
FEniCS Course
Lecture 13: Introduction to dolfin-adjoint

Contributors
Simon Funke
Patrick Farrell
Marie E. Rognes

1 / 25

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to
certain parameters, for example

• initial conditions,

• forcing terms,

• unkown coefficients.

2 / 25

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to
certain parameters, for example

• initial conditions,

• forcing terms,

• unkown coefficients.

Forward PDE, functional, parameter

Adjoint PDETangent linear PDE Second order adjoint PDE

Derivatives Error estimation

Sensitivity analysis Generalised stability analysisOptimisation

Uncertainty quantification

Continuation analysis

Data assimilation

Optimisation under uncertainty

Bifurcation analysis

Goal-based adaptivity

2 / 25

Computing sensitivities

So far we focused on solving PDEs.
But often we are also interested the sensitivity with respect to
certain parameters, for example

• initial conditions,

• forcing terms,

• unkown coefficients.

Forward PDE, functional, parameter

Adjoint PDETangent linear PDE Second order adjoint PDE

Derivatives Error estimation

Sensitivity analysis Generalised stability analysisOptimisation

Uncertainty quantification

Continuation analysis

Data assimilation

Optimisation under uncertainty

Bifurcation analysis

Goal-based adaptivity

2 / 25

Example

Consider the Poisson’s equation

−ν∆u = m in Ω,

u = 0 on ∂Ω,

together with the objective functional

J(u) =
1

2

∫
Ω
‖u− ud‖2 dx,

where ud is a known function.

Goal
Compute the sensitivity of J with respect to the parameter m:
dJ/dm.

3 / 25

Comput. deriv. (i) General formulation

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional R:

R(m) = J(u(m),m)

4 / 25

Comput. deriv. (i) General formulation

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional R:

R(m) = J(u(m),m)

4 / 25

Comput. deriv. (i) General formulation

Given

• Parameter m,

• PDE F (u,m) = 0 with solution u.

• Objective functional J(u,m)→ R,

Goal
Compute dJ/dm.

Reduced functional
Consider u as an implicit function of m by solving the PDE.
With that we define the reduced functional R:

R(m) = J(u(m),m)

4 / 25

Comput. deriv. (ii) Reduced functional

Reduced functional:

R(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dR

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?

5 / 25

Comput. deriv. (ii) Reduced functional

Reduced functional:

R(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dR

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?

5 / 25

Comput. deriv. (ii) Reduced functional

Reduced functional:

R(m) ≡ J(u(m),m).

Taking the derivative of with respect to m yields:

dR

dm
=

dJ

dm
=
∂J

∂u

du

dm
+
∂J

∂m
.

Computing ∂J
∂u and ∂J

∂m is straight-forward, but how handle du
dm?

5 / 25

Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 25

Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 25

Comput. deriv. (iii) Computing du
dm

Taking the derivative of F (u,m) = 0 with respect to m yields:

dF

dm
=
∂F

∂u

du

dm
+
∂F

∂m
= 0

Hence:

du

dm
= −

(
∂F

∂u

)−1 ∂F

∂m

Final formula for functional derivative

dJ

dm
= −

adjoint PDE︷ ︸︸ ︷
∂J

∂u

(
∂F

∂u

)−1 ∂F

∂m︸ ︷︷ ︸
tangent linear PDE

+
∂J

∂m
,

6 / 25

Dimensions of a finite dimensional example

dJ

dm
=

discretised adjoint PDE︷ ︸︸ ︷
−∂J

∂u ×
(
∂F
∂u

)−1 × ∂F
∂m

︸ ︷︷ ︸
discretised tangent linear PDE

+ ∂J
∂m

The tangent linear solution is a matrix of dimension |u| × |m|
and requires the solution of m linear systems. The adjoint
solution is a vector of dimension |u| and requires the solution of
one linear systems.

7 / 25

Adjoint approach

1 Solve the adjoint equation for λ

∂F

∂u

∗
λ = −∂J

∗

∂u
.

2 Compute
dJ

dm
= λ∗

∂F

∂m
+
∂J

∂m
.

