By Kristoffer Selim and Anders Logg

Chapter ref: [selim]

In this study, we present a 2D fluid–structure interaction (FSI) simulation of
a channel flow containing an elastic valve that may undergo large deformations.
The FSI occurs when the fluid interacts with the solid structure of the valve,
exerting pressure that causes deformation of the valve and, thus, alters the flow
of the fluid itself. To describe the equations governing the fluid flow and the
elastic valve, two separate meshes are used and Nitsche’s method is used to
couple the equations on the two meshes. The method is based on continuous
piecewise approximations on each mesh with weak enforcement of the proper
continuity at the interface defined by the boundary of one of the overlapping
meshes.
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CHAPTER 30

Improved Boussinesq Equations for Surface Water

Waves

By Nuno D. Lopes, P. J. S. Pereira and L. Trabucho

Chapter ref: [lopes]

◮ Editor note: Move macros to common macros after deciding what to do about bold

fonts.

◮ Author note: We have replaced bold fonts with vector notation (e.g.: u changed to ~u).

◮ Editor note: List authors with full names

The main motivation of this work is the implementation of a general solver for
some of the improved Boussinesq models. Here, we use the second order model
proposed by Zhao et al. (Zhao et al., 2004) to investigate the behaviour of surface
water waves. Some effects like surface tension, dissipation and wave generation
by natural phenomena or external physical mechanisms are also included. As
a consequence, some modified dispersion relations are derived for this extended
model.

30.1 Introduction

The FEniCS project, via DOLFIN and FFC, provides a good support for the
implementation of large scale industrial models. We implement a solver for some
of the Boussinesq type systems to model the evolution of surface water waves in
a variable depth seabed. This type of models is used, for instance, in harbour
simulation1, tsunami generation and propagation as well as in coastal dynamics.

1See Fig. 30.1 for an example of a standard harbour.
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Figure 30.1: Nazaré’s harbour, Portugal.

◮ Editor note: Need to get permission for this figure!

There are several Boussinesq models and some of the most widely used are
those based on the wave Elevation and horizontal Velocities formulation (BEV)
(see, e.g., (Liu and Woo, 2004), (Walkley and Berzins, 2002)).

In the next section the governing equations for surface water waves are pre-
sented. From these equations different types of models can be derived. We con-
sider only the wave Elevation and velocity Potential (BEP) formulation. Thus,
the number of system equations is reduced when compared to the BEV models.
Two different types of BEP models are taken into account:

i) a standard sixth-order model (see subsection 30.2.1);

ii) the second-order model proposed by Zhao, Teng andCheng (ZTC) (Zhao et al.,
2004) (see subsection 30.2.2).

We use the sixth-order model to illustrate a standard technique in order to de-
rive a Boussinesq-type model. In the subsequent sections, only the ZTC model
is considered. Note that these two models are complemented with some extra
terms, due to the inclusion of effects like dissipation, surface tension and wave
generation by moving an impermeable bottom or using a source function.

An important characteristic of the modified ZTC model, including dissipative
effects, is presented in the third section, namely, the dispersion relation.

In the fourth and fifth sections, we describe several types of wave generation,
absorption and reflection mechanisms. Initial conditions for a solitary wave and
a periodic wave induced by Dirichlet boundary conditions are also presented.
Moreover, we complement the ZTC model using a source function to generate
surface water waves, as proposed in (Wei et al., 1999). Total reflective walls are
modelled by standard zero Neumann conditions for the surface elevation and
velocity potential. The wave energy absorption is simulated using sponge layers.
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The following section is dedicated to the numerical methods used in the dis-
cretization of the variational formulation. The discretization of the spatial vari-
ables is accomplished with low order Lagrange finite elements whereas the time
integration is implemented using Runge-Kutta and Predictor-Corrector algorithms.

In the seventh section, the ZTC numerical model is used to simulate the evo-
lution of a periodic wave in an harbour geometry like that one represented in
Fig. 30.1.

30.2 Model derivation

As usual we consider the following set of equations for the irrotational flow of an
incompressible and inviscid fluid:





∂~u

∂t
+ (~u · ∇xyz)~u = −∇xyz

(
P

ρ
+ g z

)
,

∇xyz × ~u = ~0,

∇xyz · ~u = 0,

(30.1)

where ~u is the velocity vector field of the fluid, P the pressure, g the gravitational
acceleration, ρ the mass per unit volume, t the time and the differential operator

∇xyz =

[
∂

∂x
,
∂

∂y
,
∂

∂z

]
. A Cartesian coordinate system is adopted with the hor-

izontal x and y-axes on the still water plane and the z-axis pointing vertically
upwards (see Fig. 30.2). The fluid domain is bounded by the bottom seabed at
z = −h(x, y, t) and the free water surface at z = η(x, y, t). In Fig. 30.2, L, A and

z = −h(x, y, t)
D
Dt

(z + h(x, y, t)) = 0

L

z = η(x, y, t)

D
Dt

(z − η(x, y, t)) = 0

A

z = −H

z

xo

Figure 30.2: Cross-section of the water wave domain.

H are the characteristic wave length, wave amplitude and depth, respectively.
Note that the material time derivative is denoted by D

Dt
.
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From the irrotational assumption (see (30.1)2), one can introduce a velocity
potential function, φ(x, y, z, t), to obtain Bernoulli’s equation:

∂φ

∂t
+

1

2
∇xyzφ · ∇xyzφ+

P

ρ
+ g z = f(t), (30.2)

where f(t) stands for an arbitrary function of integration. Note that one can
remove f(t) from equation (30.2) if φ is redefined by φ +

∫
f(t) dt. From the in-

compressibility condition (see (30.1)3) the velocity potential satisfies Laplace’s
equation:

∇2φ+
∂2φ

∂z2
= 0, (30.3)

where ∇ is the horizontal gradient operator given by ∇ =

[
∂

∂x
,
∂

∂y

]
. To close this

problem, the following boundary conditions must be satisfied:

i) the kinematic boundary condition for the free water surface:

∂φ

∂z
=
∂η

∂t
+∇φ · ∇η, z = η; (30.4)

ii) the kinematic boundary condition for the impermeable sea bottom:

∂φ

∂z
+ (∇φ · ∇h) = −∂h

∂t
, z = −h; (30.5)

iii) the dynamic boundary condition for the free water surface:

∂φ

∂t
+ gη +

1

2

(
|∇φ|2 +

(
∂φ

∂z

)2
)

+D(φ)−W (η) = 0, z = η, (30.6)

whereD(φ) is a dissipative term (see, e.g., the work by Duthyk and Dias (Dutykh and Dias,
2007)). We assume that this dissipative term is of the following form:

D(φ) = ν
∂2φ

∂z2
, (30.7)

with ν = µ̄/ρ and µ̄ an eddy-viscosity coefficient. Note that a non-dissipative
model means that there is no energy loss. This is not acceptable from a physical
point of view, since any real flow is accompanied by energy dissipation.

In equation (30.6), W (η) is the surface tension term given by:

W (η) = T

(
1 +

(
∂η

∂y

)2
)
∂2η

∂x2
+

(
1 +

(
∂η

∂x

)2
)
∂2η

∂y2
− 2

∂η

∂x

∂η

∂y

∂2η

∂x∂y

(1 + |∇η|2)3/2
, (30.8)
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where T is the surface tension coefficient.

Using Laplace’s equation (see (30.3)) it is possible to rewrite (30.7) as D(φ) =
−ν∇2φ. Throughout the literature, analogous terms were added to the kinematic
and dynamic conditions to absorb the wave energy near the boundaries. These
terms are related with the sponge or damping layers and, as we will see later,
they can be used to modify the dispersion relations. In addition, the lineariza-
tion of equation (30.8) results in W (η) = T∇2η. The surface tension effects are
important if short waves are considered. Although the long wave assumption is
made to derive these extended models, waves of short length are generated in the
domain due to the waves interaction. Thus, the inclusion of surface tension in
the small amplitude long wave models may be relevant. On the other hand, it is
worth to mention that one of the main goals of the scientific research on Boussi-
nesq wave models is the improvement of the range of applicability in terms of
the water-depth/wave-length relationship. We refer the works by Wang et al.
(Wang et al., 2008) as well as Dash and Daripa (Dash and Daripa, 2002), which
included surface tension effects in the KdV (Korteweg-de Vries) and Boussinesq
equations.

Amore detailed description of the above equations is found in G. B. Whitham’s
reference book on waves (Whitham, 1974), or in the more recent book by R. S.
Johnson (Johnson, 1997).

30.2.1 Standard models

In this subsection, we present a generic Boussinesq system using the velocity
potential formulation. To transform equations (30.2)-(30.8) in a dimensionless
form, the following scales are introduced:

(x′, y′) =
1

L
(x, y), z′ =

z

H
, t′ =

t
√
gH

L
, η′ =

η

A
, φ′ =

Hφ

AL
√
gH

, h′ =
h

H
,

(30.9)
together with the small parameters

µ =
H

L
, ε =

A

H
. (30.10)

In the last equation, µ is usually called the long wave parameter and ε the small
amplitude wave parameter. Note that ε is related with the nonlinear terms and
µ with the dispersive terms. For simplicity, in what follows, we drop the prime
notation.

The Boussinesq approach consists in reducing a 3D problem to a 2D one. This
may be accomplished by expanding the velocity potential in a Taylor power series
in terms of z. Using Laplace’s equation, in a dimensionless form, one can obtain
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the following expression for the velocity potential:

φ(x, y, z, t) =

+∞∑

n=0

(
(−1)n

z2n

(2n)!
µ2n∇2nφ0(x, y, t) + (−1)n

z2n+1

(2n+ 1)!
µ2n∇2nφ1(x, y, t)

)
,

(30.11)
with

φ0 = φ |z=0, φ1 =

(
∂φ

∂z

)
|z=0 . (30.12)

From asymptotic expansions, successive approximation techniques and the kine-
matic boundary condition for the sea bottom, it is possible to write φ1 in terms
of φ0 (cf. (Chen and Liu, 1994), (Zhao et al., 2004)). In this work, without loss of
generality, we assume that the dispersive and nonlinear terms are related by the
following equation:

ε

µ2
= O(1). (30.13)

Note that the Ursell number is defined by Ur =
ε

µ2
.

A sixth-order model is obtained if φ1 is expanded in terms of φ0 and all terms
up to O(µ8) are retained. Thus, the asymptotic kinematic and dynamic boundary
conditions for the free water surface are rewritten as follows 2:





∂η

∂t
+ ε∇ · (η∇φ0)−

1

µ2
φ1 +

ε2

2
∇ · (η2∇φ1) = O(µ6),

∂φ0

∂t
+ εη

∂φ1

∂t
+ η +

ε

2
|∇φ0|2 + ε2∇φ0 · η∇φ1−

−ε2η∇2φ0φ1 +
ε

2µ2
φ2

1 +D(φ0, φ1)−W (η) = O(µ6),

(30.14)

where φ1 is given by:

φ1 = −µ2∇ · (h∇φ0) +
µ4

6
∇ ·
(
h3∇3φ0

)
− µ4

2
∇ ·
(
h2∇2 · (h∇φ0)

)
−

− µ6

120
∇ ·
(
h5∇5φ0

)
+
µ6

24
∇ ·
(
h4∇4 · (h∇φ0)

)
+
µ6

12
∇ ·
(
h2∇2 ·

(
h3∇3φ0

))
−

− µ6

4
∇ ·
(
h2∇2 ·

(
h2∇2 · (h∇φ0)

))
− µ2

ε

∂h

∂t
− µ2

ε

µ2

2
∇ ·
(
h2∇∂h

∂t

)
+

+
µ2

ε

µ4

24
∇ ·
(
h4∇3∂h

∂t

)
− µ2

ε

µ4

4
∇ ·
(
h2∇2

(
h2∇∂h

∂t

))
+O(µ8). (30.15)

To obtain equation (30.15), we assume that
∂h

∂t
= O(ε) (cf. (Dutykh and Dias,

2007)).

2Note that D and W are, now, dimensionless functions.
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30.2.2 Second-order model

The low order equations are obtained, essentially, via the slowly varying bottom
assumption. In particular, only O(h,∇h) terms are retained. Also, only low order
nonlinear terms, O(ε), are admitted. In fact, the modified ZTC model is written
retaining only O(ε, µ4) terms.

Under these conditions, (30.14) and (30.15) lead to:





∂η

∂t
+ ε∇ · (η∇φ0)−

1

µ2
φ1 = O(µ6),

∂φ0

∂t
+ η +

ε

2
|∇φ0|2 − ν∗ε∇2φ0 − T ∗µ2∇2η = O(µ6),

(30.16)

where ν∗ = ν
√
H/(AL

√
g), T ∗ = T/(gH2) and

φ1 = −µ2∇ · (h∇φ0) +
µ4

6
∇ ·
(
h3∇3φ0

)
− µ4

2
∇ ·
(
h2∇2 · (h∇φ0)

)
−

− 2µ6

15
h5∇6φ0 − 2µ6h4∇h · ∇5φ0 −

µ2

ε

∂h

∂t
+O(µ8). (30.17)

Thus, these extended equations, in terms of the dimensional variables, are writ-
ten as follows:




∂η

∂t
+∇ · [(h+ η)∇Φ]− 1

2
∇ · [h2∇∂η

∂t
] +

1

6
h2∇2∂η

∂t
− 1

15
∇ · [h∇(h

∂η

∂t
)] = −∂h

∂t
,

∂Φ

∂t
+

1

2
|∇Φ|2 + gη − 1

15
gh∇ · (h∇η)− ν∇2Φ− T∇2η = 0,

(30.18)
where Φ is the transformed velocity potential given by:

Φ = φ0 +
h

15
∇ · (h∇φ0). (30.19)

The transformed velocity potential is used with twomain consequences (cf. (Zhao et al.,
2004)):

i) the spatial derivation order is reduced to the second order;

ii) linear dispersion characteristics, analogous to the fourth-order BEP model
proposed by Liu and Woo (Liu and Woo, 2004) and the third-order BEV
model developed by Nwogu (Nwogu, 1993), are obtained.

30.3 Linear dispersion relation

One of the most important properties of a water wave model is described by the
linear dispersion relation. From this relation we can deduce the phase velocity,
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group velocity and the linear shoaling. The dispersion relation provides a good
method to characterize the linear properties of a wave model. This is achieved
using the linear wave theory of Airy.

In this section we follow the work by Duthyk and Dias (Dutykh and Dias,
2007). Moreover, we present a generalized version of the dispersion relation for
the ZTC model with the dissipative term mentioned above. One can also include
other damping terms, which are usually used in the sponge layers.

For simplicity, a 1D-Horizontal model is considered. To obtain the dispersion
relation, a standard test wave is assumed:





η(x, t) = a ei(kx−ωt),

Φ(x, t) = −b i ei(kx−ωt),
(30.20)

where a is the wave amplitude, b the potential magnitude, k = 2π/L the wave
number and ω the angular frequency. This wave, described by equations (30.20),
is the solution of the linearized ZTC model, with a constant depth bottom and an
extra dissipative term, if the following equation is satisfied:

ω2 − ghk21 + (1/15)(kh)2

1 + 2/5(kh)2
+ iνωk2 = 0. (30.21)

Using Padé’s [2,2] approximant, the dispersion relation given by last equation is
accurate up to O((kh)4) or O(µ4) when compared with the following equation:

ω2 − ghk2 tanh(kh)

kh
+ iνωk2 = 0. (30.22)

In fact, equation (30.22) is the dispersion relation of the full linear problem.

From (30.21), the phase velocity, C =
w

k
, for this dissipative ZTC model is

given by:

C = −iνk
2
±

√

−
(
νk

2

)2

+ gh
(1 + 1/15(kh)2)

(1 + 2/5(kh)2)
. (30.23)

In Fig. 30.3, we can see the positive real part of
(
C/
√
gh
)
as a function of kh for

the following models: full linear theory (FL), Zhao et al. (ZTC), full linear theory
with a dissipative model (FL D) and the improved ZTC model with the dissipa-
tive term (ZTC D). From Fig. 30.3, one can also see that these two dissipative
models admit critical wave numbers k1 and k2, such that the positive part of

Re
(
C/
√
gh
)
is zero for k ≥ k1 and k ≥ k2. To avoid some numerical instabilities

one can optimize the ν values in order to reduce the short waves propagation.
In general, to improve the dispersion relation one can also use other transfor-

mations like (30.19), or evaluate the velocity potential at z = −σh (σ ∈ [0, 1])
instead of z = 0 (cf. (Bingham et al., 2008), (Madsen and Agnon, 2003) and
(Madsen et al., 2003)).
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Figure 30.3: Positive part of Re
(
C/
√
gh
)
as a function of kh for several models.

30.4 Wave generation

In this section some of the physical mechanisms to induce surface water waves
are presented. We note that the moving bottom approach is useful for wave gen-
eration due to seismic activities. However, some physical applications are asso-
ciated with other wave generation mechanisms. For simplicity, we only consider
mechanisms to generate surface water waves along the x direction.

30.4.1 Initial condition

The simplest way of inducing a wave into a certain domain is to consider an
appropriate initial condition. An useful and typical benchmark case is to assume
a solitary wave given by:

η(x, t) = a1 sech2(kx− ωt) + a2 sech4(kx− ωt), (30.24)

u(x, t) = a3 sech2(kx− ωt), (30.25)

where the parameters a1 and a2 are the wave amplitudes and a3 is the magnitude
of the velocity in the x direction. As we use a potential formulation, Φ is given
by:

Φ(x, t) = − 2a3 e
2ωt

k (e2ωt + e2kx)
+K1(t), (30.26)

where K1(t) is a time-dependent function of integration.
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In (Walkley, 1999) and (Wei and Kirby, 1995) the above solitary wave was
presented as a solution of the extended Nwogu’s Boussinesq model.

30.4.2 Incident wave

For time-dependent wave generation, it is possible to consider waves induced
by a boundary condition. This requires that the wave surface elevation and the
velocity potential must satisfy appropriated boundary conditions, e.g., Dirichlet
or Neumann conditions.

The simplest case is to consider a periodic wave given by:

η(x, t) = a sin(kx− ωt) (30.27)

Φ(x, t) = − c
k

cos(kx− ωt) +K2(t), (30.28)

where c is the wave velocity magnitude andK2(t) is a time-dependent function of
integration. This function K2(t) must satisfy the initial condition of the problem.
In equations (30.27) as well as (30.28), one can note that the parameters a, c, k
and ω are not all arbitrary, since they are related by the dispersion relation. One
can also consider the superposition of water waves as solutions of the full linear
problem with a constant depth.

30.4.3 Source function

In the work by Wei et al. (Wei et al., 1999), a source function for the genera-
tion of surface water waves was derived. This source function was obtained,
using Fourier transform and Green’s functions, to solve the linearized and non
homogeneous equations of the Peregrine (Peregrine, 1967) and Nwogu’s (Nwogu,
1993) models. This mathematical procedure can also be adapted here to deduce
the source function.

We consider a monochromatic Gaussian wave generated by the following func-
tion:

S(x, t) = D∗ exp(−β(x− xs)2) cos(ωt), (30.29)

with D∗ given by:

D∗ =

√
β

ω
√
π
a exp(

k2

4β
)

2

15
h3k3g. (30.30)

In the above expressions xs is the center line of the source function and β is
a parameter associated with the width of the generation band (cf. (Wei et al.,
1999)).
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30.5 Reflective walls and sponge layers

Besides the incident wave boundaries where the wave profiles are given, one
must close the system with appropriate boundary conditions. We consider two
more types of boundaries:

i) full reflective boundaries;

ii) partial reflective or absorbing boundaries.

The first case is modelled by the following equations:

∂Φ

∂~n
= 0,

∂η

∂~n
= 0, (30.31)

where ~n is the outward unit vector normal to the computational domain Ω. We
denote Γ as the boundary of Ω.

Note that in the finite element formulation, the full reflective boundaries
(equations (30.31)) are integrated by considering zero Neumann-type boundary
conditions.

Coupling the reflective case and an extra artificial layer, often called sponge
or damping layer, we can simulate partial reflective or full absorbing boundaries.
In this way, the reflected energy can be controlled. Moreover, one can prevent un-
wanted wave reflections and avoid complex wave interactions. It is also possible
to simulate effects like energy dissipation by wave breaking.

In fact, a sponge layer is a subset ΩS of Ω where some extra viscosity term
is added. As mentioned above, the system of equations can incorporate several
extra damping terms, like that one provided by the inclusion of a dissipative
model. Thus, the viscosity coefficient ν can be described by a function of the
following form:

ν(x, y) =





0, (x, y) 6∈ ΩS ,

n1

exp

(
dΩS
− d(x, y)
dΩS

)n2

− 1

exp(1)− 1
, (x, y) ∈ ΩS ,

(30.32)

where n1 and n2 are, in general, experimental parameters, dΩS
is the sponge-

layer diameter and d(x, y) stands for a distance function between a point (x, y)
and the intersection of Γ with the boundary of ΩS (see, e.g., (Walkley, 1999)).

30.6 Numerical Methods

We start this section by noting that a detailed description of the implemented nu-
merical methods referred bellow can be found in the work of N. Lopes (N.Lopes,
2007).
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For simplicity, we only consider the second-order system described by equa-
tions (30.18) restricted to a stationary bottom and without dissipative, surface
tension or extra source terms.

The model variational formulation is written as follows:




∫

Ω

∂η

∂t
ϑ1 dxdy +

1

2

∫

Ω

h2∇
(
∂η

∂t

)
· ∇ϑ1 dxdy − 1

6

∫

Ω

∇
(
∂η

∂t

)
· ∇(h2ϑ1) dxdy+

+
1

15

∫

Ω

h∇
(
h
∂η

∂t

)
· ∇ϑ1 dxdy − 1

15

∫

Γ

h
∂h

∂~n

∂η

∂t
ϑ1 dΓ =

∫

Ω

(h+ η)∇Φ · ∇ϑ1 dxdy −
∫

Γ

(h+ η)
∂Φ

∂~n
ϑ1 dΓ +

2

5

∫

Γ

h2 ∂

∂t

(
∂η

∂~n

)
ϑ1dΓ,

∫

Ω

∂Φ

∂t
ϑ2 dxdy = −1

2

∫

Ω

|∇Φ|2ϑ2 dxdy − g
∫

Ω

η ϑ2 dxdy−

− g

15

∫

Ω

h∇η · ∇(hϑ2) dxdy +
g

15

∫

Γ

h2 ∂η

∂~n
ϑ2 dΓ,

(30.33)
where the unknown functions η and Φ are the surface elevation and the trans-
formed velocity potential, whereas ϑ1 and ϑ2 are the test functions defined in
appropriate spaces.

The spatial discretization of these equations is implemented using low order
Lagrange finite elements. In addition, the numerical implementation of (30.33)
is accomplished using FFC.

We use a predictor-corrector scheme with an initialization provided by an ex-
plicit Runge-Kutta method for the time integration. Note that the discretization
of equations (30.33) can be written in the following form:

MU̇ = ~F (t, U), (30.34)

where U̇ and U refer to

(
∂η

∂t
,
∂Φ

∂t

)
and (η,Φ), respectively. The coefficient ma-

trix M is given by the left-hand sides of (30.33), whereas the known vector ~F is
related with the right-hand sides of the same equations. In this way, the fourth
order Adams-Bashforth-Moulton method can be written as follows:




MU
(0)
n+1 = MUn +

∆t

24
[55~F (tn, Un)− 59~F (tn−1, Un−1)+

+37~F (tn−2, Un−2)− 9~F (tn−3, Un−3)],

MU
(1)
n+1 = MUn +

∆t

24
[9~F (tn+1, U

(0)
n+1) + 19~F (tn, Un)−
−5~F (tn−1, Un−1) + ~F (tn−2, Un−2)],

(30.35)

where ∆t is the time step, tn = n∆t (n ∈ N) and Un is U evaluated at tn. The pre-

dicted and corrected values of Un are denoted by U
(0)
n and U

(1)
n , respectively. The
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corrector-step equation ((30.35)2) can be iterated as function of a predefined error
between consecutive time steps. For more details see, e.g., (Hairer and Wanner,
1991) or (Lambert, 1991).

30.7 Numerical Applications

In this section, we present some numerical results about the propagation of sur-
face water waves in an harbour with a geometry similar to that one of Fig. 30.1.

The colour scale used in Figs. 30.5–30.8 is presented in Fig. 30.4. A schematic
description of the fluid domain, namely the bottom profile and the sponge layer
can be seen in Figs. 30.5 and 30.6, respectively. Note that a piecewise linear
bathymetry is considered. A sponge layer is used to absorb the wave energy at
the outflow region and to avoid strong interaction between incident and reflected
waves in the harbour entrance. A monochromatic periodic wave is introduced at
the indicated boundary (Dirichlet BC) in Fig. 30.6. This is achieved by consid-
ering waves induced by a periodic Dirichlet boundary condition, as described in
the subsection 30.4.2, with the following characteristics:

a wave amplitude 0.25 m

ω wave angular frequency 0.64715 s−1

p wave period 4.06614 s

k wave number 0.06185 m−1

L wave length 101.59474 m

b wave potential magnitude 3.97151 m2
s
−1

c wave velocity magnitude 0.24562 m s−1

ε small amplitude parameter 0.01823

µ long wave parameter 0.13501

Full reflective walls are assumed as boundary conditions in all domain boundary
except in the harbour entrance. In Fig. 30.7 a snapshot of the surface elevation
is shown at the time ts = 137 s.

A zoom of the image, which describes the physical potential φ0(x, y) and ve-
locity vector field in the still water plane, is given in the neighbourhood of the
point P3 = (255,−75) m at ts (see Fig. 30.8). The Figs. 30.9 and 30.10 represent
the surface elevation and water speed as a function of the time, at the points
P1 = (−350, 150) m, P2 = (−125, 60) m and P3.

From these numerical results, one can conclude that the interaction between
incident and reflected waves, near the harbour entrance, can generate wave am-
plitudes that almost take the triple value of the incident wave amplitude. One
can also observe an analogous behaviour for velocities. Note that no mechanism
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Figure 30.4: Scale. Figure 30.5: Impermeable bottom
[Max = −5.316 m, min = −13.716 m].
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Figure 30.6: Sponge layer (viscosity ν(x, y)) [Max ≈ 0.1 m2
s
−1, min = 0 m2

s
−1].

for releasing energy of the reflected waves throughout the incident wave bound-
ary is considered.

30.8 Conclusions and future work

As far as we know, the finite element method is not often applied in surface
water wave models based on the BEP formulation. In general, finite difference
methods are preferred, since they could be easily applied to higher-order equa-
tions. On the other hand, they are not appropriated for the treatment of complex
geometries, like those of harbours, for instance.

In fact, the surface water wave problems are associated with Boussinesq-type
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Figure 30.7: Surface elevation [Max ≈ 0.63 m, min ≈ −0.73 m].

Figure 30.8: Velocity vector field at z = 0 and potential φ0(x, y, ts) near P3.
Potential values in Ω: [Max ≈ 14.2 m2

s
−1, min = −12.8 m2

s
−1].

governing equations, which require very high order (≥ 6) spatial derivatives
or a very high number of equations (≥ 6). A first approach, to the high-order
models using discontinuous Galerkin finite element methods, can be found in
(Engsig-Karup et al., 2006).

From this work one can conclude that the FEniCS packages, namely DOLFIN
and FFC, are appropriated to model surface water waves.
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Figure 30.9: Surface elevation at P1, P2 and P3 [Max ≈ 0.4 m, min = −0.31 m].
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Figure 30.10: Water speed at P1, P2 and P3 [Max ≈ 0.53 m s−1, min = 0 m s−1].

We have been developing DOLFWAVE, i.e., a FEniCS based application for
BEPmodels (see http://www.fenics.org/wiki/DOLFWAVE ).DOLFWAVE will
also be compatible with Xd3d post-processor3.

