FEniCS Course
 Lecture 2: Static linear PDEs

Contributors
Hans Petter Langtangen
Anders Logg
André Massing

Hello World!

We will solve Poisson's equation, the Hello World of scientific computing:

$$
\begin{aligned}
&-\Delta u=f \\
& \text { in } \Omega \\
& u=u_{0} \\
& \text { on } \partial \Omega
\end{aligned}
$$

Poisson's equation arises in numerous contexts:

- heat conduction, electrostatics, diffusion of substances, twisting of elastic rods, inviscid fluid flow, water waves, magnetostatics
- as part of numerical splitting strategies of more complicated systems of PDEs, in particular the Navier-Stokes equations

The FEM cookbook

(i)

Solving PDEs in FEniCS

Solving a physical problem with FEniCS consists of the following steps:
(1) Identify the PDE and its boundary conditions
(2) Reformulate the PDE problem as a variational problem
(3) Make a Python program where the formulas in the variational problem are coded, along with definitions of input data such as f, u_{0}, and a mesh for Ω
(4) Add statements in the program for solving the variational problem, computing derived quantities such as ∇u, and visualizing the results

Deriving a variational problem for Poisson's equation

The simple recipe is: multiply the PDE by a test function v and integrate over Ω :

$$
-\int_{\Omega}(\Delta u) v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x
$$

Then integrate by parts and set $v=0$ on the Dirichlet boundary:

$$
-\int_{\Omega}(\Delta u) v \mathrm{~d} x=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\underbrace{\int_{\partial \Omega} \frac{\partial u}{\partial n} v \mathrm{~d} s}_{=0}
$$

We find that:

$$
\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x
$$

Variational problem for Poisson's equation

Find $u \in V$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x
$$

for all $v \in \hat{V}$
The trial space V and the test space \hat{V} are (here) given by

$$
\begin{aligned}
V & =\left\{v \in H^{1}(\Omega): v=u_{0} \text { on } \partial \Omega\right\} \\
\hat{V} & =\left\{v \in H^{1}(\Omega): v=0 \text { on } \partial \Omega\right\}
\end{aligned}
$$

Discrete variational problem for Poisson's equation

We approximate the continuous variational problem with a discrete variational problem posed on finite dimensional subspaces of V and \hat{V} :

$$
\begin{aligned}
& V_{h} \subset V \\
& \hat{V}_{h} \subset \hat{V}
\end{aligned}
$$

Find $u_{h} \in V_{h} \subset V$ such that

$$
\int_{\Omega} \nabla u_{h} \cdot \nabla v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x
$$

for all $v \in \hat{V}_{h} \subset \hat{V}$

Canonical variational problem

The following canonical notation is used in FEniCS: find $u \in V$ such that

$$
a(u, v)=L(v)
$$

for all $v \in \hat{V}$
For Poisson's equation, we have

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x \\
L(v) & =\int_{\Omega} f v \mathrm{~d} x
\end{aligned}
$$

$a(u, v)$ is a bilinear form and $L(v)$ is a linear form

Poisson example 1

Strong form
Let $\Omega=[0,1] \times[0,1]$. Solve

$$
\begin{aligned}
-\Delta u=1 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

Weak form
Find $u \in H_{0}^{1}(\Omega)$ such that for all $v \in H_{0}^{1}(\Omega)$

$$
\underbrace{\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x}_{a(u, v)}=\underbrace{\int_{\Omega} 1 v \mathrm{~d} x}_{L(v)}
$$

Poisson example 2

- Domain:

$$
\begin{aligned}
\Omega & =[0,1] \times[0,1] \\
\partial \Omega_{D} & =\{0\} \times[0,1] \cup\{1\} \times[0,1] \\
\partial \Omega_{N} & =[0,1] \times\{0\} \cup[0,1] \times\{1\}
\end{aligned}
$$

- Source and boundary values:

$$
\begin{aligned}
f(x, y) & =2 \cos (2 \pi x) \cos (2 \pi y) \\
g_{D}(x, y) & =0.1 \cos (2 \pi y)
\end{aligned}
$$

