
Automated Solution of
Differential Equations by

the Finite Element Method

Logg, Mardal, Wells (Eds.)

May 24, 2011

Copyright © 2011 The FEniCS Project.
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the chapter entitled "GNU Free Documentation License".
First printing, May 2011

Contents

1 Introduction 1

2 Tutorial 3

I Methodology 73

3 The finite element method 75

4 Common and unusual finite elements 95

5 Constructing general reference finite elements 125

6 Finite element variational forms 137

7 Finite element assembly 145

8 Quadrature representation of finite element variational forms 151

9 Tensor representation of finite element variational forms 165

10 Discrete optimization of finite element matrix evaluation 169

II Implementation 177

11 DOLFIN: A C++/Python finite element library 179

12 FFC: the FEniCS form compiler 231

13 FErari: an optimizing compiler for variational forms 245

14 FIAT: numerical construction of finite element basis functions 253

15 Instant: just-in-time compilation of C/C++ in Python 263

16 SyFi and SFC: symbolic finite elements and form compilation 281

17 UFC: a finite element code generation interface 291

18 UFL: a finite element form language 311

iii

iv CONTENTS

19 Unicorn: a unified continuum mechanics solver 347

20 Lessons learned in mixed language programming 369

III Applications 389

21 Finite elements for incompressible fluids 391

22 A comparison of some finite element schemes for the incompressible Navier–Stokes
equations 407

23 Simulation of transitional flows 431

24 Turbulent flow and fluid–structure interaction 453

25 An adaptive finite element solver for fluid–structure interaction problems 465

26 Multiphase flow through porous media 483

27 Improved Boussinesq equations for surface water waves 485

28 Computational hemodynamics 523

29 Cerebrospinal fluid flow 539

30 A computational framework for nonlinear elasticity 559

31 Applications in solid mechanics 577

32 Modeling evolving discontinuities 599

33 Automatic calibration of depositional models 613

34 Dynamic simulations of convection in the Earth’s mantle 625

35 A coupled stochastic and deterministic model of Ca2+ dynamics in the dyadic cleft 641

36 Electromagnetic waveguide analysis 657

37 Block preconditioning of systems of PDEs 671

38 Automated testing of saddle point stability conditions 683

List of authors 699

GNU Free Documentation License 707

References 741

1 Introduction
By Anders Logg, Garth N. Wells and Kent-Andre Mardal

1

2 Tutorial
By Hans Petter Langtangen

This chapter presents a FEniCS tutorial to get new users quickly up and running with solving
differential equations. FEniCS can be programmed both in C++ and Python, but this tutorial
focuses exclusively on Python programming, since this is the simplest approach to exploring
FEniCS for beginners and since it actually gives high performance. After having digested the
examples in this tutorial, the reader should be able to learn more from the FEniCS documentation
and from the other chapters in this book.

2.1 Fundamentals

FEniCS is a user-friendly tool for solving partial differential equations (PDEs). The goal of this
tutorial is to get you started with FEniCS through a series of simple examples that demonstrate

• how to define the PDE problem in terms of a variational problem,

• how to define simple domains,

• how to deal with Dirichlet, Neumann, and Robin conditions,

• how to deal with variable coefficients,

• how to deal with domains built of several materials (subdomains),

• how to compute derived quantities like the flux vector field or a functional of the solution,

• how to quickly visualize the mesh, the solution, the flux, etc.,

• how to solve nonlinear PDEs in various ways,

• how to deal with time-dependent PDEs,

• how to set parameters governing solution methods for linear systems,

• how to create domains of more complex shape.

The mathematics of the illustrations is kept simple to better focus on FEniCS functionality and
syntax. This means that we mostly use the Poisson equation and the time-dependent diffusion
equation as model problems, often with input data adjusted such that we get a very simple solution
that can be exactly reproduced by any standard finite element method over a uniform, structured
mesh. This latter property greatly simplifies the verification of the implementations. Occasionally

3

4 CHAPTER 2. TUTORIAL

we insert a physically more relevant example to remind the reader that changing the PDE and
boundary conditions to something more real might often be a trivial task.
FEniCS may seem to require a thorough understanding of the abstract mathematical version
of the finite element method as well as familiarity with the Python programming language.
Nevertheless, it turns out that many are able to pick up the fundamentals of finite elements and
Python programming as they go along with this tutorial. Simply keep on reading and try out the
examples. You will be amazed of how easy it is to solve PDEs with FEniCS!
Reading this tutorial obviously requires access to a machine where the FEniCS software is installed.
Section 2.8.3 explains briefly how to install the necessary tools.

2.1.1 The Poisson equation

Our first example regards the Poisson problem,

−∆u = f in Ω,

u = u0 on ∂Ω.
(2.1)

Here, u = u(x) is the unknown function, f = f (x) is a prescribed function, ∆ is the Laplace
operator (also often written as ∇2), Ω is the spatial domain, and ∂Ω is the boundary of Ω.
A stationary PDE like this, together with a complete set of boundary conditions, constitute a
boundary-value problem, which must be precisely stated before it makes sense to start solving it
with FEniCS.
In two space dimensions with coordinates x and y, we can write out the Poisson equation (2.1) in
detail:

−∂2u
∂x2 −

∂2u
∂y2 = f (x, y). (2.2)

The unknown u is now a function of two variables, u(x, y), defined over a two-dimensional domain
Ω.
The Poisson equation (2.1) arises in numerous physical contexts, including heat conduction,
electrostatics, diffusion of substances, twisting of elastic rods, inviscid fluid flow, and water waves.
Moreover, the equation appears in numerical splitting strategies of more complicated systems of
PDEs, in particular the Navier–Stokes equations.
Solving a physical problem with FEniCS consists of the following steps:

1. Identify the PDE and its boundary conditions.

2. Reformulate the PDE problem as a variational problem.

3. Make a Python program where the formulas in the variational problem are coded, along
with definitions of input data such as f , u0, and a mesh for Ω in (2.1).

4. Add statements in the program for solving the variational problem, computing derived
quantities such as ∇u, and visualizing the results.

We shall now go through steps 2–4 in detail. The key feature of FEniCS is that steps 3 and 4 result
in fairly short code, while most other software frameworks for PDEs require much more code and
more technically difficult programming.

2.1.2 Variational formulation

FEniCS makes it easy to solve PDEs if finite elements are used for discretization in space and
the problem is expressed as a variational problem. Readers who are not familiar with variational

2.1. FUNDAMENTALS 5

problems will get a brief introduction to the topic in this tutorial, and in the forthcoming chapter,
but getting and reading a proper book on the finite element method in addition is encouraged.
Section 2.8.4 contains a list of some suitable books.

The core of the recipe for turning a PDE into a variational problem is to multiply the PDE by a
function v, integrate the resulting equation over Ω, and perform integration by parts of terms with
second-order derivatives. The function v which multiplies the PDE is in the mathematical finite
element literature called a test function. The unknown function u to be approximated is referred
to as a trial function. The terms test and trial function are used in FEniCS programs too. Suitable
function spaces must be specified for the test and trial functions. For standard PDEs arising in
physics and mechanics such spaces are well known.

In the present case, we first multiply the Poisson equation by the test function v and integrate:

−
∫

Ω
(∆u)v dx =

∫

Ω
f v dx . (2.3)

Then we apply integration by parts to the integrand with second-order derivatives:

−
∫

Ω
(∆u)v dx =

∫

Ω
∇u · ∇v dx−

∫

∂Ω

∂u
∂n

v ds, (2.4)

where ∂u/∂n is the derivative of u in the outward normal direction on the boundary. The test
function v is required to vanish on the parts of the boundary where u is known, which in the
present problem implies that v = 0 on the whole boundary ∂Ω. The second term on the right-hand
side of (2.4) therefore vanishes. From (2.3) and (2.4) it follows that

∫

Ω
∇u · ∇v dx =

∫

Ω
f v dx . (2.5)

This equation is supposed to hold for all v in some function space V̂. The trial function u lies
in some (possibly different) function space V. We refer to (2.5) as the weak form of the original
boundary-value problem (2.1).

The proper statement of our variational problem now goes as follows: find u ∈ V such that
∫

Ω
∇u · ∇v dx =

∫

Ω
f v dx ∀ v ∈ V̂. (2.6)

The trial and test spaces V and V̂ are in the present problem defined as

V = {v ∈ H1(Ω) : v = u0 on ∂Ω},
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

(2.7)

In short, H1(Ω) is the mathematically well-known Sobolev space containing functions v such
that v2 and |∇v|2 have finite integrals over Ω. The solution of the underlying PDE must lie
in a function space where also the derivatives are continuous, but the Sobolev space H1(Ω)
allows functions with discontinuous derivatives. This weaker continuity requirement of u in the
variational statement (2.6), caused by the integration by parts, has great practical consequences
when it comes to constructing finite elements.

To solve the Poisson equation numerically, we need to transform the continuous variational
problem (2.6) to a discrete variational problem. This is done by introducing finite-dimensional test
and trial spaces, often denoted as Vh ⊂ V and V̂h ⊂ V̂. The discrete variational problem reads:

6 CHAPTER 2. TUTORIAL

find uh ∈ Vh ⊂ V such that
∫

Ω
∇uh · ∇v dx =

∫

Ω
f v dx ∀ v ∈ V̂h ⊂ V̂ . (2.8)

The choice of Vh and V̂h follows directly from the kind of finite elements we want to apply in
our problem. For example, choosing the well-known linear triangular element with three nodes
implies that Vh and V̂h are the spaces of all piecewise linear functions over a mesh of triangles,
where the functions in V̂h are zero on the boundary and those in Vh equal u0 on the boundary.
The mathematics literature on variational problems writes uh for the solution of the discrete
problem and u for the solution of the continuous problem. To obtain (almost) a one-to-one
relationship between the mathematical formulation of a problem and the corresponding FEniCS
program, we shall use u for the solution of the discrete problem and ue for the exact solution of
the continuous problem, if we need to explicitly distinguish between the two. In most cases, we
will introduce the PDE problem with u as unknown, derive a variational equation a(u, v) = L(v)
with u ∈ V and v ∈ V̂, and then simply discretize the problem by saying that we choose
finite-dimensional spaces for V and V̂. This restriction of V implies that u becomes a discrete
finite element function. In practice this means that we turn our PDE problem into a continuous
variational problem, create a mesh and specify an element type, and then let V correspond to this
mesh and element choice. Depending upon whether V is infinite- or finite-dimensional, u will be
the exact or approximate solution.
It turns out to be convenient to introduce a unified notation for a weak form like (2.8):

a(u, v) = L(v). (2.9)

In the present problem we have that

a(u, v) =
∫

Ω
∇u · ∇v dx, (2.10)

L(v) =
∫

Ω
f v dx. (2.11)

From the mathematics literature, a(u, v) is known as a bilinear form and L(u) as a linear form. We
shall in every problem we solve identify the terms with the unknown u and collect them in a(u, v),
and similarly collect all terms with only known functions in L(v). The formulas for a and L are
then coded directly in the program.
To summarize, before making a FEniCS program for solving a PDE, we must first perform two
steps:

1. Turn the PDE problem into a discrete variational problem: find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂. (2.12)

2. Specify the choice of spaces (V and V̂); that is, the mesh and type of finite elements.

2.1.3 Implementation

The test problem so far has a general domain Ω and general functions u0 and f . However, we
must specify Ω, u0, and f prior to our first implementation. It will be wise to construct a specific
problem where we can easily check that the solution is correct. Let us choose u(x, y) = 1+ x2 + 2y2

to be the solution of our Poisson problem since the finite element method with linear elements

2.1. FUNDAMENTALS 7

over a uniform mesh of triangular cells should exactly reproduce a second-order polynomial at
the vertices of the cells, regardless of the size of the elements. This property allows us to verify
the code by using very few elements and checking that the computed and the exact solution are
equal to the machine precision. Test problems with this property will be frequently constructed
throughout the present tutorial.
Specifying u(x, y) = 1 + x2 + 2y2 in the problem from Section 2.1.2 implies u0(x, y) = 1 + x2 + 2y2

and f (x, y) = −6. We let Ω be the unit square for simplicity. A FEniCS program for solving (2.1)
with the given choices of u0, f , and Ω may look as follows (the complete code can be found in the
file Poisson2D_D1.py):

Python code
from dolfin import *

Create mesh and define function space

mesh = UnitSquare(6, 4)

V = FunctionSpace(mesh, "CG", 1)

Define boundary conditions

u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]")

def u0_boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(-6.0)

a = inner(grad(u), grad(v))*dx

L = f*v*dx

Compute solution

problem = VariationalProblem(a, L, bc)

u = problem.solve()

Plot solution and mesh

plot(u)

plot(mesh)

Dump solution to file in VTK format

file = File("poisson.pvd")

file << u

Hold plot

interactive()

We shall now dissect this FEniCS program in detail. The program is written in the Python
programming language. You may either take a quick look at a Python tutorial [The Python
Tutorial] to pick up the basics of Python if you are unfamiliar with the language, or you may learn
enough Python as you go along with the examples in the present tutorial. The latter strategy has
proven to work for many newcomers to FEniCS1. Section 2.8.5 lists some relevant Python books.

1The requirement of using Python and an abstract mathematical formulation of the finite element problem may seem
difficult for those who are unfamiliar with these topics. However, the amount of mathematics and Python that is really
demanded to get you productive with FEniCS is quited limited. And Python is an easy-to-learn language that you certainly
will love and use far beyond FEniCS programming.

8 CHAPTER 2. TUTORIAL

The listed FEniCS program defines a finite element mesh, the discrete function spaces V and V̂
corresponding to this mesh and the element type, boundary conditions for u (the function u0),
a(u, v), and L(v). Thereafter, the unknown trial function u is computed. Then we can investigate u
visually or analyze the computed values.
The first line in the program,

Python code
from dolfin import *

imports the key classes UnitSquare, FunctionSpace, Function, and so forth, from the DOLFIN
library. All FEniCS programs for solving PDEs by the finite element method normally start with
this line. DOLFIN is a software library with efficient and convenient C++ classes for finite element
computing, and dolfin is a Python package providing access to this C++ library from Python
programs. You can think of FEniCS as an umbrella, or project name, for a set of computational
components, where DOLFIN is one important component for writing finite element programs.
DOLFIN applies other components in the FEniCS suite under the hood, but newcomers to FEniCS
programming do not need to care about this.
The statement

Python code
mesh = UnitSquare(6, 4)

defines a uniform finite element mesh over the unit square [0, 1]× [0, 1]. The mesh consists of cells,
which are triangles with straight sides. The parameters 6 and 4 tell that the square is first divided
into 6× 4 rectangles, and then each rectangle is divided into two triangles. The total number of
triangles then becomes 48. The total number of vertices in this mesh is 7 · 5 = 35. DOLFIN offers
some classes for creating meshes over very simple geometries. For domains of more complicated
shape one needs to use a separate preprocessor program to create the mesh. The FEniCS program
will then read the mesh from file.
Having a mesh, we can define a discrete function space V over this mesh:

Python code
V = FunctionSpace(mesh, "CG", 1)

The second argument reflects the type of element, while the third argument is the degree of
the basis functions on the element. Here, "CG" stands for Continuous Galerkin, implying the
standard Lagrange family of elements. Instead of "CG" we could have written "Lagrange". With
degree 1, we simply get the standard linear Lagrange element, which is a triangle with nodes at
the three vertices. Some finite element practitioners refer to this element as the “linear triangle”.
The computed u will be continuous and linearly varying in x and y over each cell in the mesh.
Higher-degree polynomial approximations over each cell are trivially obtained by increasing the
third parameter in FunctionSpace. Changing the second parameter to "DG" creates a function
space for discontinuous Galerkin methods.
In mathematics, we distinguish between the trial and test spaces V and V̂. The only difference
in the present problem is the boundary conditions. In FEniCS we do not specify the boundary
conditions as part of the function space, so it is sufficient to work with one common space V for
the test and trial functions in the program:

Python code
u = TrialFunction(V)

v = TestFunction(V)

2.1. FUNDAMENTALS 9

The next step is to specify the boundary condition: u = u0 on ∂Ω. This is done by

Python code
bc = DirichletBC(V, u0, u0_boundary)

where u0 is an instance holding the u0 values, and u0_boundary is a function (or object) describing
whether a point lies on the boundary where u is specified.
Boundary conditions of the type u = u0 are known as Dirichlet conditions, and also as essential
boundary conditions in a finite element context. Naturally, the name of the DOLFIN class holding
the information about Dirichlet boundary conditions is DirichletBC.
The u0 variable refers to an Expression object, which is used to represent a mathematical function.
The typical construction is

Python code
u0 = Expression(formula)

where formula is a string containing the mathematical expression. This formula is written with
C++ syntax (the expression is automatically turned into an efficient, compiled C++ function, see
Section 2.8.6 for details on the syntax). The independent variables in the function expression are
supposed to be available as a point vector x, where the first element x[0] corresponds to the x
coordinate, the second element x[1] to the y coordinate, and (in a three-dimensional problem)
x[2] to the z coordinate. With our choice of u0(x, y) = 1 + x2 + 2y2, the formula string must be
written as 1 + x[0]*x[0] + 2*x[1]*x[1]:

Python code
u0 = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]")

The information about where to apply the u0 function as boundary condition is coded in a function
boundary:

Python code
def u0_boundary(x, on_boundary):

return on_boundary

A function like u0_boundary for marking the boundary must return a boolean value: True if the
point x lies on the Dirichlet boundary and False otherwise. The argument on_boundary is True if
x is on the physical boundary of the mesh, so in the present case we can just return on_boundary.
The u0_boundary function will be called for every discrete point in the mesh, which allows us to
have boundaries where u are known also inside the domain, if desired.
One can also omit the on_boundary argument, but in that case we need to test on the value of the
coordinates in x:

Python code
def u0_boundary(x):

return x[0] == 0 or x[1] == 0 or x[0] == 1 or x[1] == 1

As for the formula in Expression objects, x in the u0_boundary function represents a point in space
with coordinates x[0], x[1], etc. Comparing floating-point values using an exact match test with
== is not good programming practice, because small round-off errors in the computations of the x

values could make a test x[0] == 1 become false even though x lies on the boundary. A better test
is to check for equality with a tolerance:

Python code

10 CHAPTER 2. TUTORIAL

def u0_boundary(x):

tol = 1E-15

return abs(x[0]) < tol or \

abs(x[1]) < tol or \

abs(x[0] - 1) < tol or \

abs(x[1] - 1) < tol

Before defining a(u, v) and L(v) we have to specify the f function:

Python code
f = Expression("-6")

When f is constant over the domain, f can be more efficiently represented as a Constant object:

Python code
f = Constant(-6.0)

Now we have all the objects we need in order to specify this problem’s a(u, v) and L(v):

Python code
a = inner(grad(u), grad(v))*dx

L = f*v*dx

In essence, these two lines specify the PDE to be solved. Note the very close correspondence
between the Python syntax and the mathematical formulas ∇u · ∇v dx and f v dx. This is a
key strength of FEniCS: the formulas in the variational formulation translate directly to very
similar Python code, a feature that makes it easy to specify PDE problems with lots of PDEs and
complicated terms in the equations. The language used to express weak forms is called UFL
(Unified Form Language) and is an integral part of FEniCS.
Having a and L defined, and information about essential (Dirichlet) boundary conditions in bc, we
can formulate a VariationalProblem:

Python code
problem = VariationalProblem(a, L, bc)

Solving the variational problem for the solution u is just a matter of writing

Python code
u = problem.solve()

Unless otherwise stated, a sparse direct solver is used to solve the underlying linear system implied
by the variational formulation. The type of sparse direct solver depends on which linear algebra
package that is used by default. If DOLFIN is compiled with PETSc, that package is the default
linear algebra backend, otherwise it is uBLAS. The FEniCS distribution for Ubuntu Linux contains
PETSc, and then the default solver becomes the sparse LU solver from UMFPACK (which PETSc
has an interface to). We shall later in Section 2.4 demonstrate how to get full control of the choice
of solver and any solver parameters.
The u variable refers to a finite element function, called simply a Function in FEniCS terminology.
Note that we first defined u as a TrialFunction and used it to specify a. Thereafter, we redefined u

to be a Function representing the computed solution. This redefinition of the variable u is possible
in Python and a programming practice in FEniCS applications.
The simplest way of quickly looking at u and the mesh is to say

Python code

2.1. FUNDAMENTALS 11

Figure 2.1: Plot of the solution in
the first FEniCS example. (A bound-
ing box around the mesh is added by
pressing o in the plot window, and the
mouse buttons are then used to rotate
and move the plot, see Section 2.1.8.)

Figure 2.2: Plot of the mesh in the first
FEniCS example.

plot(u)

plot(mesh)

interactive()

The interactive() call is necessary for the plot to remain on the screen. With the left, middle,
and right mouse buttons you can rotate, translate, and zoom (respectively) the plotted surface to
better examine what the solution looks like. Figures ?? and ?? display the resulting u function and
the finite element mesh, respectively.
It is also possible to dump the computed solution to file, e.g., in the VTK format:

Python code
file = File("poisson.pvd")

file << u

The poisson.pvd file can now be loaded into any front-end to VTK, say ParaView or VisIt. The
plot function from Viper is intended for quick examination of the solution during program
development. More in-depth visual investigations of finite element solutions will normally benefit
from using highly professional tools such as ParaView and VisIt.

12 CHAPTER 2. TUTORIAL

2.1.4 Examining the discrete solution

We know that, in the particular boundary-value problem of Section 2.1.3, the computed solution
u should equal the exact solution at the vertices of the cells. An important extension of our first
program is therefore to examine the computed values of the solution, which is the focus of the
present section.
A finite element function like u is expressed as a linear combination of basis functions φi, spanning
the space V:

N

∑
j=1

Ujφj. (2.13)

By writing u = problem.solve() in the program, a linear system will be formed from a and L,
and this system is solved for the U1, . . . , UN values. The U1, . . . , UN values are known as degrees of
freedom of u. For Lagrange elements (and many other element types) Uk is simply the value of u at
the node with global number k. (The nodes and cell vertices coincide for linear Lagrange elements,
while for higher-order elements there may be additional nodes at the facets and in the interior of
cells.)
Having u represented as a Function object, we can either evaluate u(x) at any vertex x in the mesh,
or we can grab all the values Uj directly by

Python code
u_nodal_values = u.vector()

The result is a DOLFIN Vector object, which is basically an encapsulation of the vector object used
in the linear algebra package that is applied to solve the linear system arising form the variational
problem. Since we program in Python it is convenient to convert the Vector object to a standard
numpy array for further processing:

Python code
u_array = u_nodal_values.array()

With numpy arrays we can write “MATLAB-like” code to analyze the data. Indexing is done with
square brackets: u_array[i], where the index i always starts at 0.
The coordinates of the vertices in the mesh can be extracted by

Python code
coor = mesh.coordinates()

For a d-dimensional problem, coor is an M× d numpy array, M being the number of vertices in the
mesh. Writing out the solution on the screen can now be done by a simple loop:

Python code
for i in range(len(u_array)):

print "u(%8g,%8g) = %g" % \

(coor[i][0], coor[i][1], u_array[i])

The beginning of the output looks like this:

Output
u(0, 0) = 1

u(0.166667, 0) = 1.02778

u(0.333333, 0) = 1.11111

u(0.5, 0) = 1.25

u(0.666667, 0) = 1.44444

2.1. FUNDAMENTALS 13

u(0.833333, 0) = 1.69444

u(1, 0) = 2

For Lagrange elements of degree higher than one, the vertices and the nodes do not coincide, and
then the loop above is meaningless.
For verification purposes we want to compare the values of u at the nodes; that is, the values of
the vector u_array, with the exact solution given by u0. At each node, the difference between the
computed and exact solution should be less than a small tolerance. The exact solution is given by
the Expression object u0, which we can evaluate directly as u0(coor[i]) at the vertex with global
number i, or as u0(x) for any spatial point. Alternatively, we can make a finite element field u_e,
representing the exact solution, whose values at the nodes are given by the u0 function. With
mathematics, ue = ∑N

j=1 Ejφj, where Ej = u0(xj, yj), (xj, yj) being the coordinates of node number
j. This process is known as interpolation. FEniCS has a function for performing the operation:

Python code
u_e = interpolate(u0, V)

The maximum error can now be computed as

Python code
u_e_array = u_e.vector().array()

diff = abs(u_array - u_e_array)

print "Max error:", diff.max()

or more compactly:

print "Max error:", abs(u_e_array - u_array).max()

The value of the error should be at the level of the machine precision (10−16).
To demonstrate the use of point evaluations of Function objects, we write out the computed u at
the center point of the domain and compare it with the exact solution:

Python code
center = (0.5, 0.5)

u_value = u(center)

u0_value = u0(center)

print "numerical u at the center point:", u_value

print "exact u at the center point:", u0_value

Trying a 3× 3 mesh, the output from the previous snippet becomes

Output
numerical u at the center point: [1.83333333]

exact u at the center point: [1.75]

The discrepancy is due to the fact that the center point is not a node in this particular mesh, but a
point in the interior of a cell, and u varies linearly over the cell while u0 is a quadratic function.
Mesh information can be gathered from the mesh object, e.g.,

• mesh.num_cells() returns the number of cells (triangles) in the mesh,

• mesh.num_vertices() returns the number of vertices in the mesh (with our choice of linear
Lagrange elements this equals the number of nodes),

• str(mesh) returns a short “pretty print” description of the mesh, e.g.,

14 CHAPTER 2. TUTORIAL

Output
<Mesh of topological dimension 2 (triangles) with

16 vertices and 18 cells, ordered>

and print mesh is actually the same as print str(mesh).

All mesh objects are of type Mesh so typing the command pydoc dolfin.Mesh in a terminal window
will give a list of methods2 that can be called through any Mesh object. In fact, pydoc dolfin.X

shows the documentation of any DOLFIN name X (at the time of this writing, some names have
missing or incomplete documentation).
We have seen how to extract the nodal values in a numpy array. If desired, we can adjust the nodal
values too. Say we want to normalize the solution such that maxj Uj = 1. Then we must divide all
Uj values by maxj Uj. The following snippet performs the task:

Python code
max_u = u_array.max()

u_array /= max_u

u.vector()[:] = u_array

print u.vector().array()

That is, we manipulate u_array as desired, and then we insert this array into u’s Vector object. The
/= operator implies an in-place modification of the object on the left-hand side: all elements of the
u_array are divided by the value max_u. Alternatively, one could write u_array = u_array/max_u,
which implies creating a new array on the right-hand side and assigning this array to the name
u_array. We can equally well insert the entries of u_array into u’s numpy array:

Python code
u.vector().array()[:] = u_array

All the code in this subsection can be found in the file Poisson2D_D2.py.

2.1.5 Formulating a real physical problem

Perhaps you are not particularly amazed by viewing the simple surface of u in the test problem
from Sections 2.1.3 and 2.1.4. However, solving a real physical problem with a more interesting and
amazing solution on the screen is only a matter of specifying a more exciting domain, boundary
condition, and/or right-hand side f .
One possible physical problem regards the deflection D(x, y) of an elastic circular membrane with
radius R, subject to a localized perpendicular pressure force, modeled as a Gaussian function. The
appropriate PDE model is

−T∆D = p(x, y) in Ω = {(x, y) | x2 + y2 6 R}, (2.14)

with

p(x, y) =
A

2πσ
exp

(
−1

2

(
x− x0

σ

)2
− 1

2

(
y− y0

σ

)2
)

. (2.15)

Here, T is the tension in the membrane (constant), p is the external pressure load, A the amplitude
of the pressure, (x0, y0) the localization of the Gaussian pressure function, and σ the “width” of
this function. The boundary condition is D = 0.

2A method in Python (and other languages supporting the class construct) is simply a function in a class.

2.1. FUNDAMENTALS 15

Introducing a scaling with R as characteristic length and 8πσT/A as characteristic size3 of D, we
can derive the equivalent scaled problem on the unit circle,

−∆w = 4 exp

(
−1

2

(
Rx− x0

σ

)2
− 1

2

(
Ry− y0

σ

)2
)

, (2.16)

with w = 0 on the boundary. We have that D = AR2w/(8πσT).
A mesh over the unit circle can be created by

Python code
mesh = UnitCircle(n)

where n is the typical number of elements in the radial direction. You should now be able to figure
out how to modify the Poisson2D_D1.py code to solve this membrane problem. More specifically,
you are recommended to perform the following extensions:

1. initialize R, x0, y0, σ, T, and A in the beginning of the program,

2. build a string expression for p with correct C++ syntax (use “printf” formatting in Python to
build the expression),

3. define the a and L variables in the variational problem for w and compute the solution,

4. plot the mesh, w, and the scaled pressure function p (the right-hand side of (2.16)),

5. write out the maximum real deflection D (the maximum of the w values times A/(8πσT)).

Use variable names in the program similar to the mathematical symbols in this problem.
Choosing a small width σ (say 0.01) and a location (x0, y0) toward the circular boundary (say
(0.6R cos θ, 0.6R sin θ) for any θ ∈ [0, 2π]), may produce an exciting visual comparison of w and
p that demonstrates the very smoothed elastic response to a peak force (or mathematically, the
smoothing properties of the inverse of the Laplace operator). You need to experiment with the
mesh resolution to get a smooth visual representation of p.
In the limit σ→ ∞, the right-hand side p of (2.16) approaches the constant 4, and then the solution
should be w(x, y) = 1− x2 − y2. Compute the absolute value of the difference between the exact
and the numerical solution if σ > 50 and write out the maximum difference to provide some
evidence that the implementation is correct.
You are strongly encouraged to spend some time on doing this exercise and play around with the
plots and different mesh resolutions. A suggested solution to the exercise can be found in the file
membrane1.py.

Python code
from dolfin import *

Set pressure function:

T = 10.0 # tension

A = 1.0 # pressure amplitude

R = 0.3 # radius of domain

theta = 0.2

x0 = 0.6*R*cos(theta)

3Assuming σ large enough so that p ≈ const ∼ A/(2πσ) in Ω, we can integrate an axi-symmetric version of the
equation in the radial coordinate r ∈ [0, R] and obtain D = (r2 − R2)A/(8πσT), which for r = 0 gives a rough estimate of
the size of |D|: AR2/(8πσT).

16 CHAPTER 2. TUTORIAL

y0 = 0.6*R*sin(theta)

sigma = 0.025

#sigma = 50 # verification

pressure = "4*exp(-0.5*(pow((%g*x[0] - %g)/%g, 2)) "\

" - 0.5*(pow((%g*x[1] - %g)/%g, 2)))" % \

(R, x0, sigma, R, y0, sigma)

n = 40 # approx no of elements in radial direction

mesh = UnitCircle(n)

V = FunctionSpace(mesh, "CG", 1)

Define boundary condition w=0

def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

Define variational problem

w = TrialFunction(V)

v = TestFunction(V)

p = Expression(pressure)

a = inner(grad(w), grad(v))*dx

L = v*p*dx

Compute solution

problem = VariationalProblem(a, L, bc)

w = problem.solve()

Plot solution and mesh

plot(mesh, title="Mesh over scaled domain")

plot(w, title="Scaled deflection")

p = interpolate(p, V)

plot(p, title="Scaled pressure")

Find maximum real deflection

max_w = w.vector().array().max()

max_D = A*max_w/(8*pi*sigma*T)

print "Maximum real deflection is", max_D

Verification for "flat" pressure (big sigma)

if sigma >= 50:

w_exact = Expression("1 - x[0]*x[0] - x[1]*x[1]")

w_e = interpolate(w_exact, V)

w_e_array = w_e.vector().array()

w_array = w.vector().array()

diff_array = abs(w_e_array - w_array)

print "Verification of the solution, max difference is %.4E" % \

diff_array.max()

Create finite element field over V and fill with error values

difference = Function(V)

difference.vector()[:] = diff_array

#plot(difference, title="Error field for sigma=%g" % sigma)

Should be at the end

interactive()

2.1. FUNDAMENTALS 17

2.1.6 Computing derivatives

In many Poisson and other problems the gradient of the solution is of interest. The computation is
in principle simple: since u = ∑N

j=1 Ujφj, we have that

∇u =
N

∑
j=1

Uj∇φj. (2.17)

Given the solution variable u in the program, grad(u) denotes the gradient. However, the gradient
of a piecewise continuous finite element scalar field is a discontinuous vector field since the φj has
discontinuous derivatives at the boundaries of the cells. For example, using Lagrange elements
of degree 1, u is linear over each cell, and the numerical ∇u becomes a piecewise constant vector
field. On the contrary, the exact gradient is continuous. For visualization and data analysis
purposes we often want the computed gradient to be a continuous vector field. Typically, we
want each component of ∇u to be represented in the same way as u itself. To this end, we can
project the components of ∇u onto the same function space as we used for u. This means that we
solve w = ∇u approximately by a finite element method4, using the the same elements for the
components of w as we used for u.
The variational problem for w reads: find w ∈ V(g) such that

a(w, v) = L(v) ∀ v ∈ V̂(g), (2.18)

where

a(w, v) =
∫

Ω
w · v dx, (2.19)

L(v) =
∫

Ω
∇u · v dx. (2.20)

The function spaces V(g) and V̂(g) (with the superscript g denoting “gradient”) are vector versions
of the function space for u, with boundary conditions removed (if V is the space we used for u,
with no restrictions on boundary values, V(g) = V̂(g) = [V]d, where d is the number of space
dimensions). For example, if we used piecewise linear functions on the mesh to approximate u, the
variational problem for w corresponds to approximating each component field of w by piecewise
linear functions.
The variational problem for the vector field w, called gradu in the code, is easy to solve in FEniCS:

Python code
V_g = VectorFunctionSpace(mesh, "CG", 1)

w = TrialFunction(V_g)

v = TestFunction(V_g)

a = inner(w, v)*dx

L = inner(grad(u), v)*dx

problem = VariationalProblem(a, L)

gradu = problem.solve()

plot(gradu, title="grad(u)")

4This process is known as projection. Looking at the component ∂u/∂x of the gradient, we project the (discrete) derivative
∑j Uj∂φj/∂x onto another function space with basis φ̄1, φ̄2, . . . such that the derivative in this space is expressed by the
standard sum ∑j Ūjφ̄j, for suitable (new) coefficients Ūj.

18 CHAPTER 2. TUTORIAL

Figure 2.3: Example on visualizing the
vector field∇u by arrows at the nodes.

The new thing is basically that we work with a VectorFunctionSpace, since the unknown is now a
vector field, instead of the FunctionSpace object for scalar fields. Figure ?? shows an example of
how Viper can visualize such a vector field.
The scalar component fields of the gradient can be extracted as separated fields and, e.g., visualized:

Python code
gradu_x, gradu_y = gradu.split(deepcopy=True) # extract components

plot(gradu_x, title="x-component of grad(u)")

plot(gradu_y, title="y-component of grad(u)")

The deepcopy=True argument signifies a deep copy, which is a general term in computer science
implying that a copy of the data is returned. (The opposite, deepcopy=False, means a shallow copy,
where the returned objects are just pointers to the original data.)
The gradu_x and gradu_y variables behave as Function objects. In particular, we can extract the
underlying arrays of nodal values by

Python code
gradu_x_array = gradu_x.vector().array()

gradu_y_array = gradu_y.vector().array()

The degrees of freedom of the gradu vector field can also be reached by

Python code
gradu_array = gradu.vector().array()

but this is a flat numpy array where the degrees of freedom for the x component of the gradient is
stored in the first part, then the degrees of freedom of the y component, and so on.
The program Poisson2D_D3.py extends the code Poisson2D_D2.py from Section 2.1.4 with compu-
tations and visualizations of the gradient. Examining the arrays gradu_x_array and gradu_y_array,
or looking at the plots of gradu_x and gradu_y, quickly reveals that the computed gradu field does
not equal the exact gradient (2x, 4y) in this particular test problem where u = 1 + x2 + 2y2. There
are inaccuracies at the boundaries, arising from the approximation problem for w. Increasing the
mesh resolution shows, however, that the components of the gradient vary linearly as 2x and 4y in

2.1. FUNDAMENTALS 19

the interior of the mesh (as soon as we are one element away from the boundary). See Section 2.1.8
for illustrations of this phenomenon.
Representing the gradient by the same elements as we used for the solution is a very common step
in finite element programs, so the formation and solution of a variational problem for w as shown
above can be replaced by a one-line call:

Python code
gradu = project(grad(u), VectorFunctionSpace(mesh, "CG", 1))

The project function can take an expression involving some finite element function in some space
and project the expression onto another space. The applications are many, including turning
discontinuous gradient fields into continuous ones, comparing higher- and lower-order function
approximations, and transforming a higher-order finite element solution down to a piecewise
linear field, which is required by many visualization packages.

2.1.7 Computing functionals

After the solution u of a PDE is computed, we often want to compute functionals of u, for example,

1
2
||∇u||2 ≡ 1

2

∫

Ω
∇u · ∇u dx, (2.21)

which often reflects the some energy quantity. Another frequently occurring functional is the error

||ue − u|| =
(∫

Ω
(ue − u)2 dx

)1/2
, (2.22)

which is of particular interest when studying convergence properties. Sometimes the interest
concerns the flux out of a part Γ of the boundary ∂Ω,

F = −
∫

Γ
p∇u · n ds, (2.23)

where n is an outward unit normal at Γ and p is a coefficient (see the problem in Section 2.1.12

for a specific example). All these functionals are easy to compute with FEniCS, and this section
describes how it can be done.

Energy functional. The integrand of the energy functional (2.21) is described in the UFL language
in the same manner as we describe weak forms:

Python code
energy = 0.5*inner(grad(u), grad(u))*dx

E = assemble(energy)

The assemble call performs the integration. It is possible to restrict the integration to subdomains,
or parts of the boundary, by using a mesh function to mark the subdomains as explained in
Section 2.6.3. The program membrane2.py carries out the computation of the elastic energy

1
2
||T∇D||2 =

1
2

(
AR
8πσ

)2
||∇w||2 (2.24)

in the membrane problem from Section 2.1.5.

20 CHAPTER 2. TUTORIAL

Convergence estimation. To illustrate error computations and convergence of finite element solu-
tions, we modify the Poisson2D_D3.py program from Section 2.1.6 and specify a more complicated
solution,

u(x, y) = sin(ωπx) sin(ωπy) (2.25)

on the unit square. This choice implies f (x, y) = 2ω2π2u(x, y). With ω restricted to an integer it
follows that u0 = 0. We must define the appropriate boundary conditions, the exact solution, and
the f function in the code:

Python code
def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

omega = 1.0

u_exact = Expression("sin(%g*pi*x[0])*sin(%g*pi*x[1])" % \

(omega, omega))

f = 2*pi**2*omega**2*u_exact

The computation of (2.22) can be done by

Python code
error = (u - u_exact)**2*dx

E = sqrt(assemble(error))

However, u_exact will here be interpolated onto the function space V; that is, the exact solution
used in the integral will vary linearly over the cells, and not as a sine function, if V corresponds to
linear Lagrange elements. This may yield a smaller error u - u_e than what is actually true.
More accurate representation of the exact solution is easily achieved by interpolating the formula
onto a space defined by higher-order elements, say of third degree:

Python code
Ve = FunctionSpace(mesh, "CG", degree=3)

u_e = interpolate(u_exact, Ve)

error = (u - u_e)**2*dx

E = sqrt(assemble(error))

The u function will here be automatically interpolated and represented in the Ve space. When
functions in different function spaces enter UFL expressions, they will be represented in the space
of highest order before integrations are carried out. When in doubt, we should explicitly interpolate
u:

Python code
u_Ve = interpolate(u, Ve)

error = (u_Ve - u_e)**2*dx

The square in the expression for error will be expanded and lead to a lot of terms that almost
cancel when the error is small, with the potential of introducing significant round-off errors. The
function errornorm is available for avoiding this effect by first interpolating u and u_exact to a
space with higher-order elements, then subtracting the degrees of freedom, and then performing
the integration of the error field. The usage is simple:

Python code
E = errornorm(u_exact, u, normtype="L2", degree=3)

2.1. FUNDAMENTALS 21

At the time of this writing, errornorm does not work with Expression objects for u_exact, making
the function inapplicable for most practical purposes. Nevertheless, we can easily express the
procedure explicitly:

Python code
def errornorm(u_exact, u, Ve):

u_Ve = interpolate(u, Ve)

u_e_Ve = interpolate(u_exact, Ve)

e_Ve = Function(Ve)

Subtract degrees of freedom for the error field

e_Ve.vector()[:] = u_e_Ve.vector().array() - \

u_Ve.vector().array()

error = e_Ve**2*dx

return sqrt(assemble(error))

The errornorm procedure turns out to be identical to computing the expression (u_e - u)**2*dx

directly in the present test case.
Sometimes it is of interest to compute the error of the gradient field: ||∇(u− ue)|| (often referred
to as the H1 seminorm of the error). Given the error field e_Ve above, we simply write

Python code
H1seminorm = sqrt(assemble(inner(grad(e_Ve), grad(e_Ve))*dx))

Finally, we remove all plot calls and printouts of u values in the original program, and collect the
computations in a function:

Python code
def compute(nx, ny, polynomial_degree):

mesh = UnitSquare(nx, ny)

V = FunctionSpace(mesh, "CG", degree=polynomial_degree)

...