The current state of the work, along with several numerical simulations, can
be found at http://ptmat.fc.ul.pt/ ∼ndl . This package will include some
standard potential models of low order (≤ 4) as well as other new models to be

3http://www.cmap.polytechnique.fr/ ∼jouve/xd3d/
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submitted elsewhere by the authors (N.Lopes et al.).
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CHAPTER 31

Multiphase Flow Through Porous Media

By Xuming Shan and Garth N. Wells

Chapter ref: [shan]

Summarise work on automated modelling for multiphase flow through porous
media.
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CHAPTER 32

A coupled stochastic and deterministic model of

Ca
2+

dynamics in the dyadic cleft

By Johan Hake

Chapter ref: [hake]

32.1 Introduction

From the time we are children, we are told that we should drink milk because
it is an important source of calcium (Ca2+), and that Ca2+ is vital for a strong
bone structure. What we do not hear as frequently, is that Ca2+ is one of the
most important cellular messengers in the human body (Alberts et al., 2002).
In particular, Ca2+ controls cell death, neural signaling, secretion of different
chemical substances to the body, and the focus of this chapter: the contraction of
cells in the heart.

In this chapter, we will present a computational model that can be used to
model Ca2+ dynamics in a small sub-cellular domain called the dyadic cleft. The
model includes Ca2+ diffusion, which is described by an advection-diffusion par-
tial differential equation, and discrete channel dynamics, which is described by
stochastic Markov models. Numerical methods implemented in PyDOLFINsolv-
ing the partial differential equation will also be pregsented. In the last section,
we describe a time stepping scheme that is used to solve the stochastic and de-
terministic models. We will also present a solver framework, DiffSim, that im-
plements the time stepping scheme together with the numerical methods solving
the computational model described above.
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32.2 Biological background

In a healthy heart, every heart beat originates in the sinusoidal node, where
pacemaker cells trigger an electric signal. This signal is a difference in elec-
tric potential between the interior and exterior of the heart cells. These two
domains are separated by the cell membrane. The difference in the electric po-
tential between these domains is called the membrane potential. The membrane
potential propagates through the whole heart using active conductances at the
cell membrane. The actively propagating membrane potential is called an action
potential. When an action potential arrives at a heart cell, it triggers the L-type
Ca2+ channels (LCCs). These channels bring Ca2+ into the cell. Some of the Ca2+

diffuse over a small cleft, called the dyadic cleft, and cause further Ca2+ release
from an intracellular Ca2+ storage, the sarcoplasmic reticulum (SR), through a
channel called the ryanodine receptor (RyR). The Ca2+ ions then diffuse to the
main intracellular domain of the cell, the cytosole, in which the contractile pro-
teins are situated. The Ca2+ ions attach to these proteins and trigger contrac-
tion. The strength of the contraction is controlled by the strength of the Ca2+

concentration (
[
Ca2+]) in cytosole. The contraction is succeeded by a period of re-

laxation, which is caused by the extraction of Ca2+ from the intracellular space
by various proteins.

This chain of events is labelled the Excitation Contraction (EC) coupling (Bers,
2001). Several severe heart diseases can be related to impaired EC coupling. By
broadening the knowledge of the coupling, it may be possible to develop better
treatments for such diseases. Although the big picture of EC coupling is straight-
forward to grasp, it involves the nonlinear action of hundreds of different protein
species. Computational methods have emerged as a natural complement to ex-
perimental studies to better understand the intriguing coupling. In this chapter,
we focus on the initial phase of the EC coupling, the stage where Ca2+ flows into
the cell and triggers further Ca2+ release.

32.3 Mathematical models

In this section we describe the computational model for the early phase of the
EC coupling. We first present the morphology of the cleft, and how we model this
in our study. Then we describe the mathematical equation for the diffusion of
Ca2+ inside the cleft together with the boundary fluxes. Finally, we discuss the
stochastic models that govern the discrete channel dynamics of the LCCs and
RyRs.
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A B

Figure 32.1: A: A diagram showing the relationship between the TT, the SR, and
the jSR. The volume between the flat jSR and the TT is the dyadic cleft. The
black structures in the cleft are Ryanodine receptors, which are large channel
proteins. B: The geometry used for the dyadic cleft. The top of the disk is the cell
membrane of the SR or jSR. The bottom is the cell membrane of the TT, and the
circumference of the disk is the interface to the cytosole. The elevations in the
TT membrane models two ions channels.

Morphology

The dyadic cleft is the volume between a structure called the t-tubule (TT) and
the SR. The TT is a network of pipe-like invaginations of the cell membrane that
perforate the heart cell (Soeller and Cannell, 1999). In Fig. 32.1 A, a sketch of
a small part of a single TT together with a piece of SR is presented. Here we
see that the junctional SR (jSR) is wrapped around the TT. The small volume
between these two structures is the dyadic cleft. The space is not well defined
as it is crowded with channel proteins, and its size also varies. In computational
studies, it is commonly approximated as a disk or a rectangular slab (Koh et al.,
2006, Peskoff et al., 1992, Soeller and Cannell, 1997, Tanskanen et al., 2007). In
this study a disk with height, h = 12 nm and radius, r = 50 nm has been used for
the domain Ω, see Fig. 32.1 B. The diffusion constant of Ca2+ is set to σ = 105 nm2

ms−1 (Langer and Peskoff, 1996).

Ca2+ Diffusion

Electro-Diffusion

We will use Fick’s second law to model the diffusion of Ca2+ in the dyadic cleft.
Close to the cell membrane, the ions are affected by an electric potential. The
potential is caused by negative charges on the membrane (Langner et al., 1990,
McLaughlin et al., 1971). The potential attenuates fast as it is screened by the
ions in the intracellular solution. We will describe the electric potential using
the Gouy-Chapman method (Grahame, 1947). This theory introduces an advec-
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tion term to the standard diffusion equation, which makes the resulting equation
harder to solve. To simplify the presentation we will use a non-dimensional elec-
tric potential ψ, which is the electric potential scaled by a factor of e/kT . Here e
is the electron charge, k is Boltzmann’s constant and T is the temperature. We
will also use a non-dimensional electric field which is given by:

E = −∇ψ. (32.1)

The Ca2+ flux in a solution in the presence of an electric field is governed by
the Nernst-Planck equation,

J = −σ (∇c− 2 cE) , (32.2)

where c = c(x, t) is the
[
Ca2+] (x ∈ Ω and t ∈[0,T]), σ the diffusion constant, E =

E(x) the non-dimensional electric field and 2 is the valence of Ca2+. Assuming
conservation of mass, we arrive at the advection-diffusion equation,

ċ = σ (∆c−∇ · (2 cE)) . (32.3)

Here ċ is the time derivative of c.
The strength of ψ is defined by the amount of charge at the cell membrane and

by the combined screening effect of all the ions in the dyadic cleft. In addition to
Ca2+, the intracellular solution also contains K+, Na+, Cl−, and Mg2+. Following
the previous approach by Langner et al. (1990) and Soeller and Cannell (1997),
these other ions will be treated as being in steady state. The cell membrane is
assumed to be planar and effectively infinite. This assumption allows us to use
an approximation of the electric potential in the solution,

ψ(z) = ψ0 e−κz . (32.4)

Here ψ0 is the non-dimensional potential at the membrane, κ the inverse Debye
length and z the distance from the cell membrane. We will use ψ0 = −2.2 and
κ = 1 nm.

Boundary fluxes

The boundary, ∂Ω, is divided into 4 disjoint boundaries, ∂Ωk, for k = 1, . . . , 4, see
Fig. 32.1 B. To each boundary we associate a flux, J|∂Ωk

= Jk. The SR and TT
membranes are impermeable for ions, effectively making ∂Ω1, in Fig. 32.1 B, a
no-flux boundary, giving us,

J1 = 0. (32.5)

We include 2 LCCs in our model. The Ca2+ flows into the cleft at the ∂Ω[2,3] bound-
aries, see Fig. 32.1 B. Ca2+ entering these channels then diffuse to the RyRs trig-
gering Ca2+ release from the SR. This additional Ca2+ flux will not be included
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A B

Figure 32.2: A: State diagram of the discrete LCCMarkov model from Jafri et al.
(1998). Each channel can be in one of the 12 states. The transitions between the
states are controlled by propensities. The α, and β are voltage dependent, γ
is
[
Ca2+] dependent and f , a, b, and ω are constant, see Jafri et al. (1998) for

further details. The channels operate in two modes: Mode normal, represented
by the states in the upper row, and Mode Ca, represented the states in the lower
row. In state 6 and 12 the channel is open, but state 12 is rarely entered as
f ′ ≪ f , effectively making Mode Ca an inactivated mode. B: State diagram of
an RyR from Stern et al. (1999). The α and γ propensities are Ca2+ dependent,
representing the activation and inactivation dependency of the cytosolic

[
Ca2+].

The β and δ propensities are constant.

in the simulations. However, the stochastic dynamics of the opening of the chan-
nel will be included. Further detailes are presented in Section 32.3 below. The
Ca2+ that enters the dyadic cleft diffuses into the main compartment of cytosole,
introducing a third flux. This flux is included in the model at the ∂Ω3 boundary.

The LCC is a stochastic channel that takes the state of either open or closed.
When the channel is open, Ca2+ flows into the cleft. The dynamic that describe
the stochastic behaviour is presented in Section 32.3 below. The current ampli-
tude of an open LCC channel is modelled to -0.1 pA (Guia et al., 2001). The LCC
flux is then,

J[2,3] =

{
0 : closed channel

− i
2F A

, : open channel
(32.6)

where i is the amplitude, 2 the valence of Ca2+, F Faraday’s constant and A the
area of the channel. Note that an inward current is by convention negative.

The flux to the cytosole is modeled as a concentration dependent flux,

J4 = −σc− c0
∆s

, (32.7)

where c is the concentration in the cleft at the boundary, c0 the concentration
in the cytosole, and ∆sis an approximation of the distance to the center of the
cytosole. In our model we have used ∆s= 50 nm.
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Stochastic models of single channels

Discrete and stochastic Markov chain models are used to describe single chan-
nel dynamics. Such models are described by a certain number of discrete states.
Each channel can be in either one of these states. A transition between two
states is a stochastic event. The frequency of these events are determined by
the propensity functions associated with each transition. These functions, which
may vary with time, characterize the probability per unit time that the corre-
sponding transition event occurs. Each Markov model defines its own propensity
functions.

L-type Ca
2+

channel

The LCC opens when an action potential arrives at the cell. The channel inac-
tivates when single Ca2+ ions bind to binding sites on the intracellular side of
the channel. An LCC is composed of a complex of four transmembrane subunits.
Each of these can be permissive or non-permissive. For the whole channel to be
open, all four subunits need to be permissive and the channel then has to undergo
a last conformational change to an opened state (Hille, 2001). In this chapter we
are going to use a Markov model of the LCC that incorporates a voltage depen-
dent activation together with a Ca2+ dependent inactivation (Jafri et al., 1998,
?). The state diagram of this model is presented in Fig. 32.2 A. It consists of 12
states, where state 6 and 12 are the only conducting states, hence defineing the
open states. The transition propensities are defined by a set of functions and
constants, which are all described in Greenstein and Winslow (2002).

Ryanodine Receptors

RyRs are Ca2+ specific channels that are gathered in clusters at the SR mem-
brane in the dyadic cleft. These clusters can consist of several hundreds of RyRs
(Beuckelmann and Wier, 1988, Franzini-Armstrong et al., 1999). They open by
single Ca2+ ions attaching to the receptors at the cytosolic side. We will use a
modified version of a phenomenological RyR model that mimics the physiological
functions of the channel (Stern et al., 1999). The model consists of four states
where only one is conducting, state 2, see Fig. 32.2 B. The α and γ propensities
are Ca2+ dependent, representing the activation and inactivation dependency of
cytosolic

[
Ca2+

]
. The β and δ propensities are constants. For specific values for

the propensities, see Stern et al. (1999).
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1 from numpy import *
2 from dolfin import *
3

4 mesh = Mesh(’cleft_mesh.xml.gz’)
5

6 Vs = FunctionSpace(mesh, "CG", 1)
7 Vv = VectorFunctionSpace(mesh, "CG", 1)
8

9 v = TestFunction(Vs)
10 u = TrialFunction(Vs)
11

12 # Defining the electric field-function
13 a = Expression(["0.0","0.0","phi_0 * valence * kappa * sigma * exp(-kappa * x[2])"],
14 defaults = {"phi_0":-2.2,"valence":2,"kappa":1,"sigma ":1.e5},
15 V = Vv)
16

17 # Assembly of the K, M and A matrices
18 K = assemble(inner(grad(u),grad(v)) * dx)
19 M = assemble(u * v* dx)
20 E = assemble(-u * inner(a,grad(v)) * dx)
21

22 # Collecting face markers from a file, and skip the 0 one
23 sub_domains = MeshFunction("uint",mesh,"cleft_mesh_fa ce_markers.xml.gz")
24 unique_sub_domains = list(set(sub_domains.values()))
25 unique_sub_domains.remove(0)
26

27 # Assemble matrices and source vectors from exterior facets domains
28 domain = MeshFunction("uint",mesh,2)
29 F = {};f = {};tmp = K.copy(); tmp.zero()
30 for k in unique_sub_domains:
31 domain.values()[:] = (sub_domains.values() != k)
32 F[k] = assemble(u * v* ds, exterior_facet_domains = domain, \
33 tensor = tmp.copy(), reset_sparsity = False)
34 f[k] = assemble(v * ds, exterior_facet_domains = domain)

Figure 32.3: Python code for the assembly of the matrices and vectors from
Eq. (32.14)-(32.15).

32.4 Numerical methods for the continuous sys-

tem

In this section, we will describe the numerical methods used to solve the contin-
uous part of the computational model of the Ca2+ dynamics in the dyadic cleft.
We will provide PyDOLFINcode for each part of the presentation. The first part
of the section describes the discretization of the continuous problem using a fi-
nite element method. The second part describes a method to stabilize the dis-
cretization. In this part, we also conduct a parameter study to find the optimal
stabilization parameters.

Discretization

The continuous problem is defined by Eqs. (32.3 -32.7) together with an initial
condition. Given a bounded domain Ω ⊂ R

3 with the boundary, ∂Ω, we want to
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find c = c(x, t) ∈ R+, for x ∈ Ω and t ∈ [0, T ], such that:
{

ċ = σ∆c−∇ · (ca) in Ω
σ∂nc− ca · n = Jk on ∂Ωk, k = 1, . . . , 4,

(32.8)

and c(·, 0) = c0(x). Here a = a(x) = 2σE(x) and Jk is the k
th flux at the kth boundary

∂Ωk, where
⋃4
k=1 ∂Ωk = ∂Ω, ∂nc = ∇c · n, where n is the outward normal on the

boundary. The Jk are given by Eqs. (32.5)- (32.7).
The continuous equations are discretized using a finite element method in

space. Eq. (32.8) is multiplied with a proper test function v, and integrated over
the spatial domain, thus obtaining:

∫

Ω

ċv dx =

∫

Ω

(σ∆c−∇(ca)) v dx. (32.9)

Integration by parts, together with the boundary conditions in Eq. (32.8), yield:
∫

Ω

ċv dx = −
∫

Ω

(σ∇c− ca) · ∇v dx+
∑

k

∫

∂Ωk

Jkv dsk. (32.10)

Consider a mesh T = {K} of simplicial elements K. Let Vh denote the space of
piecewise linear polynomials, defined relative to the mesh T . Using the back-
ward Euler methods in time, we seek an approximation of c: ch ∈ Vh with nodal
basis {φi}Ni=1. Eq. (32.10) can now be discretized as follows: Consider the nth time
step, then given cnh find cn+1

h ∈ Vh such that

∫

Ω

cn+1
h − cnh

∆t
v dx = −

∫

Ω

(
σ∇cn+1

h − cn+1
h a

)
· ∇v dx+

∑

k

∫

∂Ω

Jkv dsk ∀v ∈ Vh,

(32.11)
where ∆tis the size of the time step. The trial function cnh(x) is expressed as a
weighted sum of basis functions,

cnh(x) =

N∑

j

Cn
j φj(x). (32.12)

where Cn
j are the coefficients. Due to the choice of Vh will the number of un-

knowns, N , coincide with the number of vertices of the mesh.
Taking test functions, v = φi, i ∈ {1, . . . , N}, gives the following algebraic

system of equations in terms of the coefficients
{
cn+1
i

}N
i=1

.

1

∆t
M
(
Cn+1 − Cn

)
=

(
−K + E +

∑

k

αkFk

)
Cn+1
j +

∑

k

ck0 f
k. (32.13)

Here Cn ∈ R
N is the vector of coefficients from the discrete solution cnh(x), α

k and
ck0 are constant coefficients given by Eqs. (32.5) - (32.7) and
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1 # Defining the stabilization using local Peclet number
2 cppcode = """class Stab : public Expression {
3 public:
4 Expression * field; double sigma;
5 Stab(): Expression(3), field(0), sigma(1.0e5)
6 {
7 value_shape.push_back(3);
8 }
9 void eval(double * v, const Data& data) const {

10 if (!field)
11 error("Attach a field function.");
12 double field_norm = 0.0; double tau = 0.0;
13 double h = data.cell().diameter();
14 field->eval(v,data);
15 for (uint i = 0;i < geometric_dimension(); ++i)
16 field_norm += v[i] * v[i];
17 field_norm = sqrt(field_norm);
18 double PE = 0.5 * field_norm * h/sigma;
19 if (PE > DOLFIN_EPS)
20 tau = 1/tanh(PE)-1/PE;
21 for (uint i = 0;i < geometric_dimension(); ++i)
22 v[i] * = 0.5 * h* tau/field_norm;}};
23 """
24 stab = Expression(cppcode, V = Vv); stab.field = a
25

26 # Assemble the stabilization matrices
27 E_stab = assemble(div(a * u) * inner(stab,grad(v)) * dx)
28 M_stab = assemble(u * inner(stab,grad(v)) * dx)
29

30 # Adding them to the A and M matrices, weighted by the global ta u
31 tau = 0.28; E.axpy(tau,E_stab,True); M.axpy(tau,M_stab, True)

Figure 32.4: Python code for the assembly of the SUPG term for the mass and
advection matrices.
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Mij =

∫

Ω

φiφjdx, Kij =

∫

Ω

∇φi · ∇φjdx,

Eij =

∫

Ω

aφi · ∇φjdx, F
k
ij =

∫

∂Ωk

φiφjds,
(32.14)

are the entries in the M, K, E and F
k matrices. fk are boundary source vectors

corresponding to the kth boundary. The vector elements are given by:

fki =

∫

∂Ωk

φids. (32.15)

The PyDOLFINcode for the assembly of the matrices and vectors in Eqs. (32.14)-
(32.15) is presented in Fig. 32.3. Note that we define only one form for the
different boundary mass matrices and boundary source vectors, u* v* ds and
v* ds respectively. The assemble routine will assemble these forms over the
0th sub-domain, see line 31 and 33 in Fig. 32.3. By passing sub domain specific
MeshFunction s to the assemble routine we can assemble the correct boundary
mass matrices and boundary source vectors. We collect the matrices and bound-
ary source vectors. These are then added to form the linear system to be solved
at each time step. If an LCC opens, we get contributions to the right-hand side
from the source vectors. If an LCC closes, the same source vectors are removed
from the right-hand side. When an LCC either opens or closes, a large flux is
either added or removed from the system. To be able to resolve the sharp time
gradients correctly, we need to take smaller time steps after such an event. The
time step is then expanded by multiply it with a constant ¿ 1.

The sparse linear system is solved using the PETSclinear algebra backend
(Balay et al., 2001) in PyDOLFINtogether with the Bi-CGSTAB iterative solver
(van der Vorst, 1992), and the BoomerAMG preconditioners from hypre (Falgout and Yang,
2002). In Fig. 32.5, a script is presented that solves the algebraic system from
Eq. (32.13) together with a crude time stepping scheme for the opening and clos-
ing of the included LCC channel.

Stabilization

It turns out that the algebraic system in Eq. (32.13) can be numerically unstable
for physiological relevant values of a. This is due to the transport term intro-
duced by Eij from Eq. (32.14). We have chosen to stabilize the system using the
Streamline upwind Petrov-Galerkin (SUPG) method (Brooks and Hughes, 1982).
This method adds an upwind discontinuous contribution to the testfunction in
the streamline direction Eq. (32.9),

v′ = v + s, where s = τ
hτe
2‖a‖a · ∇v. (32.16)
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Here τ is a parameter we want to optimize (see later in this Section), ‖ · ‖ is the
Euclidian norm in R

3, h = h(x) is the element size, and τe = τe(x), is given by,

τe = coth(PEe)−
1

PEe
, (32.17)

where PEe is the element Péclet number:

PEe =
‖a‖h
2σ

. (32.18)

When PEe is larger than 1 the system become unstable, and oscillations is intro-
duced.

In the 1D case, with a uniformmesh, the stabilization term defined by Eqs. (32.17) -
(32.18), can give nodal exact solutions (Brooks and Hughes, 1982, Christie et al.,
1976). Our choice of stabilization parameter is inpired by this. We have used
the diameter of the sphere that circumscribes the local tetrahedron as h. This is
what DOLFINimplements in the function Cell.diameter() . We recognize that
other choices exist, which might give better stabilization (John and Knobloch,
2007). Tezduyar and Park (1986) use a length based on the size of the element
in the direction of a.

The PyDOLFINcode that assembles the SUPG part of the problem is pre-
sented in Fig. 32.4. In the script, two matrices, E stab and Mstab are assem-
bled. Both matrices are added to the corresponding advection and mass matrices
E and M, weighted by the global parameter tau .

A mesh with finer resolution close to the TT surface, at z = 0 nm, is used to
resolve the steep gradient of the solution in this area. It is here the electric field
is at its strongest, yielding an element Péclet number larger than 1. However
the field attenuate fast: at z = 3 nm the field is down to 5% of the maximal
amplitude, and at z = 5 nm, it is down to 0.7%.The mesh can thus be fairly
coarse in the interior of the domain. The mesh generator tetgen is used to to
produce meshes with the required resolution (Si, 2007).

The global stabilization parameter τ , is problem dependent. To find an opti-
mal τ , for a certain electric field and mesh, the system in Eq. (32.13) is solved to
steady state, defined as T = 1.0 ms, using only homogeneous Neumann boundary
conditions. An homogeneous concentration of c0 = 0.1 µM is used as the initial
condition. The numerical solution is then compared with the analytic solution of
the problem. This solution is acquired by setting J = 0 in Eq. (32.2) and solving
for the c, with the following result:

c(z) = cb e
−2ψ(z) . (32.19)

Here ψ is given by Eq. (32.4), and cb is the concentration in the bulk, i.e., where
z is large. cb was chosen such that the integral of the analytic solution was equal
to c0 × V , where V is the volume of the domain.
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1 # Model parameters
2 dt_min = 1.0e-10; dt = dt_min; t = 0; c0 = 0.1; tstop = 1.0
3 events = [0.2,tstop/2,tstop,tstop]; dt_expand = 2.0;
4 sigma = 1e5; ds = 50; area = pi; Faraday = 0.0965; amp = -0.1
5 t_channels = {1:[0.2,tstop/2], 2:[tstop/2,tstop]}
6

7 # Initialize the solution Function and the left and right han d side
8 u = Function(Vs); x = u.vector()
9 x[:] = c0# * exp(-a.valence * a.phi_0 * exp(-a.kappa * mesh.coordinates()[:,-1]))

10 b = Vector(len(x)); A = K.copy();
11

12 solver = KrylovSolver("bicgstab","amg_hypre")
13 solver.parameters["relative_tolerance"] = 1e-10
14 solver.parameters["absolute_tolerance"] = 1e-7
15

16 plot(u, vmin=0, vmax=4000, interactive=True)
17 while t < tstop:
18 # Initalize the left and right hand side
19 A.assign(K); A * = sigma; A += E; b[:] = 0
20

21 # Adding channel fluxes
22 for c in [1,2]:
23 if t >= t_channels[c][0] and t < t_channels[c][1]:
24 b.axpy(-amp * 1e9/(2 * Faraday * area),f[c])
25

26 # Adding cytosole flux at Omega 3
27 A.axpy(sigma/ds,F[3],True); b.axpy(c0 * sigma/ds,f[3])
28

29 # Applying the Backward Euler time discretization
30 A * = dt; b * = dt; b += M * x; A += M
31

32 solver.solve(A,x,b)
33 t += dt; print "Ca Concentration solved for t:",t
34

35 # Handle the next time step
36 if t == events[0]:
37 dt = dt_min; events.pop(0)
38 elif t + dt * dt_expand > events[0]:
39 dt = events[0] - t
40 else:
41 dt * = dt_expand
42

43 plot(u, vmin=0, vmax=4000)
44

45 plot(u, vmin=0, vmax=4000, interactive=True)

Figure 32.5: Python code for solving the system in Eq. (32.13), using the assem-
bled matrices from the two former code examples from Fig. 32.3- 32.4.
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Figure 32.6: The fig-
ure shows a plot of the
error versus the stabi-
lization parameter τ for
3 different mesh resolu-
tions. The mesh reso-
lutions are given by the
median of the z distance
of all vertices and the to-
tal number of vertices in
the mesh, see legend. We
see that the minimal val-
ues of the error for the
three meshes, occur at
three different τ : 0.22,
0.28, and 0.38.

The error of the numerical solution for different values of τ and for three
different mesh resolutions are plotted in Fig. 32.6. The meshes are enumerated
from 1-3. The error is computed using the L2(Ω) norm and is normalized by the
L2(Ω) norm of the analytical solution,

‖c(T )− cnT

h ‖L2

‖c(T )‖L2

, (32.20)

where nT is the time step at t = T . As expected, we see that the mesh with the
finest resolution produces the smallest error. The mesh resolutions are quan-
tified by the number of vertices close to z = 0. In the legend of Fig. 32.6, the
median of the z distance of all vertices and the total number of vertices in each
mesh is presented. The three meshes were created such that the vertices closed
to z = 0 were forced to be situated at some fixed distances from z = 0. Three
numerical and one analytical solution for the three different meshes are plotted
in Fig. 32.7- 32.9. The numerical solutions are from simulations using three dif-
ferent τ : 0.1, 0.6 and the L2-optimal τ , see Fig. 32.6. The traces in the figures are
from the discrete solution cnT

h , evaluated on the straight line between the spatial
points p0=(0,0,0) and p1=(0,0,12).

In Fig. 32.7 the traces from mesh 1 is plotted. Here we see that the numer-
ical solutions are quite poor for some of the τ . The solution with τ = 0.10 is
obviously not correct, as it produces negative concentrations. The solution with
τ = 0.60 seems more correct but it undershoots the analytic solution at z = 0
with 1̃.7 µM. The solution with τ = 0.22 is the L2-optimal solution for mesh 1,
and approximates the analytic solution at z = 0 well.

In Fig. 32.8 the traces from mesh 2 is presented in two plots. The left plot
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shows the traces for z < 1.5 nm, and the right shows the traces for z > 10.5
nm. In the left plot we see the same tendency as in Fig. 32.7, an overshoot of
the solution with τ = 0.10 and an undershoot of the solution with τ = 0.60. The
L2-optimal solution, the one with τ = 0.28, overshoots the analytic solution for
the shown interval in the left plot, but undershoots for the rest of the trace.

In the last figure, Fig. 32.9, traces from mesh 3 is presented. The results
is also here presented in two plots, corresponding to the same z interval as in
Fig. 32.8. We see that the solution with τ = 0.10 is not good in either plots. In the
left plot it clearly overshoots the analytic solution for most of the interval, and
then stays at a lower level than the analytic solution for the rest of the interval.
The solution with τ = 0.60 is much better here than in the two previous plots.
It undershoots the analytic solution at z = 0 but stays closer to it for the rest of
the interval than the L2-optimal solution. The L2 norm penalize larger distances
between two traces, i.e., weighting the error close to z = 0 more than the rest.
The optimal solution measured in the Max norm is given when τ = 50, result not
shown.

These results tell us that it is difficult to obtain accurate numerical solution
for the advection-diffusion problem presented in Eq. (32.8). Using a finer mesh
close to z = 0 could help, but it will create a larger algebraic system. It is inter-
esting to notice that the L2 optimal solutions is better close to z = 0, than other
solutions and the solution for the largest τ is better than other for z ¿ 2 nm. For
a modeller, these constraints are important to know about; the solution at z = 0
and z = 12 nm are the most important, as Ca2+ interact with other proteins at
these points.