The computational expensive part is (1). It requires solving the
(linear) adjoint PDE, and its cost is independent of the choice
of parameter m.

8 / 25

What is dolfin-adjoint?

Dolfin-adjoint is an extension of FEniCS for: solving adjoint
and tangent linear equations; generalised stability analysis;
PDE-constrained optimisation.

Main features

• Automated derivation of first and second order adjoint and
tangent linear models.

• Discretely consistent derivatives.

• Parallel support and near theoretically optimal
performance.

• Interface to optimisation algorithms for PDE-constrained
optimisation.

• Documentation and examples on
www.dolfin-adjoint.org.

9 / 25

www.dolfin-adjoint.org

What has dolfin-adjoint been used for?
Layout optimisation of tidal turbines

• Up to 400 tidal turbines in one farm.

• What are the optimal locations to maximise power
production?

10 / 25

What has dolfin-adjoint been used for?
Layout optimisation of tidal turbines

0 20 40 60 80 100 120 140
Optimisation iteration

600

650

700

750

800

850

Po
w

er
[M

W
]

11 / 25

What has dolfin-adjoint been used for?
Layout optimisation of tidal turbines

Python code

from dolfin import *

from dolfin_adjoint import *

FEniCS model

...

J = Functional(turbines*inner(u, u)**(3/2)*dx*dt)

m = Control(turbine_positions)

R = ReducedFunctional(J, m)

maximize(R)

12 / 25

What has dolfin-adjoint been used for?
Reconstruction of a tsunami wave

1

Is it possible to reconstruct a tsunami wave from images like
this?

1Image: ASTER/NASA PIA06671
13 / 25

What has dolfin-adjoint been used for?
Reconstruction of a tsunami wave

0 5 10 15 20 25 30 35 40 45
Iteration

10−6

10−5

10−4

10−3

10−2

J
(η
D

)

14 / 25

Reconstruction of a tsunami wave

Python code

from fenics import *

from dolfin_adjoint import *

FEniCS model

...

J = Functional(observation_error**2*dx*dt)

m = Control(input_wave)

R = ReducedFunctional(J, m)

minimize(R)

15 / 25

Other applications

Dolfin-adjoint has been applied to lots of other cases, and
works for many PDEs:

Some PDEs we have adjoined

• Burgers

• Navier-Stokes

• Stokes + mantle rheology

• Stokes + ice rheology

• Saint Venant +
wetting/drying

• Cahn-Hilliard

• Gray-Scott

• Shallow ice

• Blatter-Pattyn

• Quasi-geostrophic

• Viscoelasticity

• Gross-Pitaevskii

• Yamabe

• Image registration

• Bidomain

• . . .

16 / 25

Example

Compute the sensitivity of

J(u) =

∫
Ω
‖u− ud‖2 dx

with known ud and the Poisson equation:

−ν∆u = m in Ω

u = 0 on ∂Ω.

with respect to m.

17 / 25

Poisson solver in FEniCS
An implementation of the Poisson’s equation might look like this:

Python code

from fenics import *

Define mesh and finite element space

mesh = UnitSquareMesh(50, 50)

V = FunctionSpace(mesh , "Lagrange", 1)

Define basis functions and parameters

u = TrialFunction(V)

v = TestFunction(V)

m = interpolate(Constant(1.0), V)

nu = Constant(1.0)

Define variational problem

a = nu*inner(grad(u), grad(v))*dx

L = m*v*dx

bc = DirichletBC(V, 0.0, "on_boundary")

Solve variational problem

u = Function(V)

solve(a == L, u, bc)

plot(u, title="u")

18 / 25

Dolfin-adjoint (i): Annotation

The first change necessary to adjoin this code is to import the
dolfin-adjoint module after importing DOLFIN:

Python code

from fenics import *

from dolfin_adjoint import *

With this, dolfin-adjoint will record each step of the model,
building an annotation. The annotation is used to symbolically
manipulate the recorded equations to derive the tangent linear
and adjoint models.

In this particular example, the solve function method will be
recorded.