Ve = FunctionSpace(mesh, "CG", degree=3)

E = errornorm(u_exact, u, Ve)

return E

Calling compute for finer and finer meshes enables us to study the convergence rate. Define the
element size h = 1/n, where n is the number of divisions in x and y direction (nx=ny in the code).
We perform experiments with h0 > h1 > h2 · · · and compute the corresponding errors E0, E1, E3
and so forth. Assuming Ei = Chr

i for unknown constants C and r, we can compare two consecutive
experiments, Ei = Chr

i and Ei−1 = Chr
i−1, and solve for r:

r =
ln(Ei/Ei−1)

ln(hi/hi−1)
. (2.26)

The r values should approach the expected convergence rate degree+1 as i increases.
The procedure above can easily be turned into Python code:

Python code
import sys

degree = int(sys.argv[1]) # read degree as 1st command-line arg

h = [] # element sizes

E = [] # errors

for nx in [4, 8, 16, 32, 64, 128, 264]:

h.append(1.0/nx)

E.append(compute(nx, nx, degree))

22 CHAPTER 2. TUTORIAL

Convergence rates

from math import log as ln # (log is a dolfin name too)

for i in range(1, len(E)):

r = ln(E[i]/E[i-1])/ln(h[i]/h[i-1])

print "h=%10.2E r=%.2f" % (h[i], r)

The resulting program has the name Poisson2D_D4.py and computes error norms in various ways.
Running this program for elements of first degree and ω = 1 yields the output

Output
h=1.25E-01 E=3.25E-02 r=1.83

h=6.25E-02 E=8.37E-03 r=1.96

h=3.12E-02 E=2.11E-03 r=1.99

h=1.56E-02 E=5.29E-04 r=2.00

h=7.81E-03 E=1.32E-04 r=2.00

h=3.79E-03 E=3.11E-05 r=2.00

That is, we approach the expected second-order convergence of linear Lagrange elements as the
meshes become sufficiently fine.
Running the program for second-degree elements results in the expected value r = 3,

Output
h=1.25E-01 E=5.66E-04 r=3.09

h=6.25E-02 E=6.93E-05 r=3.03

h=3.12E-02 E=8.62E-06 r=3.01

h=1.56E-02 E=1.08E-06 r=3.00

h=7.81E-03 E=1.34E-07 r=3.00

h=3.79E-03 E=1.53E-08 r=3.00

However, using (u - u_exact)**2 for the error computation, which implies interpolating u_exact

onto the same space as u, results in r = 4 (!). This is an example where it is important to
interpolate u_exact to a higher-order space (polynomials of degree 3 are sufficient here) to avoid
computing a too optimistic convergence rate. Looking at the error in the degrees of freedom
(u.vector().array()) reveals a convergence rate of r = 4 for second-degree elements. For elements
of polynomial degree 3 all the rates are r = 4, regardless of whether we choose a “fine” space Ve

with polynomials of degree 3 or 5.
Running the program for third-degree elements results in the expected value r = 4:

Output
h=1.25E-01 r=4.09

h=6.25E-02 r=4.03

h=3.12E-02 r=4.01

h=1.56E-02 r=4.00

h=7.81E-03 r=4.00

Checking convergence rates is the next best method for verifying PDE codes (the best being exact
recovery of a solution as in Section 2.1.4 and many other places in this tutorial).

Flux functionals. To compute flux integrals like (2.23) we need to define the n vector, referred to
as facet normal in FEniCS. If Γ is the complete boundary we can perform the flux computation by

Python code
n = FacetNormal(mesh)

flux = -p*inner(grad(u), n)*ds

total_flux = assemble(flux)

2.1. FUNDAMENTALS 23

It is possible to restrict the integration to a part of the boundary using a mesh function to mark
the relevant part, as explained in Section 2.6.3. Assuming that the part corresponds to subdomain
number n, the relevant form for the flux is -p*inner(grad(u), n)*ds(n).

2.1.8 Quick visualization with VTK

As we go along with examples it is fun to play around with plot commands and visualize what is
computed. This section explains some useful visualization features.
The plot(u) command launches a FEniCS component called Viper, which applies the VTK package
to visualize finite element functions. Viper is not a full-fledged, easy-to-use front-end to VTK
(like ParaView or VisIt), but rather a thin layer on top of VTK’s Python interface, allowing us to
quickly visualize a DOLFIN function or mesh, or data in plain Numerical Python arrays, within a
Python program. Viper is ideal for debugging, teaching, and initial scientific investigations. The
visualization can be interactive, or you can steer and automate it through program statements.
More advanced and professional visualizations are usually better done with advanced tools like
MayaVi2, ParaView, or VisIt.
We have made a program membrane1v.py for the membrane deflection problem in Section 2.1.5
and added various demonstrations of Viper capabilities. You are encouraged to play around
with membrane1v.py and modify the code as you read about various features. The membrane1v.py

program solves the two-dimensional Poisson equation for a scalar field w (the membrane deflection).
The plot function can take additional arguments, such as a title of the plot, or a specification of a
wireframe plot (elevated mesh) instead of a colored surface plot:

Python code
plot(mesh, title="Finite element mesh")

plot(w, wireframe=True, title="solution")

The three mouse buttons can be used to rotate, translate, and zoom the surface. Pressing h in the
plot window makes a printout of several key bindings that are available in such windows. For
example, pressing m in the mesh plot window dumps the plot of the mesh to an Encapsulated
PostScript (.eps) file, while pressing i saves the plot in PNG format. All file names are automati-
cally generated as simulationX.eps, where X is a counter 0000, 0001, 0002, etc., being increased
every time a new plot file in that format is generated (the extension of PNG files is .png instead of
.eps). Pressing o adds a red outline of a bounding box around the domain.
One can alternatively control the visualization from the program code directly. This is done
through a Viper object returned from the plot command. Let us grab this object and use it to 1)
tilt the camera −65 degrees in latitude direction, 2) add x and y axes, 3) change the default name
of the plot files (generated by typing m and i in the plot window), 4) change the color scale, and 5)
write the plot to a PNG and an EPS file. Here is the code:

Python code
viz_w = plot(w,

wireframe=False,

title="Scaled membrane deflection",

rescale=False,

axes=True, # include axes

basename="deflection", # default plotfile name

)

viz_w.elevate(-65) # tilt camera -65 degrees (latitude dir)

viz_w.set_min_max(0, 0.5*max_w) # color scale

viz_w.update(w) # bring settings above into action

24 CHAPTER 2. TUTORIAL

0.00 0.00 0.00

Z

-1.00

0.00

1.00

Y

1.00 0.00 -1.00

X

Figure 2.4: Plot of the deflection of a
membrane.

viz_w.write_png("deflection.png")

viz_w.write_ps("deflection", format="eps")

The format argument in the latter line can also take the values "ps" for a standard PostScript file
and "pdf" for a PDF file. Note the necessity of the viz_w.update(w) call – without it we will not
see the effects of tilting the camera and changing the color scale. Figure ?? shows the resulting
scalar surface.

2.1.9 Combining Dirichlet and Neumann conditions

Let us make a slight extension of our two-dimensional Poisson problem from Section 2.1.1 and add
a Neumann boundary condition. The domain is still the unit square, but now we set the Dirichlet
condition u = u0 at the left and right sides, x = 0 and x = 1, while the Neumann condition

−∂u
∂n

= g (2.27)

is applied to the remaining sides y = 0 and y = 1. The Neumann condition is also known as a
natural boundary condition (in contrast to an essential boundary condition).
Let ΓD and ΓN denote the parts of ∂Ω where the Dirichlet and Neumann conditions apply,
respectively. The complete boundary-value problem can be written as

−∆u = f in Ω, (2.28)

u = u0 on ΓD, (2.29)

−∂u
∂n

= g on ΓN . (2.30)

Again we choose u = 1 + x2 + 2y2 as the exact solution and adjust f , g, and u0 accordingly:

f = −6, (2.31)

g =

{ −4, y = 1
0, y = 0

(2.32)

u0 = 1 + x2 + 2y2. (2.33)

2.1. FUNDAMENTALS 25

For ease of programming we may introduce a g function defined over the whole of Ω such that g
takes on the right values at y = 0 and y = 1. One possible extension is

g(x, y) = −4y. (2.34)

The first task is to derive the variational problem. This time we cannot omit the boundary term
arising from the integration by parts, because v is only zero at the ΓD. We have

−
∫

Ω
(∆u)v dx =

∫

Ω
∇u · ∇v dx−

∫

∂Ω

∂u
∂n

v ds, (2.35)

and since v = 0 on ΓD,

−
∫

∂Ω

∂u
∂n

v ds = −
∫

ΓN

∂u
∂n

v ds =
∫

ΓN

gv ds, (2.36)

by applying the boundary condition at ΓN . The resulting weak form reads
∫

Ω
∇u · ∇v dx +

∫

ΓN

gv ds =
∫

Ω
f v dx . (2.37)

Expressing (2.37) in the standard notation a(u, v) = L(v) is straightforward with

a(u, v) =
∫

Ω
∇u · ∇v dx, (2.38)

L(v) =
∫

Ω
f v dx−

∫

ΓN

gv ds. (2.39)

How does the Neumann condition impact the implementation? The code in the file Poisson2D_D2.py
remains almost the same. Only two adjustments are necessary:

1. The function describing the boundary where Dirichlet conditions apply must be modified.

2. The new boundary term must be added to the expression in L.

Step 1 can be coded as

Python code
def Dirichlet_boundary(x, on_boundary):

if on_boundary:

if x[0] == 0 or x[0] == 1:

return True

else:

return False

else:

return False

A more compact implementation reads

Python code
def Dirichlet_boundary(x, on_boundary):

return on_boundary and (x[0] == 0 or x[0] == 1)

As pointed out already in Section 2.1.3, testing for an exact match of real numbers is not good
programming practice so we introduce a tolerance in the test:

26 CHAPTER 2. TUTORIAL

Python code
def Dirichlet_boundary(x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and \

(abs(x[0]) < tol or abs(x[0] - 1) < tol)

We may also split the boundary functions into two separate pieces, one for each part of the
boundary:

Python code
tol = 1E-14

def Dirichlet_boundary0(x, on_boundary):

return on_boundary and abs(x[0]) < tol

def Dirichlet_boundary1(x, on_boundary):

return on_boundary and abs(x[0] - 1) < tol

bc0 = DirichletBC(V, Constant(0), Dirichlet_boundary0)

bc1 = DirichletBC(V, Constant(1), Dirichlet_boundary1)

bc = [bc0, bc1]

The second adjustment of our program concerns the definition of L, where we have to add a
boundary integral and a definition of the g function to be integrated:

Python code
g = Expression("-4*x[1]")

L = f*v*dx - g*v*ds

The ds variable implies a boundary integral, while dx implies an integral over the domain
Ω. No more modifications are necessary. Running the resulting program, found in the file
Poisson2D_DN1.py, shows a successful verification – u equals the exact solution at all the nodes,
regardless of how many elements we use.

2.1.10 Multiple Dirichlet conditions

The PDE problem from the previous section applies a function u0(x, y) for setting Dirichlet
conditions at two parts of the boundary. Having a single function to set multiple Dirichlet
conditions is seldom possible. The more general case is to have m functions for setting Dirichlet
conditions at m parts of the boundary. The purpose of this section is to explain how such multiple
conditions are treated in FEniCS programs.
Let us return to the case from Section 2.1.9 and define two separate functions for the two Dirichlet
conditions:

−∆u = −6 in Ω, (2.40)

u = uL on Γ0, (2.41)

u = uR on Γ1, (2.42)

−∂u
∂n

= g on ΓN . (2.43)

Here, Γ0 is the boundary x = 0, while Γ1 corresponds to the boundary x = 1. We have that
uL = 1 + 2y2, uR = 2 + 2y2, and g = −4y. For the left boundary Γ0 we define the usual triple
of a function for the boundary value, a function for defining the boundary of interest, and a
DirichletBC object:

2.1. FUNDAMENTALS 27

Python code
u_L = Expression("1 + 2*x[1]*x[1]")

def left_boundary(x, on_nboundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[0]) < tol

Gamma_0 = DirichletBC(V, u_L, left_boundary)

For the boundary x = 1 we define a similar code:

Python code
u_R = Expression("2 + 2*x[1]*x[1]")

def right_boundary(x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = DirichletBC(V, u_R, right_boundary)

The various essential conditions are then collected in a list and passed onto our problem object of
type VariationalProblem:

Python code
bc = [Gamma_0, Gamma_1]

...

problem = VariationalProblem(a, L, bc)

If the u values are constant at a part of the boundary, we may use a simple Constant object instead
of an Expression object.
The file Poisson2D_DN2.py contains a complete program which demonstrates the constructions
above. An extended example with multiple Neumann conditions would have been quite natural
now, but this requires marking various parts of the boundary using the mesh function concept and
is therefore left to Section 2.6.3.

2.1.11 A linear algebra formulation

Given a(u, v) = L(v), the discrete solution u is computed by inserting u = ∑N
j=1 Ujφj into a(u, v)

and demanding a(u, v) = L(v) to be fulfilled for N test functions φ̂1, . . . , φ̂N . This implies

N

∑
j=1

a(φj, φ̂i)Uj = L(φ̂i), i = 1, . . . , N, (2.44)

which is nothing but a linear system,
AU = b, (2.45)

where the entries in A and b are given by

Aij = a(φj, φ̂i),

bi = L(φ̂i).
(2.46)

The examples so far have constructed a VariationalProblem object and called its solve method
to compute the solution u. The VariationalProblem object creates a linear system AU = b and
calls an appropriate solution method for such systems. An alternative is dropping the use of a

28 CHAPTER 2. TUTORIAL

VariationalProblem object and instead asking FEniCS to create the matrix A and right-hand side
b, and then solve for the solution vector U of the linear system. The relevant statements read

Python code
A = assemble(a)

b = assemble(L)

bc.apply(A, b)

u = Function(V)

solve(A, u.vector(), b)

The variables a and L are as before; that is, a refers to the bilinear form involving a TrialFunction

object (say u) and a TestFunction object (v), and L involves a TestFunction object (v). From a and
L, the assemble function can compute the matrix elements Ai,j and the vector elements bi.
The matrix A and vector b are first assembled without incorporating essential (Dirichlet) boundary
conditions. Thereafter, the bc.apply(A, b) call performs the necessary modifications to the linear
system. The first three statements above can alternatively be carried out by5

Python code
A, b = assemble_system(a, L, bc)

When we have multiple Dirichlet conditions stored in a list bc, as explained in Section 2.1.10, we
must apply each condition in bc to the system:

Python code
bc is a list of DirichletBC objects

for condition in bc:

condition.apply(A, b)

Alternatively, we can make the call

Python code
A, b = assemble_system(a, L, bc)

The assemble_system function incorporates the boundary conditions in a symmetric way in the
coefficient matrix. (For each degree of freedom that is known, the corresponding row and column
is zeroed out and 1 is placed on the main diagonal, and the right-hand side b is modified by
subtracting the column in A times the value of the degree of freedom, and then the corresponding
entry in b is replaced by the known value of the degree of freedom.) With condition.apply(A,

b), the matrix A is modified in an unsymmetric way. (The row is zeroed out and 1 is placed on the
main diagonal, and the degree of freedom value is inserted in b.)
Note that the solution u is, as before, a Function object. The degrees of freedom, U = A−1b, are
filled into u’s Vector object (u.vector()) by the solve function.
The object A is of type Matrix, while b and u.vector() are of type Vector. We may convert the
matrix and vector data to numpy arrays by calling the array() method as shown before. If you
wonder how essential boundary conditions are incorporated in the linear system, you can print
out A and b before and after the bc.apply(A, b) call:

Python code
if mesh.num_cells() < 16: # print for small meshes only

print A.array()

print b.array()

bc.apply(A, b)

if mesh.num_cells() < 16:

5The essential boundary conditions are now applied to the element matrices and vectors prior to assembly.

2.1. FUNDAMENTALS 29

print A.array()

print b.array()

Sometimes it can be handy to transfer the linear system to MATLAB or Octave for further analysis,
e.g., computation of eigenvalues of A. This is easily done by opening a File object with a filename
extension .m and dump the Matrix and Vector objects as follows:

Python code
mfile = File("A.m"); mfile << A

mfile = File("b.m"); mfile << b

The data files A.m and b.m can be loaded directly into MATLAB or Octave.
The complete code where our Poisson problem is solved by forming the linear system AU =
b explicitly, is stored in the files Poisson2D_DN_la1.py (one common Dirichlet condition) and
Poisson2D_DN_la2.py (two separate Dirichlet conditions).
Creating the linear system explicitly in the user’s program, as an alternative to using a VariationalProblem

object, can have some advantages in more advanced problem settings. For example, A may be
constant throughout a time-dependent simulation, so we can avoid recalculating A at every time
level and save a significant amount of simulation time. Sections 2.3.2 and 2.3.3 deal with this topic
in detail.

2.1.12 A variable-coefficient Poisson problem

Suppose we have a variable coefficient p(x, y) in the Laplace operator, as in the boundary-value
problem

−∇ · [p(x, y)∇u(x, y)] = f (x, y) in Ω,

u(x, y) = u0(x, y) on ∂Ω .
(2.47)

We shall quickly demonstrate that this simple extension of our model problem only requires an
equally simple extension of the FEniCS program.
Let us continue to use our favorite solution u(x, y) = 1+ x2 + 2y2 and then prescribe p(x, y) = x+ y.
It follows that u0(x, y) = 1 + x2 + 2y2 and f (x, y) = −8x− 10y.
What are the modifications we need to do in the Poisson2D_D2.py program from Section 2.1.4?

1. f must be an Expression since it is no longer a constant,

2. a new Expression p must be defined for the variable coefficient,

3. the variational problem is slightly changed.

First we address the modified variational problem. Multiplying the PDE in (2.47) and integrating
by parts now results in

∫

Ω
p∇u · ∇v dx−

∫

∂Ω
p

∂u
∂n

v ds =
∫

Ω
f v dx. (2.48)

The function spaces for u and v are the same as in Section 2.1.2, implying that the boundary integral
vanishes since v = 0 on ∂Ω where we have Dirichlet conditions. The weak form a(u, v) = L(v)

30 CHAPTER 2. TUTORIAL

then has

a(u, v) =
∫

Ω
p∇u · ∇v dx, (2.49)

L(v) =
∫

Ω
f v dx. (2.50)

In the code from Section 2.1.3 we must replace

Python code
a = inner(grad(u), grad(v))*dx

by

Python code
a = p*inner(grad(u), grad(v))*dx

The definitions of p and f read

Python code
p = Expression("x[0] + x[1]")

f = Expression("-8*x[0] - 10*x[1]")

No additional modifications are necessary. The complete code can be found in in the file
Poisson2D_Dvc.py. You can run it and confirm that it recovers the exact u at the nodes.
The flux −p∇u may be of particular interest in variable-coefficient Poisson problems. As explained
in Section 2.1.6, we normally want the piecewise discontinuous flux or gradient to be approximated
by a continuous vector field, using the same elements as used for the numerical solution u. The
approximation now consists of solving w = −p∇u by a finite element method: find w ∈ V(g) such
that

a(w, v) = L(v) ∀ v ∈ V̂(g), (2.51)

where

a(w, v) =
∫

Ω
w · v dx, (2.52)

L(v) =
∫

Ω
(−p∇u) · v dx. (2.53)

This problem is identical to the one in Section 2.1.6, except that p enters the integral in L.
The relevant Python statements for computing the flux field take the form

Python code
V_g = VectorFunctionSpace(mesh, "CG", 1)

w = TrialFunction(V_g)

v = TestFunction(V_g)

a = inner(w, v)*dx

L = inner(-p*grad(u), v)*dx

problem = VariationalProblem(a, L)

flux = problem.solve()

The convenience function project was made to condense the frequently occurring statements
above:

Python code

2.1. FUNDAMENTALS 31

flux = project(-p*grad(u),

VectorFunctionSpace(mesh, "CG", 1))

Plotting the flux vector field is naturally as easy as plotting the gradient in Section 2.1.6:

Python code
plot(flux, title="flux field")

flux_x, flux_y = flux.split(deepcopy=True) # extract components

plot(flux_x, title="x-component of flux (-p*grad(u))")

plot(flux_y, title="y-component of flux (-p*grad(u))")

Data analysis of the nodal values of the flux field may conveniently apply the underlying numpy

arrays:

Python code
flux_x_array = flux_x.vector().array()

flux_y_array = flux_y.vector().array()

The program Poisson2D_Dvc.py contains in addition some plots, including a curve plot comparing
flux_x and the exact counterpart along the line y = 1/2. The associated programming details
related to this visualization are explained in Section 2.1.13.

2.1.13 Visualization of structured mesh data

When finite element computations are done on a structured rectangular mesh, maybe with uniform
partitioning, VTK-based tools for completely unstructured 2D/3D meshes are not required. Instead
we can use many alternative high-quality visualization tools for structured data, like the data
appearing in finite difference simulations and image analysis. We shall demonstrate the potential
of such tools and how they allow for more tailored and flexible visualization and data analysis.
A necessary first step is to transform our mesh object to an object representing a rectangle with
equally-shaped rectangular cells. The Python package scitools has this type of structure, called
a UniformBoxGrid. The second step is to transform the one-dimensional array of nodal values to
a two-dimensional array holding the values at the corners of the cells in the structured grid. In
such grids, we want to access a value by its i and j indices, i counting cells in the x direction,
and j counting cells in the y direction. This transformation is in principle straightforward, yet it
frequently leads to obscure indexing errors. The BoxField object in scitools takes conveniently
care of the details of the transformation. With a BoxField defined on a UniformBoxGrid it is very
easy to call up more standard plotting packages to visualize the solution along lines in the domain
or as 2D contours or lifted surfaces.
Let us go back to the Poisson2D_Dvc.py code from Section 2.1.12 and map u onto a BoxField

object:

Python code
from scitools.BoxField import *
u2 = u if u.ufl_element().degree() == 1 else \

interpolate(u, FunctionSpace(mesh, "CG", 1))

u_box = dolfin_function2BoxField(u2, mesh, (nx,ny), uniform_mesh=True)

Note that the function dolfin_function2BoxField can only work with finite element fields with
linear (degree 1) elements, so for higher-degree elements we here simply interpolate the solution
onto a mesh with linear elements. We could also project u or interpolate/project onto a finer
mesh in the higher-degree case. Such transformations to linear finite element fields are very often

32 CHAPTER 2. TUTORIAL

needed when calling up plotting packages or data analysis tools. The u.ufl_element() method
returns an object holding the element type, and this object has a method degree() for returning
the element degree as an integer. The parameters nx and ny are the number of divisions in each
space direction that were used when calling UnitSquare to make the mesh object. The result u_box
is a BoxField object that supports “finite difference” indexing and an underlying grid suitable for
numpy operations on 2D data. Also 1D and 3D functions (with linear elements) in DOLFIN can be
turned into BoxField objects for plotting and analysis.
The ability to access a finite element field in the way one can access a finite difference-type of field
is handy in many occasions, including visualization and data analysis. Here is an example of
writing out the coordinates and the field value at a grid point with indices i and j (going from 0

to nx and ny, respectively, from lower left to upper right corner):

Python code
i = nx; j = ny # upper right corner

print "u(%g,%g)=%g" % (u_box.grid.coor[X][i],

u_box.grid.coor[Y][j],

u_box.values[i,j])

For instance, the x coordinates are reached by u_box.grid.coor[X], where X is an integer (0)
imported from scitools.BoxField. The grid attribute is an instance of class UniformBoxGrid.
Many plotting programs can be used to visualize the data in u_box. Matplotlib is now a very
popular plotting program in the Python world and could be used to make contour plots of u_box.
However, other programs like Gnuplot, VTK, and MATLAB have better support for surface plots.
Our choice in this tutorial is to use the Python package scitools.easyviz, which offers a uniform
MATLAB-like syntax as interface to various plotting packages such as Gnuplot, matplotlib, VTK,
OpenDX, MATLAB, and others. With scitools.easyviz we write one set of statements, close to
what one would do in MATLAB or Octave, and then it is easy to switch between different plotting
programs, at a later stage, through a command-line option, a line in a configuration file, or an
import statement in the program. By default, scitools.easyviz employs Gnuplot as plotting
program, and this is a highly relevant choice for scalar fields over two-dimensional, structured
meshes, or for curve plots along lines through the domain.
A contour plot is made by the following scitools.easyviz command:

Python code
from scitools.easyviz import contour, title, hardcopy

contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

5, clabels="on")

title("Contour plot of u")

hardcopy("u_contours.eps")

or more compact syntax:

contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

5, clabels="on",

hardcopy="u_contours.eps", title="Contour plot of u")

The resulting plot can be viewed in Figure ??a. The contour function needs arrays with the x and
y coordinates expanded to 2D arrays (in the same way as demanded when making vectorized
numpy calculations of arithmetic expressions over all grid points). The correctly expanded arrays
are stored in grid.coorv. The above call to contour creates 5 equally spaced contour lines, and
with clabels="on" the contour values can be seen in the plot.
Other functions for visualizing 2D scalar fields are surf and mesh as known from MATLAB.
Because the from dolfin import * statement imports several names that are also present in

2.1. FUNDAMENTALS 33

scitools.easyviz (e.g., plot, mesh, and figure), we use functions from the latter package through
a module prefix ev from now on:

Python code
import scitools.easyviz as ev

ev.figure()

ev.surf(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

shading="interp", colorbar="on",

title="surf plot of u", hardcopy="u_surf.eps")

ev.figure()

ev.mesh(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

title="mesh plot of u", hardcopy="u_mesh.eps")

Figure ?? exemplifies the surfaces arising from the two plotting commands above. You can type
pydoc scitools.easyviz in a terminal window to get a full tutorial.
A handy feature of BoxField is the ability to give a start point in the grid and a direction, and then
extract the field and corresponding coordinates along the nearest grid line. In 3D fields one can
also extract data in a plane. Say we want to plot u along the line y = 1/2 in the grid. The grid
points, x, and the u values along this line, uval, are extracted by

Python code
start = (0, 0.5)

x, uval, y_fixed, snapped = u_box.gridline(start, direction=X)

The variable snapped is true if the line had to be snapped onto a grid line and in that case y_fixed

holds the snapped (altered) y value. Plotting u versus the x coordinate along this line, using
scitools.easyviz, is now a matter of

Python code
ev.figure() # new plot window

ev.plot(x, uval, "r-") # "r--: red solid line

ev.title("Solution")

ev.legend("finite element solution")

or more compactly:

ev.plot(x, uval, "r-", title="Solution",

legend="finite element solution")

A more exciting plot compares the projected numerical flux in x direction along the line y = 1/2
with the exact flux:

Python code
ev.figure()

flux2_x = flux_x if flux_x.ufl_element().degree() == 1 else \

interpolate(flux_x, FunctionSpace(mesh, "CG", 1))

flux_x_box = dolfin_function2BoxField(flux2_x, mesh, (nx,ny),

uniform_mesh=True)

x, fluxval, y_fixed, snapped = \

flux_x_box.gridline(start, direction=X)

y = y_fixed

flux_x_exact = -(x + y)*2*x

ev.plot(x, fluxval, "r-",

x, flux_x_exact, "b-",

legend=("numerical (projected) flux", "exact flux"),

title="Flux in x-direction (at y=%g)" % y_fixed,

hardcopy="flux.eps")

34 CHAPTER 2. TUTORIAL

Contour plot of u
 4

 3.5
 3

 2.5
 2

 1.5

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

(a)

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.2 0.4 0.6 0.8 1

Flux in x-direction (at y=0.5)

numerical (projected) flux
exact flux

(b)

Figure 2.5: Examples on plots cre-
ated by transforming the finite element
field to a field on a uniform, structured
2D grid: (a) contour plot of the solu-
tion; (b) curve plot of the exact flux
−p∂u/∂x against the corresponding
projected numerical flux.

surf plot of u

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1

 1.5

 2

 2.5

 3

 3.5

 4

(a)

mesh plot of u

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 1.5

 2

 2.5

 3

 3.5

 4

(b)

Figure 2.6: Examples on plots cre-
ated by transforming the finite element
field to a field on a uniform, structured
2D grid: (a) a surface plot of the solu-
tion; (b) lifted mesh plot of the solu-
tion.

As seen from Figure ??b, the numerical flux is accurate except in the elements closest to the
boundaries.
It should be easy with the information above to transform a finite element field over a uniform
rectangular or box-shaped mesh to the corresponding BoxField object and perform MATLAB-style
visualizations of the whole field or the field over planes or along lines through the domain. By the
transformation to a regular grid we have some more flexibility than what Viper offers. (It should
be added that comprehensive tools like VisIt, MayaVi2, or ParaView also have the possibility for
plotting fields along lines and extracting planes in 3D geometries, though usually with less degree
of control compared to Gnuplot, MATLAB, and matplotlib.)

2.1.14 Parameterizing the number of space dimensions

FEniCS makes it is easy to write a unified simulation code that can operate in 1D, 2D, and 3D. We
will conveniently make use of this feature in forthcoming examples. The relevant technicalities are
therefore explained below.
Consider the simple problem

u′′(x) = 2 in [0, 1], u(0) = 0, u(1) = 1, (2.54)

with exact solution u(x) = x2. Our aim is to formulate and solve this problem in a 2D and a 3D
domain as well. We may generalize the domain [0, 1] to a box of any size in the y and z directions
and pose homogeneous Neumann conditions ∂u/∂n = 0 at all additional boundaries y = const
and z = const to ensure that u only varies with x. For example, let us choose a unit hypercube as
domain: Ω = [0, 1]d, where d is the number of space dimensions. The generalized d-dimensional

2.1. FUNDAMENTALS 35

Poisson problem then reads

∆u = 2 in Ω,
u = 0 on Γ0,
u = 1 on Γ1,

∂u
∂n = 0 on ∂Ω\ (Γ0 ∪ Γ1) ,

(2.55)

where Γ0 is the side of the hypercube where x = 0, and where Γ1 is the side where x = 1.
Implementing (2.55) for any d is no more complicated than solving a problem with a specific
number of dimensions. The only non-trivial part of the code is actually to define the mesh. We
use the command-line to provide user-input to the program. The first argument can be the degree
of the polynomial in the finite element basis functions. Thereafter, we supply the cell divisions
in the various spatial directions. The number of command-line arguments will then imply the
number of space dimensions. For example, writing 3 10 3 4 on the command-line means that
we want to approximate u by piecewise polynomials of degree 3, and that the domain is a three-
dimensional cube with 10× 3× 4 divisions in the x, y, and z directions, respectively. Each of the
10× 3× 4 = 120 boxes will be divided into six tetrahedra. The Python code can be quite compact:

Python code
degree = int(sys.argv[1])

divisions = [int(arg) for arg in sys.argv[2:]]

d = len(divisions)

domain_type = [UnitInterval, UnitSquare, UnitCube]

mesh = domain_type[d-1](*divisions)

V = FunctionSpace(mesh, "CG", degree)

First note that although sys.argv[2:] holds the divisions of the mesh, all elements of the list
sys.argv[2:] are string objects, so we need to explicitly convert each element to an integer. The
construction domain_type[d-1] will pick the right name of the object used to define the domain
and generate the mesh. Moreover, the argument *divisions sends each component of the list
divisions as a separate argument. For example, in a 2D problem where divisions has two
elements, the statement

Python code
mesh = domain_type[d-1](*divisions)

is equivalent to

Python code
mesh = UnitSquare(divisions[0], divisions[1])

The next part of the program is to set up the boundary conditions. Since the Neumann conditions
have ∂u/∂n = 0 we can omit the boundary integral from the weak form. We then only need to
take care of Dirichlet conditions at two sides:

Python code
tol = 1E-14 # tolerance for coordinate comparisons

def Dirichlet_boundary0(x, on_boundary):

return on_boundary and abs(x[0]) < tol

def Dirichlet_boundary1(x, on_boundary):

return on_boundary and abs(x[0] - 1) < tol

bc0 = DirichletBC(V, Constant(0), Dirichlet_boundary0)

36 CHAPTER 2. TUTORIAL

bc1 = DirichletBC(V, Constant(1), Dirichlet_boundary1)

bc = [bc0, bc1]

Note that this code is independent of the number of space dimensions. So are the statements
defining and solving the variational problem:

Python code
u = TrialFunction(V)

v = TestFunction(V)

f = Constant(-2)

a = inner(grad(u), grad(v))*dx

L = f*v*dx

problem = VariationalProblem(a, L, bc)

u = problem.solve()

The complete code is found in Poisson123D_DN1.py.
Observe that if we actually want to test variations in one selected space direction, parameterized by
e, we only need to replace x[0] in the code by x[e]. The parameter e could be given as the second
command-line argument. This extension appears in the file Poisson123D_DN2.py. You can run a
3D problem with this code where u varies in, e.g., z direction and is approximated by, e.g., a 5-th
degree polynomial. For any legal input the numerical solution coincides with the exact solution at
the nodes (because the exact solution is a second-degree polynomial).

2.2 Nonlinear problems

Now we shall address how to solve nonlinear PDEs in FEniCS. Our sample PDE for implementation
is taken as a nonlinear Poisson equation:

−∇ · (q(u)∇u) = f . (2.56)

The coefficient q(u) makes the equation nonlinear (unless q(u) is a constant).
To be able to easily verify our implementation, we choose the domain, q(u), f , and the boundary
conditions such that we have a simple, exact solution u. Let Ω be the unit hypercube [0, 1]d in
d dimensions, q(u) = (1 + u)m, f = 0, u = 0 for x0 = 0, u = 1 for x0 = 1, and ∂u/∂n = 0 at all
other boundaries xi = 0 and xi = 1, i = 1, . . . , d− 1. The coordinates are now represented by the
symbols x0, . . . , xd−1. The exact solution is then

u(x0, . . . , xd) =
(
(2m+1 − 1)x0 + 1

)1/(m+1)
− 1 . (2.57)

The variational formulation of our model problem reads: find u ∈ V such that

F(u; v) = 0 ∀ v ∈ V̂, (2.58)

where
F(u; v) =

∫

Ω
q(u)∇u · ∇v dx, (2.59)

and

V̂ = {v ∈ H1(Ω) : v = 0 on x0 = 0 and x0 = 1},
V = {v ∈ H1(Ω) : v = 0 on x0 = 0 and v = 1 on x0 = 1}.

(2.60)

2.2. NONLINEAR PROBLEMS 37

The discrete problem arises as usual by restricting V and V̂ to a pair of discrete spaces. As usual,
we omit any subscript on discrete spaces and simply say V and V̂ are chosen finite dimensional
according to some mesh and element type. The nonlinear problem then reads: find u ∈ V such
that

F(u; v) = 0 ∀ v ∈ V̂, (2.61)

with u = ∑N
j=1 Ujφj. Since F is a nonlinear function of u, (2.61) gives rise to a system of nonlinear

algebraic equations. From now on the interest is only in the discrete problem, and as mentioned in
Section 2.1.2, we simply write u instead of uh to get a closer notation between the mathematics
and the Python code. When the exact solution needs to be distinguished, we denote it by ue.
FEniCS can be used in alternative ways for solving a nonlinear PDE problem. We shall in the
following subsections go through four solution strategies: 1) a simple Picard-type iteration, 2) a
Newton method at the algebraic level, 3) a Newton method at the PDE level, and 4) an automatic
approach where FEniCS attacks the nonlinear variational problem directly. The “black box”
strategy 4) is definitely the simplest one from a programmer’s point of view, but the others give
more control of the solution process for nonlinear equations (which also has some pedagogical
advantages).

2.2.1 Picard iteration

Picard iteration is an easy way of handling nonlinear PDEs: we simply use a known, previous
solution in the nonlinear terms so that these terms become linear in the unknown u. The strategy
is also known as the method of successive substitutions. For our particular problem, we use a
known, previous solution in the coefficient q(u). More precisely, given a solution uk from iteration
k, we seek a new (hopefully improved) solution uk+1 in iteration k + 1 such that uk+1 solves the
linear problem

∇ ·
(

q(uk)∇uk+1
)
= 0, k = 0, 1, . . . (2.62)

The iterations require an initial guess u0. The hope is that uk → u as k → ∞, and that uk+1 is
sufficiently close to the exact solution u of the discrete problem after just a few iterations.
We can easily formulate a variational problem for uk+1 from Equation (2.62). Equivalently, we can
approximate q(u) by q(uk) in (2.59) to obtain the same linear variational problem. In both cases,
the problem consists of seeking uk+1 ∈ V such that

F̃(uk+1; v) = 0 ∀ v ∈ V̂, k = 0, 1, . . . , (2.63)

with
F̃(uk+1; v) =

∫

Ω
q(uk)∇uk+1 · ∇v dx . (2.64)

Since this is a linear problem in the unknown uk+1, we can equivalently use the formulation

a(uk+1, v) = L(v), (2.65)

with

a(u, v) =
∫

Ω
q(uk)∇u · ∇v dx, (2.66)

L(v) = 0. (2.67)

The iterations can be stopped when ε ≡ ||uk+1 − uk|| < tol, where tol is small, say 10−5, or when

38 CHAPTER 2. TUTORIAL

the number of iterations exceed some critical limit. The latter case will pick up divergence of the
method or unacceptable slow convergence.
In the solution algorithm we only need to store uk and uk+1, called uk and u in the code below.
The algorithm can then be expressed as follows:

Python code
def q(u):

return (1+u)**m

Define variational problem

u = TrialFunction(V)

v = TestFunction(V)

uk = interpolate(Expression("0.0"), V) # previous (known) u

a = inner(q(uk)*grad(u), grad(v))*dx

f = Constant(0.0)

L = f*v*dx

Picard iterations

u = Function(V) # new unknown function

eps = 1.0 # error measure ||u-uk||

tol = 1.0E-5 # tolerance

iter = 0 # iteration counter

maxiter = 25 # max no of iterations allowed

while eps > tol and iter < maxiter:

iter += 1

problem = VariationalProblem(a, L, bc)

u = problem.solve()

diff = u.vector().array() - uk.vector().array()

eps = numpy.linalg.norm(diff, ord=numpy.Inf)

print "Norm, iter=%d: %g" % (iter, eps)

uk.assign(u) # update for next iteration

We need to define the previous solution in the iterations, uk, as a finite element function so that uk
can be updated with u at the end of the loop. We may create the initial Function uk by interpolating
an Expression or a Constant to the same vector space as u lives in (V).
In the code above we demonstrate how to use numpy functionality to compute the norm of the
difference between the two most recent solutions. Here we apply the maximum norm (`∞ norm)
on the difference of the solution vectors (ord=1 and ord=2 give the `1 and `2 vector norms – other
norms are possible for numpy arrays, see pydoc numpy.linalg.norm).
The file nlPoisson_Picard.py contains the complete code for this problem. The implementation
is d dimensional, with mesh construction and setting of Dirichlet conditions as explained in
Section 2.1.14. For a 33× 33 grid with m = 2 we need 9 iterations for convergence when the
tolerance is 10−5.