32.5 diffsim an event driven simulator

In the scripts in Fig. 32.3- 32.5, we show how a simple continuous solver can be
built with PyDOLFIN. By preassembling the matrices from Eq. (32.14) a flexible
system for adding and removing boundary fluxes corresponding to the state of
the channels can be constructed. The script in Fig.32.5 uses fixed time points for
the channel state transitions. At these time points we minimize ∆t, so we can re-
solve the sharp time gradient. In between the channel transitions we expand ∆t.
This simplistic time stepping scheme is sufficient to solve the presented example.
However it would be difficult to expand it to also incorporate the time stepping
involved with the solution of stochastic Markov models, and other discrete vari-
ables. For such scenarios, an event driven simulator called diffsim has been
developed. In the last subsections in this chapter, the algorithm underlying the
time stepping scheme in diffsim will be presented. An example of how one can
use diffsim to describe and solve a model of the Ca2+ dynamics in the dyadic
cleft will also be demonstrated. The diffsim software can freely be downloaded
from URL:http://www.fenics.org/wiki/FEniCS_Apps .
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Stochastic system

The stochastic evolution of the Markov chain models presented in Section 32.3
is determined by a modified Gillespie method (Gillespie, 1977), which resembles
the one presented in Rüdiger et al. (2007). Here we will not go into detail of the
actual method, but rather explain the part of the method that has importance
for the overall time stepping algorithm.

The solution of the included stochastic Markov chain models is stored in a
state vector, S. Each element in S corresponds to oneMarkov model and the value
reflects which state each model is in. The transitions between these states are
modelled stochastically and are computed using the modified Gillespie method.
This method basically gives us which of the states in S changes to what state
and when. It is not all such state transitions that are relevant for the continuous
system. A transition between two closed states in the LCC model will not have
any impact on the boundary fluxes, and can be ignored. Only transitions that
either open or close a channel (channel transitions), will be recognized. The
modified Gillespie method assumes that any continuous variables that a certain
propensity function depends on, are constant during a time step. The error of
this assumption is reduced by taking smaller time steps right after a channel
transition, as the continuous field is indeed changing dramatically during this
time period.

Time stepping algorithm

To simplify the presentation of the time stepping algorithm we only consider
one continuous variable, this could for example be the Ca2+ field. The frame-
work presented here can be expanded to also handle several continuous vari-
ables. We define a base class called DiscreteObject , which defines the in-
terface for all discrete objects. A key function of a discrete object is to know
when its next event is due at. The DiscreteObject that has the smallest
next event time, gets to define the size of the next ∆t. In Python this is easily
done by making the DiscreteObject s sortable with respect to their next event
time. All DiscreteObject s is then collected in a list, discrete objects see
Fig. 32.10. The DiscreteObject with the smallest next event time is then just
min(discrete objects) .

An event from a DiscreteObject that does not have an impact on the con-
tinuous solution will be ignored for example a Markov chain model transition
that is not a channel transition. A transition needs to be realized before we can
tell if it is a channel transition or not. This is done by stepping the DiscreteObject ,
i.e., calling the object’s step() method. If the method returns False , it will not
affect the Ca2+ field, and we enter the while loop, and a new DiscreteObject
is picked, see Fig. 32.10. If the object returns True when stepped, we exit the
loop and continue. Next, we have to update the other discrete objects with the
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chosen ∆t, solve for the Ca2+ field, broadcast the solution and last but not least
execute the discrete event that is scheduled to happen at ∆t.

In Fig. 32.11 we show an example of a possible realization of this algorithm.
The example starts at t=2ms at the top-most timeline represented by A, and it in-
cludes three different types of DiscreteObject s: i ) DtExpander , ii ) StochasticHandler ,
and iii ) TStop . See the figure legend for more details.

diffsim: an example

diffsim is a versatile event driven simulator that incorporates the time step-
ping algorithm presented in the previous section together with the infrastructure
to solve models with one or more diffusional domains, defined by a computational
mesh. Each such domain can have several diffusive ligands. Custom fluxes can
easily be included through the framework. The sub module dyadiccleft imple-
ments some published Markov models that can be used to simulate the stochastic
behaviour of a dyad and some convenient boundary fluxes. It also implements
the field flux from the lipid bi-layer discussed in Section 32.3. In Fig. 32.12 a
runnable script is presented, which simulates the time to release, also called the
latency, for a dyad. The two Markov models that is presented in Section 32.3
are here used to model the stochastic dynamics of the RyRs and the LCCs. The
simulation is driven by a so called dynamic voltage clamp. The data that defin-
ing the voltage clamp is read from a file using utilities from the NumPyPython
packages.

32.6 Discussion

We have presented a computational model of the Ca2+ dynamics of the dyadic
cleft in heart cells. It consists of a coupled stochastic and continuous system. We
have showed how one can use PyDOLFINto discretise and solve the continuous
system using a finite element method. The continuous system is an advection-
diffusion equation that produce unstable discretizations. We investigate how
one can use the streamline upwind/Petrov-Galerkin method to stabilize the dis-
cretized system. We use three different meshes and find an L2-optimal global
stabilization parameters τ for each mesh.

We do not present a solver for the stochastic system. However we outline
a time stepping scheme that can be used to couple the stochastic solver with
the presented solver for the continuous system. A simulator DiffSimis briefly
introduced, which implements the presented time stepping scheme together with
the presented solver for the continuous system.
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Figure 32.7: The figure
shows the concentration
traces of the numerical
solutions from Mesh 1,
see legend of Fig. 32.6,
for three different τ to-
gether with the analytic
solution. The solutions
were picked from a line
going between the points
(0,0,0) and (0,0,12). We
see that the solution
with τ = 0.10 oscil-
lates. The solution with
τ = 0.22 was the solu-
tion with smallest global
error for this mesh, see
Fig 32.6, and the solu-
tion with τ = 0.60 under-
shoots the analytic solu-
tion at z = 0nm with 1̃.7
µM.
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Figure 32.8: The figures show the concentration traces of the numerical solu-
tions from Mesh 2, see legend of Fig. 32.6, for three different τ together with
the analytic solution. The solution traces in the two panels are picked from a
line going between the spatial points (0,0,0) and (0,0,1.5), for the left panel, and
between spatial points (0,0,10.5) and (0,0,12), for the right panel. We see from
both panels that the solution with τ = 0.10 give the poorest solution. The solu-
tion with τ = 0.28 was the solution with smallest global error for this mesh, see
Fig 32.6, and this is reflected in the reasonable good fit seen in the left panel, es-
pecially at z = 0nm. The solution with τ = 0.60 undershoots the analytic solution
at z = 0 with 1̃.2 µM. From the right panel we see that all numerical solutions
undershoot at z = 15nm, and that the trace with τ = 0.60 comes the closest to the
analytic solution.
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Figure 32.9: The figures shows the concentration traces of the numerical solu-
tions from Mesh 3, see legend of Fig. 32.6, for three different τ together with the
analytic solution. The traces in the two panels were picked from the same lines
as the one in Fig. 32.8. Again we see from both panels that the solution with
τ = 0.10 give the poorest solution. The solution with τ = 0.38 was the solution
with smallest global error for this mesh, see Fig 32.6, and this is reflected in the
good fit seen in the left panel, especially at z = 0nm. The solution with τ = 0.60
undershoots the analytic solution at z = 0 with 0̃.7 µM. From the right panel
we see that all numerical solutions undershoot at z = 15nm, and the trace with
τ = 0.60 also here comes closest the analytic solution.

1 while not stop_sim:
2 # The next event
3 event = min(discrete_objects)
4 dt = event.next_time()
5

6 # Step the event and check result
7 while not event.step():
8 event = min(discrete_objects)
9 dt = event.next_time()

10

11 # Update the other discrete objects with dt
12 for obj in discrete_objects:
13 obj.update_time(dt)
14

15 # Solve the continuous equation
16 ca_field.solve(dt)
17 ca_field.send()
18

19 # Distribute the event
20 event.send()

Figure 32.10: Python-like pseudo code for the time stepping algorithm used in
our simulator
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Figure 32.11: Diagram for the time stepping algorithm using 3 discrete objects:
DtExpander , StochasticHandler , TStop . The values below the small ticks,
corresponds to the time to the next event for each of the discrete objects. This
time is measured from the last realized event, which is denoted by the thicker
tick. In A we have realized a time event at t=2.0 ms. The next event to be
realized is a stochastic transition, the one with smallest value below the ticks.
In B this event is realized, and the StochasticHandler now show a new next
event time. The event is a channel transition forcing the dt, controlled by the
DtExpander , to be minimized. DtExpander now has the smallest next event
time, and is realized in C. The channel transition that was realised in B raised
the

[
Ca2+] in the cleft which in turn increase the Ca2+ dependent propensity

functions in the included Markov models. The time to next event time of the
StochasticHandler has therefore been updated, and moved forward inC. Also
note that the DtExpander has expanded its next event time. In D the stochastic
transition is realized and updated with a new next event time, but it is ignored
as it is not a channel transition. The smallest time step is now the DtExpander ,
and this is realized in E. In this example we do not realize the TStop event as it
is too far away.
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1 from diffsim import *
2 from diffsim.dyadiccleft import *
3 from numpy import exp, fromfile
4

5 # Model parameters
6 c0_bulk = 0.1; D_Ca = 1.e5; Ds_cyt = 50; phi0 = -2.2; tau = 0.28
7 AP_offset = 0.1; dV = 0.5, ryr_scale = 100; end_sim_when_ope nd = True
8

9 # Setting boundary markers
10 LCC_markers = range(10,14); RyR_markers = range(100,104) ; Cyt_marker = 3
11

12 # Add a diffusion domain
13 domain = DiffusionDomain("Dyadic_cleft","cleft_mesh_w ith_RyR.xml.gz")
14 c0_vec = c0_bulk * exp(-VALENCE[Ca] * phi0 * exp(-domain.mesh().coordinates()[:,-1]))
15

16 # Add the ligand with fluxes
17 ligand = DiffusiveLigand(domain.name(),Ca,c0_vec,D_Ca )
18 field = StaticField("Bi_lipid_field",domain.name())
19 Ca_cyt = CytosolicStaticFieldFlux(field,Ca,Cyt_marker ,c0_bulk,Ds_cyt)
20

21 # Adding channels with Markov models
22 for m in LCC_markers:
23 LCCVoltageDepFlux(domain.name(), m, activator=LCCMark ovModel_Greenstein)
24 for m in RyR_markers:
25 RyRMarkovModel_Stern("RyR_%d"%m, m, end_sim_when_open d)
26

27 # Adding a dynamic voltage clamp that drives the LCC Markov mo del
28 AP_time = fromfile(’AP_time_steps.txt’,sep=’\n’)
29 dvc = DynamicVoltageClamp(AP_time,fromfile(’AP.txt’,s ep=’\n’),AP_offset,dV)
30

31 # Get and set parameters
32 params = get_params()
33

34 params.io.save_data = True
35 params.Bi_lipid_field.tau = tau
36 params.time.tstop = AP_time[-1] + AP_offset
37 params.RyRMarkovChain_Stern.scale = ryr_scale
38

39 info(str(params))
40

41 # Run 10 simulations
42 data = run_sim(10,"Dyadic_cleft_with_4_RyR_scale")
43 mean_release_latency = mean([ run["tstop"] for run in data ["time"]])

Figure 32.12: An example of how diffsim can be used to simulate the time to
RyR release latency, from a small dyad who’s domain is defined by the mesh in
the file cleft mesh with RyR.xml.gz .

433





CHAPTER 33

Electromagnetic Waveguide Analysis

By Evan Lezar and David B. Davidson

Chapter ref: [lezar]

◮ Editor note: Reduce the number of macros.

At their core, Maxwell’s equations are a set of differential equations describ-
ing the interactions between electric and magnetic fields, charges, and currents.
These equations provide the tools with which to predict the behaviour of elec-
tromagnetic phenomena, giving us the ability to use them in a wide variety of
applications, including communication and power generation. Due to the com-
plex nature of typical problems in these fields, numeric methods such as the
finite element method are often employed to solve them.

One of the earliest applications of the finite element method in electromag-
netics was in waveguide analysis (Davidson, 2005). Since waveguides are some
of the most common structures in microwave engineering, especially in areas
where high power and low loss are essential (Pozar, 2005), their analysis is still
a topic of much interest. This chapter considers the use of FEniCS in the cutoff
and dispersion analysis of these structures as well as the analysis of waveguide
discontinuities. These types of analysis form an important part of the design and
optimisation of waveguide structures for a particular purpose.

The aim of this chapter is to guide the reader through the process followed in
implementing solvers for various electromagnetic problems with both cutoff and
dispersion analysis considered in depth. To this end a brief introduction of elec-
tromagnetic waveguide theory, the mathematical formulation of these problems,
and the specifics of their solution using the finite element method are presented
in 33.1. This lays the groundwork for a discussion of the details pertaining to
the FEniCS implementation of these solvers, covered in 33.2. The translation of
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the finite element formulation to FEniCS, as well as some post-processing con-
siderations are covered. In 33.3 the solution results for three typical waveguide
configurations are presented and compared to analytical or previously published
data. This serves to validate the implementation and illustrates the kinds of
problems that can be solved. Results for the analysis of H-plane waveguide dis-
continuities are then presented in 33.4 with two test cases being considered.

33.1 Formulation

As mentioned, in electromagnetics, the behaviour of the electric and magnetic
fields are described by Maxwell’s equations (Jin, 2002, Smith, 1997). Using these
partial differential equations, various boundary value problems can be obtained
depending on the problem being solved. In the case of time-harmonic fields, the
equation used is the vector Helmholtz wave equation. If the problem is further
restricted to a domain surrounded by perfect electrical or magnetic conductors
(as is the case in general waveguide problems) the wave equation in terms of the
electric field, E, can be written as (Jin, 2002)

∇ × 1

µr
∇ × E− k2

oǫrE = 0, in Ω, (33.1)

subject to the boundary conditions

n̂×E = 0 on Γe (33.2)

n̂×∇ ×E = 0 on Γm, (33.3)

with Ω representing the interior of the waveguide and Γe and Γm electric and
magnetic walls respectively. µr and ǫr are the relative magnetic permeability
and electric permittivity respectively. These are material parameters that may
be position dependent but only the isotropic case is considered here. ko is the
operating wavenumber which is related to the operating frequency (fo) by the
expression

ko =
2πfo
c0

, (33.4)

with c0 the speed of light in free space. This boundary value problem (BVP) can
also be written in terms of the magnetic field (Jin, 2002), but as the discussions
following are applicable to both formulations this will not be considered here.

If the guide is sufficiently long, and the z-axis is chosen parallel to its cen-
tral axis as shown in Figure 33.1, then z-dependence of the electric field can
be assumed to be of the form e−γz with γ = α + jβ a complex propagation con-
stant (Pelosi et al., 1998, Pozar, 2005). Making this assumption and splitting
the electric field into transverse (Et) and axial (ẑEz) components, results in the
following expression for the field

E(x, y, z) = [Et(x, y) + ẑEz(x, y)]e
−γz, (33.5)
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x
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Figure 33.1: A long waveguide with an arbitrary cross-section aligned with the
z-axis.

with x and y the Cartesian coordinates in the cross-sectional plane of the waveg-
uide and z the coordinate along the length of the waveguide.

From (33.5) as well as the BVP described by (33.1), (33.2), and (33.3) it is pos-
sible to obtain the following variational functional found in many computational
electromagnetic texts (Jin, 2002, Pelosi et al., 1998)

F (E) =
1

2

∫

Ω

1

µr
(∇t ×Et) · (∇t × Et)− k2

oǫrEt · Et

+
1

µr
(∇tEz + γEt) · (∇tEz + γEt)− k2

oǫrEzEzdΩ, (33.6)

with

∇t =
∂

∂x
x̂ +

∂

∂y
ŷ (33.7)

the transverse del operator.

A number of other approaches have also been taken to this problem. Some, for
instance, involve only nodal based elements; some use the longitudinal fields as
the working variable, and the problem has also been formulated in terms of po-
tentials, rather than fields. A good summary of these may be found in (?)Chapter
9]ZhuCan2006. The approach used here, involving transverse and longitudinal
fields, is probably the most widely used in practice.

33.1.1 Waveguide Cutoff Analysis

One of the simplest cases to consider, and often a starting point when testing a
new finite element implementation, is waveguide cutoff analysis. When a waveg-
uide is operating at cutoff, the electric field is uniform along the z-axis which cor-
responds with γ = 0 in (33.5) (Pozar, 2005). Substituting γ = 0 into (33.6) yields
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the following functional

F (E) =
1

2

∫

Ω

1

µr
(∇t ×Et) · (∇t × Et)− k2

cǫrEt · Et

+
1

µr
(∇tEz) · (∇tEz)− k2

c ǫrEzEzdΩ. (33.8)

The symbol for the operating wavenumber ko has been replaced with kc, indicat-
ing that the quantity of interest is now the cutoff wavenumber. This quantity in
addition to the field distribution at cutoff are of interest in these kinds of prob-
lems. Using two dimensional vector basis functions for the discretisation of the
transverse field, and scalar basis functions for the axial components, the minimi-
sation of (33.8) is equivalent to solving the following matrix equation

[
Stt 0
0 Szz

]{
et
ez

}
= k2

c

[
Ttt 0
0 Tzz

]{
et
ez

}
, (33.9)

which is in the form of a general eigenvalue problem. Here Sss and Tss represents
the stiffness and mass common to finite element literature (Davidson, 2005, Jin,
2002) with the subscripts tt and zz indicating transverse or axial components
respectively. The entries of the matrices of (33.9) are defined as

(stt)ij =

∫

Ω

1

µr
(∇t ×Ni) · (∇t ×Nj)dΩ, (33.10)

(ttt)ij =

∫

Ω

ǫrNi ·NjdΩ, (33.11)

(szz)ij =

∫

Ω

1

µr
(∇tMi) · (∇tMj)dΩ, (33.12)

(tzz)ij =

∫

Ω

ǫrMiMjdΩ, (33.13)

with
∫
Ω
dΩ representing integration over the cross-section of the waveguide and

Ni andMi representing the ith vector and scalar basis functions respectively.
Due to the block nature of the matrices the eigensystem can be written as two

smaller systems

[
Stt
] {
et
}

= k2
c,TE

[
Ttt
] {
et
}
, (33.14)

[
Szz
] {
ez
}

= k2
c,TM

[
Tzz
] {
ez
}
, (33.15)

with kc,TE and kc,TM corresponding to the cutoff wavenumbers of the transverse
electric (TE) and transverse magnetic (TM) modes respectively. The eigenvec-
tors ({et} and {ez}) of the systems are the coefficients of the vector and scalar
basis functions, allowing for the calculation of the transverse and axial field dis-
tributions associated with a waveguide cutoff mode.
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33.1.2 Waveguide Dispersion Analysis

In the case of cutoff analysis discussed in 33.1.1, one attempts to obtain the value
of k2

o = k2
c for a given propagation constant γ, namely γ = 0. For most waveguide

design applications however, ko is specified and the propagation constant is cal-
culated from the resultant eigensystem (Jin, 2002, Pelosi et al., 1998). This cal-
culation can be simplified somewhat by making the following substitution into
(33.6)

Et,γ = γEt, (33.16)

which results in the modified functional

F (E) =
1

2

∫

Ω

1

µr
(∇t ×Et,γ) · (∇t × Et,γ)− k2

oǫrEt,γ ·Et,γ

− γ2

[
1

µr
(∇tEz + Et,γ) · (∇tEz + Et,γ)− k2

oǫrEzEz

]
dΩ. (33.17)

Using the same discretisation as for cutoff analysis discussed in 33.1.1, the ma-
trix equation associated with the solution of the variational problem is given by

[
Att 0
0 0

]{
et
ez

}
= γ2

[
Btt Btz

Bzt Bzz

]{
et
ez

}
, (33.18)

with

Att = Stt − k2
oTtt, (33.19)

Bzz = Szz − k2
oTzz, (33.20)

which is in the form of a generalised eigenvalue problem with the eigenvalues
corresponding to the square of the complex propagation constant (γ).

The matrices Stt, Ttt, Szz, and Tzz are identical to those defined in 33.1.1 with
entries given by (33.10), (33.11), (33.12), and (33.13) respectively. The entries of
the other sub-matrices, Btt, Btz, and Bzt, are defined by

(btt)ij =

∫

Ω

1

µr
Ni ·NjdΩ, (33.21)

(btz)ij =

∫

Ω

1

µr
Ni · ∇tMjdΩ, (33.22)

(bzt)ij =

∫

Ω

1

µr
∇tMi ·NjdΩ. (33.23)

A common challenge in electromagnetic eigenvalue problems such as these
is the occurrence of spurious modes (Davidson, 2005). These are non-physical
modes that fall in the null space of the∇×∇ × operator of (33.1) (Bossavit, 1998)
(The issue of spurious modes is not as closed as most computational electromag-
netics texts indicate. For a summary of recent work in the applied mathematics
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literature, written for an engineering readership, see (Fernandes and Raffetto,
2002)).

One of the strengths of the vector basis functions used in the discretisation
of the transverse component of the field is that it allows for the identification of
these spurious modes (Davidson, 2005, Jin, 2002). In (Lee et al., 1991) a scal-
ing method is proposed to shift the eigenvalue spectrum such that the domi-
nant waveguide mode (usually the lowest non-zero eigenvalue) corresponds with
the largest eigenvalue of the new system. Other approaches have also been fol-
lowed to address the spurious modes. In (Vardapetyan and Demkowicz, 2002),
Lagrange mutipliers are used to move these modes from zero to infinity.

In the case of the eigensystem associated with dispersion analysis, the matrix
equation of (33.18) is scaled as follows

[
Btt Btz

Bzt Bzz

]{
et
ez

}
=

θ2

θ2 + γ2

[
Btt +

Att

θ2
Btz

Bzt Bzz

]{
et
ez

}
, (33.24)

with θ2 = k2
oµ

(max)
r ǫ

(max)
r an upper bound on the square of the propagation constant

(γ2) and µ
(max)
r and ǫ

(max)
r the maximum relative permeability and permittivity in

the computational domain.
If λ is an eigenvalue of the scaled system of (33.24), then the propagation

constant can be calculated as

γ2 =
1− λ
λ

θ2, (33.25)

and thus γ2 →∞ as λ → 0, which moves the spurious modes out of the region of
interest.

33.2 Implementation

This section considers the details of the implementation of a FEniCS-based solver
for waveguide cutoff mode and dispersion curve problems as described in 33.1.1
and 33.1.2. A number of code snippets illustrate some of the finer points of the
implementation.

33.2.1 Formulation

Code Listing 33.1 shows the definitions of the function spaces used in the solu-
tion of the problems considered here. Nédélec basis functions of the first kind
(N v and N u) are used to approximate the transverse component of the electric
field. This ensures that the tangential continuity required at element and mate-
rial boundaries can be enforced (Jin, 2002). The axial component of the field is
modelled using a set of Lagrange basis functions (Mv , and Mu). Additionally, a
discontinuous Galerkin function space is included to allow for the modelling of
material parameters such as dielectrics.
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Code Listing 33.1: Function spaces and basis functions.

V_DG = FunctionSpace( mesh, "DG", 0)
V_N = FunctionSpace( mesh, "Nedelec 1st kind H(curl)", transverse_order)
V_M = FunctionSpace( mesh, "Lagrange", axial_order)

combined_space = V_N + V_L

( N_v, M_v) = TestFunctions( combined_space)
( N_u, M_u) = TrialFunctions( combined_space)

In order to deal with material properties, the Expression class is subclassed
and the eval() method overridden. This is illustrated in Code Listing 33.2
where a dielectric with a relative permittivity of ǫr = 4 that extends to y = 0.25 is
shown. This class is then instantiated using the discontinuous Galerkin function
space already discussed. For constant material properties (such as the inverse of
the magnetic permittivity µr, in this case) a JIT-compiled expression is used.

Code Listing 33.2: Material properties and expressions.

class HalfLoadedDielectric( Expression):
def eval( self, values, x):

if x[ 1] < 0. 25:
values[ 0] = 4. 0

else:
values[ 0] = 1. 0;

e_r = HalfLoadedDielectric( V_DG)
one_over_u_r = Expression("1.0")

k_o_squared = Expression("value", {"value" : 0. 0})
theta_squared = Expression("value", {"value" : 0. 0})

The basis functions declared in Code Listing 33.1 and the desired material
property functions are now used to create the forms required for the matrix en-
tries specified in 33.1.1 and 33.1.2. The forms are shown in Code Listing 33.3 and
the matrices of (33.9), (33.18), and (33.24) can be assembled using the required
combinations of these forms with the right hand side of (33.24), rhs , provided
as an example. It should be noted that the use of JIT-compiled expressions for
operating wavenumber and scaling parameters means that the forms need not
be recompiled each time the operating frequency is changed. This is especially
beneficial when the calculation of dispersion curves is considered since the same
calculation is performed for a range of operating frequencies.

From (33.2) it follows that the tangential component of the electric field must
be zero on perfectly electrical conducting (PEC) surfaces. What this means in
practice is that the degrees of freedom associated with both the Lagrange and
Nédélec basis functions on the boundary must be set to zero since there can be
no electric field inside a perfect electrical conductor (Smith, 1997). An example
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for a PEC surface surrounding the entire computational domain is shown in Code
Listing 33.4 as the ElectricWalls class. This boundary condition can then be
applied to the constructed matrices before solving the eigenvalue systems.

The boundary condition given in (33.3) results in a natural boundary condi-
tion for the problems considered and thus it is not necessary to explicitly enforce
it (Pelosi et al., 1998). Such magnetic walls and the symmetry of a problem are
often used to decrease the size of the computational domain although this does
limit the solution obtained to even modes (Jin, 2002).

Once the required matrices have been assembled and the boundary condi-
tions applied, the resultant eigenproblem can be solved. This can be done by
outputting the matrices and solving the problem externally, or by making use
of the eigensolvers provided by SLEPc that can be integrated into the FEniCS
package.

33.2.2 Post-Processing

After the eigenvalue system has been solved and the required eigenpair chosen,
this can be post-processed to obtain various quantities of interest. For the cutoff
wavenumber, this is a relatively straight-forward process and only involves sim-
ple operations on the eigenvalues of the system. For the calculation of dispersion
curves and visualisation of the resultant field components the process is slightly
more complex.

Dispersion Curves

For dispersion curves the computed value of the propagation constant (γ) is plot-
ted as a function of the operating frequency (fo). Since γ is a complex variable,
a mapping is required to represent the data on a single two-dimensional graph.
This is achieved by choosing the fo-axis to represent the value γ = 0, effectively

Code Listing 33.3: Forms for matrix entries.

s_tt = one_over_u_r* dot( curl_t( N_v), curl_t( N_u))
t_tt = e_r* dot( N_v, N_u)

s_zz = one_over_u_r* dot( grad( M_v), grad( M_u))
t_zz = e_r* M_v* M_u

b_tt = one_over_u_r* dot( N_v, N_u)
b_tz = one_over_u_r* dot( N_v, grad( M_u))
b_zt = one_over_u_r* dot( grad( M_v), N_u)

a_tt = s_tt - k_o_squared* t_tt
b_zz = s_zz - k_o_squared* t_zz

rhs = b_tt + b_tz + b_zt + b_zz + 1. 0/ theta_squared* a_tt
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Code Listing 33.4: Boundary conditions.

class ElectricWalls( SubDomain):
def inside( self, x, on_boundary):

return on_boundary

zero = Expression(("0.0","0.0","0.0")
dirichlet_bc = DirichletBC( combined_space, zero, ElectricWalls())

dividing the γ− fo plane into two regions. The region above the fo-axis is used to
represent the magnitude of the imaginary part of γ, whereas the real part falls in
the lower region. A mode that propagates along the guide for a given frequency
will thus lie in the upper half-plane of the plot and a complex mode will be rep-
resented by a data point above and below the fo-axis. This procedure is followed
in (Pelosi et al., 1998) and other literature and allows for quick comparisons and
validation of results.

