FEniCS Course

Lecture 6: Static hyperelasticity

Contributors

Anders Logg

Static hyperelasticity

$$
\begin{aligned}
-\operatorname{div} P & =B & & \text { in } \Omega \\
u & =g & & \text { on } \Gamma_{\mathrm{D}} \\
P \cdot n & =T & & \text { on } \Gamma_{\mathrm{N}}
\end{aligned}
$$

- $X \in \Omega$ is a coordinate in the reference domain
- $x=x(X)$ is the deformation
- $u=x-X$ is the displacement
- $P=P(u)$ is the first Piola-Kirchoff stress tensor
- B is a given body force per unit volume
- g is a given boundary displacement
- T is a given boundary traction

Variational problem

Multiply by a test function $v \in \hat{V}$ and integrate by parts:

$$
-\int_{\Omega} \operatorname{div} P \cdot v \mathrm{~d} x=\int_{\Omega} P: \operatorname{grad} v \mathrm{~d} x-\int_{\partial \Omega}(P \cdot n) \cdot v \mathrm{~d} s
$$

Note that $v=0$ on Γ_{D} and $P \cdot n=T$ on Γ_{N}

Find $u \in V$ such that

$$
\int_{\Omega} P: \operatorname{grad} v \mathrm{~d} x=\int_{\Omega} B \cdot v \mathrm{~d} x+\int_{\Gamma_{\mathrm{N}}} T \cdot v \mathrm{~d} s
$$

for all $v \in \hat{V}$

Stress-strain relations

- $F=\frac{d x}{d X}=\frac{d(X+u)}{d X}=I+\operatorname{grad} u$ is the deformation gradient
- $C=F^{\top} F$ is the right Cauchy-Green deformation tensor
- $E=\frac{1}{2}(C-I)$ is the Green-Lagrange strain tensor
- $W=W(E)$ is the strain energy density
- $S_{i j}=\frac{\partial W}{\partial E_{i j}}$ is the second Piola-Kirchoff stress tensor
- $P=F S$ is the first Piola-Kirchoff stress tensor

St. Venant-Kirchoff strain energy function:

$$
W(E)=\frac{\lambda}{2}(\operatorname{tr}(E))^{2}+\mu \operatorname{tr}\left(E^{2}\right)
$$

Useful FEniCS tools (I)

Defining subdomains/boundaries:
Python code

```
class MyBoundary(SubDomain):
    def inside(self, x, on_boundary):
    return on_boundary and \
        x[0] < 1.0 - DOLFIN_EPS
```

How should this be modified to not include the upper and lower right corners?
Marking boundaries:

Python code

```
my_boundary_1 = MyBoundary1()
my_boundary_2 = MyBoundary2()
boundaries = FacetFunction("size_t", mesh)
boundaries.set_all(0)
my_boundary_1.mark(boundaries, 1)
my_boundary_2.mark(boundaries, 2)
ds = Measure("ds", subdomain_data=boundaries)
a = ...*ds(0) + ...*ds(1) + ...*ds(2)
```


Useful FEniCS tools (II)

Computing derivatives of expressions:

```
E = variable(...)
W = ...
S = diff(W, E)
```

Computing form derivatives:
Python code

```
u = Function(V)
du = TrialFunction(V)
F = ...u...*dx
J = derivative(F, u, du)
```

Solving nonlinear variational problems (Newton's method):
Python code

```
solve(F== 0, u, bcs)
solve(F == 0, u, bcs, J=J)
```


The FEniCS challenge!

Compute the deflection of a regular 10×2 LEGO brick. Use the St. Venant-Kirchhoff model and assume that the LEGO brick is made of PVC plastic. The LEGO brick is subject to gravity of size $g=-9.81 \mathrm{~m} / \mathrm{s}^{2}$ and a downward traction of size $5000 \mathrm{~N} / \mathrm{m}^{2}$ at its end point.

To check your solution, compute the average value of the displacement in the z-direction.
The student(s) who first produce the right answer will be rewarded with an exclusive FEniCS surprise!
Mesh and material parameters:
http://fenicsproject.org/pub/course/data/

