FEniCS Course

Lecture 5: Happy hacking Tools, tips and coding practices

Contributors
André Massing

Post-processing

Function evaluation

Expression and Function objects f can be evaluated at arbitrary points:

Python code

```
# 1D
x = 0.5
f(x)
# 2D
x = (0.5,0.3) # tuple
# x = [0.5,0.3] is also valid
f(x)
# 3D
x = (0.5,0.2,1.0) # tuple
# x = [0.5,0.2,1.0] is also valid
f(x)
print f(x)
```

Short-hand
Python code

$$
f(0.5,0.5)
$$

Exercise: Try it out! Use one of your existing codes and evaluate the solution at some point.

Function evalution vs. Function representation

Question: What about plotting $\sin \left(u_{h}\right)$? And ∇u_{h} and $\left|\nabla u_{h}\right|$? Experiment: Try it out! Use Python code

```
sqrt(grad(u)**2)
```

for $|\nabla u|$. What happens if you plot these function? Have a closer look at the terminal output. Anything suspicious?

Question: What happened now? Why is there a
> Object cannot be plotted directly, projecting to piecewise linears.
Answer:

- $\sin \left(u_{h}(x)\right)$ is the evaluation of the built-in function sin at a given value $u_{h}(x)$, which in turn results from a FEM function evalution.
- $\sin \circ u_{h}$ is a composition of the built-in function sin and a FEM function u_{h}. The composition is a symbolic UFL (Unified Form Language) expression.

Building FE representations via L^{2} projection

Define $f=\sin \circ u_{h}$ and choose a FEM function space $\widetilde{V}_{h} \subset L^{2}(\Omega)$ which is "suitable" for your post-process.

Find $w_{h} \in \widetilde{V}_{h} \subset L^{2}(\Omega)$ such that for all $v_{h} \in \widetilde{V}_{h}$

$$
\underbrace{\int_{\Omega} w_{h} v \mathrm{~d} x}_{a(u, v)}=\underbrace{\int_{\Omega} f v \mathrm{~d} x}_{L(v)}
$$

Exercise: Compute $|\nabla(u)|$ for the solution from one of your existing solvers. Start with adding

Python code

```
abs_grad_V = FunctionSpace(mesh,"DG",0)
f = sqrt(grad(u)**2)
```

to your original Python script.

A hack to plot $\nabla(u)$ only on $\partial \Omega$

Python code

```
V_ag = FunctionSpace(mesh,"Lagrange",1)
#V_ag = FunctionSpace(mesh,"DG",0)
f = sqrt(grad(u)**2)
# Do the Projection only on the boundary
u_ag = TrialFunction(V_ag)
v = TestFunction(V_ag)
a = u_ag*v*ds
L = f*v*ds
A = assemble(a)
b = assemble(L)
# Set dofs not located on the boundary to
# zero by adding ones in the diagonal of A
A.ident_zeros()
u_ag = Function(V_ag)
solve(A, u_ag.vector(), b)
plot(u_ag, title="|grad(u)| on boundary")
interactive()
```


Simple code validation

Theory can help you to validate your implementation!

A priori estimates for the Poisson problem
If

- $u \in H_{0}^{1}(\Omega) \cap H^{k+1}(\Omega)$
- $V_{h}=\left\{v_{h} \in C(\Omega): v_{h} \in P^{k}(T) \forall T \in \mathcal{T}\right\}$
then

$$
\begin{aligned}
& E_{1}(h):=\left\|u-u_{h}\right\|_{1, \Omega} \leq C h^{k}\|u\|_{k+1, \Omega} \\
& E_{0}(h):=\left\|u-u_{h}\right\|_{0, \Omega} \leq C h^{k+1}\|u\|_{k+1, \Omega}
\end{aligned}
$$

where $\|\cdot\|_{l, \Omega}=\|\cdot\|_{H^{l}(\Omega)}$ for $l=0,1, k+1$.

Theory can help you to validate your implementation!

A priori estimates for the Poisson problem
If

- $u \in H_{0}^{1}(\Omega) \cap H^{k+1}(\Omega)$
- $V_{h}=\left\{v_{h} \in C(\Omega): v_{h} \in P^{k}(T) \forall T \in \mathcal{T}\right\}$
then

$$
\begin{aligned}
& E_{1}(h):=\left\|u-u_{h}\right\|_{1, \Omega} \leq C h^{k}\|u\|_{k+1, \Omega} \\
& E_{0}(h):=\left\|u-u_{h}\right\|_{0, \Omega} \leq C h^{k+1}\|u\|_{k+1, \Omega}
\end{aligned}
$$

where $\|\cdot\|_{l, \Omega}=\|\cdot\|_{H^{l}(\Omega)}$ for $l=0,1, k+1$.
Taking \log on each side

$$
\log \left(E_{1}(h)\right) \leq \log \left(C h^{k}\|u\|_{k+1, \Omega}\right)=k \log (h)+\log \left(C\|u\|_{k+1, \Omega}\right)
$$

Theory can help you to validate your implementation!

A priori estimates for the Poisson problem
If

- $u \in H_{0}^{1}(\Omega) \cap H^{k+1}(\Omega)$
- $V_{h}=\left\{v_{h} \in C(\Omega): v_{h} \in P^{k}(T) \forall T \in \mathcal{T}\right\}$
then

$$
\begin{aligned}
& E_{1}(h):=\left\|u-u_{h}\right\|_{1, \Omega} \leq C h^{k}\|u\|_{k+1, \Omega} \\
& E_{0}(h):=\left\|u-u_{h}\right\|_{0, \Omega} \leq C h^{k+1}\|u\|_{k+1, \Omega}
\end{aligned}
$$

where $\|\cdot\|_{l, \Omega}=\|\cdot\|_{H^{l}(\Omega)}$ for $l=0,1, k+1$.
Take the \log of each side:

$$
\underbrace{\log \left(E_{1}(h)\right)}_{y} \leq \log \left(C h^{k}\|u\|_{k+1, \Omega}\right)=k \underbrace{\log (h)}_{x}+\underbrace{\log \left(C\|u\|_{k+1, \Omega}\right)}_{c}
$$

Method of manufactured solutions

Recipe

(1) Take a suitable function u
(2) Compute $-\Delta u$ to obtain f
(3) Compute boundary values (trivial if only Dirichlet boundary conditions are used)
(4) Solve the corresponding variational problem

$$
a\left(u_{h}, v\right)=L(v)
$$

for a sequence of meshes \mathcal{T}_{h} and compute the error $E_{i}(h)=\left\|u-u_{h}\right\|_{i, \Omega_{i}}$ for $i=0,1$
(5) Plot $\log \left(E_{i}(h)\right)$ against $\log (h)$ and determine k

Homework

Try this by taking $u=\sin (2 \pi x) \sin (2 \pi y)$ on the unit square. Solve the problem for $N=2,4,8,16,64,128$ and compute both the L^{2} and H^{1} errors for $P 1, P 2$ and $P 3$ elements as a function of h. Can you determine the convergence rate?