Field Visualisation

In order to visualise the fields associated with a given solution, the basis func-
tions need to be weighted with coefficients corresponding to the entries in an
eigenvector obtained from one of the eigenvalue problems. In addition, the trans-
verse or axial components of the field may need to be extracted. An example for
plotting the transverse and axial components of the field is given in Code Listing
33.5. Here the variable x assigned to the function vector is one of the eigenvec-
tors obtained by solving the eigenvalue problem.

Code Listing 33.5: Extraction and visualisation of transverse and axial field com-
ponents.

f = Function( combined_space, x)

( transverse, axial) = f. split()

plot( transverse)
plot( axial)

The eval() method of the transverse and axial functions can also be
called in order to evaluate the functions at a given spatial coordinate, allowing
for further visualisation or post-processing options.

33.3 Examples

The first of the examples considered is the canonical one of a hollow waveguide,
which has been covered in a multitude of texts on the subject (Davidson, 2005,
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Jin, 2002, Pelosi et al., 1998, Pozar, 2005). Since the analytical solutions for
this structure are known, it provides an excellent benchmark and is a typical
starting point for the validation of a computational electromagnetic solver for
solving waveguide problems.

The second and third examples are a partially filled rectangular guide and
a shielded microstrip line on a dielectric substrate, respectively. In each case
results are compared to published results from the literature as a means of vali-
dation.

33.3.1 Hollow Rectangular Waveguide

Figure 33.2 shows the cross section of a hollow rectangular waveguide. For the
purpose of this chapter a guide with dimensions a = 1m and b = 0.5m is con-
sidered. The analytical expressions for the electric field components of a hollow

ǫr = 1
µr = 1

a

b

Figure 33.2: A diagram showing the cross section and dimensions of a hollow
rectangular waveguide.

rectangular guide with width a and height b are given by (Pozar, 2005)

Ex =
n

b
Amn cos

(mπx
a

)
sin
(nπy

b

)
, (33.26)

Ey =
−m
a
Amn sin

(mπx
a

)
cos
(nπy

b

)
, (33.27)

for the TEmn mode, whereas the z-directed electric field for the TMmn mode has
the form (Pozar, 2005)

Ez = Bmn sin
(mπx

a

)
sin
(nπy

b

)
, (33.28)

with Amn and Bmn constants for a given mode. In addition, the propagation con-
stant, γ, has the form

γ =
√
k2
o − k2

c , (33.29)

with ko the operating wavenumber dependent on the operating frequency, and

k2
c =

(mπ
a

)2

+
(nπ
b

)2

, (33.30)

the analytical solution for the square of the cutoff wavenumber for both the TEmn

and TMmn modes.
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Cutoff Analysis

Figure 33.3 shows the first two calculated TE cutoff modes for the hollow rectan-
gular guide, with the first two TM cutoff modes being shown in Figure 33.4. The
solution is obtained with 64 triangular elements and second order basis functions
in the transverse as well as the axial discretisations.
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(a) TE10 mode.
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(b) TE01 mode.

Figure 33.3: The first two calculated TE cutoff modes of a 1 m × 0.5 m hollow
rectangular waveguide.
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(a) TM11 mode.
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(b) TM21 mode.

Figure 33.4: The first two calculated TM cutoff modes of a 1 m × 0.5 m hollow
rectangular waveguide.

Table 33.1 gives a comparison of the calculated and analytical values for the
square of the cutoff wavenumber of a number of modes for a hollow rectangular
guide. As can be seen from the table, there is excellent agreement between the
values.
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Table 33.1: Comparison of analytical and calculated cutoff wavenumber squared
(k2
c ) for various TE and TMmodes of a 1 m × 0.5 m hollow rectangular waveguide.

Mode Analytical [m−2] Calculated [m−2] Relative Error
TE10 9.8696 9.8696 1.4452e-06
TE01 39.4784 39.4784 2.1855e-05
TE20 39.4784 39.4784 2.1894e-05
TM11 49.3480 49.4048 1.1514e-03
TM21 78.9568 79.2197 3.3295e-03
TM31 128.3049 129.3059 7.8018e-03
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Dispersion Analysis

When considering the calculation of the dispersion curves for the hollow rectan-
gular waveguide, the mixed formulation as discussed in 33.1.2 is used. The cal-
culated dispersion curves for the first 10 modes of the hollow rectangular guide
are shown in Figure 33.5 along with the analytical results. For the rectangular
guide a number of modes are degenerate with the same dispersion and cutoff
properties as predicted by (33.29) and (33.30). This explains the visibility of only
six curves. There is excellent agreement between the analytical and computed
results.

150 200 250 300 350
fo  [MHz]

�1.0

�0.5

0.0

0.5

1.0

(�/ko)2

Figure 33.5: Dispersion curves for the first 10 modes of a 1 m × 0.5 m hollow
rectangular waveguide. Markers are used to indicate the analytical results with
� and � indicating TE and TM modes respectively.

33.3.2 Half-Loaded Rectangular Waveguide

In some cases, a hollow rectangular guide may not be the ideal structure to use
due to, for example, limitations on its dimensions. If the guide is filled with
a dielectric material with a relative permittivty ǫr > 1, the cutoff frequency of
the dominant mode will be lowered. Consequently a loaded waveguide will be
mode compact than a hollow guide for the same dominant mode frequency. Fur-
thermore, in many practical applications, such as impedance matching or phase
shifting sections, a waveguide that is only partially loaded is used (Pozar, 2005).

Figure 33.6 shows the cross section of such a guide. The guide considered
here has the same dimensions as the hollow rectangular waveguide used in the
previous section, but its lower half is filled with an ǫr = 4 dielectric material.
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ǫr = 1

µr = 1

µr = 1

ǫr = 4

a

b

d

Figure 33.6: A diagram showing the cross section and dimensions of a half-loaded
rectangular waveguide. The lower half of the guide is filled with an ǫr = 4 dielec-
tric material.

Cutoff Analysis

Figure 33.7 shows the first TE and TM cutoff modes of the half-loaded guide
shown in Figure 33.6. Note the concentration of the transverse electric field in
the hollow part of the guide. This is due to the fact that the displacement flux,
D = ǫE, must be normally continuous at the dielectric interface (Pozar, 2005,
Smith, 1997).
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(b) First TM mode.

Figure 33.7: The first calculated TE and TM cutoff modes of a 1 m × 0.5 m
rectangular waveguide with the lower half of the guide filled with an ǫr = 4
dielectric.

Dispersion Analysis

The dispersion curves for the first 8 modes of the half-loaded waveguide are
shown in Figure 33.8 with results for the first 4 modes from (Jin, 2002) pro-
vided as reference. Here it can be seen that the cutoff frequency of the dominant
mode has decreased and there is no longer the same degeneracy in the modes
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Figure 33.8: Dispersion curves for the first 8 modes of a 1 m × 0.5 m rectangular
waveguide with its lower half filled with an ǫr = 4 dielectric material. Reference
values for the first 4 modes from (Jin, 2002) are shown as �. The presence of
complex mode pairs are indicated by N and •.

when compared to the hollow guide of the same dimensions. In addition, there
are complex modes present as a result of the fourth and fifth as well as the sixth
and seventh modes occurring as conjugate pairs at certain points in the spec-
trum. It should be noted that the imaginary parts of these conjugate pairs are
very small and thus the • markers in Figure 33.8 appear to fall on the fo-axis.
These complex modes are discussed further in 33.3.3.

33.3.3 Shielded Microstrip

Microstrip line is a very popular type of planar transmission line, primarily due
to the fact that it can be constructed using photolithographic processes and inte-
grates easily with other microwave components (Pozar, 2005). Such a structure
typically consists of a thin conducting strip on a dielectric substrate above a
ground plane. In addition, the strip may be shielded by enclosing it in a PEC box
to reduce electromagnetic interference. A cross section of a shielded microstrip
line is shown in Figure 33.9 with the thickness of the strip, t, exaggerated for
clarity. The dimensions used to obtain the results discussed here are given in
Table 33.2.

Cutoff Analysis

Since the shielded microstrip structure consists of two conductors, it supports a
dominant transverse electromagnetic (TEM) wave that has no axial component
of the electric or magnetic field (Pozar, 2005). Such a mode has a cutoff wavenum-
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Figure 33.9: A diagram showing the cross section and dimensions of a shielded
microstrip line. The microstrip is etched on a dielectric material with a relative
permittivity of ǫr = 8.75. The plane of symmetry is indicated by a dashed line and
is modelled as a magnetic wall in order to reduce the size of the computational
domain.

ber of zero and thus propagates for all frequencies (Jin, 2002, Pelosi et al., 1998).
The cutoff analysis of this structure is not considered here explicitly. The cutoff
wavenumbers for the higher order modes (which are hybrid TE-TMmodes (Pozar,
2005)) can however be determined from the dispersion curves by the intersection
of a curve with the fo-axis.

Dispersion Analysis

The dispersion analysis presented in (Pelosi et al., 1998) is repeated here for val-
idation with the resultant curves shown in Figure 33.10. As is the case with
the half-loaded guide, the results calculated with FEniCS agree well with pre-

Table 33.2: Dimensions for the shielded microstrip line considered here. Defini-
tions for the symbols are given in Figure 33.9.

Dimension [mm]
a, b 12.7
d, w 1.27
t 0.127
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viously published results. In the figure it is shown that for certain parts of the
frequency range of interest, modes six and seven have complex propagation con-
stants. Since the matrices in the eigenvalue problem are real valued, the complex
eigenvalues – and thus the propagation constants – must occur in complex con-
jugate pairs as is the case here and reported earlier in (Huang and Itoh, 1988).
These conjugate propagation constants are associated with two equal modes
propagating in opposite directions along the waveguide and thus resulting in
zero energy transfer. It should be noted that for lossy materials (not consid-
ered here), complex modes are expected but do not necessarily occur in conjugate
pairs (Pelosi et al., 1998).
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Figure 33.10: Dispersion curves for the first 7 even modes of shielded mi-
crostrip line using a magnetic wall to enforce symmetry. Reference values
from (Pelosi et al., 1998) are shown as �. The presence of complex mode pairs
are indicated by N and •.

33.4 Analysis of Waveguide Discontinuities

Although this chapter focuses on eigenvalue type problems related to waveg-
uides, the use of FEniCS in waveguide analysis is not limited to such problems.
This section briefly introduces the solution of problems relating to waveguide dis-
continuities as an additional problem class. Applications where the solutions of
these problems are of importance to microwave engineers is the design of waveg-
uide filters as well as the analysis and optimisation of bends in a waveguide
where properties such as the scattering parameters (S-parameters) of the device
are calculated (Pozar, 2005).

The hybrid finite element-modal expansion technique discussed in (Pelosi et al.,
1998) is implemented and used to solve problems related to H-plane waveguide
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Figure 33.11: Magnitude (solid line) and phase (dashed line) of the trans-
mission coefficient (S21) of a length of rectangular waveguide with dimensions
a = 18.35mm, b = 9.175mm, and l = 10mm. The analytical results for the same
structure are indicated by markers with � and • indicating the magnitude and
phase respectively.

discontinuities. For such cases – which are uniform in the vertical (y) direction
transverse to the direction of propagation (z) – the problem reduces to a scalar
one in two dimensions (Jin, 2002) with the operating variable the y-component
of the electric field in the guide. In order to obtain the scattering parameters
at each port of the device, the field on the boundary associated with the port is
written as a summation of the tangential components of the incoming and out-
going waveguide modes. These modes can either be computed analytically, when
a junction is rectangular for example, or calculated with methods such as those
discussed in the preceding sections (Martini et al., 2003).

Transmission parameter (S21) results for a length of hollow rectangular waveg-
uide are shown in Figure 33.11. As expected, the length of guide behaves as a
fixed value phase shifter (Pelosi et al., 1998) and the results obtained show ex-
cellent agreement with the analytical ones.

A schematic for a more interesting example is the H-plane iris shown in Fig-
ure 33.12. The figure shows the dimensions of the structure and indicates the
port definitions. The boundaries indicated by a solid line is a PEC material. The
magnitude and phase results for the S-parameters of the device are given in Fig-
ure 33.13 and compared to the results published in (Pelosi et al., 1998) with good
agreement between the two sets of data.
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Figure 33.12: Schematic of an H-plane iris in a rectangular waveguide dimen-
sions: a = 18.35mm, c = 4.587mm, d = 1mm, s = 0.5mm, and w = 9.175mm. The
guide has a height of b = 9.175mm. The ports are indicated by dashed lines on
the boundary of the device.

33.5 Conclusion

In this chapter, the solutions of cutoff and dispersion problems associated with
electromagnetic waveguiding structures have been implemented and the results
analysed. In all cases, the results obtained agree well with previously published
or analytical results. This is also the case where the analysis of waveguide
discontinuities are considered, and although the solutions shown here are re-
stricted to H-plane waveguide discontinuities, the methods applied are applica-
ble to other classes of problems such as E-plane junctions and full 3D analysis.

This chapter has also illustrated the ease with which complex formulations
can be implemented and how quickly solutions can be obtained. This is largely
due to the almost one-to-one correspondence between the expressions at a for-
mulation level and the high-level code that is used to implement a particular
solution. Even in cases where the required functionality is limited or missing,
the use of FEniCS in conjunction with external packages greatly reduces devel-
opment time.
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Figure 33.13: Results for the magnitude and phase of the reflection coeffi-
cient (S11 – solid line) and transmission coefficient (S21 – dashed line) of an H-
plane iris in a rectangular waveguide shown in Figure 33.12. Reference results
from (Pelosi et al., 1998) are indicated by markers with � and • indicating the
reflection and transmission coefficient respectively.
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CHAPTER 34

Applications in Solid Mechanics

By Kristian B. Ølgaard and Garth N. Wells

Chapter ref: [oelgaard-1]

Summarise work on automated modelling for solid mechanics, with applica-
tion to hyperelasticity, plasticity and strain gradient dependent models. Special
attention will be paid the linearisation of function which do come from a finite
element space.
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CHAPTER 35

Modelling Evolving Discontinuities

By Mehdi Nikbakht and Garth N. Wells

Chapter ref: [nikbakht]

Summarise work on automated modelling of PDEs with evolving discontinu-
ities, e.g. cracks.
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CHAPTER 36

Block Preconditioning of Systems of PDEs

By Kent-Andre Mardal

Chapter ref: [block-prec]

36.1 Introduction

In this chapter we will describe the implementation of block preconditioned Krylov
solvers for systems of partial differential equations (PDEs) using the Python in-
terfaces of Dolfin and Trilinos. We remark that an alternative to PyTrilinos is
PyAMG (?) which can be used together with PyDolfin.

An outline of this paper is as follows: First, we review the abstract theory
of constructing preconditioners by considering the differential operators as map-
pings in properly chosen Sobolev spaces. Second, we will present several ex-
amples, namely the Poisson problem, the Stokes problem, the time-dependent
Stokes problem and finally a mixed formulation of the Hodge Laplacian. The
code examples related to this chapter can be found in FENICSBOOK/src/block-
prec. The code examples presented in this chapter differ slightly from the source
code, in the sense that import statements, safety checks, command-line argu-
ments, definitions of Functions and Subdomains are often removed to shorten
the presentation.
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36.2 Abstract Framework for Constructing Pre-

conditioners

This presentation of preconditioning is largely taken from the review paper (?),
where a more comprehensive mathematical presentation is given. Consider the
following abstract formulation of a linear PDE problem:
Find u in the Hilbert space H such that:

Au = f,

where f ∈ H∗ and H∗ is the dual space of H. We will assume that the PDE
problem is well-posed, i.e., that A : H → H∗ is a bounded invertible operator in
the sense that,

‖A‖L(H,H∗) ≤ C and ‖A−1‖L(H∗,H) ≤ C.

The reader should notice that this operator is bounded only when viewed as
an operator from H to H∗. On the other hand, the spectrum of the operator
is unbounded. Analogously, discretizations of the operator will typically have
condition numbers that increase in powers of h, where h is the characteristic
cell size, as the mesh is refined. The remedy for the unbounded spectrum is to
introduce a preconditioner. Let the preconditioner B be an operator mapping H∗

to H such that

‖B‖L(H∗,H) ≤ C and ‖B−1‖L(H,H∗) ≤ C.

Then BA : H → H and

‖BA‖L(H,H) ≤ C2 and ‖(BA)−1‖L(H,H) ≤ C2.

Hence, the spectrum and therefore the condition number of the preconditioned
operator,

κ(BA) = ‖BA‖L(H,H)‖(BA)−1‖L(H,H) ≤ C4

is bounded. Given that the discretized operators Ah and Bh are stable, in the
sense that the operator norms are bounded, then the condition number of the
discrete preconditioned operator, κ(BhAh), will be bounded independent of h. The
number of iterations required by a Krylov solver to reach a certain convergence
criterion can typically be bounded by the condition number. Hence, when the
condition number of the discrete problem is bounded independent of h, the Krylov
solvers will have a converges rate independent of h. If then Bh is similar to Ah
in terms of storage and evaluation, we will then have an order-optimal solution
algorithm. We remark that it is crucial that Ah is a stable operator and will
illustrate this for the Stokes problem. Finally we will see that Bh often can be
constructed using multigrid techniques.
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36.3 Numerical Examples

36.3.1 The Poisson problem with homogeneous Neumann

conditions

The Poisson equation with Neumann conditions reads:
Find u such that

−∆u = f in Ω,
∂u

∂n
= g on ∂Ω.

The variational problem is:
Find u ∈ H1

0 ∩ L2
0 such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx+

∫

∂Ω

gv ds, ∀v ∈ H1
0 ∩ L2

0.

Let the linear operator A be defined in terms of the bilinear form,

(Au, v) =

∫

Ω

∇u · ∇v dx.

It is well-known thatA is a bounded invertible operator fromH1
0∩L2

0 into its dual
space H−1 ∩ L2

0. Furthermore, it is well-known that one can construct multigrid
preconditioners for this operator such that the preconditioner is spectrally equiv-
alent with the inverse of A, independent of the characteristic size of the cells in
the mesh (???).

In this example, we will construct a multigrid preconditioner based on the
algebraic multigrid package ML which is contained in PyTrilinos. Furthermore,
we will estimate the eigenvalues of the preconditioned system.

First of all, the ML preconditioner is constructed as follows,

from PyTrilinos import Epetra, AztecOO, TriUtils, ML
from dolfin import down_cast, Vector

class MLPreconditioner:
def __init__(self, A):

# create the ML preconditioner
MLList = {

"max levels" : 30,
"output" : 1,
"smoother: type" : "ML symmetric Gauss-Seidel",
"aggregation: type" : "Uncoupled",
"ML validate parameter list" : False

}
ml_prec = ML.MultiLevelPreconditioner(down_cast(A).ma t(), 0)
ml_prec.SetParameterList(MLList)
ml_prec.ComputePreconditioner()

def __mul__(self, b):

461



Block Preconditioning of Systems of PDEs

# apply the ML preconditioner
x = Vector(b.size())
err = self.ml_prec.ApplyInverse(down_cast(b).vec(),

down_cast(x).vec())
return x

The linear algebra backends uBlas, PETSc and Trilinos all have a wide range of
Krylov solvers. Here, we implement these solvers in Python because we would
like to store the intermediate variables and used them to compute an estimate
of the condition number. The following code shows the implementation of the
Conjugate Gradient method using the Python linear algebra interface in Dolfin:

def precondconjgrad_eigest(B, A, x, b, tolerance=1.0E-05 ,
relativeconv=False, maxiter=500):

r = b - A * x
z = B* r
d = 1.0 * z

rz = inner(r,z)

if relativeconv: tolerance * = sqrt(rz)
iter = 0
alphas = []
betas = []
while sqrt(rz) > tolerance and iter <= maxiter:

z = A* d
alpha = rz / inner(d,z)
x += alpha * d
r -= alpha * z
z = B* r
rz_prev = rz
rz = inner(r,z)
beta = rz / rz_prev
d = z + beta * d
iter += 1
alphas.append(alpha)
betas.append(beta)

e = eigenvalue_estimates(alphas, betas)
return x, e, iter

The intermediate variables called alphas and betas can then be used to estimate
the condition number of the preconditioned matrix as follows, see e.g. cite. Notice
that since the preconditioned CG method converges quite fast when using AMG
as a preconditioner, there will be only a small number of alphas and betas and
we may therefore use the dense linear algebra tools in NumPy.

def eigenvalue_estimates(alphas, betas):
# eigenvalues estimates in terms of alphas and betas
import numpy
from numpy import linalg
n = len(alphas)
A = numpy.zeros([n,n])
A[0,0] = 1/alphas[0]
for k in range(1, n):

A[k,k] = 1/alphas[k] + betas[k-1]/alphas[k-1]
A[k,k-1] = numpy.sqrt(betas[k-1])/alphas[k-1]
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A[k-1,k] = A[k,k-1]
e,v = linalg.eig(A)
e.sort()

return x, e

The following code shows the implementation of a Poisson problem solver, using
the above mentionedML preconditioner and CG algorithm. We remark here that
it is essential for the convergence of the method that both the start vector and
the right-hand side are both in L2

0. For this reason we subtract the mean value
from the right hand-side. The start vector is zero and does therefore have mean
value zero.

import Krylov
import MLPrec

# use the Epetra backend
parameters["linear_algebra_backend"] = "Epetra"

# Create mesh and finite element
mesh = UnitSquare(10, 10)
V = FunctionSpace(mesh, "CG", 1)

# Define variational problem
v = TestFunction(V)
u = TrialFunction(V)
f = Source(V)
g = Flux(V)
a = dot(grad(v), grad(u)) * dx
L = v * f * dx + v * g* ds

# Assemble symmetric matrix and vector
A, b = assemble_system(a,L)

# create solution vector (also used as start vector)
x = b.copy()
x.zero()

# subtract mean value from right hand-side
c = b.array()
c -= sum(c)/len(c)
b[:] = c

# create preconditioner
B = MLPrec.MLPreconditioner(A)
x, e, iter = Krylov.precondconjgrad_eigest(B, A, x, b, 10e- 6, True, 100)

print "Number of iterations ", iter
print "Eigenvalues ", e
print "kappa(BA) ", e[len(e)-1]/e[0]

In Table 36.1 we list the number of iterations for convergence and the estimated
condition number of the preconditioned system based on the code shown above,
see also the source code poisson neumann.py .
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h 2−4 2−5 2−6 2−7 2−8

κ 1.56 1.26 2.09 1.49 1.20
#iterations 8 8 9 9 8

Table 36.1: The estimated condition number κ and the number of iterations for
convergence with respect to various mesh refinements.

36.3.2 The Stokes Problem

Our next example is the Stokes problem,

−∆u−∇p = f in Ω, (36.1)

∇ · u = 0 in Ω, (36.2)

u = 0 on ∂Ω. (36.3)

The variational form is:
Find u, p ∈ H1

0 × L2
0 such that

∫

Ω

∇u : ∇v dx+

∫

Ω

∇ · u q dx+

∫

Ω

∇ · v p dx =

∫

Ω

f v dx, ∀v, q ∈ H1
0 × L2

0.

Let the linear operator A be defined as

A =

(
A B∗

B 0

)
.

where

(Au, v) =

∫

Ω

∇u : ∇v dx, (36.4)

(Bu, q) =

∫

Ω

∇ · u q dx, (36.5)

and B∗ is the adjoint of B. Then it is well-known that A is a bounded opera-
tor from H1

0 × L2
0 to its dual H−1 × L2

0, see e.g. (??). Therefore, we construct a
preconditioner, B : H−1 × L2

0 → H1
0 × L2

0 defined as

B =

(
K−1 0

0 L−1

)
.

where

(Ku, v) =

∫

Ω

∇u : ∇v dx (36.6)

(Lp, q) =

∫

Ω

p q dx. (36.7)
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method h 2−4 2−5 2−6 2−7 2−8

P2 − P1 iterations 34 43 49 52 58
P2 − P1 κ 13.3 13.5 13.6 13.6 13.6
P2 − P0 iterations 27 35 42 47 54
P2 − P0 κ 6.9 7.9 8.8 9.5 10.3
P1 − P1 iterations 36 118 200+ 200+ 200+
P1 − P1 κ 147 308 696 827 671

P1 − P1-stab iterations 29 34 33 33 31
P1 − P1-stab κ 11.0 12.3 12.5 12.6 12.7

Table 36.2: The number of iterations for convergence with respect to mesh re-
finements. The methods P2−P1, P2−P0, and P1−P1-stab are stable, while P1−P1

is not.

We refer to (?) for a mathematical explanation of the derivation of such pre-
conditioners. Notice that this operator B is positive in contrast to A. Hence, the
preconditioned operator BA will be indefinite. For bothK and L, we use the AMG
preconditioner provided by ML/Trilinos as described in the previous example (A
simple Jacobi preconditioner would be sufficient for L). For symmetric indefinite
problems the Minimum Residual Method is the fastest method. Preconditioners
of this form has been studied by many (????). In Table 36.2, we present the num-
ber of iterations needed for convergence and estimates on the condition number κ
with respect to different discretization methods and different characteristic cell
sizes h. The MinRes iteration is stopped when (Bhrk, rk)/(Bhr0, r0) ≤ 10−10, where
rk is the residual at iteration k. The condition numbers, κ, were estimated using
the CG method on the normal equation. This condition number will always be
less than the real condition number and is probably too low for the last columns
for the P1−P1 method without stabilization. for all the. Notice that for the stable
methods P2 − P1 and P2 − P0, the number of iterations and the condition number
seems to be bounded independently of h. For the unstable P1 − P1 method, the
number of iterations and the condition number increases as h decreases. How-
ever, for the stabilized P1 − P1 method, where the pressure is stabilized by

∫

Ω

∇ · u q − αh2∇p · ∇q dx,

the number of iterations and the condition number appear to be bounded.
We will now describe the code in detail. In this case, the preconditioner con-

sists of two preconditioners. The following shows how to implement this block
preconditioner based on the ML preconditioner defined in the previous example.

class SaddlePrec:
def __init__(self, K, L):

self.K = K
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self.L = L
self.K_prec = MLPreconditioner(K)
self.L_prec = MLPreconditioner(L)
self.n = K.size(0)
self.m = L.size(0)
self.x = Vector(self.n+self.m)

def __mul__(self, b):

self.x = Vector(self.n+self.m)
x = self.x
n = self.n
m = self.m

x[0:n] = self.K_prec * b[0:n]
x[n:n+m] = self.L_prec * b[n:n+m]

return x

The Stokes problem is then specified and solved as follows:

mesh = UnitSquare(40,40)
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)
mixed = V + Q

f = Constant(mesh, (0,0))
g = Constant(mesh, 0)

u, p = TrialFunctions(mixed)
v, q = TestFunctions(mixed)

a = inner(grad(u), grad(v)) * dx + div(u) * q* dx + div(v) * p* dx
L = dot(f, v) * dx

bc_func = BoundaryFunction(V)
bc = DirichletBC(V, bc_func, Boundary())

A, b = assemble_system(a, L, bc)

And finally, we create a block preconditioner and solve the problem with the
MinRes method.

u, p = TrialFunction(V), TrialFunction(Q)
v, q = TestFunction(V), TestFunction(Q)

k = inner(grad(u), grad(v)) * dx
l = p * q* dx
L0 = dot(v,f) * dx
L1 = q * g* dx

K, b0 = assemble_system(k,L0,bc)
L, b1 = assemble_system(l,L1)

x = Vector(b.size())
x.zero()

B = SaddlePrec(K, L)

x, i, rho = MinRes.precondMinRes(B, A, x, b, 10e-8, False, 20 0)

We refer to stokes.py for the complete code.
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36.3.3 The time-dependent Stokes Problem

Our next example is the time-dependent Stokes problem,

u− k∆u−∇p = f in Ω, (36.8)

∇ · u = 0 in Ω, (36.9)

u = 0 on ∂Ω. (36.10)

Here k is the time stepping parameter.
The variational form is:

Find u, p ∈ H1
0 × L2

0 such that

∫

Ω

u ·v dx+k

∫

Ω

∇u : ∇v dx+

∫

Ω

∇·u q dx+

∫

Ω

∇·v p dx =

∫

Ω

f v dx, ∀v, q ∈ H1
0×L2

0.