2.2.2 A Newton method at the algebraic level

After having discretized our nonlinear PDE problem, we may use Newton’s method to solve the
system of nonlinear algebraic equations. From the continuous variational problem (2.58), the
discrete version (2.61) results in a system of equations for the unknown parameters U1, . . . , UN (by
inserting u = ∑N

j=1 Ujφj and v = φ̂i in (2.61)):

Fi(U1, . . . , UN) ≡
N

∑
j=1

∫

Ω

(
q

(
N

∑
`=1

U`φ`

)
∇φjUj

)
· ∇φ̂i dx = 0, i = 1, . . . , N . (2.68)

2.2. NONLINEAR PROBLEMS 39

Newton’s method for the system Fi(U1, . . . , Uj) = 0, i = 1, . . . , N can be formulated as

N

∑
j=1

∂

∂Uj
Fi(Uk

1 , . . . , Uk
N)δUj = −Fi(Uk

1 , . . . , Uk
N), i = 1, . . . , N, (2.69)

Uk+1
j = Uk

j + ωδUj, j = 1, . . . , N, (2.70)

where ω ∈ [0, 1] is a relaxation parameter, and k is an iteration index. An initial guess u0 must be
provided to start the algorithm. The original Newton method has ω = 1, but in problems where it
is difficult to obtain convergence, so-called under-relaxation with ω < 1 may help.
We need, in a program, to compute the Jacobian matrix ∂Fi/∂Uj and the right-hand side vector
−Fi. Our present problem has Fi given by (2.68). The derivative ∂Fi/∂Uj becomes

∫

Ω

[
q′(

N

∑
`=1

Uk
`φ`)φj∇(

N

∑
j=1

Uk
j φj) · ∇φ̂i + q

(
N

∑
`=1

Uk
`φ`

)
∇φj · ∇φ̂i

]
dx . (2.71)

The following results were used to obtain (2.71):

∂u
∂Uj

=
∂

∂Uj

N

∑
j=1

Ujφj = φj,
∂

∂Uj
∇u = ∇φj,

∂

∂Uj
q(u) = q′(u)φj . (2.72)

We can reformulate the Jacobian matrix in (2.71) by introducing the short notation uk = ∑N
j=1 Uk

j φj:

∂Fi
∂Uj

=
∫

Ω

[
q′(uk)φj∇uk · ∇φ̂i + q(uk)∇φj · ∇φ̂i

]
dx . (2.73)

In order to make FEniCS compute this matrix, we need to formulate a corresponding variational
problem. Looking at the linear system of equations in Newton’s method,

N

∑
j=1

∂Fi
∂Uj

δUj = −Fi, i = 1, . . . , N,

we can introduce v as a general test function replacing φ̂i, and we can identify the unknown δu =

∑N
j=1 δUjφj. From the linear system we can now go “backwards” to construct the corresponding

discrete weak form
∫

Ω

[
q′(uk)δu∇uk · ∇v + q(uk)∇δu · ∇v

]
dx = −

∫

Ω
q(uk)∇uk · ∇v dx . (2.74)

Equation (2.74) fits the standard form a(δu, v) = L(v) with

a(δu, v) =
∫

Ω

[
q′(uk)δu∇uk · ∇v + q(uk)∇δu · ∇v

]
dx (2.75)

L(v) = −
∫

Ω
q(uk)∇uk · ∇v dx. (2.76)

Note the important feature in Newton’s method that the previous solution uk replaces u in the
formulas when computing the matrix ∂Fi/∂Uj and vector Fi for the linear system in each Newton
iteration.
We now turn to the implementation. To obtain a good initial guess u0, we can solve a simplified,

40 CHAPTER 2. TUTORIAL

linear problem, typically with q(u) = 1, which yields the standard Laplace equation ∆u0 = 0. The
recipe for solving this problem appears in Sections 2.1.2, 2.1.3, and 2.1.9. The code for computing
u0 becomes as follows:

Python code
tol = 1E-14

def left_boundary(x, on_boundary):

return on_boundary and abs(x[0]) < tol

def right_boundary(x, on_boundary):

return on_boundary and abs(x[0]-1) < tol

Gamma_0 = DirichletBC(V, Constant(0.0), left_boundary)

Gamma_1 = DirichletBC(V, Constant(1.0), right_boundary)

bc = [Gamma_0, Gamma_1]

Define variational problem for initial guess (q(u)=1, m=0)

u = TrialFunction(V)

v = TestFunction(V)

a = inner(grad(u), grad(v))*dx

f = Constant(0.0)

L = f*v*dx

A, b = assemble_system(a, L, bc_u)

uk = Function(V)

solve(A, uk.vector(), b)

Here, uk denotes the solution function for the previous iteration, so that the solution after each
Newton iteration is u = uk + omega*du. Initially, uk is the initial guess we call u0 in the mathemat-
ics.
The Dirichlet boundary conditions for the problem to be solved in each Newton iteration are
somewhat different than the conditions for u. Assuming that uk fulfills the Dirichlet conditions
for u, δu must be zero at the boundaries where the Dirichlet conditions apply, in order for
uk+1 = uk + ωδu to fulfill the right Dirichlet values. We therefore define an additional list of
Dirichlet boundary conditions objects for δu:

Python code
Gamma_0_du = DirichletBC(V, Constant(0), LeftBoundary())

Gamma_1_du = DirichletBC(V, Constant(0), RightBoundary())

bc_du = [Gamma_0_du, Gamma_1_du]

The nonlinear coefficient and its derivative must be defined before coding the weak form of the
Newton system:

Python code
def q(u):

return (1+u)**m

def Dq(u):

return m*(1+u)**(m-1)

du = TrialFunction(V) # u = uk + omega*du

a = inner(q(uk)*grad(du), grad(v))*dx + \

inner(Dq(uk)*du*grad(uk), grad(v))*dx

L = -inner(q(uk)*grad(uk), grad(v))*dx

The Newton iteration loop is very similar to the Picard iteration loop in Section 2.2.1:

Python code

2.2. NONLINEAR PROBLEMS 41

du = Function(V)

u = Function(V) # u = uk + omega*du

omega = 1.0 # relaxation parameter

eps = 1.0

tol = 1.0E-5

iter = 0

maxiter = 25

while eps > tol and iter < maxiter:

iter += 1

A, b = assemble_system(a, L, bc_du)

solve(A, du.vector(), b)

eps = numpy.linalg.norm(du.vector().array(), ord=numpy.Inf)

print "Norm:", eps

u.vector()[:] = uk.vector() + omega*du.vector()

uk.assign(u)

There are other ways of implementing the update of the solution as well:

Python code
u.assign(uk) # u = uk

u.vector().axpy(omega, du.vector())

or

u.vector()[:] += omega*du.vector()

The axpy(a, y) operation adds a scalar a times a Vector y to a Vector object. It is usually a fast
operation calling up an optimized BLAS routine for the calculation.
Mesh construction for a d-dimensional problem with arbitrary degree of the Lagrange ele-
ments can be done as explained in Section 2.1.14. The complete program appears in the file
nlPoisson_algNewton.py.

2.2.3 A Newton method at the PDE level

Although Newton’s method in PDE problems is normally formulated at the linear algebra level;
that is, as a solution method for systems of nonlinear algebraic equations, we can also formulate
the method at the PDE level. This approach yields a linearization of the PDEs before they are
discretized. FEniCS users will probably find this technique simpler to apply than the more standard
method of Section 2.2.2.
Given an approximation to the solution field, uk, we seek a perturbation δu so that

uk+1 = uk + δu (2.77)

fulfills the nonlinear PDE. However, the problem for δu is still nonlinear and nothing is gained.
The idea is therefore to assume that δu is sufficiently small so that we can linearize the problem
with respect to δu. Inserting uk+1 in the PDE, linearizing the q term as

q(uk+1) = q(uk) + q′(uk)δu +O((δu)2) ≈ q(uk) + q′(uk)δu, (2.78)

and dropping other nonlinear terms in δu, we get

∇ ·
(

q(uk)∇uk
)
+∇ ·

(
q(uk)∇δu

)
+∇ ·

(
q′(uk)δu∇uk

)
= 0 .

42 CHAPTER 2. TUTORIAL

We may collect the terms with the unknown δu on the left-hand side,

∇ ·
(

q(uk)∇δu
)
+∇ ·

(
q′(uk)δu∇uk

)
= −∇ ·

(
q(uk)∇uk

)
, (2.79)

The weak form of this PDE is derived by multiplying by a test function v and integrating over Ω,
integrating the second-order derivatives by parts:

∫

Ω

(
q(uk)∇δu · ∇v + q′(uk)δu∇uk · ∇v

)
dx = −

∫

Ω
q(uk)∇uk · ∇v dx . (2.80)

The variational problem reads: find δu ∈ V such that a(δu, v) = L(v) for all v ∈ V̂, where

a(δu, v) =
∫

Ω

(
q(uk)∇δu · ∇v + q′(uk)δu∇uk · ∇v

)
dx, (2.81)

L(v) = −
∫

Ω
q(uk)∇uk · ∇v dx. (2.82)

The function spaces V and V̂, being continuous or discrete, are as in the linear Poisson problem
from Section 2.1.2.
We must provide some initial guess, e.g., the solution of the PDE with q(u) = 1. The corresponding
weak form a0(u0, v) = L0(v) has

a0(u, v) =
∫

Ω
∇u · ∇v dx, L(v) = 0. (2.83)

Thereafter, we enter a loop and solve a(δu, v) = L(v) for δu and compute a new approximation
uk+1 = uk + δu. Note that δu is a correction, so if u0 satisfies the prescribed Dirichlet conditions
on some part ΓD of the boundary, we must demand δu = 0 on ΓD.
Looking at (2.81) and (2.82), we see that the variational form is the same as for the Newton method
at the algebraic level in Section 2.2.2. Since Newton’s method at the algebraic level required some
“backward” construction of the underlying weak forms, FEniCS users may prefer Newton’s method
at the PDE level, which is more straightforward. There is seemingly no need for differentiations
to derive a Jacobian matrix, but a mathematically equivalent derivation is done when nonlinear
terms are linearized using the first two Taylor series terms and when products in the perturbation
δu are neglected.
The implementation is identical to the one in Section 2.2.2 and is found in the file nlPoisson_pdeNewton.py
(for the fun of it we use a VariationalProblem object instead of assembling a matrix and vector
and calling solve). The reader is encouraged to go through this code to be convinced that the
present method actually ends up with the same program as needed for the Newton method at the
linear algebra level in Section 2.2.2.

2.2.4 Solving the nonlinear variational problem directly

DOLFIN has a built-in Newton solver and is able to automate the computation of nonlinear,
stationary boundary-value problems. The automation is demonstrated next. A nonlinear variational
problem (2.58) can be solved by

Python code
VariationalProblem(J, F, bc, nonlinear=True)

where F corresponds to the nonlinear form F(u; v) and J is a form for the derivative of F.

2.2. NONLINEAR PROBLEMS 43

The F form corresponding to (2.59) is straightforwardly defined (assuming q(u) is coded as a
Python function):

Python code
v = TestFunction(V)

u = Function(V) # the unknown

F = inner(q(u)*grad(u), grad(v))*dx

Note here that u is a Function, not a TrialFunction. We could, alternatively, define F(u; v) directly
in terms of a trial function for u and a test function for v, and then created the proper F by

Python code
u = TrialFunction(V)

v = TestFunction(V)

Fuv = inner(q(u)*grad(u), grad(v))*dx

u = Function(V) # previous guess

F = action(Fuv, u)

The latter statement is equivalent to F(u = u0; v), where u0 is an existing finite element function
representing the most recently computed approximation to the solution.
The derivative J (J) of F (F) is formally the Gateaux derivative DF(uk; δu, v) of F(u; v) at u = uk in
the direction of δu. Technically, this Gateaux derivative is derived by computing

lim
ε→0

d
dε

Fi(uk + εδu; v) (2.84)

The δu is now the trial function and uk is as usual the previous approximation to the solution u.
We start with

d
dε

∫

Ω
∇v ·

(
q(uk + εδu)∇(uk + εδu)

)
dx (2.85)

and obtain ∫

Ω
∇v ·

[
q′(uk + εδu)δu∇(uk + εδu) + q(uk + εδu)∇δu

]
dx, (2.86)

which leads to ∫

Ω
∇v ·

[
q′(uk)δu∇(uk) + q(uk)∇δu

]
dx, (2.87)

as ε → 0. This last expression is the Gateaux derivative of F. We may use J or a(δu, v) for this
derivative, the latter having the advantage that we easily recognize the expression as a bilinear
form. However, in the forthcoming code examples J is used as variable name for the Jacobian. The
specification of J goes as follows:

Python code
du = TrialFunction(V)

J = inner(q(u)*grad(du), grad(v))*dx + \

inner(Dq(u)*du*grad(u), grad(v))*dx

where u is a Function representing the most recent solution.
The UFL language that we use to specify weak forms supports differentiation of forms. This means
that when F is given as above, we can simply compute the Gateaux derivative by

Python code
J = derivative(F, u, du)

44 CHAPTER 2. TUTORIAL

The differentiation is done symbolically so no numerical approximation formulas are involved.
The derivative function is obviously very convenient in problems where differentiating F by hand
implies lengthy calculations.
The solution of the nonlinear problem is now a question of two statements:

Python code
problem = VariationalProblem(J, F, bc, nonlinear=True)

u = problem.solve(u)

The u we feed to problem.solve is filled with the solution and returned, implying that the
u on the left-hand side actually refers to the same u as provided on the right-hand side6.
The file nlPoisson_vp1.py contains the complete code, where J is calculated manually, while
nlPoisson_vp2.py is a counterpart where J is computed by derivative(F, u, du). The latter file
represents clearly the most automated way of solving the present nonlinear problem in FEniCS.

2.3 Time-dependent problems

The examples in Section 2.1 illustrate that solving linear, stationary PDE problems with the
aid of FEniCS is easy and requires little programming. That is, FEniCS automates the spatial
discretization by the finite element method. The solution of nonlinear problems, as we showed in
Section 2.2, can also be automated (see Section 2.2.4), but many scientists will prefer to code the
solution strategy of the nonlinear problem themselves and experiment with various combinations
of strategies in difficult problems. Time-dependent problems are somewhat similar in this respect:
we have to add a time discretization scheme, which is often quite simple, making it natural to
explicitly code the details of the scheme so that the programmer has full control. We shall explain
how easily this is accomplished through examples.

2.3.1 A diffusion problem and its discretization

Our time-dependent model problem for teaching purposes is naturally the simplest extension of
the Poisson problem into the time domain; that is, the diffusion problem

∂u
∂t

= ∆u + f in Ω, for t > 0, (2.88)

u = u0 on ∂Ω, for t > 0, (2.89)

u = I at t = 0. (2.90)

Here, u varies with space and time, e.g., u = u(x, y, t) if the spatial domain Ω is two-dimensional.
The source function f and the boundary values u0 may also vary with space and time. The initial
condition I is a function of space only.
A straightforward approach to solving time-dependent PDEs by the finite element method is to
first discretize the time derivative by a finite difference approximation, which yields a recursive set
of stationary problems, and then turn each stationary problem into a variational formulation.
Let superscript k denote a quantity at time tk, where k is an integer counting time levels. For
example, uk means u at time level k. A finite difference discretization in time first consists in

6Python has a convention that all input data to a function or class method are represented as arguments, while all
output data are returned to the calling code. Data used as both input and output, as in this case, will then be arguments
and returned. It is not necessary to have a variable on the left-hand side, as the function object is modified correctly anyway,
but it is convention that we follow here.

2.3. TIME-DEPENDENT PROBLEMS 45

sampling the PDE at some time level, say k:

∂

∂t
uk = ∆uk + f k . (2.91)

The time-derivative can be approximated by a finite difference. For simplicity and stability reasons
we choose a simple backward difference:

∂

∂t
uk ≈ uk − uk−1

dt
, (2.92)

where dt is the time discretization parameter. Inserting (2.92) in (2.91) yields

uk − uk−1

dt
= ∆uk + f k . (2.93)

This is our time-discrete version of the diffusion PDE (2.88). Reordering (2.93) so that uk appears
on the left-hand side only, shows that (2.93) is a recursive set of spatial (stationary) problems for
uk (assuming uk−1 is known from computations at the previous time level):

u0 = I, (2.94)

uk − dt∆uk = uk−1 + dt f k, k = 1, 2, . . . (2.95)

Given I, we can solve for u0, u1, u2, and so on.

We use a finite element method to solve the equations (2.94) and (2.95). This requires turning
the equations into weak forms. As usual, we multiply by a test function v ∈ V̂ and integrate
second-derivatives by parts. Introducing the symbol u for uk (which is natural in the program too),
the resulting weak form can be conveniently written in the standard notation: a0(u, v) = L0(v) for
(2.94) and a(u, v) = L(v) for (2.95), where

a0(u, v) =
∫

Ω
uv dx, (2.96)

L0(v) =
∫

Ω
Iv dx, (2.97)

a(u, v) =
∫

Ω
(uv + dt∇u · ∇v) dx, (2.98)

L(v) =
∫

Ω

(
uk−1 + dt f k

)
v dx. (2.99)

The continuous variational problem is to find u0 ∈ V such that a0(u0, v) = L0(v) holds for all
v ∈ V̂, and then find uk ∈ V such that a(uk, v) = L(v) for all v ∈ V̂, k = 1, 2,

Approximate solutions in space are found by restricting the functional spaces V and V̂ to finite-
dimensional spaces, exactly as we have done in the Poisson problems. We shall use the symbol
u for the finite element approximation at time tk. In case we need to distinguish this space-time
discrete approximation from the exact solution of the continuous diffusion problem, we use ue for
the latter. By uk−1 we mean, from now on, the finite element approximation of the solution at time
tk−1.

Note that the forms a0 and L0 are identical to the forms met in Section 2.1.6, except that the test
and trial functions are now scalar fields and not a vector fields. Instead of solving (2.94) by a
finite element method; that is, projecting I onto V via the problem a0(u, v) = L0(v), we could

46 CHAPTER 2. TUTORIAL

simply interpolate u0 from I. That is, if u0 = ∑N
j=1 U0

j φj, we simply set Uj = I(xj, yj), where (xj, yj)

are the coordinates of node number j. We refer to these two strategies as computing the initial
condition by either projecting I or interpolating I. Both operations are easy to compute through
one statement, using either the project or interpolate function.

2.3.2 Implementation

Our program needs to perform the time stepping explicitly, but can rely on FEniCS to easily
compute a0, L0, a, and L, and solve the linear systems for the unknowns. We realize that a does not
depend on time, which means that its associated matrix also will be time independent. Therefore,
it is wise to explicitly create matrices and vectors as in Section 2.1.11. The matrix A arising from
a can be computed prior to the time stepping, so that we only need to compute the right-hand
side b, corresponding to L, in each pass in the time loop. Let us express the solution procedure in
algorithmic form, writing u for uk and uprev for the previous solution uk−1:

define Dirichlet boundary condition (u0, Dirichlet boundary, etc.)
if uprev is to be computed by projecting I:

define a0 and L0
assemble matrix M from a0 and vector b from L0
solve MU = b and store U in uprev

else: (interpolation)
let uprev interpolate I

define a and L
assemble matrix A from a
set some stopping time T
t = dt
while t 6 T

assemble vector b from L
apply essential boundary conditions
solve AU = b for U and store in u
t← t + dt
uprev ← u (be ready for next step)

Before starting the coding, we shall construct a problem where it is easy to determine if the
calculations are correct. The simple backward time difference is exact for linear functions, so we
decide to have a linear variation in time. Combining a second-degree polynomial in space with a
linear term in time,

u = 1 + x2 + αy2 + βt, (2.100)

yields a function whose computed values at the nodes may be exact, regardless of the size of
the elements and dt, as long as the mesh is uniformly partitioned. Inserting (2.100) in the PDE
problem (2.88), it follows that u0 must be given as (2.100) and that f (x, y, t) = β− 2− 2α and
I(x, y) = 1 + x2 + αy2.
A new programming issue is how to deal with functions that vary in space and time, such as the
boundary condition u0 given by (2.100). Given a mesh and an associated function space V, we can
specify the u0 function as

Python code
alpha = 3; beta = 1.2

u0 = Expression("1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t",

{"alpha": alpha, "beta": beta})

2.3. TIME-DEPENDENT PROBLEMS 47

u0.t = 0

This function expression has the components of x as independent variables, while alpha, beta, and
t are parameters. The parameters can either be set through a dictionary at construction time, as
demonstrated for alpha and beta, or anytime through attributes in the function object, as shown
for the t parameter.
The essential boundary conditions, along the whole boundary in this case, are set in the usual way,

Python code
def boundary(x, on_boundary): # define the Dirichlet boundary

return on_boundary

bc = DirichletBC(V, u0, boundary)

The initial condition can be computed by either projecting or interpolating I. The I(x, y) function
is available in the program through u0, as long as u0.t is zero. We can then do

Python code
u_prev = interpolate(u0, V)

or

u_prev = project(u0, V)

Note that we could, as an equivalent alternative to using project, define a0 and L0 as we did
in Section 2.1.6 and form a VariationalProblem object. To actually recover (2.100) to machine
precision, it is important not to compute the discrete initial condition by projecting I, but by
interpolating I so that the nodal values are exact at t = 0 (projection will imply approximative
values at the nodes).
The definition of a and L goes as follows:

Python code
dt = 0.3 # time step

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(beta - 2 - 2*alpha)

a = u*v*dx + dt*inner(grad(u), grad(v))*dx

L = (u_prev + dt*f)*v*dx

A = assemble(a) # assemble only once, before the time stepping

Finally, we perform the time stepping in a loop:

Python code
u = Function(V) # the unknown at a new time level

T = 2 # total simulation time

t = dt

while t <= T:

b = assemble(L)

u0.t = t

bc.apply(A, b)

solve(A, u.vector(), b)

t += dt

u_prev.assign(u)

48 CHAPTER 2. TUTORIAL

Observe that u0.t must be updated before bc applies it to enforce the Dirichlet conditions at the
current time level.
The time loop above does not contain any examination of the numerical solution, which we must
include in order to verify the implementation. As in many previous examples, we compute the
difference between the array of nodal values of u and the array of the interpolated exact solution.
The following code is to be included inside the loop, after u is found:

Python code
u_e = interpolate(u0, V)

maxdiff = (u_e.vector().array() - u.vector().array()).max()

print "Max error, t=%.2f: %-10.3f" % (t, maxdiff)

The right-hand side vector b must obviously be recomputed at each time level. With the construction
b = assemble(L), a new vector for b is allocated in memory in every pass of the time loop. It
would be much more memory friendly to reuse the storage of the b we already have. This is easily
accomplished by

Python code
b = assemble(L, tensor=b)

That is, we send in our previous b, which is then filled with new values and returned from
assemble. Now there will be only a single memory allocation of the right-hand side vector. Before
the time loop we set b = None such that b is defined in the first call to assemble.
The complete program code for this time-dependent case is stored in the file diffusion2D_D1.py.

2.3.3 Avoiding assembly

The purpose of this section is to present a technique for speeding up FEniCS simulators for
time-dependent problems where it is possible to perform all assembly operations prior to the time
loop. There are two costly operations in the time loop: assembly of the right-hand side b and
solution of the linear system via the solve call. The assembly process involves work proportional
to the number of degrees of freedom N, while the solve operation has a work estimate of O(Nα),
for some α > 1. As N → ∞, the solve operation will dominate for α > 1, but for the values of N
typically used on smaller computers, the assembly step may still represent a considerable part
of the total work at each time level. Avoiding repeated assembly can therefore contribute to a
significant speed-up of a finite element code in time-dependent problems.
To see how repeated assembly can be avoided, we look at the L(v) form in (2.99), which in general
varies with time through uk−1, f k, and possibly also with dt if the time step is adjusted during
the simulation. The technique for avoiding repeated assembly consists in expanding the finite
element functions in sums over the basis functions φi, as explained in Section 2.1.11, to identify
matrix-vector products that build up the complete system. We have uk−1 = ∑N

j=1 Uk−1
j φj, and we

can expand f k as f k = ∑N
j=1 Fk

j φj. Inserting these expressions in L(v) and using v = φ̂i result in

∫

Ω

(
uk−1 + dt f k

)
v dx =

∫

Ω

(
N

∑
j=1

Uk−1
j φj + dt

N

∑
j=1

Fk
j φj

)
φ̂i dx,

=
N

∑
j=1

(∫

Ω
φ̂iφj dx

)
Uk−1

j + dt
N

∑
j=1

(∫

Ω
φ̂iφj dx

)
Fk

j .

(2.101)

2.3. TIME-DEPENDENT PROBLEMS 49

Introducing Mij =
∫

Ω φ̂iφj dx, we see that the last expression can be written

N

∑
j=1

MijUk−1
j + dt

N

∑
j=1

MijFk
j , (2.102)

which is nothing but two matrix-vector products,

MUk−1 + dtMFk, (2.103)

if M is the matrix with entries Mij and

Uk−1 = (Uk−1
1 , . . . , Uk−1

N)T , (2.104)

and
Fk = (Fk

1 , . . . , Fk
N)

T . (2.105)

We have immediate access to Uk−1 in the program since that is the vector in the u_prev function.
The Fk vector can easily be computed by interpolating the prescribed f function (at each time level
if f varies with time). Given M, Uk−1, and Fk, the right-hand side b can be calculated as

b = MUk−1 + dtMFk. (2.106)

That is, no assembly is necessary to compute b.
The coefficient matrix A can also be split into two terms. We insert v = φ̂i and uk = ∑N

j=1 Uk
j φj in

the expression (2.98) to get

N

∑
j=1

(∫

Ω
φ̂iφj dx

)
Uk

j + dt
N

∑
j=1

(∫

Ω
∇φ̂i · ∇φj dx

)
Uk

j , (2.107)

which can be written as a sum of matrix-vector products,

MUk + dtKUk = (M + dtK)Uk, (2.108)

if we identify the matrix M with entries Mij as above and the matrix K with entries

Kij =
∫

Ω
∇φ̂i · ∇φj dx. (2.109)

The matrix M is often called the “mass matrix” while “stiffness matrix” is a common nickname for
K. The associated bilinear forms for these matrices, as we need them for the assembly process in a
FEniCS program, become

aK(u, v) =
∫

Ω
∇u · ∇v dx, (2.110)

aM(u, v) =
∫

Ω
uv dx. (2.111)

The linear system at each time level, written as AUk = b, can now be computed by first computing
M and K, and then forming A = M + dtK at t = 0, while b is computed as b = MUk−1 + dtMFk

at each time level.
The following modifications are needed in the diffusion2D_D1.py program from the previous

50 CHAPTER 2. TUTORIAL

section in order to implement the new strategy of avoiding assembly at each time level:

1. Define separate forms aM and aK

2. Assemble aM to M and aK to K

3. Compute A = M + dt K

4. Define f as an Expression

5. Interpolate the formula for f to a finite element function Fk

6. Compute b = MUk−1 + dtMFk

The relevant code segments become

Python code
1.

a_K = inner(grad(u), grad(v))*dx

a_M = u*v*dx

2. and 3.

M = assemble(a_M)

K = assemble(a_K)

A = M + dt*K

4.

f = Expression("beta - 2 - 2*alpha", {"beta": beta, "alpha": alpha})

5. and 6.

while t <= T:

fk = interpolate(f, V)

Fk = fk.vector()

b = M*u_prev.vector() + dt*M*Fk

The complete program appears in the file diffusion2D_D2.py.

2.3.4 A physical example

With the basic programming techniques for time-dependent problems from Sections 2.3.3–2.3.2 we
are ready to attack more physically realistic examples. The next example concerns the question:
How is the temperature in the ground affected by day and night variations at the earth’s surface?
We consider some box-shaped domain Ω in d dimensions with coordinates x0, . . . , xd−1 (the
problem is meaningful in 1D, 2D, and 3D). At the top of the domain, xd−1 = 0, we have an
oscillating temperature

T0(t) = TR + TA sin(ωt), (2.112)

where TR is some reference temperature, TA is the amplitude of the temperature variations at the
surface, and ω is the frequency of the temperature oscillations. At all other boundaries we assume
that the temperature does not change anymore when we move away from the boundary; that is,
the normal derivative is zero. Initially, the temperature can be taken as TR everywhere. The heat
conductivity properties of the soil in the ground may vary with space so we introduce a variable
coefficient κ reflecting this property. Figure ?? shows a sketch of the problem, with a small region
where the heat conductivity is much lower.

2.3. TIME-DEPENDENT PROBLEMS 51

Figure 2.7: Sketch of a (2D) problem
involving heating and cooling of the
ground due to an oscillating surface
temperature

∂u/∂n = 0∂u/∂n = 0

y

x

T0(t) = TR + TA sin(ωt)

D

W

κ ≪ κ0

̺, c, κ0

∂u/∂n = 0

The initial-boundary value problem for this problem reads

$c
∂T
∂t

= ∇ · (κ∇T) in Ω× (0, tstop], (2.113)

T = T0(t) on Γ0, (2.114)
∂T
∂n

= 0 on ∂Ω\Γ0, (2.115)

T = TR at t = 0. (2.116)

Here, $ is the density of the soil, c is the heat capacity, κ is the thermal conductivity (heat conduction
coefficient) in the soil, and Γ0 is the surface boundary xd−1 = 0.
We use a θ-scheme in time; that is, the evolution equation ∂P/∂t = Q(t) is discretized as

Pk − Pk−1

dt
= θQk + (1− θ)Qk−1, (2.117)

where θ ∈ [0, 1] is a weighting factor: θ = 1 corresponds to the backward difference scheme,
θ = 1/2 to the Crank-Nicolson scheme, and θ = 0 to a forward difference scheme. The θ-scheme
applied to our PDE results in

$c
Tk − Tk−1

dt
= θ∇ ·

(
κ∇Tk

)
+ (1− θ)∇ ·

(
k∇Tk−1

)
. (2.118)

Bringing this time-discrete PDE into weak form follows the technique shown many times earlier in
this tutorial. In the standard notation a(T, v) = L(v) the weak form has

a(T, v) =
∫

Ω
($cTv + θ dtκ∇T · ∇v) dx, (2.119)

L(v) =
∫

Ω

(
$cTk−1v− (1− θ)dtκ∇Tk−1 · ∇v

)
dx. (2.120)

Observe that boundary integrals vanish because of the Neumann boundary conditions.
The size of a 3D box is taken as W ×W × D, where D is the depth and W = D/2 is the width.
We give the degree of the basis functions at the command-line, then D, and then the divisions of

52 CHAPTER 2. TUTORIAL

the domain in the various directions. To make a box, rectangle, or interval of arbitrary (not unit)
size, we have the DOLFIN classes Box, Rectangle, and Interval at our disposal. The mesh and
the function space can be created by the following code:

Python code
degree = int(sys.argv[1])

D = float(sys.argv[2])

W = D/2.0

divisions = [int(arg) for arg in sys.argv[3:]]

d = len(divisions) # no of space dimensions

if d == 1:

mesh = Interval(divisions[0], -D, 0)

elif d == 2:

mesh = Rectangle(-W/2, -D, W/2, 0, divisions[0], divisions[1])

elif d == 3:

mesh = Box(-W/2, -W/2, -D, W/2, W/2, 0,

divisions[0], divisions[1], divisions[2])

V = FunctionSpace(mesh, "CG", degree)

The Rectangle and Box objects are defined by the coordinates of the “minimum” and “maximum”
corners.
Setting Dirichlet conditions at the upper boundary can be done by

Python code
T_R = 0; T_A = 1.0; omega = 2*pi

T_0 = Expression("T_R + T_A*sin(omega*t)",

{"T_R": T_R, "T_A": T_A, "omega": omega, "t": 0.0})

def surface(x, on_boundary):

return on_boundary and abs(x[d-1]) < 1E-14

bc = DirichletBC(V, T_0, surface)

Quite simple values (non-physical for soil and real temperature variations) are chosen for the
initial testing.
The κ function can be defined as a constant κ1 inside the particular rectangular area with a special
soil composition, as indicated in Figure ??. Outside this area κ is a constant κ0. The domain of the
rectangular area is taken as

[−W/4, W/4]× [−W/4, W/4]× [−D/2,−D/2 + D/4]

in 3D, with [−W/4, W/4]× [−D/2,−D/2 + D/4] in 2D and [−D/2,−D/2 + D/4] in 1D. Since
we need some testing in the definition of the κ(x) function, the most straightforward approach is
to define a subclass of Expression, where we can use a full Python method instead of just a C++
string formula for specifying a function. The method that defines the function is called eval:

Python code
class Kappa(Function):

def eval(self, value, x):

"""x: spatial point, value[0]: function value."""

d = len(x) # no of space dimensions

material = 0 # 0: outside, 1: inside

if d == 1:

if -D/2. < x[d-1] < -D/2. + D/4.:

material = 1

elif d == 2:

if -D/2. < x[d-1] < -D/2. + D/4. and \

2.3. TIME-DEPENDENT PROBLEMS 53

-W/4. < x[0] < W/4.:

material = 1

elif d == 3:

if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4. and -W/4. < x[1] < W/4.:

material = 1

value[0] = kappa_0 if material == 0 else kappa_1

The eval method gives great flexibility in defining functions, but a downside is that C++ calls up
eval in Python for each point x, which is a slow process, and the number of calls is proportional
to the number of nodes in the mesh. Function expressions in terms of strings are compiled to
efficient C++ functions, being called from C++, so we should try to express functions as string
expressions if possible. (The eval method can also be defined through C++ code, but this is much
more involved and not covered here.) Using inline if-tests in C++, we can make string expressions
for κ:

Python code
kappa_0 = 0.2

kappa_1 = 0.001

kappa_str = {}

kappa_str[1] = "x[0] > -%s/2 && x[0] < -%s/2 + %s/4 ? %g : %g" % \

(D, D, D, kappa_1, kappa_0)

kappa_str[2] = "x[0] > -%s/4 && x[0] < %s/4 "\

"&& x[1] > -%s/2 && x[1] < -%s/2 + %s/4 ? %g : %g" % \

(W, W, D, D, D, kappa_1, kappa_0)

kappa_str[3] = "x[0] > -%s/4 && x[0] < %s/4 "\

"x[1] > -%s/4 && x[1] < %s/4 "\

"&& x[2] > -%s/2 && x[2] < -%s/2 + %s/4 ? %g : %g" % \

(W, W, W, W, D, D, D, kappa_1, kappa_0)

kappa = Expression(kappa_str[d])

For example, in 2D kappa_str[1] becomes

Output
x[0] > -0.5/4 && x[0] < 0.5/4 && x[1] > -1.0/2 &&

x[1] < -1.0/2 + 1.0/4 ? 1e-03 : 0.2

for D = 1 and W = D/2 (the string is one line, but broken into two here to fit the page width). It
is very important to have a D that is float and not int, otherwise one gets integer divisions in the
C++ expression and a completely wrong κ function.
We are now ready to define the initial condition and the a and L forms of our problem:

Python code
T_prev = interpolate(Constant(T_R), V)

rho = 1

c = 1

period = 2*pi/omega

t_stop = 5*period

dt = period/20 # 20 time steps per period

theta = 1

T = TrialFunction(V)

v = TestFunction(V)

f = Constant(0)

a = rho*c*T*v*dx + theta*dt*kappa*inner(grad(T), grad(v))*dx

L = (rho*c*T_prev*v + dt*f*v -

54 CHAPTER 2. TUTORIAL

(1-theta)*dt*kappa*inner(grad(T), grad(v)))*dx

A = assemble(a)

b = None # variable used for memory savings in assemble calls

We could, alternatively, break a and L up in subexpressions and assemble a mass matrix and
stiffness matrix, as exemplified in Section 2.3.3, to avoid assembly of b at every time level. This
modification is straightforward and left as an exercise. The speed-up can be significant in 3D
problems.
The time loop is very similar to what we have displayed in Section 2.3.2:

Python code
T = Function(V) # unknown at the current time level

t = dt

while t <= t_stop:

b = assemble(L, tensor=b)

T_0.t = t

bc.apply(A, b)

solve(A, T.vector(), b)

visualization statements

t += dt

T_prev.assign(T)

The complete code in diffusion123D_sin.py contains several statements related to visualization
of the solution, both as a finite element field (plot calls) and as a curve in the vertical direction.
The code also plots the exact analytical solution,

T(x, t) = TR + TAeax sin(ωt + ax), a =

√
ω$c
2κ

, (2.121)

which is valid when κ is constant throughout Ω. The reader is encouraged to play around with the
code and test out various parameter sets:

• TR = 0, TA = 1, κ0 = κ1 = 0.2, $ = c = 1, ω = 2π

• TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.01, $ = c = 1, ω = 2π

• TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.001, $ = c = 1, ω = 2π

• TR = 10 C, TA = 10 C, κ0 = 1.1 K−1Ns−1, κ0 = 2.3 K−1Ns−1, $ = 1500 kg/m3, c =
1600 Nm kg−1K−1, ω = 2π/24 1/h = 7.27 · 10−5

1/s, D = 1.5 m

The latter set of data is relevant for real temperature variations in the ground.

2.4 Controlling the solution of linear systems

Several linear algebra packages, referred to as linear algebra backends, can be used in FEniCS to
solve linear systems: PETSc, uBLAS, Epetra (Trilinos), or MTL4. Which backend to apply can be
controlled by setting

Python code
parameters["linear algebra backend"] = backendname

where backendname is a string, either "PETSc", "uBLAS", "Epetra", or "MTL4". These backends offer
high-quality implementations of both iterative and direct solvers for linear systems of equations.

2.4. CONTROLLING THE SOLUTION OF LINEAR SYSTEMS 55

The backend determines the specific data structures that are used in the Matrix and Vector classes.
For example, with the PETSc backend, Matrix encapsulates a PETSc matrix storage structure, and
Vector encapsulates a PETSc vector storage structure. Sometimes one wants to perform operations
directly on (say) the underlying PETSc objects. These can be fetched by

Python code
A_PETSc = down_cast(A).mat()

b_PETSc = down_cast(b).vec()

U_PETSc = down_cast(u.vector()).vec()

Here, u is a Function, A is a Matrix, and b is a Vector. The same syntax applies if we want to fetch
the underlying Epetra, uBLAS, or MTL4 matrices and vectors. Section 2.4.4 provides an example
on working directly with Epetra objects.
Let us explain how one can choose between direct and iterative solvers. We have seen that there are
two ways of solving linear systems, either we call the solve() method in a VariationalProblem

object or we call the solve(A, U, b) function with the assembled coefficient matrix A, right-hand
side vector b, and solution vector U.

2.4.1 Variational problem objects

In case we use a VariationalProblem object, named problem, it has a parameters object that
behaves like a Python dictionary, and we can use this object to choose between a direct or iterative
solver:

Python code
problem.parameters["solver"]["linear_solver"] = "direct"

or

problem.parameters["solver"]["linear_solver"] = "iterative"

Another parameter "symmetric" can be set to True if the coefficient matrix is symmetric so that a
method exploiting symmetry can be utilized. For example, the default iterative solver is GMRES,
but when solving a Poisson equation, the iterative solution process will be more efficient by setting
the "symmetry" parameter so that a Conjugate Gradient method is applied.
Having chosen an iterative solver, we can invoke the submenu "solver"/"krylov_solver" in the
parameters object for setting various parameters for the iterative solver (GMRES or Conjugate
Gradients, depending on whether the matrix is symmetric or not):

Python code
itsolver = problem.parameters["solver"]["krylov_solver"] # short form

itsolver["absolute_tolerance"] = 1E-10

itsolver["relative_tolerance"] = 1E-6

itsolver["maximum_iterations"] = 1000

itsolver["gmres_restart"] = 50

itsolver["monitor_convergence"] = True

itsolver["report"] = True

Here, "maximum_iterations" governs the maximum allowable number of iterations, the "gmres_restart"
parameter tells how many iterations GMRES performs before it restarts, "monitor_convergence"
prints detailed information about the development of the residual of a solver, "report" governs
whether a one-line report about the solution method and the number of iterations is written on
the screen or not. The absolute and relative tolerances enter (usually residual-based) stopping
criteria, which are dependent on the implementation of the underlying iterative solver in the actual
backend.

56 CHAPTER 2. TUTORIAL

When direct solver is chosen, there is similarly a submenu "lu_solver" to set parameters, but here
only the "report" parameter is available (since direct solvers very seldom have any adjustable
parameters). For nonlinear problems there is also submenu "newton_solver" where tolerances,
maximum iterations, and so on, for a the Newton solver in VariationalProblem can be set.
A complete list of all parameters and their default values is printed to the screen by

Python code
info(problem.parameters, True)

2.4.2 Solve function

For the solve(A, U, b) approach, a 4th argument to solve determines the type of method:

• "lu" for a sparse direct (LU decomposition) method,

• "cg" for the Conjugate Gradient (CG) method, which is applicable if A is symmetric and
positive definite,

• "gmres" for the GMRES iterative method, which is applicable when A is nonsymmetric,

• "bicgstab" for the BiCGStab iterative method, which is applicable when A is nonsymmetric.

The default solver is "lu".
Good performance of an iterative method requires preconditioning of the linear system. The 5th
argument to solve determines the preconditioner:

• "none" for no preconditioning.

• "jacobi" for the simple Jacobi (diagonal) preconditioner,

• "sor" for SOR preconditioning,

• "ilu" for incomplete LU factorization (ILU) preconditioning,

• "icc" for incomplete Cholesky factorization preconditioning (requires A to be symmetric and
positive definite),

• "amg_hypre" for algebraic multigrid (AMG) preconditioning with the Hypre package (if
available),

• "mag_ml" for algebraic multigrid (AMG) preconditioning with the ML package from Trilinos
(if available),

• "default_pc" for a default preconditioner, which depends on the linear algebra backend
("ilu" for PETSc).

If the 5th argument is not provided, "ilu" is taken as the default preconditioner.
Here are some sample calls to solve demonstrating the choice of solvers and preconditioners:

Python code
solve(A, u.vector(), b) # "lu" is default solver

solve(A, u.vector(), b, "cg") # CG with ILU prec.

solve(A, u.vector(), b, "gmres", "amg_ml") # GMRES with ML prec.

2.4. CONTROLLING THE SOLUTION OF LINEAR SYSTEMS 57

2.4.3 Setting the start vector

The choice of start vector for the iterations in a linear solver is often important. With the solve(A,

U, b) function the start vector is the vector we feed in for the solution. A start vector with random
numbers in the interval [−1, 1] can be computed as

Python code
n = u.vector().array().size

u.vector()[:] = numpy.random.uniform(-1, 1, n)

solve(A, u.vector(), b, "cg", "ilu")

Or if a VariationalProblem object is used, its solve method may take an optional u function as
argument (which we can fill with the right values):

Python code
problem = VariationalProblem(a, L, bc)

n = u.vector().array().size

u.vector()[:] = numpy.random.uniform(-1, 1, n)

u = problem.solve(u)

The program Poisson2D_DN_laprm.py demonstrates the various control mechanisms for steering
linear solvers as described above.

2.4.4 Using a backend-specific solver

Sometimes one wants to implement tailored solution algorithms, using special features of the
underlying numerical packages. Here is an example where we create an ML preconditioned
Conjugate Gradient solver by programming with Trilinos-specific objects directly. Given a linear
system AU = b, represented by a Matrix object A, and two Vector objects U and b in a Python
program, the purpose is to set up a solver using the Aztec Conjugate Gradient method from
Trilinos’ Aztec library and combine that solver with the algebraic multigrid preconditioner ML
from the ML library in Trilinos. Since the various parts of Trilinos are mirrored in Python through
the PyTrilinos package, we can operate directly on Trilinos-specific objects.

