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One-shot optimisation
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One-shot optimisation

Consider
min
u,m

J(u,m)

subject to:
F (u,m) = 0.

One-shot solution strategy

1 Form Lagrangian L
2 Set the derivative of L to 0 (optimality conditions)

3 Solve the resulting system
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One-shot solution strategy

1 Form Lagrangian L = J(u,m) + 〈λ, F (u,m)〉 with
Lagrange multipler λ.

2 Set the derivative of L to 0 (optimality conditions)

dL
du

= 0,
dL
dm

= 0,
dL
dλ

= 0

3 Solve the resulting system for u,m, λ simultaneously!
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One-shot Hello World!

min
u,f

1

2

∫
Ω
‖u− ud‖2 dx+

α

2

∫
Ω
‖f‖2 dx

subject to:
−∆u = f in Ω

1. Lagrangian

L =
1

2

∫
Ω
‖u− ud‖2 dx+

α

2

∫
Ω
‖f‖2 dx+

∫
Ω
λ(−∆u− f) dx
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∫
Ω
‖f‖2 dx

subject to:
−∆u = f in Ω

1. Lagrangian

L =
1

2

∫
Ω
‖u− ud‖2 dx+

α

2

∫
Ω
‖f‖2 dx+

∫
Ω
λ(−∆u− f) dx

Code

Python code

L = 0.5*inner(u-ud , u-ud)*dx

+ 0.5*alpha*inner(f, f)*dx

+ inner(grad(u), grad(lmbd))*dx

- f*lmbd*dx
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2. Optimality (KKT) conditions

∂L
∂u

ũ = 0 ∀ũ

∂L
∂m

m̃ = 0 ∀m̃

∂L
∂λ

λ̃ = 0 ∀λ̃
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∂L
∂λ

λ̃ =

∫
Ω
−λ̃(∆u−m) dx = 0 ∀λ̃

Code

Python code

# w = (u, m, lmbd)

kkt = derivative(L, w, w_test)
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3. Solve the optimality (KKT) conditions

Easy:

Python code

solve(kkt == 0, w, bcs)
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