Let

A =

(
A B∗

B 0

)
.

where

(Au, v) =

∫

Ω

u · v dx+ k

∫

Ω

∇u : ∇v dx, (36.11)

(Bu, q) =

∫

Ω

∇ · u q dx, (36.12)

This operator changes character as k varies. For k = 1 the problem behaves like
Stokes problem, with a non-harmful low order term. However as k approaches
zero the problems change to the mixed formulation of a Poisson equation, ie.

u−∇p = f, Ω

∇ · u = 0, Ω

This problem is not an well-defined operator from H1
0 × L2

0 into its dual. Instead,
it is a mapping from H(div)× L2

0 to its dual. However, as pointed out in (?) this
operator can also be seen as an operator L2 × H1 to its dual. In fact, in (??) it
was shown that A is a bounded operator from L2 ∩ kH1

0 × H1 ∩ L2
0 + k−1L2

0 to its
dual space with a bounded inverse. Furthermore, the bounds are uniform in k.
Therefore we construct a preconditioner B, such that

B : L2 ∩ kH1
0 ×H1 ∩ L2

0 + k−1L2
0 → L2 + k−1H−1 ×H−1 ∩ L2

0 + kL2
0.

Such a B can be defined as

B =

(
K−1 0

0 L−1 +M−1

)
.
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k\h 2−4 2−5 2−6 2−7 2−8

1.0 13.2 13.5 13.6 13.6 13.6
0.1 12.5 13.2 13.2 13.5 13.6
0.01 10.3 11.0 12.8 13.2 13.4
0.001 7.3 9.1 11.0 12.3 13.0

Table 36.3: The convergence with respect to k and mesh refinements.

where

(Ku, v) =

∫

Ω

∇u : ∇v dx (36.13)

(Lp, q) =

∫

Ω

k−1pq dx (36.14)

(Mp, q) =

∫

Ω

∇p · ∇q dx. (36.15)

Again we refer to (?) and references therein, for an overview of the construc-
tion of such preconditioners and a more comprehensive mathematical derivation.
Preconditioners of this form has been studied by many, c.f. e.g. (?????).

Creating the preconditioner in this example is completely analogous to the
Stokes example except that we need three matrices based on three bilinear forms:

k = dot(u, v) * dx + k * inner(grad(u), grad(v)) * dx
l = kinv * p* q* dx
m = dot(grad(p),grad(q)) * dx
L0 = dot(v,f) * dx
L1 = q * g* dx

K, b0 = assemble_system(k,L0,bc)
L, b1 = assemble_system(l,L1)
M, b1 = assemble_system(m,L1)

Also the code for the block preconditioner is analogous, except that it is based on
three matrices:

class SaddlePrec2:
def __init__(self, K, L, M):

self.K_prec = MLPrec.MLPreconditioner(K)
self.L_prec = MLPrec.MLPreconditioner(L)
self.M_prec = MLPrec.MLPreconditioner(M)
self.n = K.size(0)
self.m = L.size(0)

def __mul__(self, b):

n = self.n
m = self.m
x = Vector(n+m)
y0 = Vector(m)
y1 = Vector(m)
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x[0:n] = self.K_prec * b[0:n]
y0 = self.L_prec * b[n:n+m]
y1 = self.M_prec * b[n:n+m]
x[n:n+m] = y0 + y1

return x

The complete code can be found in timestokes.py

36.3.4 Mixed form of the Hodge Laplacian

The final example is a mixed formulation of the Hodge Laplacian,

∇×∇× u−∇p = f in Ω, (36.16)

∇ · u− p = 0 in Ω, (36.17)

u× n = 0 on ∂Ω, (36.18)

p = 0 on ∂Ω. (36.19)

The variational form is:
Find u, p ∈ H0(curl)×H1

0 such that

∫

Ω

∇× u · ∇ × v dx−
∫

Ω

∇pv dx =

∫

Ω

fv dx ∀v ∈ H0(curl) (36.20)
∫

Ω

u∇q dx−
∫

Ω

pq dx = 0 ∀q ∈ H1
0 . (36.21)

(36.22)

Hence, it is natural to consider preconditioner a for H(curl) problems (in addi-
tion to H1 preconditioners). Such preconditioners have been considered by many
c.f. e.g. (????). One important observation in these papers is that point-wise
smoothers are not appropriate for geometric multigrid methods. Furthermore,
for algebraic multigrid methods, extra care has to be taken for the aggregation
step (??).

Let

A =

(
A B∗

B −C

)
,

where,

(Au, v) =

∫

Ω

∇× u · ∇ × v dx, (36.23)

(Bp, v) = −
∫

Ω

∇pv dx (36.24)

(Cp, q) = −
∫

Ω

pq dx (36.25)
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Then A : H0(curl)×H1
0 → H−1(curl)×H−1, whereH−1(curl) is the dual of H0(curl).

However, if we for the moment forget about the boundary conditions, we can
obtain the Laplacian form by eliminating p from (36.16)-(36.17), i.e.,

∇×∇× u−∇∇ · u = f.

Hence, the problem is elliptic in nature, although this is not apparent in the
mixed formulation. In other words, modulo boundary conditions, A : H1 × L2 →
H−1 × L2.

To avoid constructing aH(curl) preconditioner we will employ the observation
that this is a vector Laplacian. Let the discrete operator be

A =

(
Ah B∗

h

Bh −Ch

)
,

where we assume that the discrete system has been obtained by using a stable
finite element method, eg. using lowest order Nedelec elements of first kind (?)
combined with continuous piecewise linears. We eliminate the pressure to obtain
the matrix

Kh = Ah +B∗
hC

−1
h Bh,

A problem here is that C−1
h is a dense matrix, therefore we lump the Ch matrix

before inverting it, ie.,

Lh = Ah +B∗
h(diag(Ch))

−1Bh,

The matrix Lh is in some sense a vector Laplacian, incorporating the mixed dis-
cretization technique, that is appropriate to build an AMG preconditioner upon.
To test the efficiency of this preconditioner compared with more straightforward
applications of AMG, we compare a couple of different problems. First, we test
the preconditioners for the Ah and the Lh operators, i.e., we estimate the con-
dition number for the systems P1Ah and P2Lh, where P1 and P2 is simply the
algebraic multigrid preconditioners for Ah and Lh, respectively. Then we test the
preconditioners

B1 =

(
Ah 0
0 Dh

)
.

Here, Dh is a discrete Laplacian. The other preconditioner is

B2 =

(
Lh 0
0 Ch

)
.

In Table 36.4 we list the estimated condition numbers on various mesh re-
finements on the unitcube.

The main problem in this example is the construction of the preconditioner
for Lh. This preconditioner is based on a matrix which is constructed by several
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h 2−1 2−2 2−3 2−4 2−5

P1Ah 7.5 20.2 78.4 318.5 1206.3
P2Lh 1.5 2.1 5.8 20.4 78.0
B1A 3.9 6.7 17.6 58.6 -
B2A 4.3 8.7 33.6 30.0 -

Table 36.4: The estimated condition number κ and the number of iterations for
convergence with respect to various mesh refinements.

matrix-matrix products and Dolfin does not provide functionality for this. How-
ever, Epetra/Trilinos have this functionality. To be able to use the functionality
of Epetra/Trilinos we down cast the Dolfin EpetraMatrix to its underlying type
Epetra FECrsMatrix . We may then use PyTrilions. The following code demon-
strate how to perform matrix matrix products, mass lump inversion etc. using
PyTrilinos.

V = FunctionSpace(mesh, "N1curl", 1)
Q = FunctionSpace(mesh, "CG", 1)

u,p = TrialFunction(V), TrialFunction(Q)
v,q = TestFunction(V), TestFunction(Q)

aa = dot(u, v) * dx + dot(curl(v), curl(u)) * dx
bb = dot(grad(p), v) * dx
ff = q * p* dx

AA = assemble(aa)
BB = assemble(bb)
BF = assemble(bb)
FF = assemble(ff)

AA_epetra = down_cast(AA).mat()
BB_epetra = down_cast(BB).mat()
BF_epetra = down_cast(BF).mat()
FF_epetra = down_cast(FF).mat()

ff_vec = Epetra.Vector(FF_epetra.RowMap())
FF_epetra.InvRowSums(ff_vec)
BF_epetra.RightScale(ff_vec)

CC = Epetra.FECrsMatrix(Epetra.Copy, AA_epetra.RowMap( ), 100)
err = EpetraExt.Multiply(BB_epetra, False, BF_epetra, Tr ue, CC)
DD = EpetraMatrix(CC)

EE = assemble(aa, DD, reset_sparsity=False, add_values=T rue)

The complete code can be found in hodge8.py and hodge9.py .

36.4 Conclusion

In this chapter we have demonstrated that advanced solution algorithms can we
developed relatively easily by using the Python interfaces of Dolfin and Trilinos.
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The Python linear algebra interface in Dolfin allow us to write Krylov solvers
and customize them in the language which these algorithms are typically ex-
pressed in books. Furthermore, it is relatively simple to employ state–of–the–art
algebraic multigrid algorithms in Python using Trilinos.

In this chapter we have shown the implementation of block preconditioners
for a few selected problems. Block preconditioners have been used in a varity
of applications, we refer to (?) and the references therein for a more complete
discussion on this topic.
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CHAPTER 37

Automatic Calibration of Depositional Models

By Hans Joachim Schroll

Chapter ref: [schroll]

A novel concept for calibrating depositional models is presented. In this ap-
proach transport coefficients are determined from well output measurements.
Finite element implementation of the multi–lithology models and their duals is
automated by the FEniCS project DOLFIN using a python interface.

37.1 Issues in dual lithology sedimentation

Different types of forward computer models are being used by sedimentologists
and geomorphologists to simulate the process of sedimentary deposition over ge-
ological time periods. The models can be used to predict the presence of reser-
voir rocks and stratigraphic traps at a variety of scales. State–of–the–art ad-
vanced numerical software provides accurate approximations to the mathemat-
ical model, which commonly is expressed in terms of a nonlinear diffusion dom-
inated PDE system. The potential of todays simulation software in industrial
applications is limited however, due to major uncertainties in crucial material
parameters that combine a number of physical phenomena and therefore are
difficult to quantify. Examples of such parameters are diffusive transport coeffi-
cients.

The idea in this contribution is to calibrate uncertain transport coefficients to
direct observable data, like well measurements from a specific basin. In this ap-
proach the forward evolution process, mapping data to observations, is reversed
to determine the data, i.e., transport coefficients. Mathematical tools and nu-
merical algorithms are applied to automatically calibrate geological models to
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actual observations — a critical but so far missing link in forward depositional
modeling.

Automatic calibration, in combination with stochastic modeling, will boost the
applicability and impact of modern numerical simulations in industrial applica-
tions.

37.2 A multidimensional sedimentation model

Submarine sedimentation is an evolution process. By flow into the basin, sedi-
ments build up and evolve in time. The evolution follows geophysical laws, ex-
pressed as diffusive PDE models. The following system is a multidimensional
version of the dual lithology model by Rivenæs (Rivenæs, 1992, 1993)

(
A s
−A 1− s

)(
s
h

)

t

= ∇ ·
(
αs∇h
β(1− s)∇h

)
in [0, T ]× B . (37.1)

Here h denotes the thickness of a layer of deposit and s models the volume frac-
tion for the sand lithology. Consequently, 1−s is the fraction for mud. The system
is driven by fluxes anti proportional to the flow rates s∇h and (1−s)∇h resulting
in a diffusive, but incompletely parabolic, PDE system. The domain of the basin
is denoted by B. Parameters in the model are: The transport layer thickness A
and the diffusive transport coefficients α, β.

For a forward in time simulation, the system requires initial and boundary
data. At initial time, the volume fraction s and the layer thickness h need to be
specified. According to geologists, such data can be reconstructed by some kind
of “back stripping”. Along the boundary of the basin, the flow rates s∇h and
(1− s)∇h are given.

37.3 An inverse approach

The parameter–to–observation mapping R : (α, β) 7→ (s, h) is commonly referred
to as the forward problem. In a basin direct observations are only available
at wells. Moreover, from the age of the sediments, their history can be recon-
structed. Finally, well–data is available in certain well areas W ⊂ B and back-
ward in time.

The objective of the present investigation is to determine transport coeffi-
cients from observed well–data and in that way, to calibrate the model to the
data. This essentially means to invert the parameter–to–observation mapping.
Denoting observed well–data by (s̃, h̃), the goal is to minimize the output func-
tional

J(α, β) =
1

|W |

∫ T

0

∫

W

(s̃− s)2 + (h̃− h)2 dx dt (37.2)
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with respect to the transport coefficients α and β.
In contrast to the ”direct inversion” as described by Imhof and Sharma (Imhof and Sharma,

2007), which is considered impractical, we do not propose to invert the time evo-
lution of the diffusive depositional process. We actually use the forward–in–time
evolution of sediment layers in a number of wells to calibrate transport coeffi-
cients. Via the calibrated model we can simulate the basin and reconstruct its
historic evolution. By computational mathematical modeling, the local data ob-
served in wells determines the evolution throughout the entire basin.

37.4 The Landweber algorithm

In a slightly more abstract setting, the task is to minimize an objective functional
J which implicitly depends on the parameters p via u subject to the constraint
that u satisfies some PDEmodel; a PDE constrained minimization problem: Find
p such that J(p) = J(u(p)) = min and PDE(u, p) = 0.

Landweber’s steepest decent algorithm (?) iterates the following sequence
until convergence:

1. Solve PDE(uk, pk) = 0 for uk.

2. Evaluate dk = −∇pJ(pk)/‖∇pJ(pk)‖.

3. Update pk+1 = pk + ∆pkdk.

Note that the search direction dk, the negative gradient, is the direction of
steepest decent. To avoid scale dependence, the search direction is normed.

The increment ∆pk is determined by a one dimensional line search algorithm,
minimizing a locally quadratic approximation to J along the line pk + γdk. We
use the ansatz

J(pk + γdk) = aγ2 + bγ + c , γ ∈ R .

The extreme value of this parabola is located at

γe = − b

2a
. (37.3)

To determine γe, the parabola is fitted to the local data. For example b is given
by the gradient

Jγ(p
k) = b = ∇pJ(pk) · dk = −‖∇pJ(pk)‖ .

To find a, another gradient of J along the line pk + γdk is needed. To avoid an
extra evaluation, we project pk−1 onto the line and approximate the directional
derivative

Jγ(p
k − γkdk) ≈ ∇pJ(pk−1) · dk . (37.4)
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Note that this approximation is exact if two successive directions dk−1 and dk

are in line. Elementary geometry yields γk = γk−1 cosϕ, cosϕ = dk−1 · dk and
γk = γk−1 · dk−1 · dk. From (37.4) we find

−2a =
(∇pJ(pk−1)−∇pJ(pk)) · dk

γk−1 · dk−1 · dk

Thus, the increment (37.3) evaluates as

∆pk = γe =
∇pJ(pk) · ∇pJ(pk−1)

∇pJ(pk) · ∇pJ(pk−1)− ‖∇pJ(pk)‖2 ·
‖∇pJ(pk)‖
‖∇pJ(pk−1)‖ · γ

k−1 .

37.5 Evaluation of gradients by duality arguments

Every single step of Landweber’s algorithm requires the simulation of a time de-
pendent, nonlinear PDE system and the evaluation of the gradient of the objec-
tive functional. The most common approach to numerical derivatives, via finite
differences, is impractical for complex problems: Finite difference approximation
would require to perform n + 1 forward simulations in n parameter dimensions.
Using duality arguments however, n nonlinear PDE systems can be replaced by
one linear, dual problem. After all, J is evaluated by one forward simulation
of the nonlinear PDE model and the complete gradient ∇J is obtained by one
(backward) simulation of the linear, dual problem. Apparently, one of the first
references to this kind of duality arguments is (Chavent and Lemmonier, 1974).

The concept is conveniently explained for a scalar diffusion equation

ut = ∇ · (α∇u) .

As transport coefficients may vary throughout the basin, we allow for a piecewise
constant coefficient

α =

{
α1 x ∈ B1

α2 x ∈ B2

.

Assuming no flow along the boundary and selecting a suitable test function φ,
the equation in variational form reads

A(u, φ) :=

∫ T

0

∫

B

utφ+ α∇u · ∇φdx dt = 0 .

Taking an derivative ∂/∂αi, i = 1, 2 under the integral sign, we find

A(uαi
, φ) =

∫ T

0

∫

B

uαi,tφ+ α∇uαi
· ∇φdx dt = −

∫ T

0

∫

Bi

∇u · ∇φdx dt . (37.5)
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The corresponding derivative of the output functional J =
∫ T
0

∫
W

(u − d)2dx dt
reads

Jαi
= 2

∫ T

0

∫

W

(u− d)uαi
dx dt , i = 1, 2 .

The trick is to define a dual problem

A(φ, ω) = 2

∫ T

0

∫

W

(u− d)φdx dt

such that A(uαi
, ω) = Jαi

and by using the dual solution ω in (37.5)

A(uαi
, ω) = Jαi

= −
∫ T

0

∫

Bi

∇u · ∇ωdx dt , i = 1, 2 .

In effect, the desired gradient ∇J is expressed in terms of primal– and dual
solutions. In this case the dual problem reads

∫ T

0

∫

B

φtω + α∇φ · ∇ωdx dt = 2

∫ T

0

∫

W

(u− d)φdx dt , (37.6)

which in strong form appears as a backward in time heat equation with zero
terminal condition

−ωt = ∇ · (α∇ω) + 2(u− d)|W .

Note that this dual equation is linear and entirely driven by the data mismatch
in the well. With perfectly matching data d = u|W , the dual solution is zero.

Along the same lines of argumentation one derives the multilinear operator
to the depositional model (37.1)

A(u, v)(φ, ψ) =
∫ T

0

∫

B

(Aut + uht + svt)φ+ αu∇h · ∇φ+ αs∇v · ∇φdx dt

+

∫ T

0

∫

B

(−Aut − uht(1− s)vt)ψ − βu∇h · ∇ψ + β(1− s)∇v · ∇ψdx dt .

The dual system related to the well output functional (37.2) reads

A(φ, ψ)(ω, ν) = 2

∫ T

0

∫

W

(s− s̃)φ+ (h− h̃)ψdx dt .

By construction it follows A(sp, hp)(ω, ν) = Jp(α, β). Given both primal and dual
solutions, the gradient of the well output functional evaluates as

Jαi
(α, β) = −

∫ T

0

∫

Bi

s∇h · ∇ωdx dt ,

Jβi
(α, β) = −

∫ T

0

∫

Bi

(1− s)∇h · ∇νdx dt .
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A detailed derivation including non zero flow conditions is given in (Schroll,
2008). For completeness, not for computation(!), we state the dual system in
strong form

−A(ω − ν)t + ht(ω − ν) + α∇h · ∇ω = β∇h · ∇ν +
2

|W |(s− s̃)
∣∣∣∣
W

−(sω + (1− s)ν)t = ∇ · (αs∇ω + β(1− s)∇ν) +
2

|W |(h− h̃)
∣∣∣∣
W

.

Obviously the system is linear and driven by the data mismatch at the well.
It always comes with zero terminal condition and no flow conditions along the
boundary of the basin. Thus, perfectly matching data results in a trivial dual
solution.

37.6 Aspects of the implementation

The FEniCS project DOLFIN (Logg and Wells, 2009) automates the solution of
PDEs in variational formulation and is therefore especially attractive for imple-
menting dual problems, which are derived in variational form. In this section
the coding of the dual diffusion equation (37.6) is illustrated. Choosing a test
function supported in [tn, tn+1]×B the weak form reads

−
∫ tn+1

tn

∫

B

ωtφ+ α∇ω · ∇φdx dt = 2

∫ tn+1

tn

∫

W

(u− d)φdx dt .

Trapezoidal rule time integration gives

−
∫

B

(ωn+1 − ωn)φdx+
∆t

2

∫

B

α∇(ωn+1 + ωn) · ∇φdx

= ∆t

∫

W

(ωn+1 − dn+1 + ωn − dn)φdx , n = N,N − 1, . . . , 0 .

(37.7)

To evaluate the right hand side, the area of the well is defined as an subdomain:

class WellDomain(SubDomain):
def inside(self, x, on_boundary):

return bool((0.2 <= x[0] and x[0] <= 0.3 and \
0.2 <= x[1] and x[1] <= 0.3))

Next, it gets marked:

well = WellDomain()
subdomains = MeshFunction("uint",mesh, mesh.topology() .dim())
well.mark(subdomains, 1)

An integral over the well area is defined:

dxWell = dx(1)
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The driving source in (37.7) is written as:

f = dt * (u1-d1+u0-d0) * phi * dxWell

The first line in (37.7) is stated in variational formulation:

F = (u_trial-u) * phi * dx \
+ 0.5 * dt * ( d * dot( grad(u_trial+u), grad(phi) ) ) * dx

Let DOLFIN sort out left– and right hand sides:

a = lhs(F); l = rhs(F)

Construct the variational problem:

problem = VariationalProblem(a, l+f)

And solve it:

u = problem.solve()

37.7 Numerical experiments

With these preparations, we are now ready to inspect the well output functional
(37.2) for possible calibration of the dual lithology model (37.1) to “observed”,
actually generated synthetic, data. We consider the PDE system (37.1) with
discontinuous coefficients

α =

{
α1 x ≥ 1/2

α2 x < 1/2
, β =

{
β1 x ≥ 1/2

β2 x < 1/2

in the unit square B = [0, 1]2. Four wells W = W1 ∪W2 ∪W3 ∪W4 are placed one
in each quarter

W4 = [0.3, 0.3]× [0.7, 0.8] , W3 = [0.7, 0.8]× [0.7, 0.8] ,

W1 = [0.2, 0.3]× [0.2, 0.3] , W2 = [0.7, 0.8]× [0.2, 0.3] .

Initially s is constant s(0, ·) = 0.5 and h is piecewise linear

h(0, x, y) = 0.5 max(max(0.2, (x− 0.1)/2), y − 0.55) .

The diffusive character of the process is evident from the evolution of h as shown
in Figure 37.1. No flow boundary conditions are implemented in all simulations
throughout this section.

To inspect the output functional, we generate synthetic data by computing a
reference solution. In the first experiment, the reference parameters are (α1, α2) =

479



Automatic Calibration of Depositional Models

Figure 37.1: Evolution of h, initial left, t = 0.04 right.

(β1, β2) = (0.8, 0.8). We fix β to the reference values and scan the well output over
the α–range [0.0, 1.5]2. The upper left plot in Figure 37.2 depicts contours of the
apparently convex functional, with the reference parameters as the global min-
imum. Independent Landweber iterations, started in each corner of the domain
identify the optimal parameters in typically five steps. The iteration is stopped
if ‖∇J(pk)‖ ≤ 10−7, an indication that the minimum is reached. The lower left
plot shows the corresponding scan over β where α = (0.8, 0.8) is fixed. Obviously
the search directions follow the steepest decent, confirming that the gradients
are correctly evaluated via the dual solution. In the right column of Figure 37.2
we see results for the same experiments, but with 5% random noise added to the
synthetic well data. In this case the optimal parameters are of course not the ref-
erence parameters, but still close. The global picture appears stable with respect
to noise, suggesting that the concept allows to calibrate diffusive, depositional
models to data observed in wells.

Ultimately, the goal is to calibrate all four parameters α = (α1, α2) and β =
(β1, β2) to available data. Figure 37.3 depicts Landweber iterations in four di-
mensional parameter space. Actually projections onto the α and β coordinate
plane are shown. Each subplot depicts one iteration. The initial guess varies
from line to line. Obviously, all iterations converge and, without noise added,
the reference parameters, α = β = (0.8, 0.8), are detected as optimal parame-
ters. Adding 5% random noise to the recorded data, we simulate data observed
in wells. In this situation, see the right column, the algorithm identifies optimal
parameters, which are clearly off the reference. Fig. 37.5 depicts fifty realiza-
tions of this experiments. The distribution of the optimal parameters is shown
together with their average in red. The left column in Fig. 37.5 corresponds to
the reference parameters (α1, α2) = (β1, β2) = (0.8, 0.8) as in Fig. 37.3. The ini-
tial guesses vary from row to row and are the same as in Fig. 37.3. On average
the calibrated, optimal parameters are close to the reference. typical standard
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deviations vary from 0.07 to 0.17, depending on the coefficient.
In the next experiments non uniform reference parameters are set for α =

(0.6, 1.0) and β = (1.0, 0.6). Figure 37.4 shows iterations with the noise–free ref-
erence solution used as data on the left hand side. Within the precision of the
stopping criterion, the reference parameters are detected. Adding 5% noise to
the well data leads to different optimal parameters, just as expected. On av-
erage however, the optimal parameters obtained in repeated calibrations match
the reference parameters quite well, see Figure 37.5, right hand side.

In the next experiments, β is discontinuous along y = 1/2 and piecewise con-
stant in the lower and upper half of the basin

α =

{
α1 x ≥ 1/2

α2 x < 1/2
, β =

{
β1 y ≥ 1/2

β2 y < 1/2
.

In this way the evolution is governed by different diffusion parameters in each
quarter of the basin. Having placed one well i each quarter, one can effectively
calibrate the model to synthetic data with and without random noise, as shown
in Figures 37.6 and 37.7.

37.8 Results and conclusion

The calibration of piecewise constant diffusion coefficients using local data in
a small number of wells is a well behaved inverse problem. The convexity of
the output functional, which is the basis for a successful minimization, remains
stable with random noise added to the well data.

We have automated the calibration of diffusive transport coefficients in two
ways: First, the Landweber algorithm, with duality based gradients, automat-
ically detects optimal parameters. Second, the FEniCS project DOLFIN, auto-
matically implements the methods. As the dual problems are derived in varia-
tional form, DOLFIN is the appropriate tool for efficient implementation.
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Figure 37.3: Landweber iterations. Clean (left) and noisy data (right).
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Figure 37.4: Landweber iterations. Clean (left) and noisy data (right).
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Figure 37.5: Sets of optimal parameters calibrated to noisy data, α blue, β yellow,
average red.
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Figure 37.6: Landweber iterations. Clean (left) and noisy data (right).
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Figure 37.7: Landweber iterations. Clean (left) and noisy data (right).
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CHAPTER 38

Computational Compressible Flow and

Thermodynamics

By Johan Hoffman, Claes Johnson and Murtazo Nazarov

Chapter ref: [hoffman-3]

We test the functionality of FEniCS on the challenge of computational ther-
modynamics in the form of the EG2 finite element solver of the Euler equa-
tions expressing conservation of mass, momentum and energy. We show that
EG2 solutions satisfy a 2nd Law formulated in terms of kinetic energy, internal
(heat) energy, work and shock/turbulent dissipation, without reference to en-
tropy. We show that the 2nd Law expresses an irreversible transfer of kinetic
energy to heat energy in shock/turbulent dissipation arising because the Euler
equations lack pointwise solutions. The 2nd Law thus explains the occurence of
irreversibility in formally reversible systems as an effect of instability with blow-
up of Euler residuals combined with finite precision computation, without resort
to statistical mechanics or ad hoc viscous regularization. We simulate the clas-
sical Joule or Joule-Thompson experiment of a gas expanding from rest under
temperature drop and turbulent dissipation until rest in the double volume.

38.1 FEniCS as Computational Science

The goal of the FEniCS project is to develop software for automated computa-
tional solution of differential equations based on a finite element methodology
combining generality with efficiency. Thermodynamics is a basic area of contin-
uum mechanics with many important applications, which however is feared by
both teachers, students and engineers as being difficult to understand and to ap-
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ply, principally because of the appearance of turbulence. In this article we show
that turbulent thermodynamics can be made understandable and useful by au-
tomated computational solution, as a demonstration of the capability of FEniCS.

The biggest mystery of classical thermodynamics is the 2nd Law about en-
tropy and automation cannot harbor any mystery. Expert systems are required
for mysteries and FEniCS is not an expert system. Automation requires a con-
tinuum mechanics formulation of thermodynamics with a transparent 2nd Law.
We present a formulation of thermodynamics based on finite precision computa-
tion with a 2nd Law without reference to entropy, which we show can serve as
a basis for automated computational simulation of complex turbulent thermody-
namics and thus can open to new insight and design, a main goal of FEniCS.
In this setting the digital finite element model becomes the real model of the
physics of thermodynamics viewed as a form of analog finite precision computa-
tion, a model which is open to inspection and analysis because solutions can be
computed and put on the table.