Python code
try:

from PyTrilinos import Epetra, AztecOO, TriUtils, ML

except:

print ’’’You Need to have PyTrilinos with

Epetra, AztecOO, TriUtils and ML installed

for this demo to run’’’

exit()

from dolfin import *

if not has_la_backend("Epetra"):

print "Warning: Dolfin is not compiled with Trilinos"

exit()

parameters["linear_algebra_backend"] = "Epetra"

create matrix A and vector b in the usual way

u is a Function

Fetch underlying Epetra objects

A_epetra = down_cast(A).mat()

b_epetra = down_cast(b).vec()

58 CHAPTER 2. TUTORIAL

U_epetra = down_cast(u.vector()).vec()

Sets up the parameters for ML using a python dictionary

ML_param = {"max levels" : 3,

"output" : 10,

"smoother: type" : "ML symmetric Gauss-Seidel",

"aggregation: type" : "Uncoupled",

"ML validate parameter list" : False

}

Create the preconditioner

prec = ML.MultiLevelPreconditioner(A_epetra, False)

prec.SetParameterList(ML_param)

prec.ComputePreconditioner()

Create solver and solve system

solver = AztecOO.AztecOO(A_epetra, U_epetra, b_epetra)

solver.SetPrecOperator(prec)

solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_cg)

solver.SetAztecOption(AztecOO.AZ_output, 16)

solver.Iterate(MaxIters=1550, Tolerance=1e-5)

plot(u)

2.5 Creating more complex domains

Up to now we have been very fond of the unit square as domain, which is an appropriate choice
for initial versions of a PDE solver. The strength of the finite element method, however, is its ease
of handling domains with complex shapes. This section shows some methods that can be used to
create different types of domains and meshes.
Domains of complex shape must normally be constructed in separate preprocessor programs. Two
relevant preprocessors are Triangle for 2D domains and NETGEN for 3D domains.

2.5.1 Built-in mesh generation tools

DOLFIN has a few tools for creating various types of meshes over domains with simple shape:
UnitInterval, UnitSphere, UnitSquare, Interval, Rectangle, Box, UnitCircle, and UnitCube.
Some of these names have been briefly met in previous sections. The hopefully self-explanatory
code snippet below summarizes typical constructions of meshes with the aid of these tools:

Python code
1D domains

mesh = UnitInterval(20) # 20 cells, 21 vertices

mesh = Interval(20, -1, 1) # domain [-1,1]

2D domains (6x10 divisions, 120 cells, 77 vertices)

mesh = UnitSquare(6, 10) # "right" diagonal is default

The diagonals can be right, left or crossed

mesh = UnitSquare(6, 10, "left")

mesh = UnitSquare(6, 10, "crossed")

Domain [0,3]x[0,2] with 6x10 divisions and left diagonals

mesh = Rectangle(0, 0, 3, 2, 6, 10, "left")

6x10x5 boxes in the unit cube, each box gets 6 tetrahedra:

mesh = UnitCube(6, 10, 5)

2.5. CREATING MORE COMPLEX DOMAINS 59

Domain [-1,1]x[-1,0]x[-1,2] with 6x10x5 divisions

mesh = Box(-1, -1, -1, 1, 0, 2, 6, 10, 5)

10 divisions in radial directions

mesh = UnitCircle(10)

mesh = UnitSphere(10)

2.5.2 Transforming mesh coordinates

A mesh that is denser toward a boundary is often desired to increase accuracy in that region. Given
a mesh with uniformly spaced coordinates x0, . . . , xM−1 in [a, b], the coordinate transformation
ξ = (x− a)/(b− a) maps x onto ξ ∈ [0, 1]. A new mapping η = ξs, for some s > 1, stretches the
mesh toward ξ = 0 (x = a), while η = ξ1/s makes a stretching toward ξ = 1 (x = b). Mapping the
η ∈ [0, 1] coordinates back to [a, b] gives new, stretched x coordinates,

x̄ = a + (b− a) ((x− a) b− a)s (2.122)

toward x = a, or

x̄ = a + (b− a)
(

x− a
b− a

)1/s
(2.123)

toward x = b
One way of creating more complex geometries is to transform the vertex coordinates in a rectangular
mesh according to some formula. Say we want to create a part of a hollow cylinder of Θ degrees,
with inner radius a and outer radius b. A standard mapping from polar coordinates to Cartesian
coordinates can be used to generate the hollow cylinder. Given a rectangle in (x̄, ȳ) space such that
a 6 x̄ 6 b and 0 6 ȳ 6 1, the mapping

x̂ = x̄ cos(Θȳ), ŷ = x̄ sin(Θȳ), (2.124)

takes a point in the rectangular (x̄, ȳ) geometry and maps it to a point (x̂, ŷ) in a hollow cylinder.
The corresponding Python code for first stretching the mesh and then mapping it onto a hollow
cylinder looks as follows:

Python code
Theta = pi/2

a, b = 1, 5.0

nr = 10 # divisions in r direction

nt = 20 # divisions in theta direction

mesh = Rectangle(a, 0, b, 1, nr, nt, "crossed")

First make a denser mesh towards r=a

x = mesh.coordinates()[:,0]

y = mesh.coordinates()[:,1]

s = 1.3

def denser(x, y):

return [a + (b-a)*((x-a)/(b-a))**s, y]

x_bar, y_bar = denser(x, y)

xy_bar_coor = numpy.array([x_bar, y_bar]).transpose()

mesh.coordinates()[:] = xy_bar_coor

plot(mesh, title="stretched mesh")

60 CHAPTER 2. TUTORIAL

Figure 2.8: A hollow cylinder gener-
ated by mapping a rectangular mesh,
stretched toward the left side.

def cylinder(r, s):

return [r*numpy.cos(Theta*s), r*numpy.sin(Theta*s)]

x_hat, y_hat = cylinder(x_bar, y_bar)

xy_hat_coor = numpy.array([x_hat, y_hat]).transpose()

mesh.coordinates()[:] = xy_hat_coor

plot(mesh, title="hollow cylinder")

interactive()

The result of calling denser and cylinder above is a list of two vectors, with the x and y coordinates,
respectively. Turning this list into a numpy array object results in a 2×M array, M being the number
of vertices in the mesh. However, mesh.coordinates() is by a convention an M× 2 array so we
need to take the transpose. The resulting mesh is displayed in Figure ??.
Setting boundary conditions in meshes created from mappings like the one illustrated above is
most conveniently done by using a mesh function to mark parts of the boundary. The marking is
easiest to perform before the mesh is mapped since one can then conceptually work with the sides
in a pure rectangle.

2.6 Handling domains with different materials

Solving PDEs in domains made up of different materials is a frequently encountered task. In
FEniCS, this kind of problems are handled by defining subdomains inside the domain. The subdo-
mains may represent the various materials. We can thereafter define material properties through
functions, known in FEniCS as mesh functions, that are piecewise constant in each subdomain. A
simple example with two materials (subdomains) in 2D will demonstrate the basic steps in the
process.

2.6.1 Working with two subdomains

Suppose we want to solve
∇ · [k(x, y)∇u(x, y)] = 0, (2.125)

in a domain Ω consisting of two subdomains where k takes on a different value in each subdomain.
For simplicity, yet without loss of generality, we choose for the current implementation the domain

2.6. HANDLING DOMAINS WITH DIFFERENT MATERIALS 61

Figure 2.9: Sketch of a Poisson prob-
lem with a variable coefficient that
is constant in each of the two subdo-
mains Ω0 and Ω1.

6

-
x

y

u = 0

u = 1

Ω1

Ω0

∂u
∂n = 0 ∂u

∂n = 0

Ω = [0, 1]× [0, 1] and divide it into two equal subdomains, as depicted in Figure ??,

Ω0 = [0, 1]× [0, 1/2], Ω1 = [0, 1]× (1/2, 1]. (2.126)

We define k(x, y) = k0 in Ω0 and k(x, y) = k1 in Ω1, where k0 > 0 and k1 > 0 are given constants.
As boundary conditions, we choose u = 0 at y = 0, u = 1 at y = 1, and ∂u/∂n = 0 at x = 0 and
x = 1. One can show that the exact solution is now given by

u(x, y) =

{ 2yk1
k0+k1

, y 6 1/2
(2y−1)k0+k1

k0+k1
, y > 1/2

(2.127)

As long as the element boundaries coincide with the internal boundary y = 1/2, this piecewise
linear solution should be exactly recovered by Lagrange elements of any degree. We use this
property to verify the implementation.
Physically, the present problem may correspond to heat conduction, where the heat conduction in
Ω1 is ten times more efficient than in Ω0. An alternative interpretation is flow in porous media
with two geological layers, where the layers’ ability to transport the fluid differs by a factor of 10.

2.6.2 Implementation

The new functionality in this subsection regards how to to define the subdomains Ω0 and Ω1. For
this purpose we need to use subclasses of class SubDomain, not only plain functions as we have
used so far for specifying boundaries. Consider the boundary function

Python code
def boundary(x, on_boundary):

tol = 1E-14

return on_boundary and abs(x[0]) < tol

for defining the boundary x = 0. Instead of using such a stand-alone function, we can create an
instance7 of a subclass of SubDomain, which implements the inside method as an alternative to

7The term instance means a Python object of a particular type (such as SubDomain, Function, FunctionSpace, etc.). Many
use instance and object as interchangeable terms. In other computer programming languages one may also use the term

62 CHAPTER 2. TUTORIAL

the boundary function:

Python code
class Boundary(SubDomain):

def inside(x, on_boundary):

tol = 1E-14

return on_boundary and abs(x[0]) < tol

boundary = Boundary()

bc = DirichletBC(V, Constant(0), boundary)

A subclass of SubDomain with an inside method gives access to more functionality for marking
parts of the domain or the boundary. Now we need to define one class for the subdomain Ω0
where y 6 1/2 and another for the subdomain Ω1 where y > 1/2:

Python code
class Omega0(SubDomain):

def inside(self, x, on_boundary):

return True if x[1] <= 0.5 else False

class Omega1(SubDomain):

def inside(self, x, on_boundary):

return True if x[1] >= 0.5 else False

Notice the use of <= and >= in both tests. For a cell to belong to, e.g., Ω1, the inside method must
return True for all the vertices x of the cell. So to make the cells at the internal boundary y = 1/2
belong to Ω1, we need the test x[1] >= 0.5.
The next task is to use a MeshFunction to mark all cells in Ω0 with the subdomain number 0 and all
cells in Ω1 with the subdomain number 1. Our convention is to number subdomains as 0, 1, 2,
A MeshFunction is a discrete function that can be evaluated at a set of so-called mesh entities. Three
mesh entities are cells, facets, and vertices. A MeshFunction over cells is suitable to represent
subdomains (materials), while a MeshFunction over facets is used to represent pieces of external or
internal boundaries. Mesh functions over vertices can be used to describe continuous fields.
Since we need to define subdomains of Ω in the present example, we must make use of a
MeshFunction over cells. The MeshFunction constructor is fed with three arguments: 1) the type
of value: "int" for integers, "uint" for positive (unsigned) integers, "double" for real numbers,
and "bool" for logical values; 2) a Mesh object, and 3) the topological dimension of the mesh entity
in question: cells have topological dimension equal to the number of space dimensions in the
PDE problem, and facets have one dimension lower. Alternatively, the constructor can take just a
filename and initialize the MeshFunction from data in a file.
We start with creating a MeshFunction whose values are non-negative integers ("uint") for num-
bering the subdomains. The mesh entities of interest are the cells, which have dimension 2 in a
two-dimensional problem (1 in 1D, 3 in 3D). The appropriate code for defining the MeshFunction

for two subdomains then reads

Python code
subdomains = MeshFunction("uint", mesh, 2)

Mark subdomains with numbers 0 and 1

subdomain0 = Omega0()

subdomain0.mark(subdomains, 0)

subdomain1 = Omega1()

subdomain1.mark(subdomains, 1)

variable for the same thing. We mostly use the well-known term object in this text.

2.6. HANDLING DOMAINS WITH DIFFERENT MATERIALS 63

Calling subdomains.values() returns a numpy array of the subdomain values. That is, subdomain.values()[i]
is the subdomain value of cell number i. This array is used to look up the subdomain or material
number of a specific element.
We need a function k that is constant in each subdomain Ω0 and Ω1. Since we want k to be a finite
element function, it is natural to choose a space of functions that are constant over each element.
The family of discontinuous Galerkin methods, in FEniCS denoted by "DG", is suitable for this
purpose. Since we want functions that are piecewise constant, the value of the degree parameter is
zero:

Python code
V0 = FunctionSpace(mesh, "DG", 0)

k = Function(V0)

To fill k with the right values in each element, we loop over all cells (the indices in subdomain.values()),
extract the corresponding subdomain number of a cell, and assign the corresponding k value to
the k.vector() array:

Python code
k_values = [1.5, 50] # values of k in the two subdomains

for cell_no in range(len(subdomains.values())):

subdomain_no = subdomains.values()[cell_no]

k.vector()[cell_no] = k_values[subdomain_no]

Long loops in Python are known to be slow, so for large meshes it is preferable to avoid such loops
and instead use vectorized code. Normally this implies that the loop must be replaced by calls to
functions from the numpy library that operate on complete arrays (in efficient C code). The function-
ality we want in the present case is to compute an array of the same size as subdomain.values(),
but where the value i of an entry in subdomain.values() is replaced by k_values[i]. Such an
operation is carried out by the numpy function choose:

Python code
help = numpy.asarray(subdomains.values(), dtype=numpy.int32)

k.vector()[:] = numpy.choose(help, k_values)

The help array is required since choose cannot work with subdomain.values() because this array
has elements of type uint32. We must therefore transform this array to an array help with standard
int32 integers.
Having the k function ready for finite element computations, we can proceed in the normal manner
with defining essential boundary conditions, as in Section 2.1.10, and the a(u, v) and L(v) forms,
as in Section 2.1.12. All the details can be found in the file Poisson2D_2mat.py.

2.6.3 Multiple Neumann, Robin, and Dirichlet conditions

Let us go back to the model problem from Section 2.1.10 where we had both Dirichlet and
Neumann conditions. The term v*g*ds in the expression for L implies a boundary integral over
the complete boundary, or in FEniCS terms, an integral over all exterior cell facets. However, the
contributions from the parts of the boundary where we have Dirichlet conditions are erased when
the linear system is modified by the Dirichlet conditions. We would like, from an efficiency point
of view, to integrate v*g*ds only over the parts of the boundary where we actually have Neumann
conditions. And more importantly, in other problems one may have different Neumann conditions
or other conditions like the Robin type condition. With the mesh function concept we can mark
different parts of the boundary and integrate over specific parts. The same concept can also be
used to treat multiple Dirichlet conditions. The forthcoming text illustrates how this is done.

64 CHAPTER 2. TUTORIAL

Essentially, we still stick to the model problem from Section 2.1.10, but replace the Neumann
condition at y = 0 by a Robin condition8:

−∂u
∂n

= p(u− q), (2.128)

where p and q are specified functions. Since we have prescribed a simple solution in our model
problem, u = 1 + x2 + 2y2, we adjust p and q such that the condition holds at y = 0. This implies
that q = 1 + x2 + 2y2 and p can be arbitrary (the normal derivative at y = 0: ∂u/∂n = −∂u/∂y =
−4y = 0).

Now we have four parts of the boundary: ΓN which corresponds to the upper side y = 1, ΓR which
corresponds to the lower part y = 0, Γ0 which corresponds to the left part x = 0, and Γ1 which
corresponds to the right part x = 1. The complete boundary-value problem reads

−∆u = −6 in Ω, (2.129)

u = uL on Γ0, (2.130)

u = uR on Γ1, (2.131)

−∂u
∂n

= p(u− q) on ΓR, (2.132)

−∂u
∂n

= g on ΓN . (2.133)

The involved prescribed functions are uL = 1 + 2y2, uR = 2 + 2y2, q = 1 + x2 + 2y2, p is arbitrary,
and g = −4y.

Integration by parts of −
∫

Ω v∆u dx becomes as usual

−
∫

Ω
v∆u dx =

∫

Ω
∇u · ∇v dx−

∫

∂Ω

∂u
∂n

v ds. (2.134)

The boundary integral vanishes on Γ0 ∪ Γ1, and we split the parts over ΓN and ΓR since we have
different conditions at those parts:

−
∫

∂Ω
v

∂u
∂n

ds = −
∫

ΓN

v
∂u
∂n

ds−
∫

ΓR

v
∂u
∂n

ds =
∫

ΓN

vg ds +
∫

ΓR

vp(u− q)ds. (2.135)

The weak form then becomes
∫

Ω
∇u · ∇v dx +

∫

ΓN

gv ds +
∫

ΓR

p(u− q)v ds =
∫

Ω
f v dx, (2.136)

We want to write this weak form in the standard notation a(u, v) = L(v), which requires that we
identify all integrals with both u and v, and collect these in a(u, v), while the remaining integrals
with v and not u go into L(v). The integral from the Robin condition must of this reason be split
in two parts: ∫

ΓR

p(u− q)v ds =
∫

ΓR

puv ds−
∫

ΓR

pqv ds. (2.137)

8The Robin condition is most often used to model heat transfer to the surroundings and arise naturally from Newton’s
cooling law.

2.6. HANDLING DOMAINS WITH DIFFERENT MATERIALS 65

We then have

a(u, v) =
∫

Ω
∇u · ∇v dx +

∫

ΓR

puv ds, (2.138)

L(v) =
∫

Ω
f v dx−

∫

ΓN

gv ds +
∫

ΓR

pqv ds. (2.139)

A natural starting point for implementation is the Poisson2D_DN2.py program, which we now
copy to Poisson2D_DNR.py. The new aspects are

1. definition of a mesh function over the boundary,

2. marking each side as a subdomain, using the mesh function,

3. splitting a boundary integral into parts.

Task 1 makes use of the MeshFunction object, but contrary to Section 2.6.2, this is not a function
over cells, but a function over cell facets. The topological dimension of cell facets is one lower than
the cell interiors, so in a two-dimensional problem the dimension becomes 1. In general, the facet
dimension is given as mesh.topology().dim()-1, which we use in the code for ease of direct reuse
in other problems. The construction of a MeshFunction object to mark boundary parts now reads

Python code
boundary_parts = \

MeshFunction("uint", mesh, mesh.topology().dim()-1)

As in Section 2.6.2 we use a subclass of SubDomain to identify the various parts of the mesh function.
Problems with domains of more complicated geometries may set the mesh function for marking
boundaries as part of the mesh generation. In our case, the y = 0 boundary can be marked by

Python code
class LowerRobinBoundary(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[1]) < tol

Gamma_R = LowerRobinBoundary()

Gamma_R.mark(boundary_parts, 0)

The code for the y = 1 boundary is similar and is seen in Poisson2D_DNR.py.
The Dirichlet boundaries are marked similarly, using subdomain number 2 for Γ0 and 3 for Γ1:

Python code
class LeftBoundary(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[0]) < tol

Gamma_0 = LeftBoundary()

Gamma_0.mark(boundary_parts, 2)

class RightBoundary(SubDomain):

def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons

return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = RightBoundary()

Gamma_1.mark(boundary_parts, 3)

66 CHAPTER 2. TUTORIAL

Specifying the DirichletBC objects may now make use of the mesh function (instead of a SubDomain

subclass object) and an indicator for which subdomain each condition should be applied to:

Python code
u_L = Expression("1 + 2*x[1]*x[1]")

u_R = Expression("2 + 2*x[1]*x[1]")

bc = [DirichletBC(V, u_L, boundary_parts, 2),

DirichletBC(V, u_R, boundary_parts, 3)]

Some functions need to be defined before we can go on with the a and L of the variational problem:

Python code
g = Expression("-4*x[1]")

q = Expression("1 + x[0]*x[0] + 2*x[1]*x[1]")

p = Constant(100) # arbitrary function can go here

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(-6.0)

The new aspect of the variational problem is the two distinct boundary integrals. Having a mesh
function over exterior cell facets (our boundary_parts object), where subdomains (boundary parts)
are numbered as 0, 1, 2, . . ., the special symbol ds(0) implies integration over subdomain (part) 0,
ds(1) denotes integration over subdomain (part) 1, and so on. The idea of multiple ds-type objects
generalizes to volume integrals too: dx(0), dx(1), etc., are used to integrate over subdomain 0, 1,
etc., inside Ω.
The variational problem can be defined as

Python code
a = inner(grad(u), grad(v))*dx + p*u*v*ds(0)

L = f*v*dx - g*v*ds(1) + p*q*v*ds(0)

For the ds(0) and ds(1) symbols to work we must obviously connect them (or a and L) to the
mesh function marking parts of the boundary. This is done by a certain keyword argument to the
assemble function:

Python code
A = assemble(a, exterior_facet_domains=boundary_parts)

b = assemble(L, exterior_facet_domains=boundary_parts)

Then essential boundary conditions are enforced, and the system can be solved in the usual way:

Python code
for condition in bc: condition.apply(A, b)

u = Function(V)

solve(A, u.vector(), b)

At the time of this writing, it is not possible to perform integrals over different parts of the domain
or boundary using the assemble_system function or the VariationalProblem object.

2.7 More examples

Many more topics could be treated in a FEniCS tutorial, e.g., how to solve systems of PDEs, how
to work with mixed finite element methods, how to create more complicated meshes and mark
boundaries, and how to create more advanced visualizations. However, to limit the size of this
tutorial, the examples end here. There are, fortunately, a rich set of examples coming with the

2.8. MISCELLANEOUS TOPICS 67

DOLFIN source code. Go to dolfin/demo. The subdirectory pde contains many examples on
solving PDEs:

• the advection-diffusion equation (advection-diffusion),

• the Cahn-Hilliard equation (cahn-hilliard),

• the equation of linear elasticity (elasticity) and hyperelasticity (hyperelasticity),

• the Poisson equation with a variable tensor coefficient (tensor-weighted-poisson),

• mixed finite elements for the Poisson equation (mixed-poisson),

• the Stokes problem of fluid flow (stokes),

• an eigenvalue problem arising from electromagnetic waveguide problem with Nédélec
elements.

Moreover, the dg subdirectory contains demonstrations of applying discontinuous Galerkin meth-
ods to the advection-diffusion, Poisson, and Biharmonic equations. There also exists an example
on how to compute functionals over subsets of the mesh (lift-drag).
The demo/mesh directory contains examples on moving a mesh (ale), computing intersections
(intersection), mesh refinement (refinement), and creating separate subdomain meshes from a
common parent mesh (submesh).
The cbc.solve suite of applications is under development and will contain Navier–Stokes solvers
and large-strain elasticity solvers. The cbc.rans suite will in particular contain several Navier–
Stokes solvers in combination with a range of PDEs arising in various turbulence models.

2.8 Miscellaneous topics

2.8.1 Glossary

Below we explain some key terms used in this tutorial.

FEniCS: name of a software suite composed of many individual software components (see
fenicsproject.org). Some components are DOLFIN and Viper, explicitly referred to in this
tutorial. Others are FFC and FIAT, heavily used by the programs appearing in this tutorial, but
never explicitly used from the programs.

DOLFIN: a FEniCS component, more precisely a C++ library, with a Python interface, for per-
forming important actions in finite element programs. DOLFIN makes use of many other FEniCS
components and many external software packages.

Viper: a FEniCS component for quick visualization of finite element meshes and solutions.

UFL: a FEniCS component implementing the unified form language for specifying finite element
forms in FEniCS programs. The definition of the forms, typically called a and L in this tutorial,
must have legal UFL syntax. The same applies to the definition of functionals (see Section 2.1.7).

Class (Python): a programming construction for creating objects containing a set of variables and
functions. Most types of FEniCS objects are defined through the class concept.

Instance (Python): an object of a particular type, where the type is implemented as a class. For
instance, mesh = UnitInterval(10) creates an instance of class UnitInterval, which is reached

68 CHAPTER 2. TUTORIAL

by the name mesh. (Class UnitInterval is actually just an interface to a corresponding C++ class
in the DOLFIN C++ library.)

Class method (Python): a function in a class, reached by dot notation: instance_name.method_name

self parameter (Python): required first parameter in class methods, representing a particular
object of the class. Used in method definitions, but never in calls to a method. For example, if
method(self, x) is the definition of method in a class Y, method is called as y.method(x), where y

is an instance of class X. In a call like y.method(x), method is invoked with self=y.

Class attribute (Python): a variable in a class, reached by dot notation: instance_name.attribute_name

2.8.2 Overview of objects and functions

Most classes in FEniCS have an explanation of the purpose and usage that can be seen by using
the general documentation command pydoc for Python objects. You can type

Output
pydoc dolfin.X

to look up documentation of a Python class X from the DOLFIN library (X can be UnitSquare,
Function, Viper, etc.). Below is an overview of the most important classes and functions in FEniCS
programs, in the order they typically appear within programs.

UnitSquare(nx, ny): generate mesh over the unit square [0, 1] × [0, 1] using nx divisions in x
direction and ny divisions in y direction. Each of the nx*ny squares are divided into two cells of
triangular shape.

UnitInterval, UnitCube, UnitCircle, UnitSphere, Interval, Rectangle, and Box: generate mesh
over domains of simple geometric shape, see Section 2.5.

FunctionSpace(mesh, element_type, degree): a function space defined over a mesh, with a
given element type (e.g., "CG" or "DG"), with basis functions as polynomials of a specified degree.

Expression(formula): a scalar- or vector-valued function, given as a mathematical expression
formula (string) written in C++ syntax.

Function(V): a scalar- or vector-valued finite element field in the function space V. If V is a
FunctionSpace object, Function(V) becomes a scalar field, and with V as a VectorFunctionSpace

object, Function(V) becomes a vector field.

SubDomain: class for defining a subdomain, either a part of the boundary, an internal boundary, or
a part of the domain. The programmer must subclass SubDomain and implement the inside(self,

x, on_boundary) function (see Section 2.1.3) for telling whether a point x is inside the subdomain
or not.

Mesh: class for representing a finite element mesh, consisting of cells, vertices, and optionally faces,
edges, and facets.
MeshFunction: tool for marking parts of the domain or the boundary. Used for variable coefficients
(“material properties”, see Section 2.6.1) or for boundary conditions (see Section 2.6.3).

DirichletBC(V, value, where): specification of Dirichlet (essential) boundary conditions via a
function space V, a function value(x) for computing the value of the condition at a point x, and
a specification where of the boundary, either as a SubDomain subclass instance, a plain function,

2.8. MISCELLANEOUS TOPICS 69

or as a MeshFunction instance. In the latter case, a 4th argument is provided to describe which
subdomain number that describes the relevant boundary.

TrialFunction(V): define a trial function on a space V to be used in a variational form to represent
the unknown in a finite element problem.

TestFunction(V): define a test function on a space V to be used in a variational form.

assemble(X): assemble a matrix, a right-hand side, or a functional, given a from X written with
UFL syntax.

assemble_system(a, L, bc): assemble the matrix and the right-hand side from a bilinear (a) and
linear (L) form written with UFL syntax. The bc parameter holds one or more DirichletBC objects.

VariationalProblem(a, L, bc): define and solve a variational problem, given a bilinear (a) and
linear (L) form, written with UFL syntax, and one or more DirichletBC objects stored in bc. A 4th
argument, nonlinear=True, can be given to define and solve nonlinear variational problems (see
Section 2.2.4).

solve(A, U, b): solve a linear system with A as coefficient matrix (Matrix object), U as unknown
(Vector object), and b as right-hand side (Vector object). Usually, U is replaced by u.vector(),
where u is a Function object representing the unknown finite element function of the problem,
while A and b are computed by calls to assemble or assemble_system.

plot(q): quick visualization of a mesh, function, or mesh function q, using the Viper component
in FEniCS.

interpolate(func, V): interpolate a formula or finite element function func onto the function
space V.

project(func, V): project a formula or finite element function func onto the function space V.

2.8.3 Installing FEniCS

The FEniCS software components are available for Linux, Windows and Mac OS X platforms.
Detailed information on how to get FEniCS running on such machines are available at the
fenicsproject.org website. Here are just some quick descriptions and recommendations by the
author.
To make the installation of FEniCS as painless and reliable as possible, the reader is strongly
recommended to use Ubuntu Linux9. Any standard PC can easily be equipped with Ubuntu
Linux, which may live side by side with either Windows or Mac OS X or another Linux installation.
Basically, you download Ubuntu from http://www.ubuntu.com/getubuntu/download, burn the file
on a CD, reboot the machine with the CD, and answer some usually straightforward questions
(if necessary). The graphical user interface (GUI) of Ubuntu is quite similar to both Windows 7

and Mac OS X, but to be efficient when doing science with FEniCS this author recommends to
run programs in a terminal window and write them in a text editor like Emacs or Vim. You can
employ integrated development environment such as Eclipse, but intensive FEniCS developers
and users tend to find terminal windows and plain text editors more user friendly.
Instead of making it possible to boot your machine with the Linux Ubuntu operating system, you
can run Ubuntu in a separate window in your existing operation system. On Mac, you can use
the VirtualBox software available from http://www.virtualbox.org to run Ubuntu. On Windows,

9Even though Mac users now can get FEniCS by a one-click install, I recommend using Ubuntu on Mac, unless you have
high Unix competence and much experience with compiling and linking C++ libraries on Mac OS X.

http://www.ubuntu.com/getubuntu/download

70 CHAPTER 2. TUTORIAL

Wubi makes a tool that automatically installs Ubuntu on the machine. Just give a user name and
password for the Ubuntu installation, and Wubi performs the rest. You can also use VirtualBox on
Windows machines.
Once the Ubuntu window is up and running, FEniCS is painlessly installed by

Bash code
sudo apt-get install fenics

Sometimes the FEniCS software in a standard Ubuntu installation lacks some recent features and
bug fixes. Visiting fenicsproject.org and copying just five Unix commands is all you have to do
to install a newer version of the software.

2.8.4 Books on the finite element method

There are a large number of books on the finite element method. The books typically fall in either
of two categories: the abstract mathematical version of the method and the engineering “structural
analysis” formulation. FEniCS builds heavily on concepts in the abstract mathematical exposition.
An easy-to-read book, which provides a good general background for using FEniCS, is Gockenbach
[2006]. The book Donea and Huerta [2003] has a similar style, but aims at readers with interest in
fluid flow problems. Hughes [1987] is also highly recommended, especially for those interested in
solid mechanics and heat transfer applications.
Readers with background in the engineering “structural analysis” version of the finite element
method may find Bickford [1994] as an attractive bridge over to the abstract mathematical formula-
tion that FEniCS builds upon. Those who have a weak background in differential equations in
general should consult a more fundamental book, and Eriksson et al. [1996] is a very good choice.
On the other hand, FEniCS users with a strong background in mathematics and interest in the
mathematical properties of the finite element method, will appreciate the texts Brenner and Scott
[2008], Braess [2007], Ern and Guermond [2004], Quarteroni and Valli [2008], or Ciarlet [2002].

2.8.5 Books on Python

Two very popular introductory books on Python are “Learning Python” [Lutz, 2007] and “Practical
Python” [Hetland, 2002]. More advanced and comprehensive books include “Programming
Python” [Lutz, 2006], and “Python Cookbook” [Martelli and Ascher, 2005] and “Python in
a Nutshell” [Martelli, 2006]. The web page http://wiki.python.org/moin/PythonBooks lists
numerous additional books. Very few texts teach Python in a mathematical and numerical context,
but the references Langtangen [2008, 2011], Kiusalaas [2009] are exceptions.

2.8.6 User-defined functions

When defining a function in terms of a mathematical expression inside a string formula, e.g.,

Python code
myfunc = Expression("sin(x[0])*cos(x[1])")

the expression contained in the first argument will be turned into a C++ function and compiled
to gain efficiency. Therefore, the syntax used in the expression must be valid C++ syntax. Most
Python syntax for mathematical expressions are also valid C++ syntax, but power expressions make
an exception: p**a must be written as pow(p,a) in C++ (this is also an alternative Python syntax).
The following mathematical functions can be used directly in C++ expressions when defining
Expression objects: cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, exp, frexp, ldexp,

2.8. MISCELLANEOUS TOPICS 71

log, log10, modf, pow, sqrt, ceil, fabs, floor, and fmod. Moreover, the number π is available as
the symbol pi. All the listed functions are taken from the cmath C++ header file, and one may
hence consult documentation of cmath for more information on the various functions.

Acknowledgments. The author is very thankful to Johan Hake, Anders Logg, Kent-Andre Mardal,
and Kristian Valen-Sendstad for promptly answering all my questions about FEniCS functionality
and for implementing all my requests. I will in particular thank Professor Douglas Arnold for
very valuable feedback on the text. Øystein Sørensen pointed out a lot of typos and contributed
with many helpful comments. Many errors and typos were also reported by Mauricio Angeles,
Ida Drøsdal, and Hans Ekkehard Plesser. Ekkehard Ellmann as well as two anonymous reviewers
provided a series of suggestions and improvements.

Part I

Methodology

73

3 The finite element method

By Robert C. Kirby and Anders Logg

The finite element method has emerged as a universal method for the solution of differential
equations. Much of the success of the finite element method can be attributed to its generality and
elegance, allowing a wide range of differential equations from all areas of science to be analyzed
and solved within a common framework. Another contributing factor to the success of the finite
element method is the flexibility of formulation, allowing the properties of the discretization to be
controlled by the choice of approximating finite element spaces.

In this chapter, we review the finite element method and summarize some basic concepts and
notation used throughout this book. In the coming chapters, we discuss these concepts in more
detail, with a particular focus on the implementation and automation of the finite element method
as part of the FEniCS project.

3.1 A simple model problem

In 1813, Siméon Denis Poisson published in Bulletin de la société philomatique his famous equation
as a correction of an equation published earlier by Pierre-Simon Laplace. Poisson’s equation
is a second-order partial differential equation stating that the negative Laplacian −∆u of some
unknown field u = u(x) is equal to a given function f = f (x) on a domain Ω ⊂ Rd, possibly
amended by a set of boundary conditions for the solution u on the boundary ∂Ω of Ω:

−∆u = f in Ω,
u = u0 on ΓD ⊂ ∂Ω,

−∂nu = g on ΓN ⊂ ∂Ω.
(3.1)

The Dirichlet boundary condition u = u0 signifies a prescribed value for the unknown u on a
subset ΓD of the boundary, and the Neumann boundary condition −∂nu = g signifies a prescribed
value for the (negative) normal derivative of u on the remaining boundary ΓN = ∂Ω \ ΓD. Poisson’s
equation is a simple model for gravity, electromagnetism, heat transfer, fluid flow, and many other
physical processes. It also appears as the basic building block in a large number of more complex
physical models, including the Navier–Stokes equations which we return to in Chapters 22, 21, 22,
23, 24, 25, 26, 27, 28, and 29.

To derive Poisson’s equation (3.1), we may consider a model for the temperature u in a body
occupying a domain Ω subject to a heat source f . Letting σ = σ(x) denote heat flux, it follows
by conservation of energy that the outflow of energy over the boundary ∂ω of any test volume

75

76 CHAPTER 3. THE FINITE ELEMENT METHOD

Ω

ω

σ = −κ∇u
n

Figure 3.1: Poisson’s equation is a sim-
ple consequence of balance of energy
in an arbitrary test volume ω ⊂ Ω.

ω ⊂ Ω must be balanced by the energy emitted by the heat source f :
∫

∂ω
σ · n ds =

∫

ω
f dx. (3.2)

Integrating by parts, we find that
∫

ω
∇ · σ dx =

∫

ω
f dx. (3.3)

Since (3.3) holds for all test volumes ω ⊂ Ω, it follows that ∇ · σ = f throughout Ω (with suitable
regularity assumptions on σ and f). If we now make the assumption that the heat flux σ is
proportional to the negative gradient of the temperature u (Fourier’s law),

σ = −κ∇u, (3.4)

we arrive at the following system of equations:

∇ · σ = f in Ω,
σ +∇u = 0 in Ω,

(3.5)

where we have assumed that the heat conductivity is κ = 1. Replacing σ in the first of these
equations by −∇u, we arrive at Poisson’s equation (3.1). Note that one may as well arrive at
the system of first-order equations (3.5) by introducing σ = −∇u as an auxiliary variable in the
second-order equation (3.1). We also note that the Dirichlet and Neumann boundary conditions
in (3.1) correspond to prescribed values for the temperature and heat flux respectively.

3.2. FINITE ELEMENT DISCRETIZATION 77

3.2 Finite element discretization

3.2.1 Discretizing Poisson’s equation

To discretize Poisson’s equation (3.1) by the finite element method, we first multiply by a test
function v and integrate by parts to obtain

∫

Ω
∇u · ∇v dx−

∫

∂Ω
∂nu v ds =

∫

Ω
f v dx. (3.6)

Letting the test function v vanish on the Dirichlet boundary ΓD where the solution u is known, we
arrive at the following classical variational problem: find u ∈ V such that

∫

Ω
∇u · ∇v dx =

∫

Ω
f v dx−

∫

ΓN

gv ds ∀ v ∈ V̂. (3.7)

The test space V̂ is defined by

V̂ = {v ∈ H1(Ω) : v = 0 on ΓD}, (3.8)

and the trial space V contains members of V̂ shifted by the Dirichlet condition:

V = {v ∈ H1(Ω) : v = u0 on ΓD}. (3.9)

We may now discretize Poisson’s equation by restricting the variational problem (3.7) to a pair of
discrete spaces: find uh ∈ Vh ⊂ V such that

∫

Ω
∇uh · ∇v dx =

∫

Ω
f v dx−

∫

ΓN

gv ds ∀ v ∈ V̂h ⊂ V̂. (3.10)

We note here that the Dirichlet condition u = u0 on ΓD enters directly into the definition of the
trial space Vh (it is an essential boundary condition), whereas the Neumann condition −∂nu = g
on ΓN enters into the variational problem (it is a natural boundary condition).

To solve the discrete variational problem (3.10), we must construct a suitable pair of discrete trial
and test spaces Vh and V̂h. We return to this issue below, but assume for now that we have a basis
{φj}N

j=1 for Vh and a basis {φ̂i}N
i=1 for V̂h. Here, N denotes the dimension of the space Vh. We may

then make an Ansatz for uh in terms of the basis functions of the trial space,

uh(x) =
N

∑
j=1

Ujφj(x), (3.11)

where U ∈ RN is the vector of degrees of freedom to be computed. Inserting this into (3.10) and
varying the test function v over the basis functions of the discrete test space V̂h, we obtain

N

∑
j=1

Uj

∫

Ω
∇φj · ∇φ̂i dx =

∫

Ω
f φ̂i dx−

∫

ΓN

gφ̂i ds, i = 1, 2, . . . , N. (3.12)

We may thus compute the finite element solution uh = ∑N
j=1 Ujφj by solving the linear system

AU = b, (3.13)

78 CHAPTER 3. THE FINITE ELEMENT METHOD

where

Aij =
∫

Ω
∇φj · ∇φ̂i dx,

bi =
∫

Ω
f φ̂i dx−

∫

ΓN

gφ̂i ds.
(3.14)

3.2.2 Discretizing the first-order system

We may similarly discretize the first-order system (3.5) by multiplying the first equation by a test
function v and the second equation by a test function τ. Summing up and integrating by parts, we
find that

∫

Ω
(∇ · σ) v + σ · τ − u∇ · τ dx +

∫

∂Ω
uτ · n ds =

∫

Ω
f v dx ∀ (v, τ) ∈ V̂. (3.15)

The normal flux σ · n = g is known on the Neumann boundary ΓN so we may take τ · n = 0 on ΓN.
Inserting the value for u on the Dirichlet boundary ΓD, we arrive at the following variational
problem: find (u, σ) ∈ V such that

∫

Ω
(∇ · σ) v + σ · τ − u∇ · τ dx =

∫

Ω
f v dx−

∫

ΓD

u0τ · n ds ∀ (v, τ) ∈ V̂. (3.16)

A suitable choice of trial and test spaces is

V = {(v, τ) : v ∈ L2(Ω), τ ∈ H(div, Ω), τ · n = g on ΓN},
V̂ = {(v, τ) : v ∈ L2(Ω), τ ∈ H(div, Ω), τ · n = 0 on ΓN}.

(3.17)

Note that the variational problem (3.16) differs from the variational problem (3.7) in that the
Dirichlet condition u = u0 on ΓD enters into the variational formulation (it is now a natural
boundary condition), whereas the Neumann condition σ · n = g on ΓN enters into the definition of
the trial space V (it is now an essential boundary condition).
As above, we restrict the variational problem to a pair of discrete trial and test spaces Vh ⊂ V and
V̂h ⊂ V̂ and make an Ansatz for the finite element solution of the form

(uh, σh) =
N

∑
j=1

Uj(φj, ψj), (3.18)

where {(φj, ψj)}N
j=1 is a basis for the trial space Vh. Typically, either φj or ψj will vanish, so that the

basis is really the tensor product of a basis for the L2 space with a basis for the H(div) space. We
thus obtain a linear system for the degrees of freedom U ∈ RN by solving a linear system AU = b,
where now

Aij =
∫

Ω
(∇ · ψj) φ̂i + ψj · ψ̂i − φj∇ · ψ̂i dx,

bi =
∫

Ω
f φ̂i dx−

∫

ΓD

u0 ψ̂i · n ds.
(3.19)

The finite element discretization (3.19) is an example of a mixed method. Such formulations require
some care in selecting spaces that discretize the different function spaces, here L2 and H(div),
in a compatible way. Stable discretizations must satisfy the so-called inf–sup or Ladyzhenskaya–

3.3. FINITE ELEMENT ABSTRACT FORMALISM 79

Babuška–Brezzi (LBB) conditions. This theory explains why many of the finite element spaces for
mixed methods seem complicated compared to those for standard methods. In Chapter 4 below,
we give several examples of such finite element spaces.

