FEniCS Course

Lecture 7: Dynamic hyperelasticity

Contributors
Anders Logg

Dynamic hyperelasticity

$$
\begin{aligned}
\rho \ddot{u}-\operatorname{div} P & =B & & \text { in } \Omega \times(0, T] \\
u & =g & & \text { on } \Gamma_{\mathrm{D}} \times(0, T] \\
P \cdot n & =T & & \text { on } \Gamma_{\mathrm{N}} \times(0, T] \\
u(\cdot, 0) & =u_{0} & & \text { in } \Omega \\
\dot{u}(\cdot, 0) & =u_{1} & & \text { in } \Omega
\end{aligned}
$$

- u is the displacement
- ρ is the (reference) density
- $P=P(u)$ is the first Piola-Kirchoff stress tensor
- B is a given body force per unit volume
- g is a given boundary displacement
- T is a given boundary traction
- u_{0} and u_{1} are given initial displacement and velocity

Variational problem

Rewrite as a first-order system by introducing $p=\dot{u}$:

$$
\begin{aligned}
\rho \dot{p}-\operatorname{div} P & =B \\
\dot{u}-p & =0
\end{aligned}
$$

Multiply by test functions v and q and sum up:
$\int_{t_{n-1}}^{t_{n}} \int_{\Omega}(\rho \dot{p}-\operatorname{div} P) \cdot v \mathrm{~d} x \mathrm{~d} t+\int_{t_{n-1}}^{t_{n}} \int_{\Omega}(\dot{u}-p) \cdot q \mathrm{~d} x \mathrm{~d} t=\int_{t_{n-1}}^{t_{n}} \int_{\Omega} B \cdot v \mathrm{~d} x$
Integrate by parts and use $v=0$ on Γ_{D} and $P \cdot n=T$ on Γ_{N} :

$$
\begin{aligned}
& \int_{t_{n-1}}^{t_{n}} \int_{\Omega} \rho \dot{p} \cdot v \mathrm{~d} x \mathrm{~d} t+\int_{t_{n-1}}^{t_{n}} \int_{\Omega} P: \operatorname{grad} v \mathrm{~d} x \mathrm{~d} t \\
& \quad+\int_{t_{n-1}}^{t_{n}} \int_{\Omega} \dot{u} \cdot q \mathrm{~d} x \mathrm{~d} t-\int_{t_{n-1}}^{t_{n}} \int_{\Omega} p \cdot q \mathrm{~d} x \mathrm{~d} t \\
& \quad=\int_{t_{n-1}}^{t_{n}} \int_{\Omega} B \cdot v \mathrm{~d} x \mathrm{~d} t+\int_{t_{n-1}}^{t_{n}} \int_{\Gamma_{\mathrm{N}}} T \cdot v \mathrm{~d} s \mathrm{~d} t
\end{aligned}
$$

Time discretization

Let the trial functions u, p be continuous and piecewise linear in time, and let the test functions v, q be piecewise constant:

$$
\begin{aligned}
\int_{t_{n-1}}^{t_{n}} \int_{\Omega} \rho \dot{p} \cdot v \mathrm{~d} x \mathrm{~d} t & =\int_{\Omega} \rho\left(p\left(\cdot, t_{n}\right)-p\left(\cdot, t_{n-1}\right)\right) \cdot v \mathrm{~d} x \\
\int_{t_{n-1}}^{t_{n}} \int_{\Omega} \dot{u} \cdot q \mathrm{~d} x \mathrm{~d} t & =\int_{\Omega}\left(u\left(\cdot, t_{n}\right)-u\left(\cdot, t_{n-1}\right)\right) \cdot q \mathrm{~d} x \\
\int_{t_{n-1}}^{t_{n}} \int_{\Omega} p \cdot q \mathrm{~d} x \mathrm{~d} t & =k_{n} \int_{\Omega} p\left(\cdot, t_{n-1 / 2}\right) \cdot q \mathrm{~d} x
\end{aligned}
$$

where $k_{n}=t_{n}-t_{n-1}$ and $p\left(\cdot, t_{n-1 / 2}\right)=p\left(\cdot, t_{n}-k_{n} / 2\right)$
Approximate other integrals by midpoint quadrature:

$$
\int_{t_{n-1}}^{t_{n}} \int_{\Omega} P: \operatorname{grad} v \mathrm{~d} x \mathrm{~d} t \approx k_{n} \int_{\Omega} P\left(u\left(\cdot, t_{n-1 / 2}\right)\right): \operatorname{grad} v \mathrm{~d} x
$$

This is the cG(1) or Crank-Nicolson method

Discrete problem

Find $\left(u^{n}, p^{n}\right) \in V_{h}$ such that

$$
\begin{aligned}
& \int_{\Omega} \rho\left(p^{n}-p^{n-1}\right) \cdot v \mathrm{~d} x+k_{n} \int_{\Omega} P\left(u^{n-1 / 2}\right): \operatorname{grad} v \mathrm{~d} x \\
&+\int_{\Omega}\left(u^{n}-u^{n-1}\right) \cdot q \mathrm{~d} x-k_{n} \int_{\Omega} p^{n-1 / 2} \cdot q \mathrm{~d} x \\
&=k_{n} \int_{\Omega} B^{n-1 / 2} \cdot v \mathrm{~d} x+k_{n} \int_{\Gamma_{\mathrm{N}}} T^{n-1 / 2} \cdot v \mathrm{~d} s
\end{aligned}
$$

for all $(v, q) \in \hat{V}_{h}$

Stress-strain relations

- $F=\frac{d x}{d X}=\frac{d(X+u)}{d X}=I+\operatorname{grad} u$ is the deformation gradient
- $C=F^{\top} F$ is the right Cauchy-Green deformation tensor
- $E=\frac{1}{2}(C-I)$ is the Green-Lagrange strain tensor
- $W=W(E)$ is the strain energy density
- $S_{i j}=\frac{\partial W}{\partial E_{i j}}$ is the second Piola-Kirchoff stress tensor
- $P=F S$ is the first Piola-Kirchoff stress tensor

St. Venant-Kirchoff strain energy function:

$$
W(E)=\frac{\lambda}{2}(\operatorname{tr}(E))^{2}+\mu \operatorname{tr}\left(E^{2}\right)
$$

Useful FEniCS tools (I)

Defining mixed function spaces:
Python code

$$
\begin{aligned}
& V=\text { VectorFunctionSpace(mesh, "Lagrange", 1) } \\
& V V=V * V
\end{aligned}
$$

Defining subfunctions:

Python code

```
up = Function(VV)
u, p = split(up)
```

Shortcut:

Python code

```
u, p = Functions(VV)
```


Useful FEniCS tools (II)

Time-stepping
Python code

```
t}=d
while t < T + DOLFIN_EPS:
# Solve variational problem
solve(...)
# Move to next interval
t += dt
u0.assign(u1)
# use up0.assign(up1) for a mixed system
```


The FEniCS challenge!

Compute the deflection of a regular 10×2 LEGO brick as function of time. Use the St. Venant-Kirchhoff model and assume that the LEGO brick is made of PVC plastic. The LEGO brick is subject to gravity of size $g=-9.81 \mathrm{~m} / \mathrm{s}^{2}$ and a downward traction of size $5000 \mathrm{~N} / \mathrm{m}^{2}$ at its end point. At time $t=0$, the brick is at rest in its undeformed state.

To check your solution, compute the average value of the displacement in the z-direction at time $T=0.05$. Use a time step of size $k=0.002$.