38.2 The 1st and 2nd Laws of Thermodynamics

Heat, a quantity which functions to animate, derives from an internal fire
located in the left ventricle. (Hippocrates, 460 B.C.)

Thermodynamics is fundamental in a wide range of phenomena from macro-
scopic to microscopic scales. Thermodynamics essentially concerns the interplay
between heat energy and kinetic energy in a gas or fluid. Kinetic energy, or me-

chanical energy, may generate heat energy by compression or turbulent dissipa-
tion. Heat energy may generate kinetic energy by expansion, but not through
a reverse process of turbulent dissipation. The industrial society of the 19th
century was built on the use of steam engines, and the initial motivation to un-
derstand thermodynamics came from a need to increase the efficiency of steam
engines for conversion of heat energy to useful mechanical energy. Thermody-
namics is closely connected to the dynamics of slightly viscous and compressible

gases, since substantial compression and expansion can occur in a gas, but less
in fluids (and solids).

The development of classical thermodynamics as a rational science based on
logical deduction from a set of axioms, was initiated in the 19th century by
Carnot (?), Clausius (?) and Lord Kelvin (?), who formulated the basic axioms in
the form of the 1st Law and the 2nd Law of thermodynamics. The 1st Law states
(for an isolated system) that the total energy, the sum of kinetic and heat energy,
is conserved. The 1st Law is naturally generalized to include also conservation of
mass and Newton’s law of conservation of momentum and then can be expressed
as the Euler equations for a gas/fluid with vanishing viscosity.

The 2nd Law has the form of an inequality dS ≥ 0 for a quantity named
entropy denoted by S, with dS denoting change thereof, supposedly expressing
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a basic feature of real thermodynamic processes. The classical 2nd Law states
that the entropy cannot decrease; it may stay constant or it may increase, but it
can never decrease (for an isolated system).

The role of the 2nd Law is to give a scientific basis to the many observations
of irreversible processes, that is, processes which cannot be reversed in time, like
running a movie backwards. Time reversal of a process with strictly increasing
entropy, would correspond to a process with strictly decreasing entropy, which
would violate the 2nd Law and therefore could not occur. A perpetum mobile
would represent a reversible process and so the role of the 2nd Law is in particu-
lar to explain why it is impossible to construct a perpetum mobile, and why time
is moving forward in the direction an arrow of time, as expressed by Max Planck
(???): Were it not for the existence of irreversible processes, the entire edifice of the

2nd Law would crumble.
While the 1st Law in the form of the Euler equations expressing conservation

of mass, momentum and total energy can be understood and motivated on ratio-
nal grounds, the nature of the 2nd Law is mysterious. It does not seem to be a
consequence of the 1st Law, since the Euler equations seem to be time reversible,
and the role of the 2nd Law is to explain irreversibility. Thus questions are lining
up: If the 2nd Law is a new independent law of Nature, how can it be justified?
What is the physical significance of that quantity named entropy, which Nature
can only get more of and never can get rid of, like a steadily accumulating heap
of waste? What mechanism prevents Nature from recycling entropy? How can
irreversiblity arise in a reversible system? How can viscous dissipation arise in
a system with vanishing viscosity? Why is there noMaxwell demon (?)? Why can
a gas by itself expand into a larger volume, but not by itself contract back again,
if the motion of the gas molecules is governed by the reversible Newton’s laws of
motion? Why is there an arrow of time? This article presents answers.

38.3 The Enigma

Those who have talked of “chance” are the inheritors of antique superstition
and ignorance...whose minds have never been illuminated by a ray of scien-
tific thought. (T. H. Huxley)

These were the questions which confronted scientists in the late 19th century,
after the introduction of the concept of entropy by Clausius in 1865, and these
showed to be tough questions to answer. After much struggle, agony and debate,
the agreement of the physics community has become to view statistical mechan-

ics based on an assumption of molecular chaos as developed by Boltzmann (?),
to offer a rationalization of the classical 2nd Law in the form of a tendency of
(isolated) physical processes to move from improbable towards more probable
states, or from ordered to less ordered states. Boltzmann’s assumption of molec-
ular chaos in a dilute gas of colliding molecules, is that two molecules about to

491



Computational Thermodynamics

collide have independent velocities, which led to the H-theorem for Boltzmann’s

equations stating that a certain quantity denoted by H could not decrease and
thus could serve as an entropy defining an arrow of time. Increasing disorder
would thus represent increasing entropy, and the classical 2nd Law would re-
flect the eternal pessimisticts idea that things always get more messy, and that
there is really no limit to this, except when everything is as messy as it can ever
get. Of course, experience could give (some) support this idea, but the trouble is
that it prevents things from ever becoming less messy or more structured, and
thus may seem a bit too pessimistic. No doubt, it would seem to contradict the
many observations of emergence of ordered non-organic structures (like crystals
or waves and cyclones) and organic structures (like DNA and human beings),
seemingly out of disordered chaos, as evidenced by the physics Nobel Laureate
Robert Laughlin.

Most trained thermodynamicists would here say that emergence of order out
of chaos, in fact does not contradict the classical 2nd Law, because it concerns
“non-isolated systems”. But they would probably insist that the Universe as a
whole (isolated system) would steadily evolve towards a “heat-death” with maxi-
mal entropy/disorder (and no life), thus fulfilling the pessimists expectation. The
question from where the initial order came from, would however be left open.

The standard presentation of thermodynamics based on the 1st and 2nd Laws,
thus involves a mixture of deterministic models (Boltzmann’s equations with the
H-theorem) based on statistical assumptions (molecular chaos) making the sub-
ject admittedly difficult to both learn, teach and apply, despite its strong impor-
tance. This is primarily because the question why necessarily dS ≥ 0 and never
dS < 0, is not given a convincing understandable answer. In fact, statistical
mechanics allows dS < 0, although it is claimed to be very unlikely. The basic
objective of statistical mechanics as the basis of classical thermodynamics, thus
is to (i) give the entropy a physical meaning, and (ii) to motivate its tendency
to (usually) increase. Before statistical mechanics, the 2nd Law was viewed as
an experimental fact, which could not be rationalized theoretically. The classical
view on the 2nd Law is thus either as a statistical law of large numbers or as
a an experimental fact, both without a rational deterministic mechanistic theo-
retical foundation. The problem with thermodynamics in this form is that it is
understood by very few, if any:

• Every mathematician knows it is impossible to understand an elementary course in

thermodynamics. (V. Arnold)

• ...no one knows what entropy is, so if you in a debate use this concept, you will

always have an advantage. (Von Neumann to Shannon)

• As anyone who has taken a course in thermodynamics is well aware, the mathe-

matics used in proving Clausius’ theorem (the 2nd Law) is of a very special kind,

having only the most tenuous relation to that known to mathematicians. (?)
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• Where does irreversibility come from? It does not come form Newton’s laws. Obvi-

ously there must be some law, some obscure but fundamental equation. perhaps in

electricity, maybe in neutrino physics, in which it does matter which way time goes.

(?)

• For three hundred years science has been dominated by a Newtonian paradigm

presenting theWorld either as a sterile mechanical clock or in a state of degeneration

and increasing disorder...It has always seemed paradoxical that a theory based on

Newtonian mechanics can lead to chaos just because the number of particles is

large, and it is subjectively decided that their precise motion cannot be observed by

humans... In the Newtonian world of necessity, there is no arrow of time. Boltzmann

found an arrow hidden in Nature’s molecular game of roulette. (Paul Davies)

• The goal of deriving the law of entropy increase from statistical mechanics has so

far eluded the deepest thinkers. (?)

• There are great physicists who have not understood it. (Einstein about Boltzmann’s
statistical mechanics)

38.4 Computational Foundation

In this note we present a foundation of thermodynamics, further elaborated in
(Nazarov, 2009, ?), where the basic assumption of statistical mechanics of molec-
ular chaos, is replaced by deterministic finite precision computation, more pre-
cisely by a least squares stabilized finite element method for the Euler equations,
referred to as Euler General Galerkin or EG2. We thus view EG2 as the physical
model of thermodynamics, that is the Euler equations together with a computa-
tional solution procedure, and not just the Euler equations without constructive
solution procedure as in a classical non-computational approach.

Using EG2 as a model of thermodynamics changes the questions and answers
and opens new possibilities of progress together with new challenges to mathe-
matical analysis and computation. The basic new feature is that EG2 solutions
are computed and thus are available to inspection. This means that the anal-
ysis of solutions shifts from a priori to a posteriori; after the solution has been
computed it can be inspected.

Inspecting computed EG2 solutions we find that they are turbulent and have
shocks, which is identified by pointwise large Euler residuals, reflecting that
pointwise solutions to the Euler equations are lacking. The enigma of thermo-
dynamics is thus the enigma of turbulence (since the basic nature of shocks is
understood). Computational thermodynamics thus essentially concerns compu-
tational turbulence. In this note and (?) we present evidence that EG2 opens to
a resolution of the enigma of turbulence and thus of thermodynamics.

The fundamental question concerns wellposedness in the sense of Hadamard,
that is what aspects or outputs of turbulent/shock solutions are stable under
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perturbations in the sense that small perturbations have small effects. We show
that wellposedness of EG2 solutions can be tested a posteriori by computationally
solving a dual linearized problem, through which the output sensitivity of non-
zero Euler residuals can be estimated. We find that mean-value outputs such as
drag and lift and total turbulent dissipation are wellposed, while point-values of
turbulent flow are not. We can thus a posteriori in a case by case manner, assess
the quality of EG2 solutions as solutions of the Euler equations.

We formulate a 2nd Law for EG2 without the concept of entropy, in terms of
the basic physical quantities of kinetic energy K, heat energy E, rate of work W
and shock/turbulent dissipation D > 0. The new 2nd Law reads

K̇ = W −D, Ė = −W +D, (38.1)

where the dot indicates time differentiation. Slightly viscous flow always de-
velops turbulence/shocks with D > 0, and the 2nd Law thus expresses an irre-
versible transfer of kinetic energy into heat energy, while the total energy E +K
remains constant.

With the 2nd Law in the form (38.1), we avoid the (difficult) main task of
statistical mechanics of specifying the physical significance of entropy and moti-
vating its tendency to increase by probabilistic considerations based on (tricky)
combinatorics. Thus using Ockham’s razor we rationalize a scientific theory of
major importance making it both more understandable and more useful. The
new 2nd Law is closer to classical Newtonian mechanics than the 2nd Law of
statistical mechanics, and thus can be viewed to be more fundamental.

The new 2nd Law is a consequence of the 1st Law in the form of the Euler
equations combined with EG2 finite precision computation effectively introduc-
ing viscosity and viscous dissipation. These effects appear as a consequence of
the non-existence of pointwise solutions to the Euler equations reflecting insta-
bilities leading to the development shocks and turbulence in which large scale
kinetic energy is transferred to small scale kinetic energy in the form of heat
energy. The viscous dissipation can be interpreted as a penalty on pointwise
large Euler residuals arising in shocks/turbulence, with the penalty being di-
rectly coupled to the violation. EG2 thus explains the 2nd Law as a consequence
of the non-existence of pointwise solutions with small Euler residuals. This of-
fers an understanding to the emergence of irreversible solutions of the formally
reversible Euler equations. If pointwise solutions had existed, they would have
been reversible without dissipation, but they don’t exist, and the existing com-
putational solutions have dissipation and thus are irreversible.

38.5 Viscosity Solutions

An EG2 solution can be viewed as particular viscosity solution of the Euler equa-
tions, which is a solution of regularized Euler equations augmented by additive
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terms modeling viscosity effects with small viscosity coefficients. The effective
viscosity in an EG2 solution typically may be comparable to the mesh size.

For incompressible flow the existence of viscosity solutions, with suitable so-
lution dependent viscosity coefficients, can be proved a priori using standard
techniques of analytical mathematics. Viscosity solutions are pointwise solu-
tions of the regularized equations. But already the most basic problem with
constant viscosity, the incompressible Navier-Stokes equations for a Newtonian
fluid, presents technical difficulties, and is one of the open Clay Millennium Prob-
lems.

For compressible flow the technical complications are even more severe, and it
is not clear which viscosities would be required for an analytical proof of the exis-
tence of viscosity solutions (?) to the Euler equations. Furthermore, the question
of wellposedness is typically left out, as in the formulation of the Navier-Stokes
Millennium Problem, with the motivation that first the existence problem has to
be settled. Altogether, analytical mathematics seems to have little to offer a pri-
ori concerning the existence and wellposedness of solutions of the compressible
Euler equations. In contrast, EG2 computational solutions of the Euler equa-
tions seem to offer a wealth of information a posteriori, in particular concerning
wellposedness by duality.

An EG2 solution thus can be viewed as a specific viscosity solution with a
specific regularization from the least squares stabilization, in particular of the
momentum equation, which is necessary because pointwise momentum balance
is impossible to achieve in the presence of shocks/turbulence. The EG2 viscosity
can be viewed to be the minimal viscosity required to handle the contradiction
behind the non-existence of pointwise solutions. For a shock EG2 could then be
directly interpreted as a certain physical mechanism preventing a shock wave
from turning over, and for turbulence as a form of automatic computational tur-
bulence model.

EG2 thermodynamics can be viewed as form of deterministic chaos, where
the mechanism is open to inspection and can be used for prediction. On the
other hand, the mechanism of statistical mechanics is not open to inspection and
can only be based on ad hoc assumption. If Boltzmann’s assumption of molecular
chaos cannot be justified, and is not needed, why consider it at all, (?)?

38.6 Joule’s 1845 Experiment

To illustrate basic aspects of thermodynamics, we recall Joule’s experiment from
1845 with a gas initially at rest, or in equilibrium, at a certain temperature and
density in a certain volume immersed into a container of water, see Fig. 38.1. At
initial time a valve was opened and the gas was allowed to expand into the dou-
ble volume while the temperature change in the water was carefully measured
by Joule. To the great surprise of both Joule and the scientific community, no
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Figure 38.1: Joule’s 1845 experiment

change of the temperature of the water could be detected, in contradiction with
the expectation that the gas would cool off under expansion. Moreover, the ex-
pansion was impossible to reverse; the gas had no inclination to contract back to
the original volume.

We simulate Joule’s experiment computationally using EG2: At initial time a
valve is opened in a channel connecting two cubical chambers, a left and a right
chamber, filled with gas of the same temperature but different density/pressure
with high density/pressure in the left and low in the right chamber. Figs. 38.2
- 38.4 display the time-evolution of mean temperature, density, kinetic energy,
pressure and turbulent dissipation in the left and right chambers. Figs. 38.5 -
38.7 give snapshots of the distribution of temperature and speed at an interme-
diate time.

We see that temperature drops in the left chamber as the gas expands with
heat energy transforming to kinetic energy with a maximal temperature drop
in the channel. The cool expanding gas is heated in the right chamber by com-
pression and shock/turbulence dissipation. The mean temperature thus drops in
the left chamber and increases in the right and after a slight rebounce settles
to a remaining density/temperature gap as the gas comes to rest with the same
pressure in the left and right chambers and the same total heat energy as before
expansion.

From the 1st Law alone there are many different possible end states with
varying gaps in density/temperature. It is the 2nd Law which determines the
size of the gap, which relates to the amount of turbulent/shock dissipation in
the left and right chambers, which is determined by the dynamics of the process
including the distribution of turbulence/shock dissipation.

Classical thermodynamics focusing on equilibrium states does not tell which
from a range of possible equilibrium end states with varying gaps, will actually
be realized, because the true end state depends on the dynamics of the process.
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If anything, classical thermodynamics would predict an end state with zero gap
(constant enthalpy), which we have seen is incorrect. In short, classical equilib-
rium thermodynamics excluding dynamics cannot correctly predict equilibrium
end states, and thus has little practical value.
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Figure 38.2: Evolution in time of mean density and temperature in left and right
chambers
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Figure 38.3: Evolution in time of mean kinetic energy and pressure in left and
right chambers

The 2nd Law states that reversal of the process with the gas contracting back
to the original small volume, is impossible because the only way the gas can
be put into motion without external forcing is by expansion: self-expansion is
possible, but not self-constraction.

We are thus able to analyze and understand the dynamics of the Joule experi-
ment using the 1st and the new form of the 2nd law. The experiment displays the
expansion phase of a compression refrigerator with heat being moved by expan-
sion from the left chamber in contact with the inside of the refrigerator, into the
right chamber in contact with the outside. The cycle is closed by recompression
under outside cooling. The efficiency connects to the temperature drop in the left
chamber and the gap, with efficiency suffering from rebounce to a small gap.
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Figure 38.4: Evolution in time of mean turbulent dissipation in left and right
chambers

Figure 38.5: Distribution of gas temperature at T = 3
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Figure 38.6: Distribution of gas speed at T = 3

Figure 38.7: Distribution of turbulent dissipation at T = 3
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38.7 The Euler Equations

We consider the Euler equations for an inviscid perfect gas enclosed in a volume
Ω in R

3 with boundary Γ over a time interval I = (0, 1] expressing conservation
of mass density ρ, momentum m = (m1, m2, m3) and internal energy e: Find û =
(ρ,m, e) depending on (x, t) ∈ Q ≡ Ω× I such that

Rρ(û) ≡ ρ̇+∇ · (ρu) = 0 in Q,
Rm(û) ≡ ṁ+∇ · (mu+ p) = f in Q,

Re(û) ≡ ė+∇ · (eu) + p∇ · u = g in Q,
u · n = 0 on Γ× I

û(·, 0) = û0 in Ω,

(38.2)

where u = m
ρ

is the velocity, p = (γ − 1)e with γ > 1 a gas constant, f is a

given volume force, g a heat source/sink and û0 a given initial state. We here
express energy conservation in terms of the internal energy e = ρT , with T the
temperature, and not as conservation of the total energy ǫ = e + k with k = ρv2

2

the kinetic energy, in the form ǫ̇ + ∇ · (ǫu) = 0. Because of the appearance of
shocks/turbulence, the Euler equations lack pointwise solutions, except possible
for short time, and regularization is therefore necessary. For a mono-atomic gas
γ = 5/3 and (38.2) then is a parameter-free model, the ideal form of mathematical
model according to Einstein..

38.8 Energy Estimates for Viscosity Solutions

For the discussion we consider the following regularized version of (38.2) assum-
ing for simplicity that f = 0 and g = 0: Find ûν,µ ≡ û = (ρ,m, e) such that

Rρ(û) = 0 in Q,
Rm(û) = −∇ · (ν∇u) +∇(µp∇ · u) in Q,
Re(û) = ν|∇u|2 in Q,

u = 0 on Γ× I,
û(·, 0) = û0 in Ω,

(38.3)

where ν > 0 is a shear viscosity µ >> ν ≥ 0 if ∇ · u > 0 in expansion (with µ = 0
if ∇ · u ≤ 0 in compression), is a small bulk viscosity, and we use the notation
|∇u|2 =

∑
i |∇ui|2. We shall see that the bulk viscosity is a safety feature putting

a limit to the work p∇ · u in expansion appearing in the energy balance.
We note that only the momentum equation is subject to viscous regulariza-

tion. Further, we note that the shear viscosity term in the momentum equation
multiplied by the velocity u (and formally integrated by parts) appears as a pos-
itive right hand side in the equation for the internal energy, reflecting that the
dissipation from shear viscosity is transformed into internal heat energy. In con-
trast, the dissipation from the bulk viscosity represents another form of internal
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energy not accounted for as heat energy, acting only as a safety feature in the
sense that its contribution to the energy balance in general will be small, while
that from the shear viscosity in general will be substantial reflecting shock/tur-
bulent dissipation.

Below wewill consider instead regularization by EG2with the advantage that
the EG2 solution is computed and thus is available to inspection, while ûν,µ is not.
We shall see that EG2 regularization can be interpreted as a (mesh-dependent)
combination of bulk and shear viscosity and thus (38.3) can be viewed as an
analytical model of EG2 open to simple form of analysis in the form of energy
estimates.

As indicated, the existence of a pointwise solution û = ûν,µ to the regularized
equations (38.3) is an open problem of analytical mathematics, although with
suitable additional regularization it could be possible to settle (?). Fortunately,
we can leave this problem aside, since EG2 solutions will be shown to exist a
posteriori by computation. We thus formally assume that (38.3) admits a point-
wise solution, and derive basic energy estimates which will be paralleled below
for EG2. We thus use the regularized problem (38.3) to illustrate basic features
of EG2, including the 2nd Law.

We shall prove now that a regularized solution û is an approximate solution
of the Euler equations in the sense that Rρ(û) = 0 and Re(û) ≥ 0 pointwise, Rm(û)
is weakly small in the sense that

‖Rm(û)‖−1 ≤
√
ν√
µ

+
√
µ << 1, (38.4)

where ‖ · ‖−1 denotes the L2(I;H
−1(Ω))-norm, and the following 2nd Law holds:

K̇ ≤ W −D, Ė = −W +D, (38.5)

where

K =

∫

Ω

k dx, E =

∫

Ω

e dx, W =

∫

Ω

p∇ · u dx, D =

∫

Ω

ν|∇u|2 dx.

Choosing ν << µ we can assure that ‖Rm(ûν,µ)‖−1 is small. We can view the 2nd
Law as a compensation for the fact that the momentum equation is only satisfied
in a weak sense, and the equation for internal energy with inequality.

The 2nd Law (38.5) states an irreversible transfer of kinetic energy to heat
energy in the presence of shocks/turbulence with D > 0, which is the generic
case. On the other hand, the sign of W is variable and thus the corresponding
energy transfer may go in either direction.

The basic technical step is to multiply the momentum equation by u, and use

the mass balance equation in the form |u|2

2
(ρ̇+∇ · (ρu)) = 0, to get

k̇ +∇ · (ku) + p∇ · u−∇(µp∇ · u) · u−∇ · (ν∇u) · u = 0. (38.6)
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By integration in space it follows that K̇ ≤ W − D, and similarly it follows that
Ė = −W + D from the equation for e, which proves the 2nd Law. Adding next
(38.6) to the equation for the internal energy e and integrating in space, gives

K̇ + Ė +

∫

Ω

µp(∇ · u)2 dx = 0,

and thus after integration in time

K(1) + E(1) +

∫

Q

µp(∇ · u)2 dxdt = K(0) + E(0). (38.7)

We now need to show that E(1) ≥ 0 (or more generally that E(t) > 0 for t ∈ I),
and to this end we rewrite the equation for the internal energy as follows:

Due+ γe∇ · u = ν|∇u|2,

where Due = ė+ u · ∇e is the material derivative of e following the fluid particles
with velocity u. Assuming that e(x, 0) > 0 for x ∈ Ω, it follows that e(x, 1) > 0 for
x ∈ Ω, and thus E(1) > 0. Assuming K(0) + E(0) = 1 the energy estimate (38.7)
thus shows that ∫

Q

µp(∇ · u)2 dxdt ≤ 1, (38.8)

and also that E(t) ≤ 1 for t ∈ I. Next, integrating (38.6) in space and time gives,
assuming for simplicity that K(0) = 0,

K(1) +

∫

Q

ν(∆u)2dxdt =

∫

Q

p∇ · udxdt−
∫

Q

µp(∇ · u)2dxdt ≤ 1

µ

∫

Q

pdxdt ≤ 1

µ
,

where we used that
∫
Q
pdxdt = (γ − 1)

∫
Q
edxdt ≤

∫
I
E(t)dt ≤ 1. It follows that

∫

Q

ν|∇u|2dxdt ≤ 1

µ
. (38.9)

By standard estimation (assuming that p is bounded), it follows from (38.8) and
(38.9) that

‖Rm(û)‖−1 ≤ C(
√
µ+

√
ν√
µ

),

with C a constant of moderate size, which completes the proof. As indicated,
‖Rm(û)‖−1 is estimated by computation, as shown below. The role of the analysis
is thus to rationalize computational experience, not to replace it.
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38.9 Compression and Expansion

The 2nd Law (38.5) states that there is a transfer of kinetic energy to heat energy
if W < 0, that is under compression with ∇ · u < 0, and a transfer from heat to
kinetic energy if W > 0, that is under expansion with ∇ · u > 0. Returning to
Joule’s experiment, we see by the 2nd Law that contraction back to the original
volume from the final rest state in the double volume, is impossible, because the
only way the gas can be set into motion is by expansion. To see this no reference
to entropy is needed.

38.10 A 2nd Law without Entropy

We note that the 2nd Law (38.5) is expressed in terms of the physical quanti-
ties of kinetic energy K, heat energy E, work W , and dissipation D and does
not involve any concept of entropy. This relieves us from the task of finding a
physical significance of entropy and justification of a classical 2nd Law stating
that entropy cannot decrease. We thus circumvent the main difficulty of clas-
sical thermodynamics based on statistical mechanics, while we reach the same
goal as statistical mechanics of explaining irreversibility in formally reversible
Newtonian mechanics.

We thus resolve Loschmidt’s paradox (?) asking how irreversibility can oc-
cur in a formally reversible system, which Boltzmann attempted to solve. But
Loschmidt pointed out that Boltzmann’s equations are not formally reversible,
because of the assumption of molecular chaos that velocities are independent
before collision, and thus Boltzmann effectively assumes what is to be proved.
Boltzmann and Loschmidt’s met in heated debates without conclusion, but after
Boltzmann’s tragic death followed by the experimental verification of the molec-
ular nature of gases, Loschmidt’s paradox evaporated as if it had been resolved,
while it had not. Postulating molecular chaos still amounts to assume what is to
be proved.

38.11 Comparison with Classical Thermodynam-

ics

Classical thermodynamics is based on the relation

Tds = dT + pdv, (38.10)

where ds represents change of entropy s per unit mass, dv change of volume and
dT denotes the change of temperature T per unit mass, combined with a 2nd Law
in the form ds ≥ 0. On the other hand, the new 2nd Law takes the symbolic form

dT + pdv ≥ 0, (38.11)
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effectively expressing that Tds ≥ 0, which is the same as ds ≥ 0 since T > 0.
In symbolic form the new 2nd Law thus expresses the same as the classical 2nd
Law, without referring to entropy.

Integrating the classical 2nd Law (38.10) for a perfect gas with p = (γ − 1)ρT
and dv = d(1

ρ
) = −dρ

ρ2
, we get

ds =
dT

T
+
p

T
d(

1

ρ
) =

dT

T
+ (1− γ)dρ

ρ
,

and we conclude that with e = ρT ,

s = log(Tρ1−γ) = log(
e

ργ
) = log(e)− γ log(ρ) (38.12)

up to a constant. Thus, the entropy s = s(ρ, e) for a perfect gas is a function of
the physical quantities ρ and e = ρT , thus a state function, suggesting that s
might have a physical significance, because ρ and e have. We thus may decide
to introduce a quantity s defined this way, but the basic questions remains: (i)
What is the physical significance of s? (ii) Why is ds ≥ 0? What is the entropy
non-perfect gas in which case s may not be a state function?

To further exhibit the connection between the classical and new forms of the
2nd Law, we observe that by the chain rule,

ρDus =
ρ

e
Due− γDuρ =

1

T
(Due+ γρT∇ · u) =

1

T
(Due+ e∇ · u+ (γ − 1)ρT∇ · u)

since by mass conservation Duρ = −ρ∇ · u. It follows that the entropy S = ρs
satisfies

Ṡ +∇ · (Su) = ρDus =
1

T
(ė+∇ · (eu) + p∇ · u) =

1

T
Re(û). (38.13)

A solution û of the regularized Euler equations (38.3) thus satisfies

Ṡ +∇ · (Su) =
ν

T
|∇u|2 ≥ 0 in Q, (38.14)

where S = ρ log(eρ−γ). In particular, in the case of the Joule experiment with T
the same in the initial and final states, we have s = γ log(V ) showing an increase
of entropy in the final state with larger volume.

