FEniCS Course

Lecture 4: Time-dependent PDEs

Contributors
Hans Petter Langtangen
Anders Logg
André Massing

The heat equation

We will solve the simplest extension of the Poisson problem into the time domain, the heat equation:

$$
\begin{aligned}
\frac{\partial u}{\partial t}-\Delta u & =f \text { in } \Omega \text { for } t>0 \\
u & =g \text { on } \partial \Omega \text { for } t>0 \\
u & =u^{0} \text { in } \Omega \text { at } t=0
\end{aligned}
$$

The solution $u=u(x, y, t)$, the right-hand side $f=f(x, y, t)$ and the boundary value $g=g(x, y, t)$ may vary in space and time. The initial value u^{0} is a function of space only.

Semi-discretization in space

Consider t as a parameter and formulate a

Variational problem in space

Find for each $t \in(0, T]$ a $u(\cdot, t) \in V$ such that

$$
\int_{\Omega} \partial_{t} u v \mathrm{~d} x+\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x \quad \forall v \in \widehat{V}
$$

Short-hand notation

$$
\left(\partial_{t} u, v\right)+a(u, v)=L(v)
$$

Discrete variational problem in space
Find for each t a $u_{h}(\cdot, t) \in V_{h}$ such that

$$
\left(\partial_{t} u_{h}, v_{h}\right)+a\left(u_{h}, v_{h}\right)=L\left(v_{h}\right) \quad \forall v_{h} \in \widehat{V}_{h}
$$

Semi-discrete system in space

Ansatz

$$
u_{h}(t)=\sum_{j=0}^{N} U_{j}(t) \phi_{j}
$$

Find $\left[U_{1}(t), \ldots, U_{N}(t)\right]^{\top}$

$$
\sum_{j=1}^{N} \dot{U}_{j}\left(\phi_{j}, v_{h}\right)+\sum_{j=1}^{N} U_{j} a\left(\phi_{j}, v_{h}\right)=L\left(v_{h}\right)
$$

or equivalently

$$
\sum_{j=1}^{N} \dot{U}_{j} \underbrace{\left(\phi_{j}, \phi_{i}\right)}_{M_{i j}}+\sum_{j=1}^{N} U_{j} \underbrace{a\left(\phi_{j}, \phi_{i}\right)}_{A_{i j}}=\underbrace{L\left(\phi_{i}\right)}_{b_{i}} \quad \forall j=1, \ldots, N
$$

or equivalently

$$
M \dot{U}(t)+A U(t)=b(t)
$$

Semi-discrete system in space - part II

Find $\left[U_{1}(t), \ldots, U_{N}(t)\right]^{\top}$ such that

$$
M \dot{U}(t)+A U(t)=b(t)
$$

where

- $M=\left(\int_{\Omega} \phi_{j}(x) \phi_{i}(x)\right)_{i j}$ is the mass matrix
- $A=\left(\int_{\Omega} \nabla \phi_{j}(x) \nabla \phi_{i}(x)\right)_{i j}$ is the stiffness matrix
- $\left.b(t)=\left(\int_{\Omega} f(t, x) \phi_{i}(x) \mathrm{d} x\right)\right)_{i}$ is the load vector
\Rightarrow System of ordinary differential equations
Note: A and M are time-independent!

A full discretization scheme: The θ-method

For $0 \leqslant \theta \leqslant 1$ and U^{k} known from the previous time-step, compute U^{k+1} by solving

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A\left[\theta U^{k+1}+(1-\theta) U^{k}\right]=\theta b^{k+1}+(1-\theta) b^{k}
$$

- First-order explicit/forward Euler for $\theta=0$:

- First-order implicit/backward Euler for $\theta=1$:

- Second-order Crank-Nicolson for $\theta=1 / 2$:

A full discretization scheme: The θ-method

For $0 \leqslant \theta \leqslant 1$ and U^{k} known from the previous time-step, compute U^{k+1} by solving

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A\left[\theta U^{k+1}+(1-\theta) U^{k}\right]=\theta b^{k+1}+(1-\theta) b^{k}
$$

- First-order explicit/forward Euler for $\theta=0$:

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A U^{k}=b^{k}
$$

- First-order implicit/backward Euler for $\theta=1$:

- Second-order Crank-Nicolson for $\theta=1 / 2$:

A full discretization scheme: The θ-method

For $0 \leqslant \theta \leqslant 1$ and U^{k} known from the previous time-step, compute U^{k+1} by solving

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A\left[\theta U^{k+1}+(1-\theta) U^{k}\right]=\theta b^{k+1}+(1-\theta) b^{k}
$$

- First-order explicit/forward Euler for $\theta=0$:

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A U^{k}=b^{k}
$$

- First-order implicit/backward Euler for $\theta=1$:

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A U^{k+1}=b^{k+1}
$$

- Second-order Crank-Nicolson for $\theta=1 / 2$:

A full discretization scheme: The θ-method

For $0 \leqslant \theta \leqslant 1$ and U^{k} known from the previous time-step, compute U^{k+1} by solving

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A\left[\theta U^{k+1}+(1-\theta) U^{k}\right]=\theta b^{k+1}+(1-\theta) b^{k}
$$

- First-order explicit/forward Euler for $\theta=0$:

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A U^{k}=b^{k}
$$

- First-order implicit/backward Euler for $\theta=1$:

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+A U^{k+1}=b^{k+1}
$$

- Second-order Crank-Nicolson for $\theta=1 / 2$:

$$
M \frac{U^{k+1}-U^{k}}{\Delta t}+\frac{1}{2} A\left(U^{k+1}+U^{k}\right)=\frac{1}{2}\left(b^{k+1}+b^{k}\right)
$$

Implementation of the implicit Euler method

Recast as a discrete variational problem
First-order implicit/backward Euler for $\theta=1$:

$$
\left(\frac{M}{\Delta t}+A\right) U^{k+1}=\frac{M}{\Delta t} U^{k}+b^{k+1}
$$

can be reformulated as: Find $u_{h}^{k+1} \in V_{h}$ sucht that

$$
\left(u_{h}^{k+1}, v_{h}\right)+\Delta t a\left(u_{h}^{k+1}, v_{h}\right)=\left(u_{h}^{k}, v_{h}\right)+\Delta t\left(f^{k+1}, v_{h}\right) \quad \forall v_{h} \in \widehat{V}_{h}
$$

Exercise: Find the corresponding variational problems for the explicit Euler and Crank-Nicolson schemes

Initial condition

$$
u_{h}^{0} \approx u^{0}
$$

Choose L^{2}-projection $\Pi_{h} u^{0}$ on V_{h} or interpolation $I_{h}\left(u^{0}\right)$

Detailed time-stepping algorithm for the heat equation

Define the boundary condition
Compute u^{0} as the projection of the given initial value Define the forms a and L
Assemble the matrix A from the bilinear form a
$t \leftarrow \Delta t$
while $t \leqslant T$ do
Assemble the vector b from the linear form L Apply the boundary condition
Solve the linear system $A U=b$ for U and store in u^{1}
$t \leftarrow t+\Delta t$
$u^{0} \leftarrow u^{1}$ (get ready for next step)
end while

Method of manufactured solutions

We construct a test problem for which we can easily check the answer. We first define the exact solution by

$$
u(x, y, t)=e^{-4 \pi^{2} t} \cos (2 \pi x) \cos (2 \pi y)
$$

We compute

$$
\begin{aligned}
\partial_{t} u(x, y, t) & =-4 \pi^{2} e^{-4 \pi^{2} t} \cos (2 \pi x) \cos (2 \pi y) \\
-\Delta u(x, y, t) & =+8 \pi^{2} e^{-4 \pi^{2} t} \cos (2 \pi x) \cos (2 \pi y)
\end{aligned}
$$

So we have to find u such that

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) u(x, y, t) & =+4 \pi^{2} e^{-4 \pi^{2} t} \cos (2 \pi x) \cos (2 \pi y) \quad \text { in } \Omega \times(0, T] \\
u(x, y, t) & =e^{-4 \pi^{2} t} \cos (2 \pi x) \cos (2 \pi y) \quad \text { on } \partial \Omega \times(0, T] \\
u(x, y, 0) & =\cos (2 \pi x) \cos (2 \pi y) \quad \text { on } \Omega \times\{0\}
\end{aligned}
$$

Our mission: Solve this problem choosing $T=0.1$, a fixed time-step $\Delta t=0.001$ and using the implicit Euler method.
Visualise u, u_{h} and $u-u_{h}$.

Handling time-dependent expressions

We need to define a time-dependent expression for the boundary value:

Python code

```
# Start time
t0 = 0
g = Expression("exp(-4*DOLFIN_PI*DOLFIN_PI*t) \
                                    *cos(2*DOLFIN_PI*x[0]) \
                                * cos(2*DOLFIN_PI*x[1])", t=t0)
f = Expression("4*DOLFIN_PI*DOLFIN_PI \
    *exp(-4*DOLFIN_PI*DOLFIN_PI*t)\
    *cos(2*DOLFIN_PI*x[0]) \
    * cos(2*DOLFIN_PI*x[1])",t=t0)
```

Updating parameter values:
Python code

```
g.t = t
f.t=t
```


Projection and interpolation

We need to project the initial value into V_{h} :
Python code

```
uO = project(g, V)
```

We can also interpolate the initial value into V_{h} :

> Python code

$$
\mathrm{uO}=\text { interpolate }(\mathrm{g}, \mathrm{~V})
$$

Implementing the variational problem

Python code

```
u0 = interpolate(g,V)
u = TrialFunction(V)
v = TestFunction(V)
# time step
dt = 0.001
# Define variational forms
a}=\textrm{u}*\textrm{v}*\textrm{dx}+\textrm{dt*inner(grad}(\textrm{u}),grad(v))*d
L}=,u0*v*dx+dt*f*v*d
# assemble only once, before time-stepping
A = assemble(a)
```


Implementing the time-stepping loop

Python code

```
u1 = Function(V)
T = 0.1
t = dt
while t <= T:
    g.t = t
    f.t=t
    b = assemble(L)
    bc.apply(A, b)
    solve(A, u1.vector(), b)
    t += dt
    u0.assign(u1)
```


Let's start!

The FEniCS homework!

- Implement the explicit/forward Euler scheme and the Crank-Nicolsen scheme. Compute the numerical solutions and repeat the post-processing steps.
- What do you observe when you use the explicit/forward Euler scheme? Why?
- Repeat the computation for a $N=10$ and $\Delta t=0.0001$ for the explicit Euler method. What happens if you now increase N again?