3.3 Finite element abstract formalism

3.3.1 Linear problems

We saw above that the finite element solution of Poisson’s equation (3.1) or (3.5) can be obtained
by restricting an infinite-dimensional (continuous) variational problem to a finite-dimensional
(discrete) variational problem and solving a linear system.
To formalize this, we consider a general linear variational problem written in the following
canonical form: find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂, (3.20)

where V is the trial space and V̂ is the test space. We thus express the variational problem in terms
of a bilinear form a and a linear form (functional) L:

a : V × V̂ → R,

L : V̂ → R.
(3.21)

As above, we discretize the variational problem (3.20) by restricting to a pair of discrete trial and
test spaces: find uh ∈ Vh ⊂ V such that

a(uh, v) = L(v) ∀ v ∈ V̂h ⊂ V̂. (3.22)

To solve the discrete variational problem (3.22), we make an Ansatz of the form

uh =
N

∑
j=1

Ujφj, (3.23)

and take v = φ̂i for i = 1, 2, . . . , N. As before, {φj}N
j=1 is a basis for the discrete trial space Vh and

{φ̂i}N
i=1 is a basis for the discrete test space V̂h. It follows that

N

∑
j=1

Uj a(φj, φ̂i) = L(φ̂i), i = 1, 2, . . . , N. (3.24)

The degrees of freedom U of the finite element solution uh may then be computed by solving a
linear system AU = b, where

Aij = a(φj, φ̂i), i, j = 1, 2, . . . , N,

bi = L(φ̂i).
(3.25)

3.3.2 Nonlinear problems

We also consider nonlinear variational problems written in the following canonical form: find
u ∈ V such that

F(u; v) = 0 ∀ v ∈ V̂, (3.26)

80 CHAPTER 3. THE FINITE ELEMENT METHOD

where now F : V × V̂ → R is a semilinear form, linear in the argument(s) subsequent to the
semicolon. As above, we discretize the variational problem (3.26) by restricting to a pair of discrete
trial and test spaces: find uh ∈ Vh ⊂ V such that

F(uh; v) = 0 ∀ v ∈ V̂h ⊂ V̂. (3.27)

The finite element solution uh = ∑N
j=1 Ujφj may then be computed by solving a nonlinear system

of equations,
b(U) = 0, (3.28)

where b : RN → RN and
bi(U) = F(uh; φ̂i), i = 1, 2, . . . , N. (3.29)

To solve the nonlinear system (3.28) by Newton’s method or some variant of Newton’s method, we
compute the Jacobian A = b′. We note that if the semilinear form F is differentiable in u, then the
entries of the Jacobian A are given by

Aij(uh) =
∂bi(U)

∂Uj
=

∂

∂Uj
F(uh; φ̂i) = F′(uh; φ̂i)

∂uh
∂Uj

= F′(uh; φ̂i) φj ≡ F′(uh; φj, φ̂i). (3.30)

In each Newton iteration, we must then evaluate (assemble) the matrix A and the vector b, and
update the solution vector U by

Uk+1 = Uk − δUk, k = 0, 1, . . . , (3.31)

where δUk solves the linear system

A(uk
h) δUk = b(uk

h). (3.32)

We note that for each fixed uh, a = F′(uh; ·, ·) is a bilinear form and L = F(uh; ·) is a linear form.
In each Newton iteration, we thus solve a linear variational problem of the canonical form (3.20):
find δu ∈ Vh,0 such that

F′(uh; δu, v) = F(uh; v) ∀ v ∈ V̂h, (3.33)

where Vh,0 = {v− w : v, w ∈ Vh}. Discretizing (3.33) as in Section 3.3.1, we recover the linear
system (3.32).

Example 3.1 (Nonlinear Poisson equation) As an example, consider the following nonlinear Poisson
equation:

−∇ · ((1 + u)∇u) = f in Ω,

u = 0 on ∂Ω.
(3.34)

Multiplying (3.34) with a test function v and integrating by parts, we obtain
∫

Ω
((1 + u)∇u) · ∇v dx =

∫

Ω
f v dx, (3.35)

which is a nonlinear variational problem of the form (3.26), with

F(u; v) =
∫

Ω
((1 + u)∇u) · ∇v dx−

∫

Ω
f v dx. (3.36)

3.4. FINITE ELEMENT FUNCTION SPACES 81

Figure 3.2: Examples of finite element
cells in one, two and three space di-
mensions.

Linearizing the semilinear form F around u = uh, we obtain

F′(uh; δu, v) =
∫

Ω
(δu∇uh) · ∇v dx +

∫

Ω
((1 + uh)∇δu) · ∇v dx. (3.37)

We may thus compute the entries of the Jacobian matrix A(uh) by

Aij(uh) = F′(uh; φj, φ̂i) =
∫

Ω
(φj∇uh) · ∇φ̂i dx +

∫

Ω
((1 + uh)∇φj) · ∇φ̂i dx. (3.38)

3.4 Finite element function spaces

In the above discussion, we assumed that we could construct discrete subspaces Vh ⊂ V of infinite-
dimensional function spaces. A central aspect of the finite element method is the construction of
such subspaces by patching together local function spaces defined by a set of finite elements. We
here give a general overview of the construction of finite element function spaces and return in
Chapters 4 and 5 to the construction of specific function spaces as subsets of H1, H(curl), H(div)
and L2.

3.4.1 The mesh

To define Vh, we first partition the domain Ω into a finite set of cells Th = {T} with disjoint
interiors such that

∪T∈Th T = Ω. (3.39)

Together, these cells form a mesh of the domain Ω. The cells are typically simple polygonal shapes
like intervals, triangles, quadrilaterals, tetrahedra or hexahedra as shown in Figure 3.2. But other
shapes are possible, in particular curved cells to capture the boundary of a non-polygonal domain
correctly as shown in Figure 3.3.

3.4.2 The finite element definition

Once a domain Ω has been partitioned into cells, one may define a local function space V on
each cell T and use these local function spaces to build the global function space Vh. A cell T
together with a local function space V and a set of rules for describing the functions in V is called
a finite element. This definition was first formalized by Ciarlet [1976] and it remains the standard
formulation today [Brenner and Scott, 2008]. The formal definition reads as follows: a finite
element is a triple (T,V ,L), where

82 CHAPTER 3. THE FINITE ELEMENT METHOD

Figure 3.3: A straight triangular cell
(left) and curved triangular cell (right).

Figure 3.4: The degrees of freedom of
the linear Lagrange (Courant) triangle
are given by point evaluation at the
three vertices of the triangle.

• the domain T is a bounded, closed subset of Rd (for d = 1, 2, 3, . . .) with nonempty interior
and piecewise smooth boundary;

• the space V = V(T) is a finite dimensional function space on T of dimension n;

• the set of degrees of freedom (nodes) L = {`1, `2, . . . , `n} is a basis for the dual space V ′; that
is, the space of bounded linear functionals on V .

As an example, consider the standard linear Lagrange finite element on the triangle in Figure 3.4.
The cell T is given by the triangle and the space V is given by the space of first degree polynomials
on T (a space of dimension three). As a basis for V ′, we may take point evaluation at the three
vertices of T; that is,

`i : V → R,

`i(v) = v(xi),
(3.40)

for i = 1, 2, 3 where xi is the coordinate of the ith vertex. To check that this is indeed a finite
element, we need to verify that L is a basis for V ′. This is equivalent to the unisolvence of L; that
is, if v ∈ V and `i(v) = 0 for all `i, then v = 0 [Brenner and Scott, 2008]. For the linear Lagrange
triangle, we note that if v is zero at each vertex, then v must be zero everywhere, since a plane is
uniquely determined by its values at three non-collinear points. It follows that the linear Lagrange
triangle is indeed a finite element. In general, determining the unisolvence of L may be non-trivial.

3.4. FINITE ELEMENT FUNCTION SPACES 83

3.4.3 The nodal basis

Expressing finite element solutions in Vh in terms of basis functions for the local function spaces V
may be greatly simplified by introducing a nodal basis for V . A nodal basis {φi}n

i=1 for V is a basis
for V that satisfies

`i(φj) = δij, i, j = 1, 2, . . . , n. (3.41)

It follows that any v ∈ V may be expressed by

v =
n

∑
i=1

`i(v)φi. (3.42)

In particular, any function v in V for the linear Lagrange triangle is given by v = ∑3
i=1 v(xi)φi. In

other words, the expansion coefficients of any function v may be obtained by evaluating the linear
functionals in L at v. We shall therefore interchangeably refer to both the expansion coefficients U
of uh and the linear functionals of L as the degrees of freedom.

Example 3.2 (Nodal basis for the linear Lagrange simplices) The nodal basis for the linear Lagrange
interval with vertices at x1 = 0 and x2 = 1 is given by

φ1(x) = 1− x, φ2(x) = x. (3.43)

The nodal basis for the linear Lagrange triangle with vertices at x1 = (0, 0), x2 = (1, 0) and x3 = (0, 1)
is given by

φ1(x) = 1− x1 − x2, φ2(x) = x1, φ3(x) = x2. (3.44)

The nodal basis for the linear Lagrange tetrahedron with vertices at x1 = (0, 0, 0), x2 = (1, 0, 0), x3 =
(0, 1, 0) and x4 = (0, 0, 1) is given by

φ1(x) = 1− x1 − x2 − x3,
φ3(x) = x2,

φ2(x) = x1,
φ4(x) = x3.

(3.45)

For any finite element (T,V ,L), the nodal basis may be computed by solving a linear system
of size n× n. To see this, let {ψi}n

i=1 be any basis (the prime basis) for V . Such a basis is easy
to construct if V is a full polynomial space or may otherwise be computed by a singular-value
decomposition or a Gram–Schmidt procedure; see Kirby [2004]. We may then make an Ansatz for
the nodal basis in terms of the prime basis:

φj =
n

∑
k=1

αjkψk, j = 1, 2, . . . , n. (3.46)

Inserting this into (3.41), we find that

n

∑
k=1

αjk`i(ψk) = δij, i, j = 1, 2, . . . , n. (3.47)

In other words, the coefficients α expanding the nodal basis functions in the prime basis may be
computed by solving the linear system

Bα> = I, (3.48)

where Bij = `i(ψj).

84 CHAPTER 3. THE FINITE ELEMENT METHOD

1

2

3

5

6

4

1
6

2

4

3

5

1

5

2 2

9

4

8
7

3

6

4

9

Figure 3.5: Local-to-global mapping
for a simple mesh consisting of two
triangles. The six local degrees of
freedom of the left triangle (T) are
mapped to the global degrees of free-
dom ιT(i) = 1, 2, 4, 9, 8, 5 for i =
1, 2, . . . , 6, and the six local degrees
of freedom of the right triangle (T′)
are mapped to ιT′ (i) = 2, 3, 4, 7, 9, 6 for
i = 1, 2, . . . , 6.

3.4.4 The local-to-global mapping

Now, to define a global function space Vh = span{φi}N
i=1 on Ω from a given set {(T,VT ,LT)}T∈Th

of finite elements, we also need to specify how the local function spaces are patched together. We
do this by specifying for each cell T ∈ Th a local-to-global mapping:

ιT : [1, nT]→ [1, N]. (3.49)

This mapping specifies how the local degrees of freedom LT = {`T
i }

nT
i=1 are mapped to global

degrees of freedom L = {`i}N
i=1. More precisely, the global degrees of freedom are defined by

`ιT(i)(v) = `T
i (v|T), i = 1, 2, . . . , nT , (3.50)

for any v ∈ Vh. Thus, each local degree of freedom `T
i ∈ LT corresponds to a global degree of

freedom `ιT(i) ∈ L determined by the local-to-global mapping ιT . As we shall see, the local-to-
global mapping together with the choice of degrees of freedom determine the continuity of the
global function space Vh.
For standard continuous piecewise linears, one may define the local-to-global mapping by simply
mapping each local vertex number i for i = 1, 2, 3 to the corresponding global vertex number ιT(i).
For continuous piecewise quadratics, one can base the local-to-global mapping on global vertex
and edge numbers as illustrated in Figure 3.5 for a simple mesh consisting of two triangles.

3.4.5 The global function space

One may now define the global function space Vh as the set of functions on Ω satisfying the
following pair of conditions. We first require that

v|T ∈ VT ∀ T ∈ Th; (3.51)

that is, the restriction of v to each cell T lies in the local function space VT . Second, we require that
for any pair of cells (T, T′) ∈ Th × Th and any pair (i, i′) ∈ [1, nT]× [1, nT′] satisfying

ιT(i) = ιT′(i
′), (3.52)

it holds that
`T

i (v|T) = `T′
i′ (v|T′). (3.53)

In other words, if two local degrees of freedom `i and `T′
i′ are mapped to the same global degree

of freedom, then they must agree for each function v ∈ Vh. Here, v|T denotes (the continuous

3.4. FINITE ELEMENT FUNCTION SPACES 85

Figure 3.6: Patching together a pair
of quadratic local function spaces on
a pair of cells (T, T′) to form a global
continuous piecewise quadratic func-
tion space on Ω = T ∪ T′.

extension of the) restriction of v to the interior of T. This is illustrated in Figure 3.6 for the space of
continuous piecewise quadratics obtained by patching together two quadratic Lagrange triangles.
Note that by this construction, the functions in Vh are undefined on cell boundaries, unless the
constraints (3.53) force the functions in Vh to be continuous on cell boundaries. However, this is
usually not a problem, since we can perform all operations on the restrictions of functions to the
local cells.
The local-to-global mapping together with the choice of degrees of freedom determine the conti-
nuity of the global function space Vh. For the linear Lagrange triangle, choosing the degrees of
freedom as point evaluation at the vertices ensures that all functions in Vh must be continuous at
the two vertices of the common edge of any pair of adjacent triangles, and therefore along the entire
common edge. It follows that the functions in Vh are continuous throughout the domain Ω. As a
consequence, the space of piecewise linears generated by the Lagrange triangle is H1-conforming;
that is, Vh ⊂ H1(Ω).
One may also consider degrees of freedom defined by point evaluation at the midpoint of each
edge. This is the so-called Crouzeix–Raviart triangle. The corresponding global Crouzeix–Raviart
space Vh is consequently continuous only at edge midpoints. The Crouzeix–Raviart triangle is
an example of an H1-nonconforming element; that is, the function space Vh constructed from a set
of Crouzeix–Raviart elements is not a subspace of H1. Other choices of degrees of freedom may
ensure continuity of normal components, like for the H(div)-conforming Brezzi–Douglas–Marini
elements, or tangential components, as for the H(curl)-conforming Nédélec elements. In Chapter 4,
other examples of elements are given which ensure different kinds of continuity by the choice of
degrees of freedom and local-to-global mapping.

3.4.6 The mapping from the reference element

As we have seen, the global function space Vh may be described by a mesh Th, a set of finite
elements {(T,VT ,LT)}T∈Th and a set of local-to-global mappings {ιT}T∈Th . We may simplify this
description further by introducing a reference finite element (T̂, V̂ , L̂), where L̂ = { ˆ̀1, ˆ̀2, . . . , ˆ̀ n̂},

86 CHAPTER 3. THE FINITE ELEMENT METHOD

x̂

x̂1 = (0, 0) x̂2 = (1, 0)

x̂3 = (0, 1) x = FT(x̂)

T̂

T

x1

x2

x3

FT

Figure 3.7: The (affine) map FT from a
reference cell T̂ to a cell T ∈ Th.

and a set of invertible mappings {FT}T∈Th that map the reference cell T̂ to the cells of the mesh:

T = FT(T̂) ∀ T ∈ Th. (3.54)

This is illustrated in Figure 3.7. Note that T̂ is generally not part of the mesh.

For function spaces discretizing H1 as in (3.7), the mapping FT is typically affine; that is, FT can
be written in the form FT(x̂) = AT x̂ + bT for some matrix AT ∈ Rd×d and some vector bT ∈ Rd,
or else isoparametric, in which case the components of FT are functions in V̂ . For function spaces
discretizing H(div) like in (3.16) or H(curl), the appropriate mappings are the contravariant
and covariant Piola mappings which preserve normal and tangential components respectively;
see Rognes et al. [2009]. For simplicity, we restrict the following discussion to the case when FT is
affine or isoparametric.

For each cell T ∈ Th, the mapping FT generates a function space on T given by

VT = {v : v = v̂ ◦ F−1
T , v̂ ∈ V̂}; (3.55)

that is, each function v = v(x) may be expressed as v(x) = v̂(F−1
T (x)) = v̂ ◦ F−1

T (x) for some
v̂ ∈ V̂ .

The mapping FT also generates a set of degrees of freedom LT on VT given by

LT = {`i : `i(v) = ˆ̀ i(v ◦ FT), i = 1, 2, . . . , n̂}. (3.56)

The mappings {FT}T∈Th thus generate from the reference finite element (T̂, V̂ , L̂) a set of finite

3.5. FINITE ELEMENT SOLVERS 87

elements {(T,VT ,LT)}T∈Th given by

T = FT(T̂),

VT = {v : v = v̂ ◦ F−1
T , v̂ ∈ V̂},

LT = {`i : `i(v) = ˆ̀ i(v ◦ FT), i = 1, 2, . . . , n̂ = nT}.

(3.57)

By this construction, we also obtain the nodal basis functions {φT
i }

nT
i=1 on T from a set of nodal basis

functions {φ̂i}n̂
i=1 on the reference element satisfying ˆ̀ i(φ̂j) = δij. To see this, we let φT

i = φ̂i ◦ F−1
T

for i = 1, 2, . . . , nT and find that

`T
i (φ

T
j) =

ˆ̀ i(φ
T
j ◦ FT) = ˆ̀ i(φ̂j ◦ F−1

T ◦ FT) = ˆ̀ i(φ̂j) = δij, (3.58)

so {φT
i }

nT
i=1 is a nodal basis for VT .

We may therefore define the function space Vh by specifying a mesh Th, a reference finite element
(T̂, V̂ , L̂), a set of local-to-global mappings {ιT}T∈Th and a set of mappings {FT}T∈Th from the
reference cell T̂. Note that in general, the mappings need not be of the same type for all cells
T and not all finite elements need to be generated from the same reference finite element. In
particular, one could employ a different (higher-degree) isoparametric mapping for cells on a
curved boundary.
The above construction is valid for so-called affine-equivalent elements [Brenner and Scott, 2008]
like the family of H1-conforming Lagrange finite elements. A similar construction is possible for
H(div)- and H(curl)-conforming elements, like the Brezzi–Douglas–Marini and Nédélec elements,
where an appropriate Piola mapping must be used to map the basis functions (while an affine map
may still be used to map the geometry). However, not all finite elements may be generated from a
reference finite element using this simple construction. For example, this construction fails for the
family of Hermite finite elements [Ciarlet, 2002, Brenner and Scott, 2008].

3.5 Finite element solvers

Finite elements provide a powerful methodology for discretizing differential equations, but solving
the resulting algebraic systems also presents a challenge, even for linear systems. Good solvers
must handle the sparsity and possible ill-conditioning of the algebraic system, and also scale well
on parallel computers. The linear solve is a fundamental operation not only in linear problems,
but also within each iteration of a nonlinear solve via Newton’s method, an eigenvalue solve, or
time-stepping.
A classical approach that has been revived recently is direct solution, based on Gaussian elimination.
Thanks to techniques enabling parallel scalability and recognizing block structure, packages such
as UMFPACK [Davis, 2004] and SuperLU [Li, 2005] have made direct methods competitive for
quite large problems.
The 1970s and 1980s saw the advent of modern iterative methods. These grew out of classical
iterative methods such as relaxation methods and the conjugate gradient iteration of Hestenes and
Stiefel [1952]. These techniques can use much less memory than direct methods and are easier to
parallelize.
Multigrid methods [Brandt, 1977, Wesseling, 1992] use relaxation techniques on a hierarchy
of meshes to solve elliptic equations, typically for symmetric problems, in nearly linear time.
However, they require a hierarchy of meshes that may not always be available. This motivated the
introduction of algebraic multigrid methods (AMG) that mimic mesh coarsening, working only on

88 CHAPTER 3. THE FINITE ELEMENT METHOD

the matrix entries. Successful AMG distributions include the Hypre package [Falgout and Yang,
2002] and the ML package distributed as part of Trilinos [Heroux et al., 2005].

Krylov methods such as conjugate gradients and GMRES [Saad and Schultz, 1986] generate a
sequence of approximations converging to the solution of the linear system. These methods are
based only on the matrix–vector product. The performance of these methods is significantly
improved by use of preconditioners, which transform the linear system

AU = b (3.59)

into
P−1 AU = P−1b, (3.60)

which is known as left preconditioning. The preconditioner P−1 may also be applied from the right
by recognizing that AU = (AP−1)(PU) and solving the modified system for the matrix AP−1,
followed by an additional solve to obtain U from the solution PU. To ensure good convergence,
the preconditioner P−1 should be a good approximation of A−1. Some preconditioners are strictly
algebraic, meaning they only use information available from the entries of A. Classical relax-
ation methods such as Gauss–Seidel may be used as preconditioners, as can so-called incomplete
factorizations [Manteuffel, 1980, Axelsson, 1986, Saad, 1994]. Multigrid, whether geometric or
algebraic, also can serve as a powerful preconditioner. Other kinds of preconditioners require
special knowledge about the differential equation being solved and may require new matrices
modeling related physical processes. Such methods are sometimes called physics-based precondi-
tioners. An automated system, such as FEniCS, provides an interesting opportunity to assist with
the development and implementation of these powerful but less widely used methods.

Fortunately, many of the methods discussed here are included in modern libraries such as
PETSc [Balay et al., 2004] and Trilinos [Heroux et al., 2005]. FEniCS typically interacts with the
solvers discussed here through these packages and so mainly need to be aware of the various
methods at a high level, such as when the various methods are appropriate and how to access
them.

3.6 Finite element error estimation and adaptivity

The error e = u− uh in a computed finite element solution uh approximating the exact solution u
of (3.20) may be estimated either a priori or a posteriori. Both types of estimates are based on relating
the size of the error to the size of the (weak) residual r : V̂ → R defined by

r(v) = L(v)− a(uh, v). (3.61)

Note that the weak residual is formally related to the strong residual R ∈ V̂′ by r(v) = 〈R, v〉 for all
v ∈ V̂.

A priori error estimates express the error in terms of the regularity of the exact (unknown) solution
and may give useful information about the order of convergence of a finite element method.
A posteriori error estimates express the error in terms of computable quantities like the residual
and (possibly) the solution of an auxiliary dual problem, as described below.

3.6. FINITE ELEMENT ERROR ESTIMATION AND ADAPTIVITY 89

3.6.1 A priori error analysis

We consider the linear variational problem (3.20). We first assume that the bilinear form a and the
linear form L are continuous (bounded); that is, there exists a constant C > 0 such that

a(v, w) 6 C‖v‖V‖w‖V ,

L(v) 6 C‖v‖V ,
(3.62)

for all v, w ∈ V. For simplicity, we assume in this section that V = V̂ is a Hilbert space. For
(3.1), this corresponds to the case of homogeneous Dirichlet boundary conditions and V = H1

0(Ω).
Extensions to the general case V 6= V̂ are possible; see for example Oden and Demkowicz [1996].
We further assume that the bilinear form a is coercive (V-elliptic); that is, there exists a constant
α > 0 such that

a(v, v) > α‖v‖2
V , (3.63)

for all v ∈ V. It then follows by the Lax–Milgram theorem [Lax and Milgram, 1954] that there
exists a unique solution u ∈ V to the variational problem (3.20).

To derive an a priori error estimate for the approximate solution uh defined by the discrete
variational problem (3.22), we first note that

a(u− uh, v) = a(u, v)− a(uh, v) = L(v)− L(v) = 0 (3.64)

for all v ∈ Vh ⊂ V (the Galerkin orthogonality). By the coercivity and continuity of the bilinear
form a, we find that

α‖u− uh‖2
V 6 a(u− uh, u− uh) = a(u− uh, u− v) + a(uh − u, v− uh)

= a(u− uh, u− v) 6 C‖u− uh‖V ‖u− v‖V .
(3.65)

for all v ∈ Vh. It follows that

‖u− uh‖V 6
C
α
‖u− v‖V ∀ v ∈ Vh. (3.66)

The estimate (3.66) is referred to as Cea’s lemma. We note that when the bilinear form a is
symmetric, it is also an inner product. We may then take ‖v‖V =

√
a(v, v) and C = α = 1. In this

case, uh is the a-projection onto Vh and Cea’s lemma states that

‖u− uh‖V 6 ‖u− v‖V ∀ v ∈ Vh; (3.67)

that is, uh is the best possible solution of the variational problem (3.20) in the subspace Vh. This is
illustrated in Figure 3.8.

Cea’s lemma together with a suitable interpolation estimate now yields an a priori error estimate
for uh. By choosing v = πhu, where πh : V → Vh is an interpolation operator into Vh, we find that

‖u− uh‖V 6
C
α
‖u− πhu‖V 6

CCi
α
‖hpDq+1u‖L2 , (3.68)

where Ci is an interpolation constant and the values of p and q depend on the accuracy of
interpolation and the definition of ‖ · ‖V . For the solution of Poisson’s equation in V = H1

0 , we
have C = α = 1 and p = q = 1.

90 CHAPTER 3. THE FINITE ELEMENT METHOD

Figure 3.8: If the bilinear form a is
symmetric, then the finite element so-
lution uh ∈ Vh ⊂ V is the a-projection
of u ∈ V onto the subspace Vh and is
consequently the best possible approx-
imation of u in the subspace Vh (in the
norm defined by the bilinear form a).
This follows by the Galerkin orthogo-
nality 〈u− uh, v〉a ≡ a(u− uh, v) = 0
for all v ∈ Vh.

Vh

u

uh

u− uh

3.6.2 A posteriori error analysis

Energy norm error estimates. The continuity and coercivity of the bilinear form a also allow the
derivation of an a posteriori error estimate. In fact, it follows that the V-norm of the error e = u− uh
is equivalent to the V′-norm of the residual r. To see this, note that by the continuity of the bilinear
form a, we have

r(v) = L(v)− a(uh, v) = a(u, v)− a(uh, v) = a(u− uh, v) 6 C‖u− uh‖V ‖v‖V . (3.69)

Furthermore, by coercivity, we find that

α‖u−uh‖2
V 6 a(u−uh, u−uh) = a(u, u−uh)− a(uh, u−uh) = L(u−uh)− a(uh, u−uh) = r(u−uh).

(3.70)
It follows that

α‖u− uh‖V 6 ‖r‖V′ 6 C‖u− uh‖V , (3.71)

where ‖r‖V′ = supv∈V,v 6=0 r(v)/‖v‖V .
The estimates (3.68) and (3.71) are sometimes referred to as energy norm error estimates. This is the
case when the bilinear form a is symmetric and thus defines an inner product. One may then take
‖v‖V =

√
a(v, v) and C = α = 1. In this case, it follows that

η ≡ ‖e‖V = ‖r‖V′ . (3.72)

The term energy norm refers to a(v, v) corresponding to physical energy in many applications.

Goal-oriented error estimates. The classical a priori and a posteriori error estimates (3.68) and (3.71)
relate the V-norm of the error e = u− uh to the regularity of the exact solution u and the residual
r = L(v)− a(uh, v) of the finite element solution uh, respectively. However, in applications it is
often necessary to control the error in a certain output functional M : V → R of the computed
solution to within some given tolerance ε > 0. Typical functionals are average values of the
computed solution, such as the lift or drag of an object immersed in a flow field. In these situations,
one would ideally like to choose the finite element space Vh ⊂ V such that the finite element
solution uh satisfies

η ≡ |M(u)−M(uh)| 6 ε (3.73)

3.6. FINITE ELEMENT ERROR ESTIMATION AND ADAPTIVITY 91

with minimal computational work. We assume here that both the output functional and the
variational problem are linear, but the analysis may be easily extended to the full nonlinear
case [Eriksson et al., 1995b, Becker and Rannacher, 2001].

To estimate the error in the output functionalM, we introduce an auxiliary dual problem: find
z ∈ V∗ such that

a∗(z, v) =M(v) ∀ v ∈ V̂∗. (3.74)

We note here that the functionalM enters as data in the dual problem. The dual (adjoint) bilinear
form a∗ : V∗ × V̂∗ → R is defined by

a∗(v, w) = a(w, v) ∀ (v, w) ∈ V∗ × V̂∗. (3.75)

The dual trial and test spaces are given by

V∗ = V̂,

V̂∗ = V0 = {v− w : v, w ∈ V};
(3.76)

that is, the dual trial space is the primal test space and the dual test space is the primal trial space
modulo boundary conditions. In particular, if V = u0 + V̂ and Vh = u0 + V̂h then V∗ = V̂∗ = V̂,
and both the dual test and trial functions vanish at Dirichlet boundaries. The definition of the dual
problem leads us to the following representation of the error:

M(u)−M(uh) =M(u− uh)

= a∗(z, u− uh)

= a(u− uh, z)

= L(z)− a(uh, z)

= r(z).

(3.77)

We find that the error is exactly represented by the residual of the dual solution:

M(u)−M(uh) = r(z). (3.78)

3.6.3 Adaptivity

As seen above, one may estimate the error in a computed finite element solution uh in the V-norm
or an output functional by estimating the size of the residual r. This may be done in several
different ways. The estimate typically involves integration by parts to recover the strong element-
wise residual of the original PDE, possibly in combination with the solution of local problems over
cells or patches of cells. In the case of the standard piecewise linear finite element approximation
of Poisson’s equation (3.1), one may obtain the following estimate:

‖u− uh‖V ≡ ‖∇e‖L2 6 C

(
∑

T∈Th

h2
T‖R‖2

T + hT‖[∂nuh]‖2
∂T

)1/2

, (3.79)

where R|T = f |T + ∆uh|T is the strong residual, hT denotes the mesh size (the diameter of the
smallest circumscribed sphere around each cell T) and [∂nuh] denotes the jump of the normal
derivative across mesh facets. For a derivation of this estimate, see for example Elman et al. [2005].

92 CHAPTER 3. THE FINITE ELEMENT METHOD

Figure 3.9: A sequence of adaptively
refined meshes obtained by successive
refinement of an original coarse mesh.

Letting η2
T = h2

T‖R‖2
T + hT‖[∂nuh]‖2

∂T , we obtain the estimate

‖u− uh‖V 6 ηh ≡ C

(
∑
T

η2
T

)1/2

. (3.80)

An adaptive algorithm seeks to determine a mesh size h = h(x) such that ηh 6 ε. Starting from
an initial coarse mesh, the mesh is successively refined in those cells where the error indicator ηT
is large. Several strategies are available, such as refining the top fraction of all cells where ηT is
large, say the first 20% of all cells ordered by ηT . Other strategies include refining all cells where
ηT is above a certain fraction of maxT∈Th ηT , or refining a top fraction of all cells such that the sum
of their error indicators account for a significant fraction of ηh (so-called Dörfler marking [Dörfler,
1996]).

Once the mesh has been refined, a new solution and new error indicators can be computed. The
process is then repeated until either ηh 6 ε (the stopping criterion) or the available resources (CPU
time and memory) have been exhausted. The adaptive algorithm yields a sequence of successively
refined meshes as illustrated in Figure 3.9. For time-dependent problems, an adaptive algorithm
needs to decide both on the local mesh size and the size of the (local) time step as functions
of space and time. Ideally, the error estimate ηh is close to the actual error, as measured by the
efficiency index ηh/η which should be close to and bounded below by one.

3.7. AUTOMATING THE FINITE ELEMENT METHOD 93

3.7 Automating the finite element method

The FEniCS project seeks to automate the solution of differential equations. This is a formidable
task, but it may be approached by an automation of the finite element method. In particular, this
automation relies on the following key steps:

(i) automation of discretization,

(ii) automation of discrete solution,

(iii) automation of error control.

Since its inception in 2003, the FEniCS project has been concerned mainly with the automation of
discretization, resulting in the development of the form compilers FFC and SyFi/SFC, the code
generation interface UFC, the form language UFL, and a generic assembler implemented as part of
DOLFIN. As a result, variational problems for a large class of partial differential equations may
now be automatically discretized by the finite element method using FEniCS. For the automation
of discrete solution; that is, the solution of linear and nonlinear systems arising from the automated
discretization of variational problems, interfaces to state-of-the-art libraries for linear algebra have
been implemented as part of DOLFIN. Ongoing work is now seeking to automate error control by
automated error estimation and adaptivity. In the following chapters, we return to specific aspects
of the automation of the finite element method developed as part of the FEniCS Project.

3.8 Historical notes

In 1915, Boris Grigoryevich Galerkin formulated a general method for solving differential equa-
tions [Galerkin, 1915]. A similar approach was presented sometime earlier by Bubnov. Galerkin’s
method, or the Bubnov–Galerkin method, was originally formulated with global polynomials
and goes back to the variational principles of Leibniz, Euler, Lagrange, Dirichlet, Hamilton, Cas-
tigliano [Castigliano, 1879], Rayleigh [Rayleigh, 1870] and Ritz [Ritz, 1908]. Galerkin’s method
with piecewise polynomial spaces (Vh, V̂h) is known as the finite element method. The finite element
method was introduced by engineers for structural analysis in the 1950s and was independently
proposed by Courant [Courant, 1943]. The exploitation of the finite element method among engi-
neers and mathematicians exploded in the 1960s. Since then, the machinery of the finite element
method has been expanded and refined into a comprehensive framework for the design and
analysis of numerical methods for differential equations; see Zienkiewicz et al. [2005], Strang and
Fix [1973], Ciarlet [1976], Becker et al. [1981], Hughes [1987], Brenner and Scott [2008]. Recently,
the quest for compatible (stable) discretizations of mixed variational problems has led to the
development of finite element exterior calculus [Arnold et al., 2006a].
Work on a posteriori error analysis of finite element methods dates back to the pioneering work
of Babuška and Rheinboldt [1978]. Important references include the works by Bank and Weiser
[1985], Zienkiewicz and Zhu [1987], Eriksson and Johnson [1991, 1995a], Eriksson and Johnson,
1995b,c], Eriksson et al. [1998], Ainsworth and Oden [1993] and the reviews papers [Eriksson et al.,
1995b, Verfürth, 1994, 1999, Ainsworth and Oden, 2000, Becker and Rannacher, 2001].

4 Common and unusual finite elements
By Robert C. Kirby, Anders Logg, Marie E. Rognes and Andy R. Terrel

This chapter provides a glimpse of the considerable range of finite elements in the literature. Many
of the elements presented here are implemented as part of the FEniCS project already; some are
future work.
The universe of finite elements extends far beyond what we consider here. In particular, we consider
only simplicial, polynomial-based elements. We thus bypass elements defined on quadrilaterals
and hexahedra, composite and macro-element techniques, as well as XFEM-type methods. Even
among polynomial-based elements on simplices, the list of elements can be extended. Nonetheless,
this chapter presents a comprehensive collection of some the most common, and some more
unusual, finite elements.

4.1 The finite element definition

The Ciarlet definition of a finite element was first introduced in a set of lecture notes by Ciarlet
[1975] and became popular after his 1978 book [Ciarlet, 2002]. It remains the standard definition
today, see for example Brenner and Scott [2008]. The definition, which was also presented in
Chapter 3, reads as follows:

Definition 4.1 (Finite element [Ciarlet, 2002]) A finite element is defined by a triple (T,V ,L), where

• the domain T is a bounded, closed subset of Rd (for d = 1, 2, 3, . . .) with nonempty interior and
piecewise smooth boundary;

• the space V = V(T) is a finite dimensional function space on T of dimension n;

• the set of degrees of freedom (nodes) L = {`1, `2, . . . , `n} is a basis for the dual space V ′; that is, the
space of bounded linear functionals on V .

Similar ideas were introduced earlier in Ciarlet and Raviart [1972]1, in which unisolvence2 of a
set of interpolation points {xi}i was discussed. This is closely related to the unisolvence of L
when the degrees of freedom are given by by `i(v) = v(xi). Conditions for uniquely determining
a polynomial based on interpolation of function values and derivatives at a set of points was also
discussed in Bramble and Zlámal [1970], although the term unisolvence was not used.

1The Ciarlet triple was originally written as (K, P, Σ) with K denoting T and Σ denoting L.
2To check whether a given set of linear functionals is a basis for V ′, one may check whether it is unisolvent for V ; that is,

for v ∈ V , `i(v) = 0 for i = 1, . . . , n if and only if v = 0.

95

96 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

For any finite element, one may define a local basis for V that is dual to the degrees of freedom.
Such a basis {φT

1 , φT
2 . . . , φT

n } satisfies `i(φ
T
j) = δij for 1 6 i, j 6 n and is called the nodal basis. It is

typically this basis that is used in finite element computations.
Also associated with a finite element is a local interpolation operator, sometimes called a nodal
interpolant. Given some function f on T, the nodal interpolant is defined by

ΠT(f) =
n

∑
i=1

`i(f)φT
i , (4.1)

assuming that f is smooth enough for all of the degrees of freedom acting on it to be well-defined.
Once a local finite element space is defined, it is relatively straightforward to define a global finite
element space over a tessellation Th. One defines the global space to consist of functions whose
restrictions to each T ∈ Th lie in the local space V(T) and that also satisfy any required continuity
requirements. Typically, the degrees of freedom for each local element are chosen such that if
the degrees of freedom on a common interface between two adjacent cells T and T′ agree, then a
function will satisfy the required continuity condition.
When constructing a global finite element space, it is common to construct a single reference
finite element (T̂, V̂ , L̂) and map it to each cell in the mesh. As we are dealing with a simplicial
geometry, the mapping between T̂ and each T ∈ Th will be affine. Originally defined for the
purpose of error estimation, but also useful for computation, is the notion of affine equivalence. Let
FT : T̂ → T denote this affine map. Let v ∈ V . The pullback associated with the affine map is given
by F ∗(v)(x̂) = v(FT(x̂)) for all x̂ ∈ T̂. Given a functional ˆ̀ ∈ V̂ ′, its pushforward acts on a function
in v ∈ V by F∗(ˆ̀)(v) = ˆ̀(F ∗(v)).

Definition 4.2 (Affine equivalence) Let (T̂, V̂ , L̂) and (T,V ,L) be finite elements and FT : T̂ → T be
a non-degenerate affine map. The finite elements are affine equivalent if F ∗(V) = V̂ and F∗(L̂) = L.

One consequence of affine equivalence is that only a single nodal basis needs to be constructed, and
then it can be mapped to each cell in a mesh. Moreover, this idea of equivalence can be extended
to some vector-valued elements when certain kinds of Piola mappings are used. In this case, the
affine map is the same, but the pull-back and push-forward are appropriately modified. It is also
worth stating that not all finite elements generate affine equivalent or Piola-equivalent families.
The Lagrange elements are affine equivalent in H1, but the Hermite and Argyris elements are
not. The Raviart–Thomas elements are Piola-equivalent in H(div), while the Mardal–Tai–Winther
elements are not.
A dictionary of the finite elements discussed in this chapter is presented in Table 4.1.

4.2 Notation

• The space of polynomials of degree up to and including q on a domain T ⊂ Rd is denoted
by Pq(T) and the corresponding d-vector fields by [Pq(T)]d.

• A finite element space E is called V-conforming if E ⊆ V. If not, it is called (V-) nonconform-
ing.

• The elements of L are usually referred to as the degrees of freedom of the element (T,V ,L).
When describing finite element families, it is usual to illustrate the degrees of freedom with a
certain schematic notation. We summarize the notation used here in the list below and in
Figure 4.1.

4.2. NOTATION 97

Finite element Short name Sobolev space Conforming

(Quintic) Argyris ARG H2 Yes
Arnold–Winther AW H(div; S) Yes

Brezzi–Douglas–Marini BDM H(div) Yes
Crouzeix–Raviart CR H1 No

Discontinuous Lagrange DG L2 Yes
(Cubic) Hermite HER H2 No

Lagrange CG H1 Yes
Mardal–Tai–Winther MTW H1/H(div) No/Yes
(Quadratic) Morley MOR H2 No
Nédélec first kind NED1 H(curl) Yes

Nédélec second kind NED2 H(curl) Yes
Raviart–Thomas RT H(div) Yes

Table 4.1: A dictionary of the finite elements discussed in this chapter, including full name and the respective
(highest order) Sobolev space to which the elements are conforming/nonconforming.

Point evaluation. A black sphere (disc) at a point x denotes point evaluation of the function
v at that point:

`(v) = v(x). (4.2)

For a vector valued function v with d components, a black sphere denotes evaluation of
all components and thus corresponds to d degrees of freedom.

Evaluation of all first derivatives. A dark gray, slightly larger sphere (disc) at a point x
denotes point evaluation of all first derivatives of the function v at that point:

`i(v) =
∂v(x)

∂xi
, i = 1, . . . , d, (4.3)

thus corresponding to d degrees of freedom.

Evaluation of all second derivatives. A light gray, even larger sphere (disc) at a point x
denotes point evaluation of all second derivatives of the function v at that point:

`ij(v) =
∂2v(x)
∂xi∂xj

, 1 6 i 6 j 6 d, (4.4)

thus corresponding to d(d + 1)/2 degrees of freedom.

Evaluation of directional component. An arrow at a point x in a direction n denotes evalu-
ation of the vector-valued function v in the direction n at the point x:

`(v) = v(x) · n. (4.5)

The direction n is typically the normal direction of a facet, or a tangent direction of
a facet or edge. We will sometimes use an arrow at a point to denote a moment
(integration against a weight function) of a component of the function over a facet or
edge.