We sum up by noting that the classical and new form of the second law ef-
fectively express the same inequality ds ≥ 0 or Tds ≥ 0. The new 2nd law is
expressed in terms of the fundamental concepts of of kinetic energy, heat energy
and work without resort to any form of entropy and statistical mechanics with
all its complications. Of course, the new 2nd Law readily extends to the case of a
general gas.
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38.12 EG2

EG2 in cG(1)cG(1)-form for the Euler equations (38.2), reads: Find û = (ρ,m, ǫ) ∈
Vh such that for all (ρ̄, ū, ǭ) ∈Wh

((Rρ(û), ρ̄)) + ((hu · ∇ρ, u · ∇ρ̄)) = 0,

((Rm(û), ū)) + ((hu · ∇m, u · ∇ū)) + (νsc∇u,∇ū)) = 0,

((Rǫ(û), ē)) + ((hu · ∇ǫ, u · ∇ǭ)) = 0,

(38.15)

where Vh is a trial space of continuous piecewise linear functions on a space-time
mesh of size h satisfying the initial condition û(0) = û0 with u ∈ Vh defined by
nodal interpolation of m

ρ
, and Wh is a corresponding test space of function which

are continuous piecewise linear in space and piecewise constant in time, all func-
tions satisfying the boundary condition u ·n = 0 at the nodes on Γ. Further, ((·, ·))
denotes relevant L2(Q) scalar products, and νsc = h2|Rm(û)| is a residual depen-
dent shock-capturing viscosity, see (Nazarov, 2009). We here use the conserva-
tion equation for the total energy ǫ rather than for the internal energy e.

EG2 combines a weak satisfaction of the Euler equations with a weighted
least squares control of the residual R(û) ≡ (Rρ(û), Rm(û), Re(û)) and thus rep-
resents a midway between the Scylla of weak solution and Charybdis of least
squares strong solution.

38.13 The 2nd Law for EG2

Subtracting the mass equation with ρ̄ a nodal interpolant of |u|2

2
from the mo-

mentum equation with ū = u and using the heat energy equation with ē = 1, we
obtain the following 2nd Law for EG2 (up to a

√
h-correction controlled by the

shock capturing viscosity (?):

K̇ = W −Dh, Ė = −W +Dh, (38.16)

where
Dh = ((hρu · ∇u, u · ∇u)). (38.17)

For solutions with turbulence/shocks, Dh > 0 expressing an irreversible transfer
of kinetic energy into heat energy, just as above for regularized solutions. We
note that in EG2 only the momentum equation is subject to viscous regulariza-
tion, sinceDh expresses a penalty on u ·∇u appearing in the momentum residual.

38.14 The Stabilization in EG2

The stabilization in EG2 is expressed by the dissipative term Dh which can be
viewed as a weighted least squares control of the term ρu · ∇u in the momentum
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residual. The rationale is that least squares control of a part of a residual which
is large, effectively may give control of the entire residual, and thus EG2 gives
a least squares control of the momentum residual. But the EG2 stabilization
does not correspond to an ad hoc viscosity, as in classical regularization, but to
a form of penalty arising because Euler residuals of turbulent/shock solutions
are not pointwise small. In particular the dissipative mechanism of EG2 does
not correspond to a simple shear viscosity, but rather to a form of “streamline
viscosity” preventing fluid particles from colliding while allowing strong shear.

38.15 EG2 Implementation in FEniCS

The FEniCS implementation of EG2 is done in Unicorn (?) with source code
displayed in Figs. Fig 38.8 and 38.9.
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cell = "tetrahedron"
scalar = FiniteElement ( "Lagrange" , cell , 1)
vector = VectorElement ( "Lagrange" , cell , 1)
constant_scalar = FiniteElement ( "Discontinuous Lagrange" , cell , 0)
constant_vector = VectorElement ( "Discontinuous Lagrange" , cell , 0)

TH = MixedElement ( [scalar ,vector ,scalar ] )
d = scalar .cell_dimension ( ) # Dimension of domain

(v1 , v2 , v3 ) = TestFunctions(TH ) # te st basis function
(rho , m , e ) = TrialFunctions(TH ) # t r i a l basis function
(rho0 , m0 , e0 ) = Functions (TH ) # so lut ion from previous time step

P = Function (scalar ) # pressure
U = Function (constant_vector) # v e l o c i t y to be computed in the

#so lver

delta = Function (constant_scalar ) # s tab i l i z a t i on parameter
nu_rho = Function (constant_scalar ) # shock capturing parameter f o r rho
nu_m = Function (constant_vector ) # shock capturing parameter f o r m
nu_e = Function (constant_scalar ) # shock capturing parameter f o r e

u = Function (vector ) # v e l o c i t y to be computed in the
#so lver

k = Constant (cell ) # time step

#
# Galerkin d i s c r e t i za t i on of b i l inear form for the density
a1_a = v1∗rho∗dx − k∗0.5∗dot (grad (v1 ) ,U )∗rho∗dx

# Stab i l i zat ion of b i l inear form for the density
S1_a = k∗0.5∗delta∗dot (grad (v1 ) ,U )∗dot (U , grad (rho ) ) ∗dx + \

k∗0.5∗nu_rho∗dot (grad (v1 ) ,grad (rho ) ) ∗dx

# Galerkin d i s c r e t i za t i on of l inear form for the density
a1_L = v1∗rho0∗dx + k∗0.5∗dot (grad (v1 ) ,U )∗rho0∗dx

# Stab i l i zat ion of l inear form for the density
S1_L = − k∗0.5∗delta∗dot (grad (v1 ) ,U )∗dot (U , grad (rho0 ) ) ∗dx − \

k∗0.5∗nu_rho∗dot (grad (v1 ) ,grad (rho0 ) ) ∗dx

Figure 38.8: Source code for the choice of the function spaces and functions,
bilinear and linear forms for the conservation of mass.
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#
a2_a = 0
S2_a = 0
a2_L = 0
S2_L = 0

for i in range ( 0 , d ) :
# Galerkin d i s c r e t i za t i on of b i l inear form for the momentum m i
a2_a += v2 [i ]∗m [i ]∗dx − k∗0.5∗dot (grad (v2 [i ] ) ,U )∗m [i ]∗dx

# Stab i l i zat ion of b i l inear form for the momentum
S2_a += k∗0.5∗delta∗dot (grad (v2 [i ] ) ,U )∗dot (U , grad (m [i ] ) ) ∗dx + \

k∗0.5∗nu_m [i ]∗dot (grad (v2 [i ] ) ,grad (m [i ] ) ) ∗dx

# Galerkin d i s c r e t i za t i on of l inear form for the momentum
a2_L += v2 [i ]∗m0 [i ]∗dx + k∗0.5∗dot (grad (v2 [i ] ) ,U )∗m0 [i ]∗dx

# Stab i l i zat ion of l inear form for the momentum
S2_L += −k∗0.5∗delta∗dot (grad (v2 [i ] ) ,U )∗dot (U , grad (m0 [i ] ) ) ∗ dx − \

k∗0.5∗nu_m [i ]∗dot (grad (v2 [i ] ) ,grad (m0 [i ] ) ) ∗dx

#
# Galerkin d i s c r e t i za t i on of b i l inear form for the energy
a3_a = v3∗e∗dx − k∗0.5∗dot (grad (v3 ) ,U )∗e∗dx

# Stab i l i zat ion of b i l inear form
S3_a = k∗0.5∗delta∗dot (grad (v3 ) ,U )∗dot (U , grad (e ) ) ∗dx + \

k∗0.5∗nu_e∗dot (grad (v3 ) ,grad (e ) ) ∗dx

# Galerkin d i s c r e t i za t i on of l inear form for the density
a3_L = v3∗e0∗dx + k∗0.5∗dot (grad (v3 ) ,U )∗e0∗dx + k∗dot (grad (v3 ) ,U )∗P∗dx

# Stab i l i zat ion of l inear form
S3_L = − k∗0.5∗delta∗dot (grad (v3 ) ,U )∗dot (U ,grad (e0 ) ) ∗dx − \

k∗0.5∗nu_e∗dot (grad (v3 ) ,grad (e0 ) ) ∗dx

#
# Weak form to the Euler equations :
a = a1_a + S1_a + a2_a + S2_a + a3_a + S3_a
L = a1_L + S1_L + a2_L + S2_L + a3_L + S3_L

Figure 38.9: Source code for bilinear and linear forms for the conservation of
momentum and energy.

508



CHAPTER 39

Automated Testing of Saddle Point Stability

Conditions

By Marie E. Rognes

Chapter ref: [rognes]

39.1 Introduction

Over the last five decades, there has been a substantial body of research on the
theory of mixed finite element methods. Mixed finite element methods are finite
element methods where two or more finite element spaces are used to approxi-
mate separate variables. These methods have often been applied to saddle point
problems arising from constrained minimization problems. Examples include
the Stokes equations, the equations of Darcy flow (or the mixed Laplacian) or
the Hellinger-Reissner formulation for linear elasticity. For equations involving
several variables, and where elimination of any of the variables is not a viable
option, the usefulness of suchmethods is evident. For other equations, discretiza-
tions based on the introduction of additional variables may have improved prop-
erties.

For any discretization of a variational problem, stability is crucial to en-
sure well-posedness. For coercive problems, the discrete stability may often
be easily ensured. For mixed discretizations of saddle point problems on the
other hand, stability may be a nontrivial affair. Indeed, the mixed finite ele-
ment spaces must usually be carefully chosen. The stability theory for mixed
finite element discretizations originates from the work of Babuška (Babuška,
1972/73) and Brezzi (Brezzi, 1974) in the early 1970’s. Brezzi established two
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conditions ensuring the stability of a mixed finite element discretization of a
canonical saddle point problem. Since then, many papers (and books) have been
devoted to the identification and construction of specific stable mixed finite el-
ements for specific saddle point problems (Arnold et al., 2006c, Brezzi and Falk,
1991, Brezzi and Fortin, 1991, Brezzi et al., 1985c, Raviart and Thomas, 1977,
Taylor and Hood, 1973). Some of the analytical results are well known, such as
the stability of the Taylor-Hood elements for the Stokes equations (Brezzi and Falk,
1991, Taylor and Hood, 1973). Other results, such as the reduced stability of the
Pc

1(V)×Pd
0 elements on criss-cross triangulations for themixed Laplacian (Boffi et al.,

2000), may be less so.

The goal of this note is to demonstrate that the process of numerically ex-
amining the stability of any given discretization can be automated. For a given
discretization, the Brezzi constants are computable through a set of eigenvalue
problems. These eigenvalue problems have previously been used to numerically
study the stability of certain discretizations (Arnold and Rognes, 2009, Chapelle and Bathe,
1993, Qin, 1994). However, automation of this task has not been previously con-
sidered in the literature. A secondary aim is to show that the automation process
is fairly easy given a software framework supporting the following components:
a suitable range of different finite element spaces, easy support of bilinear forms
defining equations and inner products, and finally, a linear algebra backend with
support for generalized, possibly singular, eigenvalue problems. The components
of the FEniCS project (FEniCS) provide these tools.

An automated stability tester provides several advantages. First, the notion
of saddle point stability goes from something rather abstract to something rather
hands-on. Moreover, even a novice user can easily get an overview of the avail-
able stable (or unstable) finite elements for a given equation. For research pur-
poses, it provides a tool for the careful examination of discretizations that have
stability properties depending on the tessellation structure. In particular, this
framework has been used to study the stability properties of Lagrange elements
for the mixed Laplacian (Arnold and Rognes, 2009).

This paper is organized as follows. For motivational purposes, a simple exam-
ple illustrating the importance of discrete stability is presented in Section 39.2.
The subsequent two sections summarize the discrete stability theory of Babuška
and Brezzi and how the stability constants involved can be computed through a
set of eigenvalue problems. In Section 39.5, a strategy for the automation of nu-
merical stability testing is presented. In particular, a light-weight python mod-
ule, ASCoT (Rognes, 2009), constructed on top of PyDOLFIN (Logg and Wells,
2009), is described. This module is freely available as a FEniCS Application at
https://launchpad.net/ascot . The use and capabilities of this framework
are demonstrated when applied to two classical examples: the mixed Laplacian
and the Stokes equations in Section 39.6. Finally, Section 39.7 provides some
concluding remarks and a discussion of limitations.
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39.2 Why does discrete stability matter?

The following simple example illustrates that discrete stability is indeed crucial
for the approximation of saddle point problems. Let Ω = (0, 1)2 be the unit square
in R

2, and take f = −2π2 sin(πx) sin(πy). Consider the following mixed formula-
tion of the Poisson problem with homogeneous Dirichlet boundary conditions: for
the given data f ∈ L2(Ω), find σ ∈ H(div,Ω), and u ∈ L2(Ω) such that

〈σ, τ〉 + 〈div τ, u〉 = 0 ∀ τ ∈ H(div,Ω),

〈div σ, v〉 = 〈f, v〉 ∀ v ∈ L2(Ω).
(39.1)

This problem is well-posed: such solutions exist, are unique and depend con-
tinuously on the given data. In particular, u = sin(πx) sin(πy) and σ = grad p
solve (39.1).

Next, let Th be a uniform triangulation of the unit square that is formed by
dividing the domain into n × n sub-squares (with h the maximal triangle diam-
eter) and dividing each square by the diagonal with positive slope. Given a pair
of finite element spaces Σh × Vh defined relative to this tessellation, the equa-
tions (39.1) can be discretized in the standard manner: find σh ∈ Σh and uh ∈ Vh
such that

〈σh, τ〉+ 〈div τ, uh〉 = 0 ∀ τ ∈ Σh,

〈div σh, v〉 = 〈f, v〉 ∀ v ∈ Vh.
(39.2)

The final question becomes what finite element spaces Σh and Vh to choose. As
we shall see, the well-posedness of the discrete problem will heavily rely on the
choice of spaces.

First, let us consider a naive choice; namely, taking the space of continuous
piecewise linear vector fields defined relative to Th for the space Σh and the space
of continuous piecewise linears for Vh. This choice turns out to be a rather bad
one: the finite element matrix associated with this pair will be singular! Hence,
there does not exist a discrete solution (σh, uh) with this choice of Σh × Vh.

As a second attempt, we keep the space of continuous piecewise linear vector
fields for Σh, but replace the previous space Vh by the space of piecewise constant
functions. This pair might appear to be a more attractive alternative: there does
indeed exist a discrete solution (σh, uh). However, the discrete solution is not
at all satisfactory. In particular, the approximation of the scalar variable uh is
highly oscillatory, cf. Figure 39.1(a), and hence it is a poor approximation to the
correct solution.

The above two alternatives give unsatisfactory results because the discretiza-
tions defined by the element spaces are both unstable. A stable low order element
pairing is the combination of the lowest order Raviart-Thomas elements and the
space of piecewise constants (Raviart and Thomas, 1977). The corresponding uh
approximation is plotted in Figure 39.1(b). This approximation looks qualita-
tively correct.
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(a) Bad approximation (b) Good approximation

Figure 39.1: The scalar variable approximation uh for two choices of mixed finite
element spaces for the mixed Laplacian. The data are as defined immediately
above (39.1). The element spaces are Pc

1(V)×Pd
0 in 39.1(a) and RT1×Pd

0 in 39.1(b).
(The scales are less relevant for the current purpose and have therefore been
omitted.)

The reason for the instabilities of the first two choices, and the stability of the
third choice, may not be immediately obvious. The goal of this note is to construct
a framework that automates this stability identification procedure, by character-
izing the stability properties of a finite element discretization automatically and
accurately. We will return to this example in Section 39.6 where we give a more
careful characterization of the stability properties of the above sample elements.

39.3 Discrete stability

In order to automatically characterize the stability of a discretization, we need
a precise definition of discrete stability and preferably conditions for such to
hold. In this section, the Babuška and Brezzi stability conditions are described
and motivated in the general abstract setting. The material presented here
is largely taken from the classical references (Babuška, 1972/73, Brezzi, 1974,
Brezzi and Fortin, 1991).

For a Hilbert space W , we denote the norm on W by ‖ · ‖W and the inner
product by 〈·, ·〉W . Assume that c is a symmetric, bilinear form on W and that
l is a continuous, linear form on W . We will consider the following canonical
variational problem: find u ∈W such that

c(v, u) = l(v) ∀ v ∈W. (39.3)

Assume that c is continuous; that is, there exists a positive constant C such that

|c(v, u)| ≤ C ‖v‖W‖u‖W ∀ u, v ∈W.
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If additionally there exists a positive constant γ such that

c(u, u) ≥ γ‖u‖2W ,

the form c is by definition coercive. This is indeed the case for many variational
formulations of partial differential equations arising from standard minimiza-
tion problems. On the other hand, for many constrained minimization problems,
such as those giving rise to saddle point problems, the corresponding c is not
coercive. Fortunately, the coercivity condition is sufficient, but not necessary. A
weaker condition suffices: there exists a positive constant γ such that

0 < γ = inf
06=u∈W

sup
06=v∈W

|c(v, u)|
‖v‖W‖u‖W

. (39.4)

If the continuous c satisfies (39.4), there exists a unique u ∈ W solving (39.3) (Babuška,
1972/73).

Now, we turn to consider discretizations of (39.3). Let Wh ⊂ W be a finite
dimensional subspace, and consider the discrete problem: find uh ∈Wh such that

c(v, uh) = l(v) ∀ v ∈Wh. (39.5)

For the discrete system to be well-posed, analogous conditions as for the continu-
ous case must be satisfied. Note that c restricted toWh is continuous a forteriori.
However, the discrete analogue of (39.4) does not trivially hold. In order to guar-
antee that (39.5) has a unique solution, we must also have that there exists a
positive constant γh such that

0 < γ0 ≤ γh = inf
06=u∈Wh

sup
06=v∈Wh

|c(v, u)|
‖v‖W‖u‖W

. (39.6)

Moreover, in order to have uniform behaviour in the limit as h→ 0, we must have
that γh ≥ γ0 > 0 for all h > 0; that is, that γh is bounded from below independently
of h (Babuška, 1972/73).

The condition (39.6) has a simple interpretation in the linear algebra perspec-
tive. Taking a basis {φi}ni=1 for Wh, in combination with the ansatz uh = ujφj , we
obtain the standard matrix formulation of (39.5):

Cijuj = l(φi) i = 1, . . . , n,

where Cij = c(φi, φj). The Einstein notation, in which summation over repeated
indices is implicitly implied, has been used here. This system will have a unique
solution if the matrix C is non-singular, or equivalently, if the eigenvalues of
C are non-zero. In the special case where c is coercive, all eigenvalues will in
fact be positive. Moreover, we must ensure that the generalized eigenvalues
(generalized with respect to the inner product on W ) do not approach zero as
h→ 0. This is precisely what is implied by the condition (39.6).
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39.3.1 Stability conditions for saddle point problems

We now turn to consider the special case of abstract saddle point problems. In
this case, the stability condition (39.6) can be rephrased in an alternative, but
equivalent form.

Assume that V and Q are Hilbert spaces, that a is a continuous, bilinear form
on V ×V , that b is a continuous, bilinear form on V ×Q, and that l is a continuous
linear form on V × Q. A saddle point problem has the following canonical form:
find u ∈ V and p ∈ Q such that

a(v, u) + b(v, p) + b(u, q) = l((v, q)) ∀ v ∈ V, q ∈ Q. (39.7)

The system (39.7) is clearly a special case of (39.3) with the following identifi-
cations: let W = V × Q, endow the product space with the norm ‖(v, q)‖W =
‖v‖V + ‖q‖Q, and label

c((v, q), (u, p)) = a(v, u) + b(v, p) + b(u, p).

Assuming that the condition (39.4) is satisfied, the above system admits a unique
solution (u, p) ∈ V ×Q.

As in the general case, we aim to discrete (39.7), but now using a pair of
conforming finite element spaces Vh and Qh. LettingWh = Vh×Qh, we obtain the
following special form of (39.5): find uh ∈ Vh and ph ∈ Qh satisfying:

a(v, uh) + b(v, ph) + b(uh, q) = l((v, q)) ∀ v ∈ Vh, q ∈ Qh. (39.8)

Again, the well-posedness of the discrete problem follows from the general theory.
Applying the definition of (39.6) to (39.7), we define the Babuška constant γh:

γh = inf
06=(u,p)∈Wh

sup
06=(v,q)∈Wh

|a(v, u) + b(v, p) + b(u, q)|
(‖u‖V + ‖p‖Q)(‖v‖V + ‖q‖Q)

(39.9)

In particular, the discrete problem is well-posed if the Babuška stability condi-
tion holds; namely, if γh ≥ γ0 > 0 for any h > 0.

The previous deliberations simply summarized the general theory applied to
the particular variational form defined by (39.7). However, the special structure
of (39.7) also offers an alternative characterization. The single Babuška stability
condition can be split into a pair of stability conditions as follows (Brezzi, 1974).
Define

αh = inf
06=u∈Zh

sup
06=v∈Zh

a(u, v)

‖u‖V ‖v‖V
, (39.10)

βh = inf
06=q∈Qh

sup
06=v∈Vh

b(v, q)

‖v‖V ‖q‖Q
, (39.11)
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where

Zh = {v ∈ Vh | b(v, q) = 0 ∀ q ∈ Qh}. (39.12)

We shall refer to αh as the Brezzi coercivity constant and βh as the Brezzi inf-
sup constant. The Brezzi stability conditions state that these must stay bounded
above zero for all h > 0. The Brezzi conditions are indeed equivalent to the
Babuška condition (Brezzi, 1974). However, for a specific saddle point problem
and a given pair of function spaces, it might be easier to verify the two Brezzi
conditions than the single Babuška condition. In summary, these conditions en-
able a concise characterization of the stability of discretizations of saddle point
problems.

Definition 39.1 A family of finite element discretizations {Vh ×Qh}h is stable in
V × Q if the Brezzi coercivity and inf-sup constants {αh}h and {βh}h (or equiva-

lently the Babuška inf-sup constants {γh}h) are bounded from below by a positive

constant independent of h.

Throughout this note, the term a family of discretizations refers to a collection of
finite element discretizations parametrized over a family of meshes.

There are families of discretizations that are not stable in the sense defined
above, but possess a certain reduced stability. For a pair Vh × Qh, we can define
the space of spurious modes Nh ⊆ Qh:

Nh = {q ∈ Qh | b(v, q) = 0 ∀ v ∈ Vh}.

It can be shown that the Brezzi inf-sup constant is positive if and only if there
are no nontrivial spurious modes; that is, if Nh = {0} (Qin, 1994). On the other
hand, if Nh is nontrivial, one may, loosely speaking, think of the space Qh as a bit
too large. In that case, it may be natural to replace Qh by the reduced space N⊥

h ,
the orthogonal complement of Nh in Qh. This idea motivates the definition of the
reduced Brezzi inf-sup constant, relating to the stability of Vh ×N⊥

h :

β̃h = inf
06=q∈N⊥

h

sup
06=v∈Vh

b(v, q)

‖v‖V ‖q‖Q
, (39.13)

and the definition of reduced stable below. By definition, β̃h 6= 0. The identi-
fication of reduced stable discretizations can be interesting from a theoretical
viewpoint. Further, such could be used for practical purposes after a filtration of
the spurious modes.

Definition 39.2 A family of discretizations {Vh×Qh}h is reduced stable in V ×Q
if the Brezzi coercivity constants {αh}h and the reduced Brezzi inf-sup constants

{β̃h}h are bounded from below by a positive constant independent of h.

515



Saddle point stability

39.4 Eigenvalue problems associatedwith saddle

point stability

For a given variational problem, the Brezzi conditions provide a method to in-
spect the stability of a family of conforming discretizations, defined relative to a
family of meshes. However, it seems hardly feasible to automatically verify these
conditions in their current form. Fortunately and as we shall see in this section,
there is an alternative characterization of the Babuška and Brezzi constants:
each stability constant will be related to the smallest (in modulus) eigenvalue of
an certain eigenvalue problem. The automatic testing of the stability of a given
discretization family can therefore be based on the computation and inspection
of certain eigenvalues.

We begin by considering the Babuška inf-sup constant for the element pair
Vh × Qh. It can be easily seen that the Babuška inf-sup constant γh = |λmin|
where λmin is the smallest in modulus eigenvalue of the generalized eigenvalue
problem (Arnold and Rognes, 2009, Malkus, 1981): find 0 6= (uh, ph) ∈ Vh×Qh and
λ ∈ R such that

a(v, uh) + b(v, ph) + b(uh, q) = λ (〈v, uh〉V + 〈q, ph〉Q) ∀ v ∈ V, q ∈ Q. (39.14)

By the same arguments, the Brezzi coercivity constant αh is the smallest in
modulus eigenvalue of the following generalized eigenvalue problem: find 0 6=
uh ∈ Zh and λ ∈ R satisfying

a(v, uh) = λ〈v, uh〉V (39.15)

For the spaces Vh and Qh, a basis is normally known. For Zh however, this is
usually not the case. (If it had been, the space Zh might have been better to
compute with in the first place.) Therefore, the eigenvalue problem (39.15) is not
that easily constructed in practice.

Instead, one may consider an alternative generalized eigenvalue problem:
find 0 6= (uh, ph) ∈ Vh ×Qh and λ ∈ R satisfying

a(v, uh) + b(v, ph) + b(uh, q) = λ〈uh, v〉V (39.16)

It can be shown that the smallest in modulus eigenvalue of the following eigen-
value problem and the smallest in modulus eigenvalue of (39.15) agree (Arnold and Rognes,
2009). Therefore αh = |λmin| when λmin is the smallest in modulus eigenvalue
of (39.16). The eigenvalue problem (39.16) involves the spaces Vh and Qh and is
therefore more tractable. One word of caution however: if there exists a q ∈ Qh

such that b(v, q) = 0 for all v ∈ Vh, then any λ is an eigenvalue of (39.16). Thus,
the problem (39.16) is ill-posed if such q exists. The case where such q exists is
precisely the case where the Brezzi inf-sup constant is zero.
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Finally, the Brezzi inf-sup constant βh is the square-root of the smallest eigen-
value λmin of the following eigenvalue problem (Malkus, 1981, Qin, 1994): find
0 6= (uh, ph) ∈ Vh ×Qh and λ ∈ R satisfying

〈v, uh〉V + b(v, ph) + b(uh, q) = −λ〈q, ph〉Q (39.17)

The eigenvalues of (39.17) are all non-negative. Any eigenvector associated with
a zero eigenvalue corresponds to a spurious mode. Further, the square-root of the
smallest non-zero eigenvalue will be the reduced Brezzi inf-sup constant (Qin,
1994).

39.5 Automating the stability testing

The mathematical framework is now in place. For a given variational formula-
tion, given inner product(s), and a family of function spaces, the eigenvalue prob-
lem (39.14) or the problems (39.16) and (39.17) can be used to numerically check
stability. The eigenvalue problem (39.17) applied to the Stokes equations was
used in this context by Qin (Qin, 1994) and Chapelle and Bathe (Chapelle and Bathe,
1993). A fully automated approach has not been previously available though.
This is perhaps not so strange, as an automated approach would be rather chal-
lenging to implement within many finite element libraries. However, PyDOLFIN
provides ample and suitable tools for this task. In particular, the UFL form lan-
guage, the collection of finite element spaces supported by FIAT/FFC, and the
available SLEPc eigensolvers provide the required functionality.

The definition of an abstract saddle point problem (39.7) and the definition
of stability of discretizations of such, Definition 39.1, provide a natural starting
point. Based on these definitions, the testing of stability relies on the following
input.

• The bilinear forms a and b defining a variational saddle point problem.

• The function spaces V and Q through the inner products 〈·, ·〉V and 〈·, ·〉Q.

• A family of finite element function spaces {Wh}h = {Vh×Qh}h parametrized
over the mesh size h.

We pause to remark that since (39.7) is a special case of the canonical form (39.3),
one may consider the Babuška constant only. However, for the analysis of saddle
point problems, the separate behaviour of the individual Brezzi constants may
be interesting. For this reason, we focus on the Brezzi stability conditions and
the decomposed variational form here.