Strong form

$$
\begin{aligned}
-\Delta u & =f \quad \text { in } \Omega \\
u & =g_{D} \quad \text { on } \partial \Omega_{D} \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \quad \text { on } \partial \Omega_{N}
\end{aligned}
$$

- Function spaces:
$V=\left\{v \in H^{1}(\Omega): v=g_{D}\right.$ on $\left.\partial \Omega_{D}\right\}$
$\hat{V}=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\partial \Omega_{D}\right\}$

Poisson example 2

- Domain:

$$
\begin{aligned}
\Omega & =[0,1] \times[0,1] \\
\partial \Omega_{D} & =\{0\} \times[0,1] \cup\{1\} \times[0,1] \\
\partial \Omega_{N} & =[0,1] \times\{0\} \cup[0,1] \times\{1\}
\end{aligned}
$$

- Source and boundary values:

$$
\begin{aligned}
f(x, y) & =2 \cos (2 \pi x) \cos (2 \pi y) \\
g_{D}(x, y) & =0.1 \cos (2 \pi y)
\end{aligned}
$$

Strong form

$$
\begin{aligned}
-\Delta u & =f \quad \text { in } \Omega \\
u & =g_{D} \quad \text { on } \partial \Omega_{D} \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \quad \text { on } \partial \Omega_{N}
\end{aligned}
$$

Weak form
Find $u \in V$ such that for all $v \in \widehat{V}$

$$
\underbrace{\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x}_{a(u, v)}=\underbrace{\int_{\Omega} f v \mathrm{~d} x}_{L(v)}
$$

- Function spaces:

$$
\begin{aligned}
V & =\left\{v \in H^{1}(\Omega): v=g_{D} \text { on } \partial \Omega_{D}\right\} \\
\hat{V} & =\left\{v \in H^{1}(\Omega): v=0 \text { on } \partial \Omega_{D}\right\}
\end{aligned}
$$

Poisson example 3

- Domain:

$$
\begin{aligned}
\Omega & =[0,1] \times[0,1] \backslash \text { dolphin domain } \\
\partial \Omega_{D} & =\{0\} \times[0,1] \cup\{1\} \times[0,1] \\
\partial \Omega_{N} & =\partial \Omega \backslash \partial \Omega_{D}
\end{aligned}
$$

- Source and boundary values:

$$
\begin{aligned}
f(x, y) & =2 \cos (2 \pi x) \cos (2 \pi y) \\
g_{D}(x, y) & =0.5 \cos (2 \pi y) \quad \text { on } x=0 \\
g_{D}(x, y) & =1 \quad \text { on } x=1 \\
g_{N}(x, y) & =\sin (\pi x) \sin (\pi y)
\end{aligned}
$$

Strong form

$$
\begin{array}{rlrl}
-\Delta u & =f & \text { in } \Omega \\
u & =g_{D} & & \text { on } \partial \Omega_{D} \\
-\frac{\partial u}{\partial \boldsymbol{n}} & =g_{N} & & \text { on } \partial \Omega_{N}
\end{array}
$$

Weak form

- Function spaces:

Poisson example 3

- Domain:

$$
\begin{aligned}
\Omega & =[0,1] \times[0,1] \backslash \text { dolphin domain } \\
\partial \Omega_{D} & =\{0\} \times[0,1] \cup\{1\} \times[0,1] \\
\partial \Omega_{N} & =\partial \Omega \backslash \partial \Omega_{D}
\end{aligned}
$$

- Source and boundary values:

$$
\begin{aligned}
f(x, y) & =2 \cos (2 \pi x) \cos (2 \pi y) \\
g_{D}(x, y) & =0.5 \cos (2 \pi y) \quad \text { on } x=0 \\
g_{D}(x, y) & =1 \quad \text { on } x=1 \\
g_{N}(x, y) & =\sin (\pi x) \sin (\pi y)
\end{aligned}
$$

Strong form

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \\
u & =g_{D} & & \text { on } \partial \Omega_{D} \\
-\frac{\partial u}{\partial \boldsymbol{n}} & =g_{N} & & \text { on } \partial \Omega_{N}
\end{aligned}
$$