Evaluation of directional derivative. A black line at a point x in a direction n denotes
evaluation of the directional derivative of the scalar function v in the direction n at the

98 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

point evaluation
evaluation of all first derivatives
evaluation of all second derivatives
evaluation of directional component
evaluation of directional derivative
evaluation of interior moments

Figure 4.1: Summary of notation used
for degrees of freedom. In this exam-
ple, the three concentric spheres indi-
cate a set of three degrees of freedom
defined by interior moments.

point x:
`(v) = ∇v(x) · n. (4.6)

Evaluation of interior moments. A set of concentric spheres (discs) denotes interior moment
degrees of freedom; that is, degrees of freedom defined by integration against a weight
function over the interior of the domain T. The spheres are colored white-black-white
etc.

We note that, for some of the finite elements presented below, the literature will use different
notation and numbering schemes, so that our presentation may be quite different from the original
presentation of the elements. In particular, the families of Raviart–Thomas and Nédélec spaces of
the first kind are traditionally numbered from 0, while we have followed the more recent scheme
from the finite element exterior calculus of numbering from 1.

4.3 H1 finite elements

The space H1 is fundamental in the analysis and discretization of weak forms for second-order
elliptic problems, and finite element subspaces of H1 give rise to some of the best-known finite
elements. Typically, these elements use C0 approximating spaces, since a piecewise smooth function
on a bounded domain is H1 if and only if it is continuous [Braess, 2007, Theorem 5.2]. We consider
the classic Lagrange element, as well as a nonconforming example, the Crouzeix–Raviart space. It
is worth noting that the Hermite element considered later is technically only an H1 element, but
can be used as a nonconforming element for smoother spaces. Also, smoother elements such as
Argyris may be used to discretize H1, although this is less common in practice.

4.3.1 The Lagrange element

The best-known and most widely used finite element is the P1 Lagrange element. This lowest-
degree triangle is sometimes called the Courant triangle, after the seminal paper by Courant [1943]
in which variational techniques are used with the P1 triangle to derive a finite difference method.
Sometimes this is viewed as “the” finite element method, but in fact there is a whole family of
elements parametrized by polynomial degree that generalize the univariate Lagrange interpolating
polynomials to simplices, boxes, and other shapes. The Lagrange elements of higher degree offer
higher order approximation properties. Moreover, these can alleviate locking phenomena observed
when using linear elements or give improved discrete stability properties; see Taylor and Hood
[1973], Scott and Vogelius [1985].

4.3. H1 FINITE ELEMENTS 99

Figure 4.2: The linear Lagrange inter-
val, triangle and tetrahedron.

Definition 4.3 (Lagrange element) The Lagrange element (CGq) is defined for q = 1, 2, . . . by

T ∈ {interval, triangle, tetrahedron}, (4.7)

V = Pq(T), (4.8)

`i(v) = v(xi), i = 1, . . . , n(q), (4.9)

where {xi}n(q)
i=1 is an enumeration of points in T defined by

x =





i/q, 0 6 i 6 q, T interval,
(i/q, j/q), 0 6 i + j 6 q, T triangle,
(i/q, j/q, k/q), 0 6 i + j + k 6 q, T tetrahedron.

(4.10)

The dimension of the Lagrange finite element thus corresponds to the dimension of the complete
polynomials of degree q on T and is

n(q) =





q + 1, T interval,
1
2 (q + 1)(q + 2), T triangle,
1
6 (q + 1)(q + 2)(q + 3), T tetrahedron.

(4.11)

The definition above presents one choice for the set of points {xi}. However, this is not the only
possible choice. In general, it suffices that the set of points {xi} is unisolvent and that the boundary
points are located so as to allow C0 assembly. The point set must include the vertices, q − 1
points on each edge, (q−1)(q−2)

2 points per face, and so forth. The boundary points should be
placed symmetrically so that the points on adjacent cells match. While numerical conditioning
and interpolation properties can be dramatically improved by choosing these points in a clever
way [Warburton, 2005], for the purposes of this chapter the points may be assumed to lie on an
equispaced lattice; see Figures 4.2, 4.3 and 4.4.
Letting Πq

T denote the interpolant defined by the above degrees of freedom of the Lagrange
element of degree q, we have from Brenner and Scott [2008] that

||u−Πq
Tu||H1(T) 6 C hq

T |u|Hq+1(T), ||u−Πq
Tu||L2(T) 6 C hq+1

T |u|Hq+1(T). (4.12)

where, here and throughout, C denotes a generic positive constant not depending on hT but
depending on the degree q and the aspect ratio of the simplex, and u is a sufficiently regular
function (or vector-field).

100 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Figure 4.3: The Lagrange CGq triangle
for q = 1, 2, 3, 4, 5, 6.

4.3. H1 FINITE ELEMENTS 101

Figure 4.4: The Lagrange CGq tetrahe-
dron for q = 1, 2, 3, 4, 5, 6.

102 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Figure 4.5: Illustration of the Crouzeix–
Raviart elements on triangles and tetra-
hedra. The degrees of freedom are
point evaluation at the midpoint of
each facet.

Vector-valued or tensor-valued Lagrange elements are usually constructed by using a Lagrange
element for each component.

4.3.2 The Crouzeix–Raviart element

The Crouzeix–Raviart element was introduced in Crouzeix and Raviart [1973] as a technique
for solving the stationary Stokes equations. The global element space consists of piecewise
linear polynomials, as for the linear Lagrange element. However, in contrast to the Lagrange
element, the global basis functions are not required to be continuous at all points; continuity
is only imposed at the midpoint of facets. The element is hence not H1-conforming, but it is
typically used for nonconforming approximations of H1 functions (and vector fields). Other
applications of the Crouzeix–Raviart element includes linear elasticity [Hansbo and Larson, 2003]
and Reissner–Mindlin plates [Arnold and Falk, 1989].

Definition 4.4 (Crouzeix–Raviart element) The (linear) Crouzeix–Raviart element (CR) is defined by

T ∈ {triangle, tetrahedron}, (4.13)

V = P1(T), (4.14)

`i(v) = v(xi), i = 1, . . . , n. (4.15)

where {xi} are the barycenters (midpoints) of each facet of the domain T.

4.4. H(DIV) FINITE ELEMENTS 103

The dimension of the Crouzeix–Raviart element on T ⊂ Rd is thus

n = d + 1 (4.16)

for d = 2, 3.
Letting ΠT denote the interpolation operator defined by the degrees of freedom, the Crouzeix–
Raviart element interpolates as the linear Lagrange element [Braess, 2007, Chapter 3.I]:

||u−ΠTu||H1(T) 6 C hT |u|H2(T), ||u−ΠTu||L2(T) 6 C h2
T |u|H2(T). (4.17)

Vector-valued Crouzeix–Raviart elements can be defined by using a Crouzeix–Raviart element for
each component, or by using facet normal and facet tangential components at the midpoints of
each facet as degrees of freedom. The Crouzeix–Raviart element can be extended to higher odd
degrees (q = 3, 5, 7 . . .) [Crouzeix and Falk, 1989].

4.4 H(div) finite elements

The Sobolev space H(div) consists of vector fields for which the components and the weak
divergence are square-integrable. This is a weaker requirement than for a d-vector field to be in
[H1]d (for d > 2). This space naturally occurs in connection with mixed formulations of second-
order elliptic problems, porous media flow, and elasticity equations. For a finite element family to
be H(div)-conforming, each component need not be continuous, but the normal component must
be continuous. In order to ensure such continuity, the degrees of freedom of H(div)-conforming
elements usually include normal components on element facets.
The two main families of H(div)-conforming elements are the Raviart–Thomas and Brezzi–Douglas–
Marini elements. These two families are described below. In addition, the Arnold–Winther element
discretizing the space of symmetric tensor fields with square-integrable row-wise divergence and
the Mardal–Tai–Winther element are included.

4.4.1 The Raviart–Thomas element

The Raviart–Thomas element was introduced by Raviart and Thomas [1977]. It was the first
element to discretize the mixed form of second-order elliptic equations on triangles. Its element
space V is designed so that it is the smallest polynomial space V ⊂ Pq(T), for q = 1, 2, . . . , from
which the divergence maps onto Pq−1(T). Shortly thereafter, it was extended to tetrahedra and
boxes by Nédélec [1980]. It is therefore sometimes referred to as the Raviart–Thomas–Nédélec
element. Here, we label both the two- and three-dimensional versions as the Raviart–Thomas
element.
The definition given below is based on the one presented by Nédélec [1980] (and Brezzi and Fortin
[1991]). The original Raviart–Thomas paper used a slightly different form. Moreover, Raviart and
Thomas originally started counting at q = 0. Hence, the lowest degree element is traditionally
called the RT0 element. For the sake of consistency, such that a finite element of polynomial degree
q is included in Pq(T), we here label the lowest degree elements by q = 1 instead (as did also
Nédélec).

Definition 4.5 (Raviart–Thomas element) The Raviart–Thomas element (RTq) is defined for q = 1, 2, . . .

104 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Figure 4.6: Illustration of the degrees
of freedom for the first, second and
third degree Raviart–Thomas elements
on triangles and tetrahedra. The de-
grees of freedom are moments of the
normal component against Pq−1 on
facets (edges and faces, respectively)
and, for the higher degree elements,
interior moments against [Pq−2]

d. Al-
ternatively, as indicated in this illustra-
tion, the moments of normal compo-
nents may be replaced by point evalu-
ation of normal components.

by

T ∈ {triangle, tetrahedron}, (4.18)

V = [Pq−1(T)]d + xPq−1(T), (4.19)

L =

{ ∫
f v · n p ds, for a set of basis functions p ∈ Pq−1(f) for each facet f,∫
T v · p dx, for a set of basis functions p ∈ [Pq−2(T)]d for q > 2.

(4.20)

As an example, the lowest degree Raviart–Thomas space on triangles is a three-dimensional space
and consists of vector fields of the form

v(x) = α + βx, (4.21)

where α is a vector-valued constant, and β is a scalar constant.

4.4. H(DIV) FINITE ELEMENTS 105

The dimension of RTq is

n(q) =
{

q(q + 2), T triangle,
1
2 q(q + 1)(q + 3), T tetrahedron.

(4.22)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom above for q =

1, 2, . . . , we have that [Brezzi and Fortin, 1991, Chapter III.3]

||u−Πq
Tu||H(div)(T) 6 C hq

T |u|Hq+1(T), ||u−Πq
Tu||L2(T) 6 C hq

T |u|Hq(T). (4.23)

4.4.2 The Brezzi–Douglas–Marini element

The Brezzi–Douglas–Marini element was introduced by Brezzi, Douglas and Marini in two di-
mensions (for triangles) in Brezzi et al. [1985a]. The element can be viewed as an alternative
to the Raviart–Thomas element using a complete polynomial space. It was later extended to
three dimensions (tetrahedra, prisms and cubes) in Nédélec [1986] and Brezzi et al. [1987a]. The
definition given here is based on that of Nédélec [1986].
The Brezzi–Douglas–Marini element was introduced for mixed formulations of second-order
elliptic equations. However, it is also useful for weakly symmetric discretizations of the elastic
stress tensor; see Farhloul and Fortin [1997], Arnold et al. [2007].

Definition 4.6 (Brezzi–Douglas–Marini element) The Brezzi–Douglas–Marini element (BDMq) is de-
fined for q = 1, 2, . . . by

T ∈ {triangle, tetrahedron}, (4.24)

V = [Pq(T)]d, (4.25)

L =

{ ∫
f v · np ds, for a set of basis functions p ∈ Pq(f) for each facet f,∫
T v · p dx, for a set of basis functions p ∈ NED1

q−1(T) for q > 2.
(4.26)

where NED1 refers to the Nédélec H(curl) elements of the first kind, defined below in Section 4.5.1.

The dimension of BDMq is

n(q) =
{

(q + 1)(q + 2), T triangle,
1
2 (q + 1)(q + 2)(q + 3), T tetrahedron.

(4.27)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom for q = 1, 2, . . . ,

we have that [Brezzi and Fortin, 1991, Chapter III.3]

||u−Πq
Tu||H(div)(T) 6 C hq

T |u|Hq+1(T), ||u−Πq
Tu||L2(T) 6 C hq+1

T |u|Hq+1(T). (4.28)

A slight modification of the Brezzi–Douglas–Marini element constrains the element space V by
only allowing normal components on the boundary of polynomial degree q− 1 (rather than the
full polynomial degree q). Such an element was suggested on rectangles by Brezzi et al. [1987b],
and the triangular analogue was given in Brezzi and Fortin [1991]. In similar spirit, elements with
differing degrees on the boundary suitable for varying the polynomial degree between triangles
were derived in Brezzi et al. [1985b].

106 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Figure 4.7: Illustration of the first, sec-
ond and third degree Brezzi–Douglas–
Marini elements on triangles and
tetrahedra. The degrees of freedom
are moments of the normal compo-
nent against Pq on facets (edges and
faces, respectively) and, for the higher
degree elements, interior moments
against NED1

q−1. Alternatively, as in-
dicated in this illustration, the mo-
ments of normal components may be
replaced by point evaluation of normal
components.

4.4. H(DIV) FINITE ELEMENTS 107

Figure 4.8: Illustration of the Mardal–
Tai–Winther element. The degrees of
freedom are two moments of the nor-
mal component on each facet and one
moment of the tangential component
on each facet. In this figure, the mo-
ments of normal components are illus-
trated by point evaluation of normal
components.

4.4.3 The Mardal-Tai-Winther element

The Mardal–Tai–Winther element was introduced in Mardal et al. [2002] as a finite element suitable
for the velocity space for both Darcy and Stokes flow in two dimensions. In the Darcy flow
equations, the velocity space only requires H(div)-regularity. Moreover, discretizations based
on H1-conforming finite elements are typically not stable. On the other hand, for the Stokes
equations, the velocity space does stipulate H1-regularity. The Mardal–Tai–Winther element is
H(div)-conforming, but H1-nonconforming. The element was extended to three dimensions in Tai
and Winther [2006], but we only present the two-dimensional case here.

Definition 4.7 (Mardal–Tai–Winther element) The Mardal–Tai–Winther element (MTW) is defined
by

T = triangle, (4.29)

V = {v ∈ [P3(T)]2, such that div v ∈ P0(T) and v · n| f ∈ P1(T) for each facet f }, (4.30)

L =

{ ∫
f v · n p ds, for a set of basis functions p ∈ P1(f) for each facet f,∫
f v · t ds, for each facet f.

(4.31)

The dimension of MTW is
n = 9. (4.32)

Letting ΠT denote the interpolation operator defined by the degrees of freedom, we have that

||u−ΠTu||H1(T) 6 C hT |u|H2(T), ||u−ΠTu||H(div)(T) 6 C hT |u|H2(T), ||u−ΠTu||L2(T) 6 C h2
T |u|H2(T).
(4.33)

4.4.4 The Arnold–Winther element

The Arnold–Winther element was introduced by Arnold and Winther [2002]. This paper presented
the first stable mixed (non-composite) finite element for the stress–displacement formulation
of linear elasticity. The finite element used for the stress space is what is presented as the
Arnold–Winther element here. This finite element is a symmetric tensor element that is row-wise
H(div)-conforming. The finite element was introduced for a hierarchy of polynomial degrees and
extended to three-dimensions in Adams and Cockburn [2005] and Arnold et al. [2008], but we only
present the lowest degree two-dimensional case here.

108 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Figure 4.9: Illustration of the Arnold–
Winther element. The 24 degrees of
freedom are point evaluation at the
vertices, the two first moments of the
normal component of each row of the
tensor field on each facet, and three
interior moments.

Definition 4.8 (Arnold–Winther element) The (lowest degree) Arnold–Winther element (AW) is de-
fined by

T = triangle, (4.34)

V = {v ∈ P3(T; S) : div v ∈ P1(T; R2)}, (4.35)

L =





v(xk)ij, for 1 6 i 6 j 6 2 at each vertex xk
∫

f ∑2
j=1 vijnj p ds, for a set of basis functions p ∈ P1(f), on each facet f, 1 6 i 6 2,∫

T vij dx, for 1 6 i 6 j 6 2.
(4.36)

The dimension of AW is
n = 24. (4.37)

Letting ΠT denote the interpolation operator defined by the degrees of freedom, we have that

||u−ΠTu||H(div)(T) 6 C h2
T |u|H3(T), ||u−ΠTu||L2(T) 6 C h3

T |u|H3(T). (4.38)

4.5 H(curl) finite elements

The Sobolev space H(curl) arises frequently in problems associated with electromagnetism. The
Nédélec elements, also colloquially referred to as edge elements, are much used for such problems,
and stand as a premier example of the power of “nonstandard” (meaning not lowest-degree
Lagrange) finite elements [Nédélec, 1980, 1986]. For a piecewise polynomial to be H(curl)-
conforming, the tangential component must be continuous. Therefore, the degrees of freedom for
H(curl)-conforming finite elements typically include tangential components.
There are four families of finite element spaces due to Nédélec, introduced in the papers Nédélec
[1980] and Nédélec [1986]. The first (1980) paper introduced two families of finite element spaces
on tetrahedra, cubes and prisms: one H(div)-conforming family and one H(curl)-conforming
family. These families are known as Nédélec H(div) elements of the first kind and Nédélec H(curl)
elements of the first kind, respectively. The H(div) elements can be viewed as the three-dimensional
extension of the Raviart–Thomas elements. (These are therefore presented as Raviart–Thomas
elements above.) The first kind Nédélec H(curl) elements are presented below.
The second (1986) paper introduced two more families of finite element spaces: again, one H(div)-
conforming family and one H(curl)-conforming family. These families are known as Nédélec

4.5. H(CURL) FINITE ELEMENTS 109

H(div) elements of the second kind and Nédélec H(curl) elements of the second kind, respectively.
The H(div) elements can be viewed as the three-dimensional extension of the Brezzi–Douglas–
Marini elements. (These are therefore presented as Brezzi–Douglas–Marini elements above.) The
second kind Nédélec H(curl) elements are presented below.

In his two classic papers, Nédélec considered only the three-dimensional case. However, one
can also define a two-dimensional curl, and two-dimensional H(curl)-conforming finite element
spaces. We present such elements as Nédélec elements on triangles here. Although attributing
these elements to Nédélec may be dubious, we include them for the sake of completeness.

In many ways, Nédélec’s work anticipates the recently introduced finite element exterior calculus
presented in Arnold et al. [2006a], where the first kind spaces appear as P−q Λk spaces and the
second kind as PqΛk. Moreover, the use of a differential operator (the elastic strain) in Nédélec
[1980] to characterize the function space foreshadows the use of differential complexes in Arnold
et al. [2006b].

4.5.1 The Nédélec H(curl) element of the first kind

Definition 4.9 (Nédélec H(curl) element of the first kind) For q = 1, 2, . . . , define the space

Sq(T) = {s ∈ [Pq(T)]d : s(x) · x = 0 ∀ x ∈ T}. (4.39)

The Nédélec element of the first kind (NED1
q) is defined for q = 1, 2, . . . in two dimensions by

T = triangle, (4.40)

V = [Pq−1(T)]2 + Sq(T), (4.41)

L =

{ ∫
e v · t p ds, for a set of basis functions p ∈ Pq−1(e) for each edge e,∫
T v · p dx, for a set of basis functions p ∈ [Pq−2(T)]2, for q > 2,

(4.42)

where t is the edge tangent; and in three dimensions by

T = tetrahedron, (4.43)

V = [Pq−1(T)]3 + Sq(T), (4.44)

L =





∫
e v · t p dl, for a set of basis functions p ∈ Pq−1(e) for each edge e∫
f v× n · p ds, for a set of basis functions p ∈ [Pq−2(f)]2 for each face f , for q > 2,∫
T v · p dx, for a set of basis functions p ∈ [Pq−3]

3, for q > 3.
(4.45)

The dimension of NED1
q is

n(q) =
{

q(q + 2), T triangle,
1
2 q(q + 2)(q + 3), T tetrahedron.

(4.46)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom above, we have

that [Nédélec, 1980, Theorem 2]

||u−Πq
Tu||H(curl)(T) 6 C hq

T |u|Hq+1(T), ||u−Πq
Tu||L2(T) 6 C hq

T |u|Hq(T). (4.47)

110 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Figure 4.10: Illustration of first, sec-
ond and third degree Nédélec H(curl)
elements of the first kind on trian-
gles and tetrahedra. Note that these
elements may be viewed as rotated
Raviart–Thomas elements. For the first
degree Nédélec elements, the degrees
of freedom are the average value over
edges or, alternatively, the value of the
tangential component at the midpoint
of edges. Hence the term “edge ele-
ments”.

4.5. H(CURL) FINITE ELEMENTS 111

Figure 4.11: Illustration of first, sec-
ond and third degree Nédélec H(curl)
elements of the second kind on trian-
gles. Note that these elements may
be viewed as rotated Brezzi–Douglas–
Marini elements.

4.5.2 The H(curl) Nédélec element of the second kind

Definition 4.10 (Nédélec H(curl) element of the second kind) The Nédélec element of the second
kind (NED2

q) is defined for q = 1, 2, . . . in two dimensions by

T = triangle, (4.48)

V = [Pq(T)]2, (4.49)

L =

{ ∫
e v · t p ds, for a set of basis functions p ∈ Pq(e) for each edge e,∫
T v · p dx, for a set of basis functions p ∈ RTq−1(T), for q > 2.

(4.50)

where t is the edge tangent, and in three dimensions by

T = tetrahedron, (4.51)

V = [Pq(T)]3, (4.52)

L =





∫
e v · t p dl, for a set of basis functions p ∈ Pq(e) for each edge e,∫
f v · p ds, for a set of basis functions p ∈ RTq−1(f) for each face f , for q > 2∫
T v · p dx, for a set of basis functions p ∈ RTq−2(T), for q > 3.

(4.53)

The dimension of NED2
q is

n(q) =
{

(q + 1)(q + 2), T triangle,
1
2 (q + 1)(q + 2)(q + 3), T tetrahedron.

(4.54)

Letting Πq
T denote the interpolation operator defined by the degrees of freedom above, we have

that [Nédélec, 1986, Proposition 3]

||u−Πq
Tu||H(curl)(T) 6 C hq

T |u|Hq+1(T), ||u−Πq
Tu||L2(T) 6 C hq+1

T |u|Hq+1(T). (4.55)

112 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Figure 4.12: Illustration of the first de-
gree Nédélec H(curl) elements of the
second kind on tetrahedra.

4.6 L2 elements

By L2 elements, one usually refers to finite element spaces where the elements are not in C0.
Such elements naturally occur in mixed formulations of the Poisson equation, Stokes flow, and
elasticity. Alternatively, such elements can be used for nonconforming methods imposing the
desired continuity weakly instead of directly. The discontinuous Galerkin (DG) methods provide a
typical example. In this case, the numerical flux of element facets is assembled as part of the weak
form; numerous variants of DG methods have been defined with different numerical fluxes. DG
methods were originally developed for hyperbolic problems but have been successfully applied
to many elliptic and parabolic problems. Moreover, the decoupling of each individual element
provides an increased opportunity for parallelism and hp-adaptivity.

4.6.1 Discontinuous Lagrange

Definition 4.11 (Discontinuous Lagrange element) The discontinuous Lagrange element (DGq) is
defined for q = 0, 1, 2, . . . by

T ∈ {interval, triangle, tetrahedron}, (4.56)

V = Pq(T), (4.57)

`i(v) = v(xi), (4.58)

where {xi}n(q)
i=1 is an enumeration of points in T defined by

x =





i/q, 0 6 i 6 q, T interval,
(i/q, j/q) 0 6 i + j 6 q, T triangle,
(i/q, j/q, k/q) 0 6 i + j + k 6 q, T tetrahedron.

(4.59)

The dimension of DGq is

n(q) =





q + 1, T interval,
1
2 (q + 1)(q + 2), T triangle,
1
6 (q + 1)(q + 2)(q + 3), T tetrahedron.

(4.60)

4.6. L2 ELEMENTS 113

Figure 4.13: Illustration of the zeroth,
first, second and third degree discon-
tinuous Lagrange elements on trian-
gles and tetrahedra. The degrees of
freedom may be chosen arbitrarily as
long as they span the dual space V ′.
Here, the degrees of freedom have
been chosen to be identical to those of
the standard Lagrange finite element,
with the difference that the degrees of
freedom are viewed as internal to the
element.

Figure 4.14: All degrees of freedom
of a discontinuous Lagrange finite
element are internal to the element,
which means that no global continu-
ity is imposed by these elements. This
is illustrated here for discontinuous
quadratic Lagrange elements.

114 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Letting Πq
T denote the interpolation operator defined by the degrees of freedom above, the

interpolation properties of the DGq elements of degree q are:

||u−Πq
Tu||L2(T) 6 C hq+1

T |u|Hq+1(T). (4.61)

4.7 H2 finite elements

The H2 elements are commonly used in the approximation of fourth-order problems, or for other
spaces requiring at least C1 continuity. Due to the restrictive nature of the continuity requirement,
conforming elements are often of a high polynomial degree, but lower degree nonconforming
elements have proven to be successful. Therefore, we here consider the conforming Argyris element
and the nonconforming Hermite and Morley elements.

4.7.1 The Argyris element

The Argyris element [Argyris et al., 1968, Ciarlet, 2002] is based on the space P5(T) of quintic
polynomials over some triangle T. It can be pieced together with full C1 continuity between
elements and C2 continuity at the vertices of a triangulation.

Definition 4.12 (Argyris element) The (quintic) Argyris element (ARG5) is defined by

T = triangle, (4.62)

V = P5(T), (4.63)

L =





v(xi), for each vertex xi,
grad v(xi)j, for each vertex xi, and each component j,
D2v(xi)jk, for each vertex xi, and each component jk, j 6 k,
grad v(mi) · n, for each edge midpoint mi.

(4.64)

The dimension of ARG5 is
n = 21. (4.65)

Letting ΠT denote the interpolation operator defined by the degrees of freedom above, the
interpolation properties of the (quintic) Argyris elements are [Braess, 2007, Chapter II.6]:

||u−ΠTu||H2(T) 6 C h4
T |u|H6(T), ||u−ΠTu||H1(T) 6 C h5

T |u|H6(T), ||u−ΠTu||L2(T) 6 C h6
T |u|H6(T).
(4.66)

The normal derivatives in the dual basis for the Argyris element prevent it from being affine-
interpolation equivalent. This prevents the nodal basis from being constructed on a reference cell
and affinely mapped. Recent work by Domínguez and Sayas [2008] develops a transformation that
corrects this issue and requires less computational effort than directly forming the basis on each
cell in a mesh. The Argyris element can be generalized to polynomial degrees higher than quintic,
still giving C1 continuity with C2 continuity at the vertices [Šolín et al., 2004].

4.7.2 The Hermite element

The Hermite element generalizes the classic cubic Hermite interpolating polynomials on the line
segment [Ciarlet, 2002]. Hermite-type elements appear in the finite element literature almost from
the beginning, appearing at least as early as the classic paper by Ciarlet and Raviart [1972]. They
have long been known as useful C1-nonconforming elements [Braess, 2007, Ciarlet, 2002]. Under

4.7. H2 FINITE ELEMENTS 115

Figure 4.15: The quintic Argyris trian-
gle. The degrees of freedom are point
evaluation, point evaluation of both
first derivatives and point evaluation
of all three second derivatives at the
vertices of the triangle, and evaluation
of the normal derivative at the mid-
point of each edge.

affine mapping, the Hermite elements form affine-interpolation equivalent families [Brenner and
Scott, 2008].
On the triangle, the space of cubic polynomials is ten-dimensional, and the ten degrees of freedom
for the Hermite element are point evaluation at the triangle vertices and barycenter, together
with the components of the gradient evaluated at the vertices. The generalization to tetrahedra is
analogous.

Definition 4.13 (Hermite element) The (cubic) Hermite element (HER) is defined by

T ∈ {interval, triangle, tetrahedron}, (4.67)

V = P3(T), (4.68)

L =





v(xi), for each vertex xi,
grad v(xi)j, for each vertex xi, and each component j,
v(b), for the barycenter b (of the faces in 3D).

(4.69)

The dimension of HER is

n =

{
10, T triangle,
20, T tetrahedron.

(4.70)

Letting ΠT denote the interpolation operator defined by the degrees of freedom above, the
interpolation properties of the (cubic) Hermite elements are:

||u−ΠTu||H1(T) 6 C h3
T |u|H4(T), ||u−ΠTu||L2(T) 6 C h4

T |u|H4(T). (4.71)

Unlike the cubic Hermite functions on a line segment, the cubic Hermite triangle and tetrahedron
cannot be patched together in a fully C1 fashion. The cubic Hermite element can be extended to
higher degree [Brenner and Scott, 2008]

4.7.3 The Morley element

The Morley triangle defined in Morley [1968] is a simple H2-nonconforming quadratic element
that is used in fourth-degree problems. The function space V is simply P2(T), the six-dimensional
space of quadratics. The degrees of freedom consist of pointwise evaluation at each vertex and the
normal derivative at each edge midpoint. It is interesting to note that the Morley triangle is neither

116 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Figure 4.16: The cubic Hermite trian-
gle and tetrahedron. The degrees of
freedom are point evaluation at the
vertices and the barycenter, and eval-
uation of both first derivatives at the
vertices.

4.8. ENRICHING FINITE ELEMENTS 117

Figure 4.17: The quadratic Morley tri-
angle. The degrees of freedom are
point evaluation at the vertices and
evaluation of the normal derivative at
the midpoint on each edge.

C1 nor even C0, yet it is suitable for fourth-order problems, and is the simplest known element for
this purpose.
The Morley element was first introduced to the engineering literature by Morley [1968, 1971]. In
the mathematical literature, Lascaux and Lesaint [1975] considered it in the context of the patch test
in a study of plate-bending elements. Recent applications of the Morley element include Huang
et al. [2008], Ming and Xu [2006].

Definition 4.14 (Morley element) The (quadratic) Morley element (MOR) is defined by

T = triangle, (4.72)

V = P2(T), (4.73)

L =

{
v(xi), for each vertex xi,
grad v(mi) · n, for each edge midpoint mi.

(4.74)

The dimension of the Morley element is
n = 6. (4.75)

Letting ΠT denote the interpolation operator defined by the degrees of freedom above, the
interpolation properties of the (quadratic) Morley elements are:

||u−ΠTu||H1(T) 6 C h2
T |u|H3(T), ||u−ΠTu||L2(T) 6 C h3

T |u|H3(T). (4.76)

4.8 Enriching finite elements

If U, V are linear spaces, one can define a new linear space W by

W = {w = u + v : u ∈ U, v ∈ V}. (4.77)

Here, we choose to call such a space W an enriched space.
The enrichment of a finite element space can lead to improved stability properties, especially
for mixed finite element methods. Examples include the enrichment of the Lagrange element
with bubble functions for use with Stokes equations or enriching the Raviart–Thomas element for
linear elasticity [Arnold et al., 1984a,b]. Bubble functions have since been used for many different

118 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

applications. We here define a bubble element for easy reference. Notable examples of the use of a
bubble element include:

The MINI element for the Stokes equations. In the lowest degree case, the linear vector Lagrange element is enriched with the cubic
vector bubble element for the velocity approximation [Arnold et al., 1984b].

The PEERS element for weakly symmetric linear elasticity. Each row of the stress tensor is approximated by the lowest degree Raviart–Thomas element
enriched by the curl of the cubic bubble element [Arnold et al., 1984a].

Definition 4.15 (Bubble element) The bubble element (Bq) is defined for q > (d + 1) by

T ∈ {interval, triangle, tetrahedron}, (4.78)

V = {v ∈ Pq(T) : v|∂T = 0}, (4.79)

`i(v) = v(xi), i = 1, . . . , n(q). (4.80)

where {xi}n(q)
i=1 is an enumeration of the points3 in T defined by

x =





(i + 1)/q, 0 6 i 6 q− 2, T interval,
((i + 1)/q, (j + 1)/q), 0 6 i + j 6 q− 3, T triangle,
((i + 1)/q, (j + 1)/q, (k + 1)/q), 0 6 i + j + k 6 q− 4, T tetrahedron.

(4.81)

The dimension of the Bubble element is

n(q) =





q− 1, T interval,
1
2 (q− 2)(q− 1), T triangle,
1
6 (q− 3)(q− 2)(q− 1), T tetrahedron.

(4.82)

4.9 Finite element exterior calculus

It has recently been demonstrated that many of the finite elements that have been discovered or
invented over the years can be formulated and analyzed in a common unifying framework as
special cases of a more general class of finite elements. This new framework is known as finite
element exterior calculus and is summarized in Arnold et al. [2006a]. In finite element exterior
calculus, two finite element spaces PqΛk(T) and P−q Λk(T) are defined for general simplices T of
dimension d > 1. The element PqΛk(T) is the space of polynomial differential k-forms4 on T with
degrees of freedom chosen to ensure continuity of the trace on facets. When these elements are
interpreted as regular elements, by a suitable identification between differential k-forms and scalar-
or vector-valued functions, one obtains a series of well-known elements for 0 6 k 6 d 6 3. In
Table 4.2, we summarize the relation between these elements and the elements presented above in
this chapter5.

3Any other basis for the dual space of V will work just as well.
4A differential k-form ω on a domain Ω maps each point x ∈ Ω to an alternating k-form ωx on the tangent space

Tx(Ω) of Ω at the point x. One can show that for d = 3, the differential k-forms correspond to scalar-, vector-, vector-,
and scalar-valued functions for k = 0, 1, 2, 3 respectively. Thus, we may identify for example both PqΛ1 and PqΛ2 on a
tetrahedron with the vector-valued polynomials of degree at most q on the tetrahedron.

5The finite elements PqΛk(T) and P−q Λk(T) have been implemented for general values of k, q and d = 1, 2, 3, 4, . . . as
part of the FEniCS Exterior package available from http://launchpad.net/exterior.

http://launchpad.net/exterior

4.10. SUMMARY 119

PqΛk P−q Λk

k d = 1 d = 2 d = 3

0 CGq CGq CGq
1 DGq NED2,curl

q NED2,curl
q

2 — DGq BDMq
3 — — DGq

k d = 1 d = 2 d = 3

0 CGq CGq CGq
1 DGq−1 NED1,curl

q NED1,curl
q

2 — DGq−1 RTq
3 — — DGq−1

Table 4.2: Relationships between the finite elements PqΛk and P−q Λk defined by finite element exterior
calculus and their more traditional counterparts using the numbering and labeling of this chapter.

4.10 Summary

In the table below, we summarize the list of elements discussed in this chapter. For brevity, we
include element degrees only up to and including q = 3. For higher degree elements, we refer to
the script dolfin-plot available as part of FEniCS, which can be used to easily plot the degrees of
freedom for a wide range of elements:

Bash code
$ dolfin-plot BDM tetrahedron 3

$ dolfin-plot N1curl triangle 4

$ dolfin-plot CG tetrahedron 5

Elements indicated with at (∗) in the table below are fully supported by FEniCS.

Element family Notation Illustration Dimension Description

(Quintic) Argyris ARG5 (2D) n = 21

P5 (scalar); 3 point values,
3 × 2 derivatives, 3 × 3
second derivatives, 3 di-
rectional derivatives

Arnold–Winther AW (2D) n = 24

P3(T; S) (matrix) with lin-
ear divergence; 3 × 3
point values, 12 normal
components, 3 interior
moments

Brezzi–Douglas–Marini (∗) BDM1 (2D) n = 6 [P1]
2 (vector); 6 normal

components

Brezzi–Douglas–Marini (∗) BDM2 (2D) n = 12
[P2]

2 (vector); 9 normal
components, 3 interior
moments

120 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Brezzi–Douglas–Marini (∗) BDM3 (2D) n = 20
[P3]

2 (vector); 12 normal
components, 8 interior
moments

Brezzi–Douglas–Marini (∗) BDM1 (3D) n = 12 [P1]
3 (vector); 12 normal

components

Brezzi–Douglas–Marini (∗) BDM2 (3D) n = 30
[P2]

3 (vector); 24 normal
components, 6 interior
moments

Brezzi–Douglas–Marini (∗) BDM3 (3D) n = 60
[P3]

3 (vector); 40 normal
components, 20 interior
moments

Crouzeix–Raviart (∗) CR1 (2D) n = 3 P1 (scalar); 3 point values

Crouzeix–Raviart (∗) CR1 (3D) n = 4 P1 (scalar); 4 point values

Discontinuous Lagrange (∗) DG0 (2D) n = 1 P0 (scalar); 1 point value

Discontinuous Lagrange (∗) DG1 (2D) n = 3 P1 (scalar); 3 point values

Discontinuous Lagrange (∗) DG2 (2D) n = 6 P2 (scalar); 6 point values

4.10. SUMMARY 121

Discontinuous Lagrange (∗) DG3 (2D) n = 10 P3 (scalar); 10 point val-
ues

Discontinuous Lagrange (∗) DG0 (3D) n = 1 P0 (scalar); 1 point value

Discontinuous Lagrange (∗) DG1 (3D) n = 4 P1 (scalar); 4 point values

Discontinuous Lagrange (∗) DG2 (3D) n = 10 P2 (scalar); 10 point val-
ues

Discontinuous Lagrange (∗) DG3 (3D) n = 20 P3 (scalar); 20 point val-
ues

(Cubic) Hermite HER (2D) n = 10 P3 (scalar); 4 point values,
3× 2 derivatives

(Cubic) Hermite HER (3D) n = 20 P3 (scalar); 8 point values,
4× 3 derivatives

Lagrange (∗) CG1 (2D) n = 3 P1 (scalar); 3 point values

Lagrange (∗) CG2 (2D) n = 6 P2 (scalar); 6 point values

122 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Lagrange (∗) CG3 (2D) n = 10 P3 (scalar); 10 point val-
ues

Lagrange (∗) CG1 (3D) n = 4 P1 (scalar); 4 point values

Lagrange (∗) CG2 (3D) n = 10 P2 (scalar); 10 point val-
ues

Lagrange (∗) CG3 (3D) n = 20 P2 (scalar); 20 point val-
ues

Mardal–Tai–Winther MTW (2D) n = 9

[P2]
2 (vector); with con-

stant divergence and lin-
ear normal components; 6
moments of normal com-
ponents, 3 moments of
tangential components

(Quadratic) Morley MOR (2D) n = 6 P2 (scalar); 3 point values,
3 directional derivatives

Nédélec 1st kind H(curl) (∗) NED1
1 (2D) n = 3 [P0]

2 + S1 (vector); 3 tan-
gential components

Nédélec 1st kind H(curl) (∗) NED1
2 (2D) n = 8

[P1]
2 + S2 (vector); 6 tan-

gential components, 2 in-
terior moments

Nédélec 1st kind H(curl) (∗) NED1
3 (2D) n = 15

[P2]
2 + S3 (vector); 9 tan-

gential components, 6 in-
terior moments

4.10. SUMMARY 123

Nédélec 1st kind H(curl) (∗) NED1
1 (3D) n = 6 [P0]

3 + S1 (vector); 6 tan-
gential components

Nédélec 1st kind H(curl) (∗) NED1
2 (3D) n = 20 [P1]

3 + S2 (vector); 20 tan-
gential components

Nédélec 1st kind H(curl) (∗) NED1
3 (3D) n = 45

[P2]
3 + S3 (vector); 42 tan-

gential components, 3 in-
terior moments

Nédélec 2nd kind H(curl) (∗) NED2
1 (2D) n = 6 [P1]

2 (vector); 6 tangential
components

Nédélec 2nd kind H(curl) (∗) NED2
2 (2D) n = 12

[P2]
2 (vector); 9 tangen-

tial components, 3 interior
moments

Nédélec 2nd kind H(curl) (∗) NED2
3 (2D) n = 20

[P3]
2 (vector); 12 tangen-

tial components, 8 interior
moments

Nédélec 2nd kind H(curl) (∗) NED2
1 (3D) n = 12 [P1]

3 (vector); 12 tangen-
tial components

Raviart–Thomas (∗) RT1 (2D) n = 3 [P0]
2 + xP0 (vector); 3

normal components

Raviart–Thomas (∗) RT2 (2D) n = 8
[P1]

2 + xP1 (vector); 6
normal components, 2 in-
terior moments

124 CHAPTER 4. COMMON AND UNUSUAL FINITE ELEMENTS

Raviart–Thomas (∗) RT3 (2D) n = 15
[P2]

2 + xP2 (vector); 9
normal components, 6 in-
terior moments

Raviart–Thomas (∗) RT1 (3D) n = 4 [P0]
3 + xP0 (vector); 4

normal components

Raviart–Thomas (∗) RT2 (3D) n = 15
[P1]

3 + xP1 (vector); 12
normal components, 3 in-
terior moments

Raviart–Thomas (∗) RT3 (3D) n = 36
[P2]

3 + xP2 (vector); 24
normal components, 12
interior moments

5 Constructing general reference finite elements
By Robert C. Kirby and Kent-Andre Mardal

This chapter describes the mathematical framework for constructing a general class of finite
elements on reference domains. This framework is used by both the FIAT and SyFi projects, see
the Chapters 14 and 16, respectively. Our goal is to provide a framework by which simplicial finite
elements with very complicated bases can be constructed automatically. We work from the classic
Ciarlet definition of the finite element and its “nodal” basis (an abstract notion far more general
and powerful than standard node-oriented Lagrange polynomials).
To date, our methodology does not include spline-type spaces such as are becoming widely popular
in isogeometric analysis [Hughes et al., 2005], nor does it entirely address XFEM [Chessa et al.,
2002] or hp-type methods [Schwab, 1998]. However, in isogeometric analysis, the basis functions
are readily defined by simple recurrence relations from the theory of splines, so a tool like FIAT
or SyFi is not necessary. XFEM typically works by enriching existing finite element spaces with
special basis functions to capture singular behavior – our approach can provide the regular basis
but not the “extra” functions. Finally, handling the constraints imposed in hp methods is possible,
but unwieldy, with our methodology, but tetrahedral hp bases are available [Ainsworth and Coyle,
2003]. We return to some of these issues later.