19 / 25

Dolfin-adjoint (ii): Objective Functional

Next, we implement the objective functional, the square
L2-norm of u− ud:

J(u) =

∫
Ω
‖u− ud‖2 dx

or in code
Python code

j = inner(u - u_d , u - u_d)*dx

J = Functional(j)

20 / 25

Dolfin-adjoint (ii): Control parameter

Next we need to decide which parameter we are interested in.
Here, we would like to investigate the sensitivity with respect to
the source term m.

We inform dolfin-adjoint of this:
Python code

m = Control(m)

21 / 25

Dolfin-adjoint (iii): Computing gradients

Now, we can compute the gradient with:
Python code

dJdm = compute_gradient(J, m, project=True)

Dolfin-adjoint derives and solves the adjoint equations for us
and returns the gradient.

Note
If you call compute gradient more than once, you need to
pass forget=False as a parameter. Otherwise you get an error:
Need a value for u 1:0:0:Forward, but don’t have one recorded.

Computational cost

Computing the gradient requires one adjoint solve.

22 / 25

Dolfin-adjoint (iii): Computing gradients

Now, we can compute the gradient with:
Python code

dJdm = compute_gradient(J, m, project=True)

Dolfin-adjoint derives and solves the adjoint equations for us
and returns the gradient.

Note
If you call compute gradient more than once, you need to
pass forget=False as a parameter. Otherwise you get an error:
Need a value for u 1:0:0:Forward, but don’t have one recorded.

Computational cost

Computing the gradient requires one adjoint solve.

22 / 25

Dolfin-adjoint (iii): Computing gradients

Now, we can compute the gradient with:
Python code

dJdm = compute_gradient(J, m, project=True)

Dolfin-adjoint derives and solves the adjoint equations for us
and returns the gradient.

Note
If you call compute gradient more than once, you need to
pass forget=False as a parameter. Otherwise you get an error:
Need a value for u 1:0:0:Forward, but don’t have one recorded.

Computational cost

Computing the gradient requires one adjoint solve.

22 / 25

Dolfin-adjoint (iii): Computing Hessians

Dolfin-adjoint can also compute the second derivatives
(Hessians):

Python code

H = hessian(J, m)

direction = interpolate(Constant(1), V)

plot(H(direction))

Computational cost

Computing the directional second derivative requires one
tangent linear and two adjoint solves.

23 / 25

Dolfin-adjoint (iii): Computing Hessians

Dolfin-adjoint can also compute the second derivatives
(Hessians):

Python code

H = hessian(J, m)

direction = interpolate(Constant(1), V)

plot(H(direction))

Computational cost

Computing the directional second derivative requires one
tangent linear and two adjoint solves.

23 / 25

Verification

How can you check that the gradient is correct?

Taylor expansion of the reduced functional R in a perturbation
δm yields:

|R(m+ εδm)−R(m)| → 0 at O(ε)

but

|R(m+ εδm)−R(m)− ε∇R · δm| → 0 at O(ε2)

Taylor test

Choose m, δm and determine the convergence rate by reducing
ε. If the convergence order with gradient is ≈ 2, your gradient is
probably correct.

The function taylor test implements the Taylor test for you.
See help(taylor test).

24 / 25

Verification

How can you check that the gradient is correct?

Taylor expansion of the reduced functional R in a perturbation
δm yields:

|R(m+ εδm)−R(m)| → 0 at O(ε)

but

|R(m+ εδm)−R(m)− ε∇R · δm| → 0 at O(ε2)

Taylor test

Choose m, δm and determine the convergence rate by reducing
ε. If the convergence order with gradient is ≈ 2, your gradient is
probably correct.

The function taylor test implements the Taylor test for you.
See help(taylor test).

24 / 25

Getting started with Dolfin-adjoint

1 Compute the gradient and Hessian of the Poisson example
with respect to m.

2 Run the Taylor test to check that the gradient is correct.

3 Measure the computation time for the forward, gradient
and Hessian computation. What do you observe? Hint:
Use help(Timer).

25 / 25