Weak form

Find $u \in V$ such that for all $v \in \widehat{V}$

$$
\underbrace{\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x}_{a(u, v)}=\underbrace{\int_{\Omega} f v \mathrm{~d} x+\int_{\partial \Omega_{N}} g v \mathrm{~d} s}_{L(v)}
$$

- Function spaces:

$$
\begin{aligned}
& V=\left\{v \in H^{1}(\Omega): v=g_{D} \text { on } \partial \Omega_{D}\right\} \\
& \hat{V}=\left\{v \in H^{1}(\Omega): v=0 \text { on } \partial \Omega_{D}\right\}
\end{aligned}
$$

Poisson example 3: Mission possible

Your mission

- open and plot the dolfin mesh saved in dolfin-channel.xml
- solve the discrete variational problem
- export the solution to a pvd file and visualize it in Paraview

Your tools
Read in a mesh
Python code

```
mesh = Mesh("dolfin-channel.xml")
```

Inhomogeneus Neuman boundary condition

> Python code

```
L = ... + g_N*v*ds
```

List of Dirchlet boundary conditions

> Python code

```
bcO = DirichletBC(...)
bc1 = DirichletBC(...)
bcs = [bc0, bc1]
```

Save solution in VTK format

> Python code

```
u_file = File("poisson_3.pvd")
u_file << u
```


Poisson example 3: Extra mission

- Choose a variable conductivity of the form

$$
k(x, y)=1+e^{\left(x^{2}+y^{2}\right)}
$$

- What is the expression of the heat flux σ across the boundary now (opposed to $\sigma \cdot \boldsymbol{n}=\frac{\partial u}{\partial \boldsymbol{n}}$ in the original problem)?
- Replace the inhomogeneus Neumann boundary condition by a Robin boundary condition

$$
-\sigma \cdot \boldsymbol{n}=u-g_{N} \quad \text { on } \partial \Omega_{N}
$$

- Solve $\quad-\nabla \cdot(k(x, y) \nabla u)=f \quad$ in Ω

$$
\begin{aligned}
u & =g_{D} \quad \text { on } \partial \Omega_{D} \\
-\sigma \cdot \boldsymbol{n} & =u-g_{N} \quad \text { on } \partial \Omega_{N}
\end{aligned}
$$

by finding the weak formulation of the problem and solving it using FEniCS

Poisson example 4

- Domain:

$$
\begin{aligned}
\Omega_{1} & =[0,1] \times[0,0.5] \\
\Omega_{2} & =[0,1] \times[0.5,1] \\
\Omega & =\Omega_{1} \cup \Omega_{2} \\
\partial \Omega_{D} & =\partial \Omega
\end{aligned}
$$

- Conductivity, source and boundary values:

$$
\begin{aligned}
k(x, y) & = \begin{cases}10 & \text { in } \Omega_{1} \\
50+e^{50(0.5-y)^{2}} & \text { in } \Omega_{2}\end{cases} \\
f(x, y) & =1 \\
g_{D}(x, y) & =0
\end{aligned}
$$

Strong form

$$
\begin{aligned}
-\nabla \cdot\left(k_{1}(x, y) \nabla u\right) & =f & & \text { in } \Omega_{1} \\
-\nabla \cdot\left(k_{2}(x, y) \nabla u\right)+u & =f & & \text { in } \Omega_{2} \\
u & =g_{D} & & \text { on } \partial \Omega_{D}
\end{aligned}
$$

Weak form

Find $u \in V$ such that for all $v \in V$

- Function spaces:
$V=\left\{v \in H^{1}(\Omega): v=g_{D}\right.$ on $\left.\partial \Omega_{D}\right\}$
$\hat{V}=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\partial \Omega_{D}\right\}$

Poisson example 4

- Domain:

$$
\begin{aligned}
\Omega_{1} & =[0,1] \times[0,0.5] \\
\Omega_{2} & =[0,1] \times[0.5,1] \\
\Omega & =\Omega_{1} \cup \Omega_{2} \\
\partial \Omega_{D} & =\partial \Omega
\end{aligned}
$$