5.1 Background

The finite element literature contains a huge collection of approximating spaces and degrees of
freedom, many of which are surveyed in Chapter 4. Some applications, such as Cahn-Hilliard
and other fourth-order problems, can benefit from very smooth finite element bases, while porous
media flow requires vector fields discretized by piecewise polynomial functions with only normal
components continuous across cell boundaries. Many problems in electromagnetism call for
the tangentially continuous vector fields obtained by using Nédélec elements [Nédélec, 1980,
1986]. Many elements are carefully designed to satisfy an inf-sup condition [Brezzi and Fortin,
1991, Girault and Raviart, 1986], originally developed to explain stability of discretizations of
incompressible flow problems. Additionally, some problems call for low-order discretizations,
while others are effectively solved with high-order polynomials.
While the automatic generation of computer programs for finite element methods requires one to
confront the panoply of finite element families found in the literature, it also provides a pathway
for wider employment of Raviart–Thomas, Nédélec, and other difficult-to-program elements.
Ideally, one would like to describe the diverse finite element spaces at an abstract level, whence a
computer code discerns how to evaluate and differentiate their basis functions. Such goals are in
large part accomplished by the FIAT and SyFi projects, whose implementations are described in
the chapters 14 and 16.

125

126 CHAPTER 5. CONSTRUCTING GENERAL REFERENCE FINITE ELEMENTS

Projects like FIAT and SyFi may ultimately remain mysterious to the end user of a finite element
system, as interactions with finite element bases are typically mediated through tools that construct
the global finite element operators. The end user will typically be satisfied if two conditions are
met. First, a finite element system should support the common elements used in the application
area of interest. Second, it should provide flexibility with respect to order of approximation.
It is entirely possible to satisfy many users by a priori enumerating a list of finite elements and
implement only those. At certain times, this would even seem ideal. For example, after the rash of
research that led to elements such as the Raviart–Thomas-Nédélec and Brezzi–Douglas–Marini
families, development of new families slowed considerably. Then, more recent work lead forth
by Arnold, Falk, and Winther in the context of exterior calculus has not only led to improved
understanding of existing element families, but has also brought a new wave of elements with
improved properties, see Arnold et al. [2006a] for an overview. A generative system for finite
element bases can far more readily assimilate these and future developments. Automation also
provides generality with respect to the order of approximation that standard libraries might not
otherwise provide. Finally, the end-user might even easily define his own new element and test its
numerical properties before analyzing it mathematically.
In the present chapter, we describe the mathematical formulation underlying such projects as
FIAT, SyFi and Exterior [Logg and Mardal, 2009]. This formulation starts from definitions of finite
elements as given classically by Ciarlet [2002]. It then uses basic linear algebra to construct the
appropriate basis for an abstract finite element in terms of polynomials that are easy to implement
and well-behaved in floating point arithmetic. We focus on constructing nodal bases for a single,
fixed reference element. As we will see in the Chapters 16 and 12, form compilers such as FFC
and SFC will work in terms of this single reference element.
Other approaches exist in the literature, such as the hierarchical bases studied by Szabó et al. [1991]
and extended to H(curl) and H(div) spaces in work such as Ainsworth and Coyle [2003]. These
approaches can provide greater flexibility for refining the mesh and polynomial degree in finite
element methods, but they also require more care during assembly and are typically constructed
on a case-by-case basis for each element family. When they are available, they may be cheaper to
construct than using the technique studied here, but this present technique is easier to apply to an
“arbitrary” finite element and so is considered in the context of automatic software.

5.2 Preliminaries

Both FIAT and SyFi work with a slightly modified version of the abstract definition of a finite
element introduced by Ciarlet.

Definition 5.1 (Finite element [Ciarlet, 2002]) A finite element is defined by a triple (T,V ,L), where

• the domain T is a bounded, closed subset of Rd (for d = 1, 2, 3, . . .) with nonempty interior and
piecewise smooth boundary;

• the space V = V(T) is a finite dimensional function space on T of dimension n;

• the set of degrees of freedom (nodes) L = {`1, `2, . . . , `n} is a basis for the dual space V ′; that is, the
space of bounded linear functionals on V .

In this definition, the term “finite element” refers not only to a particular cell in a mesh, but also
to the associate function space and degrees of freedom. Typically, the domain T is some simple
polygonal or polyhedral shape and the function space V consists of polynomials.

5.3. MATHEMATICAL FRAMEWORK 127

Given a finite element, a concrete basis, often called the nodal basis, for this element can be
computed by using the following definition.

Definition 5.2 The nodal basis for a finite element (T,V ,L) is the set of functions {φi}n
i=1 such that for

all 1 6 i, j 6 n,
li(φj) = δij, (5.1)

where δij denotes the Kronecker delta function.

The main issue at hand in this chapter is the construction of this nodal basis. For any given finite
element, one may construct the nodal basis explicitly with elementary algebra. However, this
becomes tedious as we consider many different families of elements and want arbitrary order
instances of each family. Hence, we present a new paradigm here that undergirds computer
programs for automating the construction of nodal bases.
In addition to the construction of the nodal base we need to keep in mind that finite elements are
patched together to form a piecewise polynomial field over a mesh. The fitness (or stability) of a
particular finite element method for a particular problem relies on the continuity requirements
of the problem. The degrees of freedom of a particular element are often chosen such that these
continuity requirements are fulfilled.
Hence, in addition to computing the nodal basis, the framework developed here simplifies software
for the following tasks:

1. Evaluate the basis functions and their derivatives at points.

2. Associate the basis functions (or degrees of freedom) with topological facets of T such as its
vertices, edges and its placement on the edges.

3. Associate each basis function with additional meta-data that describes the mapping that
should be used for the evaluation of the basis functions and their derivatives.

4. Provide rules for evaluating the degrees of freedom applied to arbitrary functions (needed
for Dirichlet boundary conditions).

The first of these is relatively simple in the framework of symbolic computation (SyFi), but they
require more care if an implementation uses numerical arithmetic (FIAT). The middle two encode
the necessary information for a client code to transform the reference basis and assemble global
degrees of freedom when the finite element is either less or more than C0 continuous. The final
task may take the form of a point at which data is evaluated or differentiated or more generally as
the form of a sum over points and weights, much like a quadrature rule.

5.3 Mathematical framework

5.3.1 Change of basis

The fundamental idea in constructing a nodal basis is from elementary linear algebra: one
constructs the desired (nodal) basis as a linear combination of another available basis. We will start
with some basis {ψi}n

i=1 that spans V . From this, we construct each nodal basis function φj as

φj =
n

∑
k=1

αjkψk, (5.2)

128 CHAPTER 5. CONSTRUCTING GENERAL REFERENCE FINITE ELEMENTS

The task is to compute the matrix α. Each fixed φj must satisfy

`i(φj) = δij, (5.3)

and using the above expansion for φj, we obtain

δij =
n

∑
k=1

`i(αjkψk) =
n

∑
k=1

αjk`i(ψk). (5.4)

So, for a fixed j, we have a system of n equations

n

∑
k=1

Bikαjk = δij, (5.5)

where
Bik = `i(ψk) (5.6)

is a kind of generalized Vandermonde matrix. Of course, (5.5) can be written as

Bα> = I, (5.7)

and we obtain
α = B−T . (5.8)

In practice, this supposes that one has an implementation of the original basis for which the actions
of the degrees of freedom may be readily computed. The degrees of freedom typically involves
point evaluation, differentiation, integration, and so on.

5.3.2 Polynomial spaces

In Definition 5.1 we defined the finite element in terms of a finite dimensional function space V .
Although it is not strictly necessary, the functions used in finite elements are typically polynomials.
While our general strategy will in principle accommodate non-polynomial bases, we only deal
with polynomials in this chapter. The most common space is Pd

q , the space of polynomials of
degree q in Rd. There are many different ways to represent Pd

q . We will discuss the power and
Bernstein bases, and orthogonal bases such as Dubiner, Jacobi, and Legendre. Each of these bases
has explicit representations or recurrence relations making them easy to evaluate and differentiate.
In contrast, most finite element bases are determined by solving the linear system in Definition 5.2.
In addition to Pd

q we will also for some elements need Hd
q , the space of homogeneous polynomials

of degree q in d variables.
Typically, the techniques developed here are used on simplices, where polynomials do not have a
nice tensor-product structure. SyFi does, however, have support for rectangular domains, while
FIAT does not.

Power basis. On a line segment, the monomial or power basis {xi}q
i=0 spans P1

q , so that any
ψ ∈ P1

q can be written as

ψ = a0 + a1x + . . . aqxq =
q

∑
i=0

aixi. (5.9)

5.3. MATHEMATICAL FRAMEWORK 129

In 2D on triangles, P2
q is spanned by functions on the form {xiyj}i+j6q

i,j=0 , with a similar definition in
three dimensions.
This basis is quite easy to evaluate, differentiate, and integrate. But the basis is very ill-conditioned
in numerical calculations. For instance, the condition number of the mass matrix using the power
basis in P1

10 gives a condition number of 5 · 1014, while corresponding condition numbers are 4 · 106

and 2 · 103 for the Bernstein and Lagrange polynomials, respectively.

Legendre basis. A popular polynomial basis for polygons that are either intervals, rectangles or
boxes are the Legendre polynomials. This polynomial basis is also usable to represent polynomials
of high degree. The basis is defined on the interval [−1, 1], as

ψi(x) =
1

2ii!
di

dxi (x2 − 1)i, i = 0, 1, . . . , (5.10)

A nice feature with these polynomials is that they are orthogonal with respect to the L2 inner
product; that is, ∫ 1

−1
ψi(x)ψj(x)dx =

{ 2
2i+1 , i = j,
0, i 6= j,

(5.11)

The Legendre polynomials can be extended to rectangular domains in any dimensions by tensor–
products. For instance, in 2D the basis reads,

ψij(x, y) = ψi(x)ψj(y), i, j 6 q. (5.12)

Recurrence relations for these polynomials can be found in Karniadakis and Sherwin [2005].

Jacobi basis. The Jacobi polynomials Pα,β
i (x) generalize the Legendre polynomials, giving orthogo-

nality with respect to a weighted inner product. In particular,
∫ 1
−1(1− x)α(1 + x)βPα,β

i Pα,β
j dx = 0

unless i = j. The polynomials are given by

Pα,β
0 = 1

Pα,β
1 =

1
2
(α− β + (α + β + 2) x) ,

(5.13)

with a three-term recurrence for i > 1:

Pα,β
i+1(x) = (aα,β

i x + bα,β
i)Pα,β

i (x)− cα,β
i Pα,β

i−1(x). (5.14)

General Jacobi polynomials are used in 1d and tensor-product domains far less frequently than
Legendre polynomials, but they play an important role in constructing orthogonal bases on the
simplex, to which we now turn.

Dubiner basis. Orthogonal polynomials in simplicial domains are also known, although they lack
some of the rotational symmetry of the Legendre polynomials. The Dubiner basis, frequently used
in simplicial spectral elements [Dubiner, 1991], is known under many names in the literature. It is
an L2-orthogonal basis that can be constructed by mapping particular tensor products of Jacobi
polynomials on a square by a singular coordinate change to a fixed triangle. Let Pα,β

n denote the

130 CHAPTER 5. CONSTRUCTING GENERAL REFERENCE FINITE ELEMENTS

(−1,−1) (1,−1)

(1,1)

(−1,−1) (1,−1)

(−1,1) (−1,1)

Figure 5.1: Reference triangular and
square domains with collapsed coordi-
nate transformation.

nth Jacobi polynomial with weights α, β. Then, define the new coordinates

η1 = 2
(

1 + x
1− y

)
− 1

η2 = y,
(5.15)

which map the triangle with vertices (−1,−1), (−1, 1), (1,−1) to the square [−1, 1]2 as shown in
Figure 5.1. This is the natural domain for defining the Dubiner polynomials, but they may easily
be mapped to other domains like the triangle with vertices (0, 0), (0, 1), (1, 0) by an affine mapping.
Then, one defines

ψij(x, y) = P0,0
i (η1)

(
1− η2

2

)i
P2i+1,0

j (η2). (5.16)

Though it is not obvious from the definition, ψij(x, y) is a polynomial in x and y of degree i + j.
Moreover, for (i, j) 6= (p, q), ψij is L2-orthogonal to ψpq.
While this basis is more complicated than the power basis, it is very well-conditioned for numerical
calculations even with high degree polynomials. The polynomials can also be ordered hierarchically
so that {ψi}n

i=1 forms a basis for Pn−1 for each n > 1. As a possible disadvantage, the basis lacks
rotational symmetry that can be found in other bases.

Bernstein basis. The Bernstein basis is another well-conditioned basis that can be used in generating
finite element bases. In 1D, the basis functions in Pq take the form,

ψ
q
i =

(
q
i

)
xi(1− x)q−i, i = 0, . . . , q, (5.17)

and then Pq is spanned by {ψq
i }

q
i=0.

Notice that the Bernstein basis consists of powers of x and 1 − x, which are the barycentric
coordinates for [0, 1], an observation that makes it easy to extend the basis to simplices in higher
dimensions. Let b1, b2, and b3 be the barycentric coordinates for the reference triangle; that is,
b1 = 1− x− y, b2 = x, and b3 = y. Then the basis is of the form,

ψ
q
ijk =

q!
i!j!k!

bi
1bj

2bk
3, for i + j + k = q, (5.18)

5.4. EXAMPLES OF ELEMENTS 131

Figure 5.2: Lagrange elements of order
one and two.

and a basis for Pq is simply.

{ψq
ijk}

i+j+k=q
i,j,k>0 . (5.19)

The Bernstein polynomials on the tetrahedron and even higher dimensional simplices are com-
pletely analogous.
These polynomials, though less common in the finite element community, are well-known in
graphics and splines. They have rotational symmetry and are nonnegative and so give positive
mass matrices, though they are not hierarchical. Recently, Kirby [2011, 2010b] has analyzed finite
element operators based on Bernstein polynomials. In these papers, particular properties of the
Bernstein polynomials are exploited to develop algorithms for matrix-free application of finite
element operators with complexity comparable to spectral elements.

Homogeneous polynomials. Another set of polynomials which sometimes is useful is the set of
homogeneous polynomials Hq. These are polynomials where all terms have the same degree. Hq
is in 2D spanned by polynomials on the form:

{xiyj}i+j=q (5.20)

with a similar definition in dD.

Vector or tensor-valued polynomials. It is straightforward to generalize the scalar-valued polyno-
mials discussed earlier to vector or tensor-valued polynomials. Let {ei} be canonical basis in Rd.
Then a basis for the vector-valued polynomials is

φij = φjei, (5.21)

with a similar definition extending the basis to tensors.

5.4 Examples of elements

We include some standard finite elements to illustrate the concepts. We refer the reader to Chapter 4

for a more thorough review of elements and their properties.

Example 5.1 The Lagrange Element
The Lagrange element shown in Figure 5.2 is the most common element. The degrees of freedom are
represented by black dots, which represent point evaluation. The first order element is shown in the leftmost
triangle, its degrees of freedom consist of a point evaluation in each of the vertices. That is, the degrees of
freedom `i : V → R are

`i(v) =
∫

T
v δxi dx = v(xi), (5.22)

132 CHAPTER 5. CONSTRUCTING GENERAL REFERENCE FINITE ELEMENTS

Figure 5.3: Hermite elements of order
3.

Figure 5.4: Triangular Raviart–Thomas
elements of order one.

where xi are the vertices (0,0), (1,0), (0,1) and δ is the Dirac delta function. The corresponding basis
functions are 1− x− y, x, and y. The second order element is shown in right triangle. It has six degrees
of freedom, three at the vertices and three at the edges, all are point evaluations. The Lagrange element
produces piecewise continuous polynomials and they are therefore well suited for approximation in H1. The
Lagrange element of order q spans Pq on simplices in any dimension.

Example 5.2 The Hermite Element
In Figure 5.3 we show the Hermite element on the reference triangle in 2D. The black dots mean point
evaluation, while the white circles mean evaluation of derivatives in both x and y direction. That is, the
degrees of freedom `ik : V → R associated with the vertex xi are,

`i1(v) =
∫

T
v δxi dx = v(xi), (5.23)

`i2(v) =
∫

T

∂v
∂x

δxi dx =
∂

∂x
v(xi), (5.24)

`i3(v) =
∫

T

∂v
∂y

δxi dx =
∂

∂y
v(xi). (5.25)

In addition, there is one internal point evaluation, which in total gives ten degrees of freedom, which is the
same number of degrees of freedom as in P3. One feature of the Hermite element is that it has continuous
derivatives at the vertices (it will however not necessarily result in a H2-conforming approximation).

Example 5.3 The Raviart–Thomas Element
In Figure 5.4 we illustrate the lowest order Raviart–Thomas element. In contrast to the previous elements,
this element has a vector-valued function space. The arrows represent normal vectors; that is, the degrees
of freedom `i : V → R are

`i(v) =
∫

T
v · ni dx, (5.26)

where ni is the outward normal vector on edge i. The Raviart–Thomas element is a vector space with
three degrees of freedom. Hence, the standard basis (Pd

q)
d is not a suitable starting point and we use

5.4. EXAMPLES OF ELEMENTS 133

V = (P2
0)

2 ⊕ xH0 instead. The Raviart–Thomas element is typically used for approximations in H(div).
We remark that this element may also be defined in terms of point evaluations of normal components.

5.4.1 Bases for other polynomial spaces

The basis presented above are suitable for constructing many finite elements, but as we have just
seen, they do not work in all cases. The Raviart–Thomas function space in 2D is spanned by

(
P2

n

)2
⊕
(

x
y

)
H2

n. (5.27)

Hence, this element requires a basis for vectors of polynomials (P2
n)

2 enriched with
(

x
y

)
H2

n.

On the other hand, the Brezzi–Douglas–Fortin–Marini on triangle is defined as
{

u ∈ (¶n2(T))2 : u · n ∈ P1
n−1(Ei), Ei ∈ E(T)

}
, (5.28)

where E(T) denotes the facets of T.
Hence, this element requires that some functions are removed from P2

n(T). The removal is
expressed by the constraint u · n ∈ P1

n−1(Ei).
Obtaining a basis for this space is somewhat more subtle. FIAT and SyFi have developed different
but mathematically equivalent solutions. In SyFi, since it uses a symbolic representation, the
polynomial may be easily expressed in the power basis and the coefficients corresponding to
second order polynomials normal to the edges are set to zero. In a similar fashion, FIAT utilizes
the orthogonality of the Legendre polynomials to express the constraints the edges. That is, on the
edge Ei the following constraints apply:

`C
i (u) =

∫

Ei

(u · n)µi
n = 0, (5.29)

where µi
n is the second order Legendre polynomial on the edge Ei.

In general, assume that we have m constraints and n−m degrees of freedom. Let

V1
ij = `i(φj), 1 ≤ i ≤ n−m, 1 ≤ j ≤ n, (5.30)

V2
ij = `C

i (φj), n−m < i ≤ n, 1 ≤ j ≤ n. (5.31)

and ,

V =

(
V1

V2

)
. (5.32)

Consider now the matrix equation
Vα> = In,n−m, (5.33)

where In,n−m denotes the n× n−m identity matrix. As before, the columns of α still contain the
expansion coefficients of the nodal basis functions ψi in terms of {φj}. Moreover, V2α = 0, which
implies that the nodal basis functions fulfill the constraint.
Other examples than the Brezzi–Douglas–Fortin–Marini element that are defined in terms of con-
strained polynomials are the Nédélec [Nédélec, 1980], Arnold-Winther [Arnold and Winther, 2002],
Mardal-Tai-Winther [Mardal et al., 2002], Tai-Winther [Tai and Winther, 2006], and Bell [Ciarlet,
2002] element families.

134 CHAPTER 5. CONSTRUCTING GENERAL REFERENCE FINITE ELEMENTS

5.5 Operations on the polynomial spaces

Here, we show how various important operations may be cast in terms of linear algebra operations,
supposing that the operations may be performed on the original basis {ψi}n

i=1.

5.5.1 Evaluation

In order to evaluate the nodal basis {φi}n
i=1 at a given point x ∈ T, one simply computes the vector

Ψi = ψi(x) (5.34)

followed by the product
φi(x) ≡ Φi = ∑

j
αijΨj. (5.35)

Generally, the nodal basis functions are required at an array of points {xj}m
j=1 ⊂ T. For performance

reasons, performing matrix-matrix products may be advantageous. So, define Ψij = Ψi(xj) and
Φij = Φi(xj). Then all of the nodal basis functions may be evaluated by the product

Φij = ∑
k

αikΨkj. (5.36)

5.5.2 Differentiation

Differentiation is more complicated and presents more options. Let α = (α1, α2, . . . αd) be a
multi-index so that

Dα ≡ ∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαd
d

, (5.37)

where |α| = ∑d
i=1 αi and we want to compute the array

Φα
i = Dαφi(x) (5.38)

for some x ∈ T.
One obvious option is to differentiate the original basis functions {ψi} to produce an array

Ψα
i = Dαψi(x), (5.39)

whence
Φα

i = ∑
j

αijΨα
ji. (5.40)

This presupposes that one may conveniently compute all derivatives of the {ψi}. This is typically
true in symbolic computation or when using the power basis. For the Bernstein, Jacobi, and
Legendre polynomials recurrence relations are available, see Karniadakis and Sherwin [2005],
Kirby [2010b]. The Dubiner basis, as typically formulated, contains a coordinate singularity that
prevents automatic differentiation from working at the top vertex. Recent work by Kirby [2010a]
has reformulated recurrence relations to allow for this possibility.
If one prefers (or is required by the particular starting basis), one may also compute matrices that
encode first derivatives acting on the {φi} and construct higher derivatives than these. For each

5.5. OPERATIONS ON THE POLYNOMIAL SPACES 135

coordinate direction xk, a matrix Dk is constructed so that

∂φi
∂xi

= Dk
ijφj. (5.41)

How to do this depends on which bases are chosen. For particular details on the Dubiner basis,
see Dubiner [1991].

5.5.3 Integration

Integration of basis functions over the reference domain, including products of basis functions
and/or their derivatives, may be performed numerically, symbolically, or exactly with some known
formula. In general, quadrature is easily performed. Quadrature rules for a variety of reference
elements may be obtained from for example [Dunavant, 1985, Keegan et al., 2008, Šolín et al., 2004].

5.5.4 Association with facets

As we saw in the definition of for instance the Brezzi–Douglas–Marini element, it is necessary to
have polynomials that can be associated with the facets of a polygonal domain. The Bernstein
polynomials are expressed via barycentric coordinates and are therefore naturally associated
with the facets. The Legendre and Jacobi polynomials are also easy to associated to 1D facets in
barycentric coordinates.

5.5.5 Linear functionals

Linear functionals are usually cast in terms of linear combinations of integration, pointwise
evaluation and differentiation.

5.5.6 The mapping of the reference element

A common practice, employed throughout the FEniCS software and in many other finite element
codes, is to map the nodal basis functions from the reference cell to each cell in a mesh. Sometimes,
this is as simple as an affine change of coordinates; in other cases it is more complicated. For
completeness, we briefly describe the basics of creating the global finite elements in terms of
a mapped reference element. Let therefore T be a global polygon in the mesh and T̂ be the
corresponding reference polygon. Between the coordinates x ∈ T and x̂ ∈ T̂ we use the mapping

x = FT(x̂) = AT(x̂) + x0, (5.42)

The Jacobian of this mapping is:

J(x̂) =
∂x
∂x̂

=
∂AT(x̂)

∂x̂
. (5.43)

Currently, FEniCS only supports affine maps between T and T̂, which means that x = FT(x̂) =
AT x̂ + x0 and J = AT . For isoparametric elements, a basis function is defined in terms of the
corresponding basis function on the reference element as

φ(x) = φ̂(x̂). (5.44)

The integral can then be performed on the reference polygon,
∫

T
φ(x)dx =

∫

T̂
φ̂(x̂) detJ dx̂, (5.45)

136 CHAPTER 5. CONSTRUCTING GENERAL REFERENCE FINITE ELEMENTS

Figure 5.5: Patching together a pair
of quadratic local function spaces on
a pair of cells to form a global con-
tinuous piecewise quadratic function
space.

and the spatial derivatives are defined by the derivatives on the reference element and the geometry
mapping by using the chain rule,

∂φ

∂xi
= ∑

j

∂φ̂

∂x̂j

∂x̂j

∂xi
. (5.46)

The above mapping of basis functions is common for approximations in H1. For approximations
in H(div) or H(curl) it is necessary to use the Piola mapping, where the mapping for the basis
functions differs from the geometry mapping. That is, for H(div) elements, the Piola mapping
reads

φ(x) =
1
|detJ| Jφ̂(x̂), (5.47)

When using the numbering of mesh entities used by UFC, see Chapter 17, it is advantageous to use
1

detJ instead of 1
|detJ| since the sign of the determinant relates to the sign of the normal vector, see

Rognes et al. [2009] for more details on the Piola mapping and its implementation in FFC. Some
elements like the Rannacher-Turek element [Turek, 1999, Rannacher and Turek, 1992] has far better
properties when defined globally compared to its analogous definition in terms of a reference
element.

5.5.7 Local to global mapping of degrees of freedom

As shown in Figure 5.5, finite elements are patched together with a continuity depending on
the degrees of freedom. To obtain the desired patching, the elements should provide identifiers
that determine whether the degrees of freedom of some neighboring elements should be shared
or not. One alternative is to relate each degree of freedom on the reference cell to a point in
the reference cell. The geometry mapping then gives a global point in the mesh, by (5.42), that
identifies the degree of freedom; that is, the degrees of freedom in different elements are shared
if they correspond to the same global point in the mesh. Alternatively, each degree of freedom
may be related to a local mesh entity, like a vertex, edge or face, on the reference element. After
mapping the element, the degree of freedom will then be related to the corresponding mesh entity
in the global mesh. This alternative requires that the corresponding mesh entities are numbered.

6 Finite element variational forms

By Robert C. Kirby and Anders Logg

Much of the FEniCS software is devoted to the formulation of variational forms (UFL), the
discretization of variational forms (FIAT, FFC, SyFi) and the assembly of the corresponding discrete
operators (UFC, DOLFIN). This chapter summarizes the notation for variational forms used
throughout FEniCS.

6.1 Background

In Chapter 3, we introduced the following canonical variational problem: Find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂, (6.1)

where V is a given trial space and V̂ is a given test space. The bilinear form

a : V × V̂ → R (6.2)

maps a pair of trial and test functions to a real number and is linear in both arguments. Similarly,
the linear form L : V̂ → R maps a given test function to a real number. We also considered the
discretization of nonlinear variational problems: Find u ∈ V such that

F(u; v) = 0 ∀ v ∈ V̂. (6.3)

Here, F : V × V̂ → R again maps a pair of functions to a real number. The semilinear form F is
nonlinear in the function u but linear in the test function v. Alternatively, we may consider the
mapping

Lu ≡ F(u; ·) : V̂ → R, (6.4)

and note that Lu is a linear form on V̂ for any fixed value of u. In Chapter 3, we also considered the
estimation of the error in a given functionalM : V → R. Here, the possibly nonlinear functional
M maps a given function u to a real numberM(u).

In all these examples, the central concept is that of a form that maps a given tuple of functions to
a real number. We shall refer to these as multilinear forms. Below, we formalize the concept of a
multilinear form, discuss the discretization of multilinear forms, and related concepts such as the
action, derivative and adjoint of a multilinear form.

137

138 CHAPTER 6. FINITE ELEMENT VARIATIONAL FORMS

6.2 Multilinear forms

A form is a mapping from the product of a given sequence {Vj}ρ
j=1 of function spaces to a real

number,
a : Vρ × · · · ×V2 ×V1 → R. (6.5)

If the form a is linear in each of its arguments, we say that the form is multilinear. The number of
arguments ρ of the form is the arity of the form. Note that the spaces are numbered from right to
left. As we shall see below in Section 6.3, this is practical when we consider the discretization of
multilinear forms.
Forms may often be parametrized over one or more coefficients. A typical example is the right-hand
side L of the canonical variational problem (6.1), which is a linear form parametrized over a given
coefficient f . We shall use the notation a(f ; v) ≡ L f (v) ≡ L(v) and refer to the test function v as
an argument and to the function f as a coefficient. In general, we shall refer to forms which are
linear in each argument (but possibly nonlinear in its coefficients) as multilinear forms. Such a
multilinear form is a mapping from the product of a sequence of argument spaces and coefficient
spaces:

a : W1 ×W2 × · · · ×Wn × Vρ × · · · ×V2 ×V1 → R,

a 7→ a(w1, w2, . . . , wn; vρ, . . . , v2, v1);
(6.6)

The argument spaces {Vj}ρ
j=1 and coefficient spaces {Wj}n

j=1 may all be the same space but they
typically differ, such as when Dirichlet boundary conditions are imposed on one or more of the
spaces, or when the multilinear form arises from the discretization of a mixed problem such as in
Section 3.2.2.
In finite element applications, the arity of a form is typically ρ = 2, in which case the form is said
to be bilinear, or ρ = 1, in which case the form is said to be linear. In the special case of ρ = 0, we
shall refer to the multilinear form as a functional. It may sometimes also be of interest to consider
forms of higher arity (ρ > 2). Below, we give examples of some multilinear forms of different arity.

6.2.1 Examples

Poisson’s equation. Consider Poisson’s equation with variable conductivity κ = κ(x),

−∇ · (κ∇u) = f . (6.7)

Assuming Dirichlet boundary conditions on the boundary ∂Ω, the corresponding canonical
variational problem is defined in terms of a pair of multilinear forms, a(κ; u, v) =

∫
Ω κ∇u · ∇v dx

and L(v) =
∫

Ω f v dx. Here, a is a bilinear form (ρ = 2) and L is a linear form (ρ = 1). Both forms
have one coefficient (n = 1) and the coefficients are κ and f respectively:

a = a(κ; u, v),

L = L(f ; v).
(6.8)

We usually drop the coefficients from the notation and use the short-hand notation a = a(u, v) and
L = L(v).

6.2. MULTILINEAR FORMS 139

The incompressible Navier–Stokes equations. The incompressible Navier–Stokes equations for the
velocity u and pressure p of an incompressible fluid read:

ρ(u̇ +∇u u)−∇ · σ(u, p) = f ,

∇ · u = 0,
(6.9)

where the stress tensor σ is given by σ(u, p) = 2µε(u) − pI, ε is the symmetric gradient, that
is, ε(u) = 1

2 (∇u + (∇u)>), ρ is the fluid density and f is a body force. Consider here the form
obtained by integrating the nonlinear term ∇u, u against a test function v:

a(u; v) =
∫

Ω
∇u u · v dx. (6.10)

This is a linear form (ρ = 1) with one coefficient (n = 1). We may linearize around a fixed velocity ū
to obtain

a(u; v) = a(ū; v) + a′(ū; v)δu +O(δu2), (6.11)

where u = ū + δu. The linearized operator a′ is here given by

a′(ū; δu, v) ≡ a′(v; ū)δu =
∫

Ω
∇δu · ū · v +∇ū · δu · v dx. (6.12)

This is a bilinear form (ρ = 2) with one coefficient (n = 1). We may also consider the trilinear form

a(w, u, v) =
∫

Ω
∇u, w · v dx. (6.13)

This trilinear form may be assembled into a rank three tensor and applied to a given vector of
expansion coefficients for w to obtain a rank two tensor (a matrix) corresponding to the bilinear
form a(w; u, v). This may be useful in an iterative fixed point method for the solution of the
Navier–Stokes equations, in which case w is a given (frozen) value for the convective velocity
obtained from a previous iteration. This is rarely done in practice due to the cost of assembling the
global rank three tensor. However, the corresponding local rank three tensor may be contracted
with the local expansion coefficients for w on each local cell to compute the matrix corresponding
to a(w; u, v).

Lift and drag. When solving the Navier–Stokes equations, it may be of interest to compute the
lift and drag of some object immersed in the fluid. The lift and drag are given by the z- and
x-components of the force generated on the object (for a flow in the x-direction):

Llift(u, p;) =
∫

Γ
σ(u, p)n · ez ds,

Ldrag(u, p;) =
∫

Γ
σ(u, p)n · ex ds.

(6.14)

Here, Γ is the boundary of the body, n is the outward unit normal of Γ and ex, ez are unit vectors
in the x- and z-directions respectively. The arity of both forms is ρ = 0 and both forms have two
coefficients.

140 CHAPTER 6. FINITE ELEMENT VARIATIONAL FORMS

z

x

σ · n
n

Figure 6.1: The lift and drag of an ob-
ject, here a NACA 63A409 airfoil, are
the integrals of the vertical and hori-
zontal components respectively of the
stress σ · n over the surface Γ of the
object. At each point, the product of
the stress tensor σ and the outward
unit normal vector n gives the force
per unit area acting on the surface.

6.2.2 Canonical form

FEniCS automatically handles the representation and evaluation of a large class of multilinear
forms, but not all. FEniCS is currently limited to forms that may be expressed as a sum of integrals
over the cells (the domain), the exterior facets (the boundary) and the interior facets of a given
mesh. In particular, FEniCS handles forms that may be expressed as the following canonical form:

a(w1, w2, . . . , wn; vρ, . . . , v2, v1) =
nc

∑
k=1

∫

Ωk

Ic
k dx +

n f

∑
k=1

∫

Γk

I f
k ds +

n0
f

∑
k=1

∫

Γ0
k

I f ,0
k dS. (6.15)

Here, each Ωk denotes a union of mesh cells covering a subset of the computational domain Ω.
Similarly, each Γk denotes a subset of the facets on the boundary of the mesh, and Γ0

k denotes a
subset of the interior facets of the mesh. The latter is of particular interest for the formulation of
discontinuous Galerkin methods that typically involve integrals across cell boundaries (interior
facets). The contribution from each subset is an integral over the subset of some integrand. Thus,
the contribution from the kth subset of cells is an integral over Ωk of the integrand Ic

k etc.
One may consider extensions of (6.15) that involve point values or integrals over subsets of
individual cells (cut cells) or facets. Such extensions are currently not supported by FEniCS but
may be added in the future.

6.3 Discretizing multilinear forms

As we saw in Chapter 3, one may obtain the finite element approximation uh = ∑N
j=1 Ujφj ≈ u of

the canonical variational problem (6.1) by solving a linear system AU = b, where

Aij = a(φj, φ̂i), i, j = 1, 2, . . . , N,

bi = L(φ̂i), i = 1, 2, . . . , N.
(6.16)

Here, A and b are the discrete operators corresponding to the bilinear and linear forms a and L
for the given bases of the trial and test spaces. Note that the discrete operator is defined as the
transpose of the multilinear form applied to the basis functions to account for the fact that in a
bilinear form a(u, v), the trial function u is associated with the the columns of the matrix A, while
the test function v is associated with the rows (the equations) of the matrix A.

6.3. DISCRETIZING MULTILINEAR FORMS 141

Figure 6.2: The cell tensor AT , exte-
rior facet tensor AS, and interior facet
tensor AS,0 on a mesh are obtained
by discretizing the local contribution
to a multilinear form on a cell, exte-
rior facet or interior facet respectively.
By assembling the local contributions
from all cell and facet tensors, one ob-
tains the global discrete operator A
that discretizes the multilinear form.

-0.5

1 -0.5

-0.5 -1

-0.5

2

-0.5 2 -0.5 -1

-0.5 1 -0.5

-0.5 2 -1

-1 -1

S

ST

AT =

AS =

AS,0 =
A =

In general, we may discretize a multilinear form a of arity ρ to obtain a tensor A of rank ρ. The
discrete operator A is defined by

Ai = a(w1, w2, . . . , wn; φ
ρ
iρ , . . . , φ2

i2 , φ1
i1), (6.17)

where i = (i1, i2, . . . , iρ) is a multi-index of length ρ and {φj
k}

Nj
k=1 is a basis for Vj,h ⊂ Vj, j =

1, 2, . . . , ρ. The discrete operator is a typically sparse tensor of rank ρ and dimension N1 × N2 ×
· · · × Nρ.

The discrete operator A may be computed efficiently using an algorithm known as assembly, which
is the topic of the next chapter. As we shall see then, an important tool is the cell tensor obtained
as the discretization of the bilinear form on a local cell of the mesh. In particular, consider the
discretization of a multilinear form that may be expressed as a sum of local contributions from
each cell T of a mesh Th = {T},

a(w1, w2, . . . , wn; vρ, . . . , v2, v1) = ∑
T∈Th

aT(w1, w2, . . . , wn; vρ, . . . , v2, v1). (6.18)

Discretizing aT using the local finite element basis {φT,j
k }

nj
k=1 on T for j = 1, 2, . . . , ρ, we obtain the

cell tensor
AT,i = aT(w1, w2, . . . , wn; φ

T,ρ
iρ , . . . , φT,2

i2
, φT,1

i1
). (6.19)

The cell tensor AT is a typically dense tensor of rank ρ and dimension n1 × n2 × · · · × nρ. The
discrete operator A may be obtained by appropriately summing the contributions from each cell
tensor AT . We return to this in detail below in Chapter 7.

If Ωk ⊂ Ω, the discrete operator A may be obtained by summing the contributions only from the
cells covered by Ωk. One may similarly define the exterior and interior facet tensors AS and AS,0
as the contributions from a facet on the boundary or in the interior of the mesh. The exterior

142 CHAPTER 6. FINITE ELEMENT VARIATIONAL FORMS

facet tensor AS is defined as in (6.19) by replacing the domain of integration T by a facet S. The
dimension of AS is generally the same as that of AT . The interior facet tensor AS,0 is defined
slightly differently by considering the basis on a macro element consisting of the two elements
sharing the common facet S as depicted in Figure 6.2. For details, we refer to Ølgaard et al. [2008].

6.4 The action of a multilinear form

Consider the bilinear form
a(u, v) =

∫

Ω
∇u · ∇v dx, (6.20)

obtained from the discretization of the left-hand side of Poisson’s equation. Here, u and v are a
pair of trial and test functions. Alternatively, we may consider v to be a test function and u to be a
given solution to obtain a linear form parametrized over the coefficient u,

(Aa)(u; v) =
∫

Ω
∇u · ∇v dx. (6.21)

We refer to the linear form Aa as the action of the bilinear form a. In general, the action of a ρ-linear
form with n coefficients is a (ρ− 1)-linear form with n + 1 coefficients. In particular, the action of
a bilinear form is a linear form, and the action of a linear form is a functional.
The action of a bilinear form plays an important role in the definition of matrix-free methods for
solving differential equations. Consider the solution of a variational problem of the canonical
form (6.1) by a Krylov subspace method such as GMRES (Generalized Minimal RESidual method)
[Saad and Schultz, 1986] or CG (Conjugate Gradient method) [Hestenes and Stiefel, 1952]. Krylov
methods approximate the solution U ∈ RN of the linear system AU = b by finding an approxi-
mation for U in the subspace of RN spanned by the vectors b, Ab, A2b, . . . , Akb for some k � N.
These vectors may be computed by repeated application of the discrete operator A defined as
above by

Aij = a(φ2
j , φ1

i). (6.22)

For any given vector U ∈ RN , it follows that

(AU)i =
N

∑
j=1

AijUj =
N

∑
j=1

a(φ2
j , φ1

i)Uj = a

(
N

∑
j=1

Ujφ
2
j , φ1

i

)
= a(uh, φ1

i) = (Aa)(uh; φ1
i), (6.23)

where uh = ∑N
j=1 Ujφ

2
j is the finite element approximation corresponding to the coefficient vector U.