The following strategy presents itself naturally in order to attempt to char-
acterize the stability of a discretization family. With the above information, one
can proceed in the following steps
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1. For each function space Wh, construct the eigenvalue problems associated
with the Brezzi conditions

2. Solve the eigenvalue problems and identify the appropriate eigenvalues cor-
responding to the Brezzi constants.

3. Based on the behaviour of the Brezzi constants with respect to h, the dis-
cretization family should be classified, cf. Definitions 39.1 and 39.2, as

(a) Stable

(b) Unstable

(c) Unstable, but reduced stable

The above strategy is implemented in the automated stability condition tester
ASCoT (Rognes, 2009). ASCoT is a python module dependent on PyDOLFIN
compiled with SLEPc. It is designed to automatically evaluate the stability of
a discretization family, and in particular, the stability of mixed finite element
methods for saddle point problems. ASCoT can be imported as any python mod-
ule:

from ascot import *

The remainder of this section describes how the afore described strategy is imple-
mented in ASCoT. Emphasis is placed on the form of the input, the construction
and solving of the eigenvalue problems, and the classification of stability based
on the stability constants.

Before continuing however, it is necessary to point out a limitation of the
numerical testing. The mathematical definition of stability is indeed based on
taking the limit as h → 0. However, it is hardly feasible to examine an infinite
family of function spaces {Wh}h∈R+ numerically. In practice, one can only con-
sider a finite set of spaces {Whi

}i∈(0,...,N). Therefore, this strategy can only give
numerical evidence, which must be interpreted using appropriate heuristics.

39.5.1 Defining input

ASCoT relies on the variational form language defined by UFL and PyDOLFIN
for the specification of forms, inner products and function spaces. In order to
illustrate, we take the discrete mixed Laplacian introduced in (39.2) as an exam-
ple.

First and foremost, consider the specification of the forms a and b. Recall that
discrete saddle point stability is not a property relating to a single set of function
spaces, but rather a property relating to a family of function spaces. In the
typical PyDOLFIN approach, forms are specified in terms of basis functions on
a single function space. For our purposes, this seems like a less ideal approach.
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Instead, to be able to specify the forms independently of the function spaces, we
can take advantage of the python λ functionality. For the mixed Laplacian, the
forms a and b read a = a(v, u) = 〈v, u〉 and b = b(v, q) = 〈div v, q〉. These should be
specified as

# Define a and b forms:
a = lambda u, v: dot ( u, v) * dx
b = lambda v, q: div( v) * q* dx

The above format is advantageous as it separates the definition of the forms from
the function spaces. Hence, the user needs not specify basis functions on each of
the separate function spaces: ASCoT handles the initialization of the appropriate
basis functions.

Second, the inner products 〈·, ·〉V and 〈·, ·〉Q must be provided. The inner prod-
ucts are bilinear forms and can therefore be viewed as a special case of the
above. For the mixed Laplacian, the appropriate inner products are 〈u, v〉div =
〈v, u〉+ 〈div v, div u〉 and 〈p, q〉0 = 〈p, q〉. The corresponding code reads

# Define inner products:
Hdiv = lambda u, v: ( dot ( u, v) + div( u) * div( v)) * dx
L2 = lambda p, q: dot ( p, q) * dx

Third, the function spaces have to be specified. In particular, a list of function
spaces corresponding to a set of meshes should be defined. For the testing of
the mixed function space consisting of continuous piecewise linear vector fields
Pc

1(V), combined with continuous piecewise linears Pc
1, for a set of diagonal trian-

gulations of the unit square, one can do as follows:

# Construct a family of mixed function spaces
meshsizes = [ 2, 4, 6, 8, 10]
meshes = [ UnitSquare( n, n) for n in meshsizes]
W_hs = [ VectorFunctionSpace( mesh, "CG" , 1) + FunctionSpace( mesh, "CG" , 1)

for mesh in meshes]

Note that the reliability of the computed stability characterization increases with
the number of meshes and their refinement level.

The stability of the above can now be tested. The main entry point function
provided by ASCoT is test stability . This function takes three arguments: a
(list of) forms, a (list of) inner products and a list of function spaces:

result = test_stability(( a, b), ( Hdiv, L2), W_hs)

A StabilityResult is returned. The instructions carried out by this function
and the properties of the StabilityResult are described in the subsequent para-
graphs.
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39.5.2 Constructing and solving eigenvalue problems

For the testing of saddle point problems, specified by the two forms a and b,
it is assumed that the user wants to check the Brezzi conditions. In order to
test these conditions, the Brezzi constants; that is, the Brezzi coercivity and
Brezzi inf-sup constants, must be computed for each of the function spaces. AS-
CoT provides functionality for the computation of these constants: the functions
compute brezzi coercivity and compute brezzi infsup .

Let us take a closer look at the implementation of compute brezzi infsup :
The input consists of the form b, the inner products (m,n), and a function space
Wh. The aim is to construct the eigenvalue problem given by (39.17) and then
solve this problem efficiently. To accomplish this, the basis functions on the func-
tion space Wh are defined first. The left and right-hand sides of the eigenvalue
problems are specified through the forms defined by (39.17). These forms are sent
to an EigenProblem , and the resulting eigenvalues are then used to initialize an
InfSupConstant . The InfSupConstant class is a part of the characterization
machinery and will be discussed further in the next subsection.

def compute_brezzi_infsup( b, ( m, n), W_h) :

# Define forms for eigenproblem
( u, p) = TrialFunctions( W_h)
( v, q) = TestFunctions( W_h)
lhs = m( v, u) + b( v, p) + b( u, q)
rhs = - n( q, p)

# Compute eigenvalues
eigenvalues = EigenProblem( lhs, rhs). solve ()
return InfSupConstant( W_h. mesh(). hmax(), eigenvalues, sqrt )

The computation of the Brezzi coercivity constant takes a virtually identical
form, only differing in the definition of the left and right hand sides (lhs and
rhs). If only a single form c and a single inner productm is specified, the Babuška
condition is tested by similar constructs.

The EigenProblem class is a simple wrapper class for the DOLFIN SLEPcEigenSolver ,
taking either a single form, corresponding to a standard eigenvalue problem, or
two forms, corresponding to a generalized eigenvalue problem. The eigenvalue
problems generated by the Babuška and Brezzi conditions are all generalized
eigenvalue problems. For both the Brezzi conditions, the right-hand side matrix
will always be singular. The left-hand side matrix may or may not be singular
depending on the discretization. For the Babuška conditions, the right-hand side
matrix should never be singular, however the left-hand side matrix may be.

SLEPc provides a collection of eigenproblem solvers that can handle general-
ized, possibly singular eigenvalue problems (Hernandez et al., 2005, 2009). The
type of eigensolver can be specified through the DOLFIN parameter interface.
For our purposes, two solver types are particularly relevant: the ’lapack’ and the
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’krylov-schur’ solvers. The ’lapack’ solver is a direct method. This solver is very
robust. However, it computes all of the eigenvalues, and it is thus only suited
for relatively small problems. In contrast, the krylov-schur method offers the
possibility of only computing a given number of eigenvalues. Since the Brezzi
constants are related to the eigenvalue closest to zero, it seems meaningful to
only compute the eigenvalue of smallest magnitude. This solver is therefore set
as the default solver type in ASCoT. Unfortunately, the krylov-schur solver is less
robust for singular problems: it may fail to converge. A partial remedy may be
to apply a shift-and-invert spectral transform with an appropriate shift factor to
the eigenvalue problem. For more details on spectral transformations in SLEPc
cf. (Hernandez et al., 2009). ASCoT applies a shift-and-invert transform with a
small shift factor by default for the Brezzi and Babuška inf-sup problems.

39.5.3 Characterizing the discretization

After the eigenvalues and thus the stability constants are computed for the fam-
ily of function spaces, all that remains is to interpret these constants. ASCoT
provides three classes intended to represent and interpret the behaviour of the
stability constants: InfSupConstant , InfSupCollection and StabilityResult .

An InfSupConstant represents a single inf-sup constant. It is initialized us-
ing a mesh size h, a set of values, and an optional operator. The values typically
correspond to the computed eigenvalues. If supplied, the operator is applied to
the eigenvalues. For instance, ASCoT supplies a square-root operator when com-
puting the Brezzi inf-sup constant. The object can return the inf-sup constant
and, if computed, the reduced inf-sup constant and the number of zero eigenval-
ues. The latter two items are most useful for careful analysis purposes.

A collection of InfSupConstant s forms an InfSupCollection . An InfSupCollection ’s
main purpose is to identify whether or not the stability condition associated with
the inf-sup constants holds. The method is stable returns a boolean answer.
The stability condition will not hold if any of the inf-sup constants is zero, and it
will probably not hold if the inf-sup constants seem to decay with the mesh size
h. The rate of decay ri between two subsequent constants ci and ci+1 is defined
as:

ri =
log2(ci)− log2(ci+1)

log2(hi)− log2(hi+1)

where hi is the corresponding mesh size. Currently, ASCoT classifies a discretiza-
tion as stable if there are no singularities (no zero eigenvalues for all meshes),
and the decay rates are below 1 and consistently decrease or the rate correspond-
ing to the finest mesh is less than a given number (0.1 by default).

Finally, the StabilityResult class holds a list of possibly several InfSupCollections ,
each corresponding to a separate inf-sup condition, such as the Brezzi coercivity
and the Brezzi inf-sup condition. The StabilityResult identifies a discretiza-
tion as stable if all stability conditions are satisfied, and as unstable otherwise.
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39.6 Examples

In this section, we apply the automated stability testing framework to two clas-
sical saddle point problems: the mixed Laplacian and the Stokes equations. The
behaviour of the various mixed finite elements observed in Section 39.2 will be
explained and classical analytical results reproduced. The complete code is avail-
able from the demo directory of the ASCoT module.

39.6.1 Mixed Laplacian

We can now return to the mixed Laplacian example described in Section 39.2 and
inspect the Brezzi stability properties of the element spaces involved, namely
Pc

1(V)×Pc
1, P

c
1(V)×Pd

0 and RT1×Pd
0. The example considered a family of diagonal

triangulations of the unit square. The complete code required to test the stability
of the first discretization family was presented piecewise in Section 39.5.1. The
stability result can be inspected as follows:

print result
for condition in result. conditions:

print condition

The following output appears:

<Mixed element: ( <Mixed element: ( <CG1 on a <triangle of degree 1>>,
<CG1 on a <triangle of degree 1>>) >, <CG1 on a <triangle of degree 1>>) >

Not computing Brezzi coercivity constants because of singularity
Discretization family is: Unstable. Singular. Decaying.

InfSupCollection: beta_h
singularities = [ 2, 2, 2, 2, 2]
reduced = [ 0. 56032, 0. 35682, 0. 24822, 0. 18929, 0. 15251]
rates = [ 0. 651, 0. 895, 0. 942, 0. 968]

Empty InfSupCollection: alpha_h

ASCoT characterizes this discretization family as unstable. For the Brezzi inf-
sup eigenvalue problems, there are 2 zero eigenvalues for each mesh. Hence, the
Brezzi inf-sup constant is zero, and moreover, the element matrix will be singu-
lar. This is precisely what we observed in the introductory example: there was
no solution to the discrete system of equations. Moreover, the reduced inf-sup
constant is also decaying with the mesh size at a rate that seems to be increas-
ing towards O(h). So, there is no hope of recovering a stable method by filtering
out the spurious modes. Since each Brezzi inf-sup constant is zero, the Brezzi co-
ercivity eigenvalue problems are not computationally well-posed, and thus these
constants have not been computed.
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The second family of elements considered in Section 39.2 was the combina-
tion of continuous piecewise linear vector fields and piecewise constants. Using
the same code as before, just replacing the finite element spaces, we obtain the
following results:

<Mixed element: ( <Mixed element: ( <CG1 on a <triangle of degree 1>>,
<CG1 on a <triangle of degree 1>>) >, <DG0 on a <triangle of degree 1>>) >
Discretization family is: Unstable. Decaying.

InfSupCollection: beta_h
values = [ 0. 96443, 0. 84717, 0. 71668, 0. 60558, 0. 51771]
rates = [ 0. 187, 0. 413, 0. 586, 0. 703]

InfSupCollection: alpha_h
values = [ 1, 1, 1, 1, 1]
rates = [- 1. 35e- 14, 6. 13e- 14, 3. 88e- 13, 4. 05e- 13]

Look at the Brezzi inf-sup constants first. In this case, there are no singular val-
ues, and hence the Brezzi inf-sup constants are positive. However, the constants
seem to decay with the mesh size at increasing rates. Extrapolating, we can sup-
pose that the constants βh depend on the mesh size h and decay towards zero
with h. ASCoT accordingly labels the discretization as unstable. Since there are
no singular values, the Brezzi coercivity problem is well-posed. The Brezzi coer-
civity constants have therefore been computed. We see that the Brezzi coercivity
constant is equal to one for all of the meshes tested. This is also easily deduced:
the divergence of the velocity space is included in the pressure space and hence
the Brezzi coercivity constant is indeed one for all meshes. Since neither con-
stant is singular, we expect the discrete system of equations to be solvable – as
we indeed saw in Section 39.2. The problem with this method hence only lies in
the decaying Brezzi inf-sup constant. However, the instability did indeed mani-
fest itself in the discrete approximation cf. Figure 39.1(a).

Finally, we can inspect a stable method, namely the lowest order Raviart-
Thomas space combined with the space of piecewise constants:

<Mixed element: ( <RT1 on a <triangle of degree 1>>,
<DG0 on a <triangle of degree 1>>) >
Discretization family is: Stable.

InfSupCollection: beta_h
values = [ 0. 97682, 0. 97597, 0. 97577, 0. 97569, 0. 97566]
rates = [ 0. 00126, 0. 000508, 0. 000265, 0. 000162]

InfSupCollection: alpha_h
values = [ 1, 1, 1, 1, 1]
rates = [ 5. 6e- 11, 1. 39e- 08, 1. 64e- 08, 2. 24e- 07]

ASCoT characterizes this mixed element method as stable. It is indeed proven
so (Raviart and Thomas, 1977). The Brezzi coercivity constant is equal to 1 for

523



Saddle point stability

all meshes tested and hence bounded from below. The Brezzi inf-sup constant
definitely seems to be bounded from below. (The constant will actually converge
to the value

√
2π(1 + 2π2)−1/2 cf. (Arnold and Rognes, 2009).) The satisfactory

result observed in Figure 39.1(b) is thus agreement with the general theory.

Caveat emptor.

It is worth noting that the stability properties of some mixed elements can vary
dramatically. Here is one example: take the combination of continuous linear
vector fields and piecewise constants for the mixed Laplacian. As we have seen
above, this element family is non-singular on the diagonal mesh family, but the
Brezzi inf-sup constants decay. However, if we inspect a family of criss-cross
meshes, specified in DOLFIN using

meshes = [ UnitSquare( n, n, "crossed" ) for n in meshsizes]

with the mesh sizes as before, the results are different:

Discretization family is: Unstable. Singular. Reduced stable.

InfSupCollection: beta_h
singularities = [ 4, 16, 36, 64, 100]
reduced = [ 0. 97832, 0. 97637, 0. 97595, 0. 97579, 0. 97572]
rates = [ 0. 00288, 0. 00106, 0. 000543, 0. 000328]

For this mesh family, the Brezzi inf-sup constants are zero and thus the method
is singular. (In fact, there are n2 spurious modes for this element on this mesh (Qin,
1994).) However, the reduced Brezzi inf-sup constants seem to be bounded from
below, and so the method could theoretically be stabilized by a removal of the
spurious modes. For a careful study of the stability of Lagrange elements for the
mixed Laplacian on various mesh families cf. (Arnold and Rognes, 2009).

The results may be more different than illustrated above. A truly stable
method will be stable for any admissible tessellation family, but there are meth-
ods that are stable on some mesh families, but not in general. Therefore, if
determining whether a mixed element is appropriate or not, the discretization
should be tested on more than a single mesh family.

39.6.2 Stokes

The Stokes equations is another classical and highly relevant saddle point prob-
lem. For simplicity, we here consider the following discrete formulation: find the
velocity uh ∈ Vh, and the pressure ph ∈ Qh such that

〈graduh, grad v〉+ 〈div v, ph〉 = 〈v, f〉 ∀ v ∈ Vh,
〈div uh, q〉 = 0 ∀ q ∈ Qh.

(39.18)
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The previous example demonstrated that it is feasible, even easy, to test sta-
bility for any given family of discretizations. Taking this a step further, we can
generate a set of all available conforming function spaces on a family of meshes,
and test the stability of each. With this aim in mind, ASCoT provides some func-
tionality for creating combinations of mixed function spaces given information
on the value dimension of the spaces, the polynomial degree, the meshes and the
desired regularity. For instance, to generate all available H1 conforming vector
fields of polynomial degree between 1 and 4 matched with L2 conforming func-
tions of polynomial degrees between 0 and 3 on a given set of meshes, define

specifications = {"value_dimension" : ( 2, 1),
"degree" : ( range( 1, 5), range( 4)),
"space" : ( "H1" , "L2" ) }

spaces = create_spaces( meshes, specifications)

For the equations (39.18), the Brezzi coercivity condition always holds as long
as Vh does not contain the constant functions. Therefore, it suffices to exam-
ine the Brezzi inf-sup condition. For simplicity though, we here examine the Vh
spaces with no essential boundary conditions prescribed. With spaces generated
as above, this can be accomplished as follows:

# Define b form
b = lambda v, q: div( v) * q* dx

# Define inner products:
H1 = lambda u, v: ( dot ( u, v) + inner( grad( u), grad( v))) * dx
L2 = lambda p, q: dot ( p, q) * dx

# Test Brezzi inf-sup condition for the generated spaces
for W_hs in spaces:

beta_hs = [ compute_brezzi_infsup( b, ( H1, L2), W_h) for W_h in W_hs]
result = StabilityResult( InfSupCollection( beta_hs, "beta_h" ))

Finally, ASCoT provides an optimized mode where only the stability of a dis-
cretization family is detected and not possible reduced stabilities. This mode is
off by default, but can easily be turned on:

ascot_parameters[ "only_stable" ] = True

Applying the above to the diagonal mesh family used in the previous exam-
ple and printing those elements that are classified as stable result in the list of
mixed elements summarized in Figure 39.2. The first item on this list is the
lowest order Taylor-Hood element, while the third and sixth items are the next
elements of the Taylor-Hood family: Pc

k+1(V)×Pc
k for k ≥ 1. These mixed elements

are indeed stable for any family of tessellations consisting of more than three tri-
angles (Brezzi and Falk, 1991, Taylor and Hood, 1973). The seventh item on the
list is the Pc

2(V) × Pd
0 element (Crouzeix and Raviart, 1973), while the 9’th and

12’th item are the next order elements of the Pc
k+1(V)× Pd

k−1 family, which again
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1. Pc
2(V)× Pc

1

2. Pc
3(V)× Pc

1

3. Pc
3(V)× Pc

2

4. Pc
4(V)× Pc

1

5. Pc
4(V)× Pc

2

6. Pc
4(V)× Pc

3

7. Pc
2(V)× Pd

0

8. Pc
3(V)× Pd

0

9. Pc
3(V)× Pd

1

10. Pc
4(V)× Pd

0

11. Pc
4(V)× Pd

1

12. Pc
4(V)× Pd

2

13. Pc
4(V)× Pd

3

Figure 39.2: List of elements identified as satisfying the Brezzi inf-sup condition
for the Stokes equations on a family of diagonal triangulations of the unit square.

is truly stable for k ≥ 1. The 13’th item on this list, Pc
4(V)×Pd

3 is the lowest order
Scott-Vogelius element. This element is the lowest order element of the Scott-
Vogelius family Pc

k(V)×Pd
k−1 for k ≥ 4. Note that these elements for k = 1, 2, 3 are

not on the list — as they should not: these lower order mixed elements are indeed
unstable on this tessellation family (Qin, 1994). The stability of the remaining
elements follow from the previous results: if the Brezzi inf-sup condition holds
for a family {Vh×Qh}, by definition it will also hold for the families {Vh×Ph} for
Ph ⊆ Qh.

In conclusion, the elements identified are indeed known to be stable, and
the list comprises all the stable conforming finite elements for the Stokes equa-
tions on this tessellation family that are available in FFC and generated by the
create spaces function.

39.7 Conclusion

This note describes an automated strategy for the testing of stability conditions
for mixed finite element discretizations. The strategy has been implemented as
a very light-weight python module, ASCoT, on top of PyDOLFIN. The implemen-
tation is light-weight because of the powerful tools provided by the PyDOLFIN
module, in particular the flexible form language provided through UFL/FFC, the
availability of arbitrary order mixed finite elements of various families, and the
SLEPc eigensolvers.

We have seen that the automated stability tester has successfully identified
available stable and unstable elements when applied to the Stokes equations for
a diagonal tessellation family. Moreover, the framework has been used to identify
previously unknown stability properties for lower order Lagrange elements for
the mixed Laplacian (Arnold and Rognes, 2009).

There are however some limitations. First, numerical evidence is not ana-
lytical evidence. The tester makes a stability conjecture based on the computed
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constants. The conjecture may in some cases be erroneous, and the reliability
of this conjecture may be low if only a few meshes are considered. Second, solv-
ing generalized, singular eigenvalue problems can be nontrivial. For the Brezzi
coercivity constants, the krylov-schur solver easily fails to converge even with
an applied shift-and-invert spectral transform. In such a case, one must either
return to use a lapack-type solver or consider the Babuška constant directly.
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E. Bänsch. An adaptive finite-element strategy for the three-dimensional time-
dependent navier-stokes equations. J. Comput. Appl. Math., 36(1):3–28, 1991.
ISSN 0377-0427. doi: http://dx.doi.org/10.1016/0377-0427(91)90224-8.

C. Bauer, A. Frink, and R. Kreckel. Introduction to the GiNaC framework for
symbolic computation within the C++ programming language. cs/0004015,
Apr. 2000. URL http://arxiv.org/abs/cs/0004015 . J. Symbolic Compu-
tation (2002) 33, 1-12.

E. B. Becker, G. F. Carey, and J. T. Oden. Finite Elements: An Introduction.
Prentice–Hall, Englewood–Cliffs, 1981.

R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numerica, 10:1–102, 2001.

D. M. Bers. Excitation-Contraction Coupling and Cardiac Contractile Force.
Kluwert Academic, Dordrecht, The Netherlands, 2nd edition, 2001.

D. J. Beuckelmann and W. G. Wier. Mechanism of release of calcium from sar-
coplasmic reticulum of guinea-pig cardiac cells. J. Physiol., 405:233–255, Nov
1988.

J. Bey. Tetrahedral grid refinement. Computing, 55:355–378, 1995.

H. B. Bingham, P. A. Madsen, and D. R. Fuhrman. Velocity potential formula-
tions of highly accurate Boussinesq-type models. Coastal Engineering, Article
in Press, 2008.

D. Boffi, F. Brezzi, and L. Gastaldi. On the problem of spurious eigenvalues in
the approximation of linear elliptic problems in mixed form. Math. Comp., 69
(229):121–140, 2000. ISSN 0025-5718.

A. Bossavit. Computational Electromagnetics: Variational Formulations, Com-

plementarity, Edge Elements. Academic Press, 1998.

D. Braess. Finite elements. Cambridge University Press, Cambridge, third edi-
tion, 2007. ISBN 978-0-521-70518-9. Theory, fast solvers, and applications in
elasticity theory, Translated from the German by Larry L. Schumaker.

http://arxiv.org/abs/cs/0004015
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APPENDIXA

Notation

The following notation is used throughout this book.

A – the global tensor with entries {Ai}i∈I
AK – the element tensor with entries {AK

i }i∈IK

A0 – the reference tensor with entries {A0
iα}i∈IK ,α∈A

a – a multilinear form
aK – the local contribution to a multilinear form a from a cell K
A – the set of secondary indices

B – the set of auxiliary indices

e – the error, e = uh − u
FK – the mapping from the reference cell K0 to K
GK – the geometry tensor with entries {Gα

K}α∈A
I – the set

∏ρ
j=1[1, N

j ] of indices for the global tensor A

IK – the set
∏ρ
j=1[1, n

j
K ] of indices for the element tensor AK (primary indices)

ιK – the local-to-global mapping from [1, nK ] to [1, N ]
K – a cell in the mesh T
K0 – the reference cell

L – a linear form (functional) on V̂ or V̂h
L – the degrees of freedom (linear functionals) on Vh
LK – the degrees of freedom (linear functionals) on PK
L0 – the degrees of freedom (linear functionals) on P0

N – the dimension of V̂h and Vh
nK – the dimension of PK
ℓi – a degree of freedom (linear functional) on Vh
ℓKi – a degree of freedom (linear functional) on PK
ℓ0
i – a degree of freedom (linear functional) on P0

PK – the local function space on a cell K
P0 – the local function space on the reference cell K0
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Pq(K) – the space of polynomials of degree ≤ q on K
r – the (weak) residual, r(v) = a(v, uh)− L(v) or r(v) = F (uh; v)
uh – the finite element solution, uh ∈ Vh
U – the vector of degrees of freedom for uh =

∑N
i=1 Uiφi

u – the exact solution of a variational problem, u ∈ V

V̂ – the test space
V – the trial space

V̂ ∗ – the dual test space, V̂ ∗ = V0

V ∗ – the dual trial space, V ∗ = V̂

V̂h – the discrete test space
Vh – the discrete trial space
φi – a basis function in Vh
φ̂i – a basis function in V̂h
φKi – a basis function in PK
Φi – a basis function in P0

z – the dual solution, z ∈ V ∗

T – the mesh, T = {K}
Ω – a bounded domain in R

d
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Babuška condition, 514
basis function, 250
basis functions, 251
boundary conditions, 402
boundary measure, 249
Boussinesq models, 393
Brezzi coercivity condition, 515
Brezzi inf-sup condition, 515

cache, 230
cell integral, 249
cell membrane, 414, 415
cerebrospinal fluid, 357
channel transition, 427
Chiari I malformation, 357
coefficient function, 250
coefficient functions, 251
coefficients, 251
computational graph, 265
computing derivatives, 266
cross product, 254
CSF, 357
Cython, 218
cytosole, 414, 416

degree of freedom, 22
degrees of freedom array, 22, 29

vector field, 29

derivatives, 266
determinant, 254
DG operators, 257
differential operators, 255
differentiation, 266
diffusion constant, 415
discontinuous Galerkin, 257
discontinuous Lagrange element, 246
Discrete state, 418
dispersion curves, 442, 447, 449, 451
dispersion relation, 400
Distutils, 217
domain specific language, 243
dot product, 254
dyadic cleft, 415
Dynamic load balancing, 187

eigenvalue problem, 438, 439
electro-diffusion, 415
electromagnetics, 435
event driven simulator, 428
excitation contraction coupling, 414
expression, 262
expression representations, 276
expression transformations, 275, 276
expression tree, 262
expression trees, 273
exterior facet integral, 249

F2PY, 218
facet normal, 250
FEniCS Apps, 426
Fick’s second law, 415
finite element, 246
finite element space, 246
foramen magnum, 357
form argument, 250
form arguments, 251
form language, 243
form operators, 258
forms, 249
forward mode AD, 266
functional, 243
functions, 251



Gillespie method, 427
Gouy-Chapman, 415

identity matrix, 250
implicit summation, 252
index notation, 252
indices, 252
inner product, 254
integrals, 249
interior facet integral, 249
interior measure, 249
interpolation, 23
inverse, 254

jump, 257

L-type Ca2+ channels, 414, 416, 418
Lagrange element, 246
language operators, 254

Markov chain model, 418, 427
Maxwell’s equations, 435
microstrip, see shielded microstrip
multifunctions, 273

Navier-Stokes, 359
Nernst-Planck equation, 415
Newtonian fluid, 359
nodal values array, 22, 29

OpenMP, 222
operator, 262
outer product, 254

Parallel adaptive mesh refinement, 184
Parallel radix sort, 189
potential, 396
Predictor-Corrector, 404
program, 262
projection, 28
propagation constant, 436
propensity function, 427
propensity functions, 418
pydoc , 24, 89

Reduced discrete stability, 515

referential transparency, 262
reflective boundaries, 403
restriction, 257
reverse mode AD, 266
Runge-Kutta, 404
ryanodine receptor, 414, 416, 418

S-parameters, 451, 452, 454
sarcoplasmic reticulum, 414, 416
SAS, 357
scattering parameters, see S-parameters
screening, 415
self , 20, 89
shielded microstrip, 449
signatures, 230, 279
source function, 402
spatial coordinates, 250
spinal canal, 357
spinal cord, 358
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cutoff analysis, 437, 445, 448
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450
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operating, 436, 438
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