- Conductivity, source and boundary values:

$$
\begin{aligned}
k(x, y) & = \begin{cases}10 & \text { in } \Omega_{1} \\
50+e^{50(0.5-y)^{2}} & \text { in } \Omega_{2}\end{cases} \\
f(x, y) & =1 \\
g_{D}(x, y) & =0
\end{aligned}
$$

Strong form

$$
\begin{array}{rlrl}
-\nabla \cdot\left(k_{1}(x, y) \nabla u\right) & =f & \text { in } \Omega_{1} \\
-\nabla \cdot\left(k_{2}(x, y) \nabla u\right)+u & =f & & \text { in } \Omega_{2} \\
u & =g_{D} \quad \text { on } \partial \Omega_{D}
\end{array}
$$

Weak form

Find $u \in V$ such that for all $v \in \widehat{V}$
$\underbrace{\int_{\Omega_{1}} k_{1} \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega_{2}} k_{2} \nabla u \cdot \nabla v+u v \mathrm{~d} x}_{a(u, v)}=\underbrace{\int_{\Omega} f v \mathrm{~d} x}_{L(v)}$

- Function spaces:

$$
\begin{aligned}
& V=\left\{v \in H^{1}(\Omega): v=g_{D} \text { on } \partial \Omega_{D}\right\} \\
& \hat{V}=\left\{v \in H^{1}(\Omega): v=0 \text { on } \partial \Omega_{D}\right\}
\end{aligned}
$$

The FEniCS challenge!

- Domain:

$$
\begin{aligned}
\Omega_{D O} & =\text { dolphin domain } \\
\Omega & =[0,1] \times[0,1] \backslash \Omega_{D O} \\
\Omega_{1} & =\left\{T \in \mathcal{T}: T \subset B_{0.35}(0.5,0.5)\right\} \\
\Omega_{2} & =\Omega \backslash \Omega_{1} \\
\partial \Omega_{D} & =\{0\} \times[0,1] \cup\{1\} \times[0,1] \\
\partial \Omega_{N, 1} & =\partial \Omega_{D O} \\
\partial \Omega_{N, 2} & =[0,1] \times\{0\} \cup[0,1] \times\{1\}
\end{aligned}
$$

- Conductivity, source and boundary values:

$$
\begin{aligned}
k(x, y) & = \begin{cases}10 & \text { in } \Omega_{1} \\
50+e^{50(0.5-y)^{2}} & \text { in } \Omega_{2}\end{cases} \\
f(x, y) & =1 \\
g_{D}(x, y) & =0 \\
g_{N, 1}(x, y) & =0 \\
g_{N, 2}(x, y) & =\sin (\pi x) \sin (\pi y)
\end{aligned}
$$

- As an alternative, reuse the source function and the Dirichlet boundary values from exercise 3:

$$
\begin{aligned}
f(x, y) & =2 \cos (2 \pi x) \cos (2 \pi y) \\
g_{D}(x, y) & =0.5 \cos (2 \pi y) \quad \text { on } x=0 \\
g_{D}(x, y) & =1 \quad \text { on } x=1
\end{aligned}
$$

The FEniCS challenge!

Solve

$$
\begin{gathered}
-\nabla \cdot\left(k_{1}(x, y) \nabla u\right)+u=f \quad \text { in } \Omega_{1} \\
-\nabla \cdot\left(k_{2}(x, y) \nabla u\right)=f \quad \text { in } \Omega_{2} \\
u=g_{D} \quad \text { on } \partial \Omega_{D} \\
-\frac{\partial u}{\partial \boldsymbol{n}}=g_{N, 1} \quad \text { on } \partial \Omega_{N, 1} \\
-\frac{\partial u}{\partial \boldsymbol{n}}=u-g_{N, 2} \quad \text { on } \partial \Omega_{N, 2}
\end{gathered}
$$

by first finding the weak formulation and then solving the system numerically using FEniCS

Tools
Define facet markers

Python code

```
boundary_markers = FacetFunction("size_t",mesh)
```

...

A redefinition of "ds" is necessary as well (why?). How will that probably look like?