In other words, the application of the matrix A on a given vector U is given by the action of the
bilinear form evaluated at the corresponding finite element approximation:

(AU)i = (Aa)(uh; φ1
i). (6.24)

The variational problem (6.1) may thus be solved by repeated evaluation (assembly) of a linear
form (the action Aa of the bilinear form a) as an alternative to first computing (assembling) the
matrix A and then repeatedly computing matrix–vector products with A. Which approach is more
efficient depends on how efficiently the action may be computed compared to matrix assembly, as
well as on available preconditioners. For a further discussion on the action of multilinear forms,
we refer to Bagheri and Scott [2004].
Computing the action of a multilinear form is supported by the UFL form language by calling the
action function:

6.5. THE DERIVATIVE OF A MULTILINEAR FORM 143

Python code
a = inner(grad(u), grad(v))*dx

Aa = action(a)

6.5 The derivative of a multilinear form

When discretizing nonlinear variational problems, it may be of interest to compute the derivative of
a multilinear form with respect to one or more of its coefficients. Consider the nonlinear variational
problem to find u ∈ V such that

a(u; v) = 0 ∀ v ∈ V̂. (6.25)

To solve this problem by Newton’s method, we linearize around a fixed value ū to obtain

0 = a(u; v) ≈ a(ū; v) + a′(ū; v)δu. (6.26)

Given an approximate solution ū of the nonlinear variational problem (6.25), we may then hope to
improve the approximation by solving the following linear variational problem: Find δu ∈ V such
that

a′(ū; δu, v) ≡ a′(ū; v)δu = −a(ū; v) ∀ v ∈ V̂. (6.27)

Here, a′ is a bilinear form with two arguments δu and v, and one coefficient ū, and −a is a linear
form with one argument v and one coefficient ū.
When there is more than one coefficient, we use the notation Dw to denote the derivative with
respect to a specific coefficient w. In general, the derivative D of a ρ-linear form with n > 0
coefficients is a (ρ + 1)-linear form with n coefficients. To solve the variational problem (6.25)
using a matrix-free Newton method, we would thus need to repeatedly evaluate the linear form
(ADua)(ūh, δuh; v) for a given finite element approximation ūh and increment δuh.
Note that one may equivalently consider the application of Newton’s method to the nonlinear
discrete system of equations obtained by a direct application of the finite element method to the
variational problem (6.25) as discussed in Chapter 3.
Computing the derivative of a multilinear form is supported by the UFL form language by calling
the derivative function:

Python code
a = inner(grad(u)*u, v)*dx

Da = derivative(a, u)

6.6 The adjoint of a bilinear form

The adjoint a∗ of a bilinear form a is the form obtained by interchanging the two arguments,

a∗(v, w) = a(w, v) ∀ v ∈ V1 ∀w ∈ V2. (6.28)

The adjoint of a bilinear form plays an important role in the error analysis of finite element methods
as we saw in Chapter 3 and as will be discussed further in Chapter 25 where we consider the
linearized adjoint problem (the dual problem) of the general nonlinear variational problem (6.25).
The dual problem takes the form

(Dua)∗(u; z, v) = DuM(u; v) ∀ v ∈ V, (6.29)

144 CHAPTER 6. FINITE ELEMENT VARIATIONAL FORMS

or simply
a′∗(z, v) =M′(v) ∀ v ∈ V, (6.30)

where (Dua)∗ is a bilinear form, DuM is a linear form (the derivative of the functionalM), and z
is the solution of the dual problem.
Computing the adjoint of a multilinear form is supported by the UFL form language by calling the
adjoint function:

Python code
a = div(u)*p*dx

a_star = adjoint(a)

6.7 A note on the order of trial and test functions

It is common in the literature to consider bilinear forms where the trial function u is the first
argument, and the test function v is the second argument:

a = a(u, v). (6.31)

With this notation, one is lead to define the discrete operator A as

Aij = a(φj, φi), (6.32)

that is, a transpose must be introduced to account for the fact that the order of trial and test
functions does not match the order of rows and columns in a matrix. Alternatively, one may
change the order of trial and test functions and write a = a(v, u) and avoid taking the transpose
in the definition of the discrete operator Aij = a(φi, φj). This is practical in the definition and
implementation of software systems such as FEniCS for the general treatment of variational forms.
In this book and throughout the code and documentation of the FEniCS Project, we have adopted
the following compromise. Variational forms are expressed using the conventional order of trial
and test functions, that is,

a = a(u, v), (6.33)

but using an unconventional numbering of trial and test functions. Thus, v is the first argument of
the bilinear form and u is the second argument. This ensures that one may express finite element
variational problems in the conventional notation, but at the same time allows the implementation
to use a more practical numbering scheme.

7 Finite element assembly
By Anders Logg, Kent-Andre Mardal and Garth N. Wells

The finite element method may be viewed as a method for forming a discrete linear system AU = b
or nonlinear system b(U) = 0 corresponding to the discretization of the variational form of a
differential equation. A central part of the implementation of finite element methods is therefore
the computation of matrices and vectors from variational forms. In this chapter, we describe the
standard algorithm for computing the discrete operator (tensor) A defined in Chapter 6. This
algorithm is known as finite element assembly. We also discuss efficiency aspects of the standard
algorithm and extensions to matrix-free methods.

7.1 Assembly algorithm

As seen in Chapter 6, the discrete operator of a multilinear form a : Vρ × · · · × V2 × V1 → R of
arity ρ is the rank ρ tensor A defined by

AI = a(φρ
Iρ

, . . . , φ2
I2

, φ1
I1
), (7.1)

where I = (I1, I2, . . . , Iρ) is a multi-index of length ρ and {φj
k}

Nj
k=1 is a basis for Vj,h ⊂ Vj, j =

1, 2, . . . , ρ. The discrete operator is a typically sparse tensor of rank ρ and dimension N1 × N2 ×
· · · × Nρ.
A straightforward algorithm to compute the tensor A is to iterate over all its entries and compute
them one by one as outlined in Algorithm 1. This algorithm has two major drawbacks and is rarely
used in practice. First, it does not take into account that most entries of the sparse tensor A may
be zero. Second, it does not take into account that each entry is typically a sum of contributions
(integrals) from the set of cells that form the support of the basis functions φ1

I1
, φ2

I2
, . . . , φ

ρ
Iρ

. As a
result, each cell of the mesh must be visited multiple times when computing the local contribution
to different entries of the tensor A. For this reason, the tensor A is usually computed by iterating
over the cells of the mesh and adding the contribution from each local cell to the global tensor A.
To see how the tensor A can be decomposed as a sum of local contributions, we recall the definition
of the cell tensor AT from Chapter 6:

AT,i = aT(φ
T,ρ
iρ , . . . , φT,2

i2
, φT,1

i1
), (7.2)

where AT,i is the ith multi-index of the rank ρ tensor AT , aT is the local contribution to the
multilinear form from a cell T ∈ Th and {φT,j

k }
nj
k=1 is the local finite element basis for Vj,h on T. We

assume here that the multilinear form is expressed as an integral over the domain Ω so that it
may be naturally decomposed as a sum of local contributions. If the form contains contributions

145

146 CHAPTER 7. FINITE ELEMENT ASSEMBLY

from facet or boundary integrals, one may similarly decompose the multilinear form into local
contributions from facets.

Algorithm 1 Straightforward (naive) “assembly” algorithm.

for I1 = 1, 2, . . . , N1
for I2 = 1, 2, . . . , N2

for . . .
AI = a(φρ

Iρ
, . . . , φ2

I2
, φ1

I1
)

To formulate the general assembly algorithm, let ι
j
T : [1, nj] → [1, Nj] denote the local-to-global

mapping introduced in Chapter 3 for each discrete function space Vj,h, j = 1, 2, . . . , ρ, and define
for each T ∈ Th the collective local-to-global mapping ιT : IT → I by

ιT(i) = (ι1T(i1), ι2T(i2), . . . , ι
ρ
T(iρ)) ∀ i ∈ IT , (7.3)

where IT is the index set

IT =
ρ

∏
j=1

[1, nj] = {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (n1, n2, . . . , nρ − 1), (n1, n2, . . . , nρ)}. (7.4)

That is, ιT maps a tuple of local degrees of freedom to a tuple of global degrees of freedom.
Furthermore, let TI ⊂ Th denote the subset of cells of the mesh on which {φj

ij
}ρ

j=1 are all nonzero.
We note that ιT is invertible if T ∈ TI . We may now compute the tensor A by summing local
contributions from the cells of the mesh:

AI = ∑
T∈Th

aT(φ
ρ
Iρ

, . . . , φ2
I2

, φ1
I1
) = ∑

T∈TI

aT(φ
ρ
Iρ

, . . . , φ2
I2

, φ1
I1
)

= ∑
T∈TI

aT(φ
T,ρ
(ι

ρ
T)
−1(Iρ)

, . . . , φT,2
(ι2T)

−1(I2)
, φT,1

(ι1T)
−1(I1)

) = ∑
T∈TI

AT,ι−1
T (I).

(7.5)

This computation may be carried out efficiently by a single iteration over all cells T ∈ Th. On
each cell T, the cell tensor AT is computed and then added to the global tensor A as outlined in
Algorithm 2 and illustrated in Figure 7.1.

Algorithm 2 Assembly algorithm

A = 0
for T ∈ Th

(1) Compute ιT
(2) Compute AT

(3) Add AT to A according to ιT :
for i ∈ IT

AιT(i)
+
= AT,i

end for
end for

7.2. IMPLEMENTATION 147

Figure 7.1: Adding the entries of the
cell tensor AT to the global tensor A
using the local-to-global mapping ιT ,
illustrated here for the assembly of a
rank two tensor (matrix) with piece-
wise linear elements on triangles. On
each element T, a 3× 3 element ma-
trix AT is computed and its entries are
added to the global matrix. The entries
of the first row are added to row ι1T(1)
of the global matrix in the columns
given by ι2T(1), ι2T(2) and ι2T(3), respec-
tively. The entries of the second row
are added to row ι1T(2) of the global
matrix etc.

ι2T(1)

1

2

3

1 2 3

AT,32

ι2T(2) ι2T(3)

ι1T(1)

ι1T(2)

ι1T(3)

Figure 7.2: Actual implementation
(excerpt) of the assembly algorithm
(Algorithm 2) in DOLFIN (from
Assembler.cpp in DOLFIN 1.0).

C++ code
for (CellIterator cell(mesh); !cell.end(); ++cell)
{
...

// Get local-to-global dofmap for each dimension
for (uint i = 0; i < form_rank; ++i)
dofs[i] = &(dofmaps[i]->cell_dofs(cell->index()));

// Tabulate cell tensor
integral->tabulate_tensor(ufc.A.get(),

ufc.w,
ufc.cell);

// Add entries to global tensor
A.add(ufc.A.get(), dofs);

}

7.2 Implementation

In FEniCS, the assembly algorithm (Algorithm 2) is implemented as part of DOLFIN (see Figure ??).
For the steps (1), (2) and (3) of the assembly algorithm, DOLFIN relies on external code. For steps
(1) and (2), DOLFIN calls code generated by a form compiler such as FFC or SyFi. In particular,
DOLFIN calls the two functions tabulate_dofs and tabulate_tensor through the UFC interface
for steps (1) and (2), respectively. Step (3) is carried out through the DOLFIN GenericTensor::add

interface and maps to the corresponding operation in one of a number of linear algebra backends,
such as MatSetValues for PETSc and SumIntoGlobalValues for Trilinos/Epetra.
In typical assembly implementations, the computation of the cell tensor AT is the most costly
operation of the assembly algorithm. For DOLFIN, however, as a result of optimized algorithms
for the computation of AT being generated by form compilers (see Chapters 8 and 9), adding
entries of the local tensor AT to appropriate positions in the global tensor A often constitutes a
significant portion of the total assembly time. This operation is costly since the addition of a value
to an arbitrary entry of a sparse tensor is not a trivial operation, even when the layout of the sparse
matrix has been initialized. In the standard case when A is a sparse matrix (a rank two tensor),
the linear algebra backend stores the sparse matrix in compressed row storage (CRS) format or some

148 CHAPTER 7. FINITE ELEMENT ASSEMBLY

other sparse format. For each given entry, the linear algebra backend must search along a row I
to find the position to store the value for a given column J. As a result, the speed of assembly
in FEniCS for sparse matrices is currently limited by the speed of insertion into a sparse linear
algebra data structure for many problems. An additional cost is associated with the initialization
of a sparse matrix, which involves the computation of a sparsity pattern. For most linear algebra
libraries, it is necessary to initialize the layout of a sparse matrix before inserting entries in order
to achieve tolerable insertion speed. Computation of the sparsity pattern is a moderately costly
operation, but which in the case of nonlinear problems is usually amortized over time.
Algorithm 2 may be easily extended to assembly over the facets of a mesh. Assembly over facets
is necessary both for handling variational forms that contain integrals over the boundary of a
mesh (the exterior facets), to account for Neumann boundary conditions, and forms that contain
integrals over the interior facets of a mesh as part of a discontinuous Galerkin formulation. For
this reason, DOLFIN implements three different assembly algorithms. These are assembly over
cells, exterior facets and interior facets.

7.3 Symmetric application of boundary conditions

For symmetric problems, it is useful to be able to apply Dirichlet boundary conditions in a fashion
that preserves the symmetry of the matrix, since that allows the use of solution algorithms which are
limited to symmetric matrices, such as the conjugate gradient method and Cholesky decomposition.
The symmetric application of boundary conditions may be handled by modifying the cell tensors
AT before assembling into the global tensor A. Assembly with symmetric application of boundary
conditions is implemented in DOLFIN in the class SystemAssembler.
To explain the symmetric assembly algorithm, consider the global system AU = b and the
corresponding element matrix AT and element vector bT . If a global index I is associated with a
Dirichlet boundary condition, UI = DI , then this condition can be enforced by setting AI I = 1,
AI J = 0 for I 6= J, and bI = DI . This approach is applied when calling the DOLFIN function
DirichetBC::apply. However, to preserve symmetry of the matrix, we can perform a partial
Gaussian elimination to obtain AJ I = AI J = 0 for I 6= J. This is achieved by subtracting the Ith
row multiplied by AJ I from the Jth equation, locally. These partial Gaussian eliminations are
performed on the linear systems at the element level. The local linear systems are then added
to the global matrix. As a result, the Dirichlet condition is added multiple times to the global
vector, one time for each cell, which is compensated for by the addition of one multiple times to
the corresponding diagonal entry of A. This is summarized in Algorithm ??. Alternatively, one
may choose to eliminate degrees of freedom corresponding to Dirichlet boundary conditions from
the linear system (since these values are known). The values then end up in the right-hand side of
the linear system. The described algorithm does not eliminate the degrees of freedom associated
with a Dirichlet boundary condition. Instead, these degrees of freedom are retained to preserve the
dimension of the linear system so that it always matches the total number of degrees of freedom
for the solution (including known Dirichlet values).

7.4 Parallel assembly

The assembly algorithms remain unchanged in a distributed1 parallel environment if the linear
algebra backend supports distributed matrices and insertion for both on- and off-process matrix
entries, and if the mesh data structure supports distributed meshes. Both PETSc [Balay et al.,

1By distributed assembly, we refer here to assembly in parallel on a distributed memory parallel architecture, running
multiple processes that cannot access the same memory, but must pass data as messages between processes.

7.5. MATRIX-FREE METHODS 149

Algorithm 3 Symmetric assembly algorithm (ρ = 2)

A = 0 and b = 0
for T ∈ Th

(1) Compute ιA
T and ιbT

(2) Compute AT and bT
(3) Apply Dirichlet boundary conditions to AT and bT
(4) Perform partial Gaussian elimination on AT and bT to preserve symmetry
(5) Add AT and bT to A and b according to ιA

T and ιbT , respectively:
for (i, j) ∈ IA

T
A

ιA,1
T (i),ιA,2

T (j)
+
= AT,ij

end for
for i ∈ Ib

T
bιbT(i)

+
= bT

i
end for

end for

2001, 2004] and Trilinos/Epetra [Heroux et al., 2005] support distributed matrices and vectors.
Efficient parallel assembly relies on appropriately partitioned meshes and properly distributed
degree-of-freedom maps to minimize inter-process communication. It is not generally possible
to produce an effective degree-of-freedom map using only a form compiler, since the degree-of-
freedom map should reflect the partitioning of the mesh. Instead, one may use a degree-of-freedom
map generated by a form compiler to construct a suitable map at run-time. DOLFIN supports
distributes meshes and computes distributed degree of freedom maps for distributed assembly.
Multi-threaded2 assembly is outwardly simpler than distributed assembly and is attractive given
the rapid growth in multi-core architectures. The assembly code can be easily modified, using for
example OpenMP, to parallelize the assembly loop over cells. Multi-threaded assembly requires
extra care so that multiple threads don’t write to the same memory location (when multiple
threads attempt to write to the same memory location, this is know as race condition. Multi-
threaded assembly has recently been implemented in DOLFIN (from version 1.0) based on coloring
the cells of the mesh so that no two neighboring cells (cells that share a common vertex in the case
of Lagrange elements) have the same color. One may then iterate over the colors of the mesh, and
for each color use OpenMP to parallelize the assembly loop. This ensures that no two cells will
write data from the same location (in the mesh), or write data to the same location (in the global
tensor).

7.5 Matrix-free methods

A feature of Krylov subspace methods and some other iterative methods for linear systems of
the form AU = b is that they rely only on the action of the matrix operator A on vectors and do
not require direct manipulation of A. This is in contrast with direct linear solvers. Therefore,
if the action of A on an arbitrary vector v can be computed, then a Krylov solver can be used
to solve the system AU = b without needing to assemble A. This matrix-free approach may be
attractive for problem types that are well-suited to Krylov solvers and for which the assembly of

2By multi-threaded assembly, we refer here to assembly in parallel on a shared memory parallel architecture, running
multiple threads that may access the same memory.

150 CHAPTER 7. FINITE ELEMENT ASSEMBLY

A is costly (in terms of CPU time and/or memory). A disadvantage of matrix-free methods is
that the preconditioners that are most commonly used to improve the convergence properties and
robustness of Krylov solvers do involve manipulations of A; hence these cannot be applied in a
matrix-free approach. For the purpose of assembly, a matrix-free approach replaces the assembly
of the matrix A with repeated assembly of a vector Av, which is the action of A on the given
vector v. A key element in the efficient application of such methods is the rapid assembly of
vectors. The cost of insertion into a dense vectors is relatively low, compared to insertion into a
sparse matrix. The computation of the cell tensor is therefore the dominant cost. Assembly of the
action of a linear or linearized operator is supported in FEniCS.

8 Quadrature representation of finite element vari-
ational forms

By Kristian B. Ølgaard and Garth N. Wells

This chapter addresses the conventional runtime quadrature approach for the numerical integra-
tion of local element tensors associated with finite element variational forms, and in particular
automated optimizations that can be performed to reduce the number of floating point operations.
An alternative to the runtime quadrature approach is the tensor representation presented in
Chapter 9. Both the quadrature and tensor approaches are implemented in FFC (see Chapter 12).
In this chapter we discuss four strategies for optimizing the quadrature representation for runtime
performance of the generated code and show that optimization strategies lead to a dramatic
improvement in runtime performance over a naive implementation. We also examine performance
aspects of the quadrature and tensor approaches for different equations, and this will motivate the
desirability of being able to choose between the two representations.

8.1 Standard quadrature representation

To illustrate the standard quadrature representation and optimizations implemented in FFC we
consider the bilinear form for the weighted Laplace operator −∇ · (w∇u), where u is the unknown
and w is a prescribed coefficient. The bilinear form of the variational problem for this equation
reads

a (u, v) =
∫

Ω
w∇u · ∇v dx. (8.1)

The quadrature approach can deal with cases in which not all functions come from a finite element
space, using ‘quadrature functions’ that can be evaluated directly at quadrature points. The tensor
representation approach only supports cases in which all functions come from a finite element
space (using interpolation if necessary). Therefore, to ensure a proper performance comparison
between the representations we assume that all functions in a form, including coefficient functions,
come from a finite element function space. In the case of (8.1), all functions will come from

Vh =
{

v ∈ H1 (Ω) : v|T ∈ Pq (T) ∀ T ∈ T
}

, (8.2)

where Pq (T) denotes the space of Lagrange polynomials of degree q on the element T of the
standard triangulation of Ω, which is denoted by T . If we let

{
φT

i
}

denote the local finite element
basis that span the discrete function space Vh on T, the local element tensor for an element T can

151

152CHAPTER 8. QUADRATURE REPRESENTATION OF FINITE ELEMENT VARIATIONAL FORMS

be computed as

AT,i =
∫

T
w∇φT

i1 · ∇φT
i2 dx, (8.3)

where i = (i1, i2).
The expression for the local element tensor in (8.3) can be expressed in UFL (see Chapter 18), from
which FFC generates an intermediate representation of the form (see Chapter 12). Assuming a
standard affine mapping FT : T0 → T from a reference element T0 to a given element T ∈ T , this
intermediate representation reads

AT,i =
N

∑
q=1

n

∑
α3=1

Φα3(Xq)wα3

d

∑
β=1

d

∑
α1=1

∂Xα1

∂xβ

∂Φi1(Xq)

∂Xα1

d

∑
α2=1

∂Xα2

∂xβ

∂Φi2(Xq)

∂Xα2

det F′TWq, (8.4)

where a change of variables from the reference coordinates X to the real coordinates x = FT(X) has
been used. In the above equation, N denotes the number of integration points, d is the dimension
of Ω, n is the number of degrees of freedom for the local basis of w, Φi denotes basis functions
on the reference element, det F′T is the determinant of the Jacobian, and Wq is the quadrature
weight at integration point Xq. By default, FFC applies a quadrature scheme that will integrate
the variational form exactly. It calls FIAT (see Chapter 14) to compute the quadrature scheme.
FIAT supplies schemes that are based on the Gauss–Legendre–Jacobi rule mapped onto simplices
(see Karniadakis and Sherwin [2005] for details of such schemes).
From the representation in (8.4), code for computing entries of the local element tensor is generated
by FFC. This code is shown in Figure 8.1. Code generated for the quadrature representation is
structured in the following way. First, values of geometric quantities that depend on the current
element T, like the components of the inverse of the Jacobian matrix ∂Xα1 /∂xβ and ∂Xα2 /∂xβ, are
computed and assigned to the variables like K_01 in the code (this code is not shown as it is not
important for understanding the nature of the quadrature representation). Next, values of basis
functions and their derivatives at integration points on the reference element, like Φα3(Xq) and
∂Φi1(Xq)/∂Xα1 are tabulated. Finite element basis functions are computed by FIAT. Basis functions
and their derivatives on a reference element are independent of the current element T and are
therefore tabulated at compile time and stored in the tables Psi_w, Psi_vu_D01 and Psi_vu_D10 in
Figure 8.1. After the tabulation of basis functions values, the loop over integration points begins.
In the example we are considering linear elements, and only one integration point is necessary for
exact integration. The loop over integration points has therefore been omitted. The first task inside
a loop over integration points is to compute the values of coefficients at the current integration
point. For the considered problem, this involves computing the value of the coefficient w. The
code for evaluating F0 in Figure 8.1 is an exact translation of the representation ∑n

α3=1 Φα3(Xq)wα3 .
The last part of the code in Figure 8.1 is the loop over the basis function indices i1 and i2, where
the contribution to each entry in the local element tensor, AT , from the current integration point is
added.
To generate code using the quadrature representation the FFC command-line option -r quadrature

should be used.

8.2 Quadrature optimizations

We now address optimizations for improving the runtime performance of the generated code. The
underlying philosophy of the optimization strategies implemented in FFC is to manipulate the
representation in such a way that the number of operations to compute the local element tensor

8.2. QUADRATURE OPTIMIZATIONS 153

Figure 8.1: Part of the generated code
for the bilinear form associated with
the weighted Laplacian using linear
elements in two dimensions. The vari-
ables like K_00 are components of the
inverse of the Jacobian matrix and det
is the determinant of the Jacobian. The
code to compute these variables is not
shown. A holds the values of the local
element tensor and w contains nodal
values of the weighting function w.

C++ code
virtual void tabulate_tensor(double* A,

const double * const * w,
const ufc::cell& c) const

{
...
// Quadrature weight.
static const double W1 = 0.5;

// Tabulated basis functions at quadrature points.
static const double Psi_w[1][3] = \
{{0.33333333333333, 0.33333333333333,

0.33333333333333}};
static const double Psi_vu_D01[1][3] = \
{{-1.0, 0.0, 1.0}};
static const double Psi_vu_D10[1][3] = \
{{-1.0, 1.0, 0.0}};

// Compute coefficient value.
double F0 = 0.0;
for (unsigned int r = 0; r < 3; r++)
F0 += Psi_w[0][r]*w[0][r];

// Loop basis functions.
for (unsigned int j = 0; j < 3; j++)
{
for (unsigned int k = 0; k < 3; k++)
{
A[j*3 + k] +=\
((K_00*Psi_vu_D10[0][j] + K_10*Psi_vu_D01[0][j])*\
(K_00*Psi_vu_D10[0][k] + K_10*Psi_vu_D01[0][k]) +

\
(K_01*Psi_vu_D10[0][j] + K_11*Psi_vu_D01[0][j])*\
(K_01*Psi_vu_D10[0][k] + K_11*Psi_vu_D01[0][k])\
)*F0*W1*det;

}
}

}

154CHAPTER 8. QUADRATURE REPRESENTATION OF FINITE ELEMENT VARIATIONAL FORMS

decreases. Each strategy described in the following sections, with the exception of eliminating
operations on zero terms, share some common features which can be categorized as:

Loop invariant code motion In short, this procedure seeks to identify terms that are independent
of one or more of the summation indices and to move them outside the loop over those
particular indices. For instance, in (8.4) the terms regarding the coefficient w, the quadrature
weight Wq and the determinant det F′T are all independent of the basis function indices i1
and i2 and therefore only need to be computed once for each integration point. A generic
discussion of this technique, which is also known as ‘loop hoisting’, can be found in Alfred
et al. [1986].

Reuse common terms Terms that appear multiple times in an expression can be identified, com-
puted once, stored as temporary values and then reused in all occurrences in the expression.
This can have a great impact on the operation count since the expression to compute an entry
in AT is located inside loops over the basis function indices as shown in the code for the
standard quadrature representation in Figure 8.1.

To switch on optimization the command-line option -O should be used in addition to any of the
FFC optimization options presented in the following sections.

8.2.1 Eliminate operations on zeros

Some basis functions and derivatives of basis functions may be zero-valued at all integration
points for a particular problem. Since these values are tabulated at compile time, the columns
containing non-zero values can be identified. This enables a reduction in the loop dimension for
indices concerning these tables. However, a consequence of reducing the tables is that a mapping
of indices must be created in order to access values correctly. The mapping results in memory not
being accessed contiguously at runtime and can lead to a decrease in runtime performance.
This optimization is switched on by using the command-line option -f eliminate_zeros. Code
for the weighted Laplace equation generated with this option is shown in Figure 8.2. For brevity,
only code different from that in Figure 8.1 has been included.
Although the elimination of zeros has lead to a decrease of the loop dimension for the loops
involving the indices j and k from three to two, the number of operations has increased. The
reason is that the mapping causes four entries to be computed at the same time inside the loop,
and the code to compute each entry has not been reduced significantly if compared to the code
in Figure 8.1. In fact, using this optimization strategy by itself is usually not recommended,
but in combination with the strategies outlined in the following sections it can improve runtime
performance significantly. This effect is particularly pronounced when forms contain mixed
elements in which many of the values in the basis function tables are zero. Another reason for
being careful when applying this strategy is that the increase in the number of terms might prevent
FFC compilation due to hardware limitations.

8.2.2 Simplify expressions

The expressions to evaluate an entry in the local element tensor can become very complex. Since
such expressions are typically located inside loops, a reduction in complexity can reduce the total
operation count significantly. The approach can be illustrated by the expression x(y + z) + 2xy,
which after expansion of the first term, grouping common terms and simplification can be reduced
to x(3y + z), which involves a reduction from five to three operations. An additional benefit of
this strategy is that the expansion of expressions, which take place before the simplification, will

8.2. QUADRATURE OPTIMIZATIONS 155

Figure 8.2: Part of the generated
code for the weighted Laplacian us-
ing linear elements in two dimen-
sions with optimization option -f
eliminate_zeros. The arrays nzc0
and nzc1 contain the non-zero col-
umn indices for the mapping of val-
ues. Note how eliminating zeros
makes it possible to replace the two ta-
bles with derivatives of basis functions
Psi_vu_D01 and Psi_vu_D10 from Fig-
ure 8.1 with one table (Psi_vu).

C++ code
// Tabulated basis functions.
static const double Psi_vu[1][2] = \
{{-1.0, 1.0}};

// Arrays of non-zero columns.
static const unsigned int nzc0[2] = {0, 2};
static const unsigned int nzc1[2] = {0, 1};

// Loop basis functions.
for (unsigned int j = 0; j < 2; j++)
{
for (unsigned int k = 0; k < 2; k++)
{
A[nzc0[j]*3 + nzc0[k]] +=\
(K_10*Psi_vu[0][j]*K_10*Psi_vu[0][k] +\
K_11*Psi_vu[0][j]*K_11*Psi_vu[0][k])*F0*W1*det;

A[nzc0[j]*3 + nzc1[k]] +=\
(K_11*Psi_vu[0][j]*K_01*Psi_vu[0][k] +\
K_10*Psi_vu[0][j]*K_00*Psi_vu[0][k])*F0*W1*det;

A[nzc1[j]*3 + nzc0[k]] +=\
(K_00*Psi_vu[0][j]*K_10*Psi_vu[0][k] +\
K_01*Psi_vu[0][j]*K_11*Psi_vu[0][k])*F0*W1*det;

A[nzc1[j]*3 + nzc1[k]] +=\
(K_01*Psi_vu[0][j]*K_01*Psi_vu[0][k] +\
K_00*Psi_vu[0][j]*K_00*Psi_vu[0][k])*F0*W1*det;

}
}

typically allow more terms to be precomputed and hoisted outside loops, as explained in the
beginning of this section. For the weighted Laplace equation, the terms

d

∑
β=1

d

∑
α1=1

∂Xα1

∂xβ

∂Φi1(Xq)

∂Xα1

d

∑
α2=1

∂Xα2

∂xβ

∂Φi2(Xq)

∂Xα2

(8.5)

will be expanded into

d

∑
β=1

d

∑
α1=1

d

∑
α2=1

∂Xα1

∂xβ

∂Xα2

∂xβ

∂Φi1(Xq)

∂Xα1

∂Φi2(Xq)

∂Xα2

, (8.6)

where
(
∂Xα1 /∂xβ

) (
∂Xα2 /∂xβ

)
is independent of the indices i1 and i2 and can therefore be moved

outside these loops.
The FFC command-line option -f simplify_expressions should be used to generate code with
this optimization enabled. Code generated by this option for the representation in (8.4) is presented
in Figure 8.3, where again only code different from that in Figure 8.1 has been included.
Editor note: Explain what FE0 etc. mean in Figure 8.3!

Due to expansion of the expression, many terms related to the geometry have been moved outside
of the loops over the basis function indices j and k and stored in the array G. Also, note how the
expressions to compute the values in G have been simplified by moving the variables det and W1

outside the parentheses. Similarly, terms that depend only on the integration point are hoisted and
stored in the array I. The number of operations has decreased compared to the code in Figure 8.1
for the standard quadrature representation. An improvement in runtime performance can therefore
be expected.

156CHAPTER 8. QUADRATURE REPRESENTATION OF FINITE ELEMENT VARIATIONAL FORMS

C++ code
// Geometry constants.
double G[3];
G[0] = W1*det*(K_00*K_00 + K_01*K_01);
G[1] = W1*det*(K_00*K_10 + K_01*K_11);
G[2] = W1*det*(K_10*K_10 + K_11*K_11);

// Integration point constants.
double I[3];
I[0] = F0*G[0];
I[1] = F0*G[1];
I[2] = F0*G[2];

// Loop basis functions.
for (unsigned int j = 0; j < 3; j++)
{
for (unsigned int k = 0; k < 3; k++)
{
A[j*3 + k] += (FE0_D10[0][j]*FE0_D10[0][k]*I[0] +\

FE0_D10[0][j]*FE0_D01[0][k]*I[1] +\
FE0_D01[0][j]*FE0_D10[0][k]*I[1] +\
FE0_D01[0][j]*FE0_D01[0][k]*I[2]);

}
}

Figure 8.3: Part of the generated
code for the weighted Laplacian us-
ing linear elements in two dimen-
sions with optimization option -f
simplify_expressions.

The optimization described above is the most expensive of the quadrature optimizations to perform
in terms of FFC code generation time and memory consumption as it involves creating new terms
when expanding the expressions. The procedure does not scale well for complex expressions, but
it is in many cases the most effective approach in terms of reducing the number of operations.
This particular optimization strategy, in combination with the elimination of zeros outlined in the
previous section, was the first to be implemented in FFC. It has been investigated and compared to
the tensor representation in Ølgaard and Wells [2010], to which the reader is referred for further
details.

8.2.3 Precompute integration point constants

The optimizations described in the previous section are performed at the expense of increased
code generation time. In order to reduce the generation time while achieving a reduction in the
operation count, another approach can be taken involving hoisting expressions that are constant
with respect to integration points without expanding the expression first.
To generate code with this optimization the FFC command-line option -f precompute_ip_const

should be used. Code generated by this method for the representation in (8.4) can be seen in
Figure 8.4.
It is clear from the generated code that this strategy will not lead to a significant reduction in
the number of operations for this particular form. However, for more complex forms, with many
coefficients, the number of terms that can be hoisted will increase significantly, leading to improved
runtime performance.

8.2.4 Precompute basis constants

This optimization strategy is an extension of the strategy described in the previous section. In
addition to hoisting terms related to the geometry and the integration points, values that depends
on the basis indices are precomputed inside the loops. This will result in a reduction in operations

8.2. QUADRATURE OPTIMIZATIONS 157

Figure 8.4: Part of the generated
code for the weighted Laplacian us-
ing linear elements in two dimen-
sions with optimization option -f
precompute_ip_const.

C++ code
// Geometry constants.
double G[1];
G[0] = W1*det;

// Integration point constants.
double I[1];
I[0] = F0*G[0];

// Loop basis functions.
for (unsigned int j = 0; j < 3; j++)
{
for (unsigned int k = 0; k < 3; k++)
{
A[j*3 + k] +=\
((Psi_vu_D01[0][j]*K_10 + Psi_vu_D10[0][j]*K_00)*\
(Psi_vu_D01[0][k]*K_10 + Psi_vu_D10[0][k]*K_00) +\
(Psi_vu_D01[0][j]*K_11 + Psi_vu_D10[0][j]*K_01)*\
(Psi_vu_D01[0][k]*K_11 + Psi_vu_D10[0][k]*K_01)
)*I[0];

}
}

for cases in which some terms appear frequently inside the loop such that a given value can be
reused once computed.
To generate code with this optimization, the FFC command-line option -f precompute_basis_const

should be used. Code generated by this method for the representation in (8.4) can be seen in
Figure 8.5, where only code that differs from that in Figure 8.4 has been included.
In this particular case, no additional reduction in operations has been achieved, if compared to the
previous method, since no terms can be reused inside the loop over the indices j and k.

8.2.5 Future optimizations

Preliminary investigations suggest that the performance of the quadrature representation can be
improved by applying two additional optimizations. Looking at the code in Figure 8.5, we see
that about half of the temporary values in the array B only depend on the loop index j, and they
can therefore be hoisted, as we have done for other terms in previous sections. Another approach
is to unroll the loops with respect to j and k in the generated code. This will lead to a dramatic
increase in the number of values that can be reused, and the approach can be readily combined
with all of the other optimization strategies. However, the total number of temporary values will
also increase. Therefore, this optimization strategy might not be feasible for all forms.
FFC uses a Gauss–Legendre–Jacobi quadrature scheme mapped onto simplices for the numerical
integration of variational forms. This means that for exact integration of a second-order polynomial,
FFC will use two quadrature points in each spatial direction that is, 23 = 8 points per cell in three
dimensions. A further optimization of the quadrature representation can thus be achieved by
implementing more efficient quadrature schemes for simplices since a reduction in the number
of integration points will yield improved runtime performance. FFC does, however, provide
an option for a user to specify the quadrature degree of a variational form thereby permitting
inexact quadrature. To set the quadrature degree equal to one, the command-line option -f

quadrature_degree=1 should be used.

158CHAPTER 8. QUADRATURE REPRESENTATION OF FINITE ELEMENT VARIATIONAL FORMS

C++ code
for (unsigned int j = 0; j < 3; j++)
{
for (unsigned int k = 0; k < 3; k++)
{
double B[16];
B[0] = Psi_vu_D01[0][j]*K_10;
B[1] = Psi_vu_D10[0][j]*K_00;
B[2] = (B[0] + B[1]);
B[3] = Psi_vu_D01[0][k]*K_10;
B[4] = Psi_vu_D10[0][k]*K_00;
B[5] = (B[3] + B[4]);
B[6] = B[2]*B[5];
B[7] = Psi_vu_D01[0][j]*K_11;
B[8] = Psi_vu_D10[0][j]*K_01;
B[9] = (B[7] + B[8]);
B[10] = Psi_vu_D01[0][k]*K_11;
B[11] = Psi_vu_D10[0][k]*K_01;
B[12] = (B[10] + B[11]);
B[13] = B[12]*B[9];
B[14] = (B[13] + B[6]);
B[15] = B[14]*I[0];
A[j*3 + k] += B[15];

}
}

Figure 8.5: Part of the generated
code for the weighted Laplacian us-
ing linear elements in two dimen-
sions with optimization option -f
precompute_basis_const. The array
B contain precomputed values that de-
pend on indices j and k.

8.3 Performance comparisons

In this section we investigate the impact of the optimization strategies outlined in the previous
section on the runtime performance. The point is not to present a rigorous analysis of the
optimizations, but to provide indications as to when the different strategies will be most effective.
We also compare the runtime performance of quadrature representation to the tensor representation,
which is described in Chapter 9, to illustrate the strengths and weaknesses of the two approaches.

8.3.1 Performance of quadrature optimizations

The performance of the quadrature optimizations will be investigated using two forms, namely the
bilinear form for the weighted Laplace equation (8.1) and the bilinear form for the hyperelasticity
model presented in Chapter 18, equation (18.6). In both cases quadratic Lagrange finite elements
will be used.
All tests were performed on an Intel Pentium M CPU at 1.7GHz with 1.0GB of RAM running
Ubuntu 10.04 with Linux kernel 2.6.32. We used Python version 2.6.5 and NumPy version 1.3.0
(both pertinent to FFC), and g++ version 4.4.3 to compile the UFC version 1.4 compliant C++ code.
The two forms are compiled with the different FFC optimizations, and the number of floating
point operations (flops) to compute the local element tensor is determined. We define the number
of flops as the sum of all appearances of the operators ‘+’ and ‘*’ in the code. The ratio between the
number of flops of the current FFC optimization and the standard quadrature representation, ‘o/q’
is also computed. The generated code is then compiled with g++ using four different optimization
options and the time needed to compute the element tensor N times is measured. In the following,
we will use -zeros as shorthand for the -f eliminate_zeros option, -simplify as shorthand for
the -f simplify_expressions option, -ip as shorthand for the -f precompute_ip_const option
and -basis as shorthand for the -f precompute_basis_const option.
The operation counts for the weighted Laplace equation with different FFC optimizations can be

8.3. PERFORMANCE COMPARISONS 159

FFC
optimization flops o/q

None 6264 1.00

-zeros 10008 1.60

-simplify 4062 0.65

-simplify -zeros 2874 0.45

-ip 5634 0.90

-ip -zeros 6432 1.03

-basis 5634 0.90

-basis -zeros 5532 0.88

Table 8.1: Operation counts for the weighted Laplace equation.

Figure 8.6: Runtime performance for
the weighted Laplace equation for dif-
ferent compiler options. The x-axis
shows the FFC compiler options, and
the colors denote the g++ compiler op-
tions.

seen in Table 8.1, while Figure 8.3.1 shows the runtime performance for different compiler options
for N = 1× 107. The FFC compiler options can be seen on the x-axis in the figure and the four
g++ compiler options are shown with different colors.
Editor note: Very hard to read legends and axes in Figure , please fix!

The FFC and g++ compile times were less than one second for all optimization options. It is
clear from Figure 8.3.1 that runtime performance is greatly influenced by the g++ optimizations.
Compared to the case where no g++ optimizations are used (the -O0 flag), the runtime for the
standard quadrature code improves by a factor of 3.15 when using the -O2 option and 5.40 when
using the -O2 -funroll-loops option. The -O3 option does not appear to improve the runtime
noticeably beyond the improvement observed for the -O2 -funroll-loops option. Using the FFC
optimization option -zeros alone for this form does not improve runtime performance. In fact,
using this option in combination with any of the other optimization options increases the runtime,
even when combining with the option -simplify, which has a significant lower operation count
compared to the standard quadrature representation. A curious point to note is that without
g++ optimization there is a significant difference in runtime for the -ip and -basis options, even
though they involve the same number of flops. When g++ optimizations are switched on, this
difference is eliminated completely and the runtime for the two FFC optimizations are identical.

160CHAPTER 8. QUADRATURE REPRESENTATION OF FINITE ELEMENT VARIATIONAL FORMS

FFC FFC time
optimization [s] o/q flops o/q

None 8.1 1.00 136531980 1.000

-zeros 8.3 1.02 60586218 0.444

-simplify 22.3 2.75 5950646 0.044

-simplify -zeros 21.2 2.62 356084 0.003

-ip 15.2 1.88 90146710 0.660

-ip -zeros 17.9 2.21 14797360 0.108

-basis 15.2 1.88 7429510 0.054

-basis -zeros 17.8 2.20 1973521 0.014

Table 8.2: FFC compile times and operation counts for the hyperelasticity example.

Figure 8.7: Runtime performance for
the hyperelasticity example for dif-
ferent compiler options. The x-axis
shows the FFC compiler options, and
the colors denote the g++ compiler op-
tions.

This suggests that it is not possible to predict runtime performance from the operation count alone
since the type of FFC optimization must be taken into account as well as the intended use of g++
compiler options. The optimal combination of optimizations for this form is FFC option -ip or
-basis combined with g++ option -O2 -funroll-loops, in which case the runtime has improved
by a factor of 7.23 compared to standard quadrature code with no g++ optimizations.
The operation counts and FFC compile time for the bilinear form for hyperelasticity with different
FFC optimizations are presented in Table 8.2, while Figure 8.7 shows the runtime performance for
different compiler options for N = 1× 104.
Comparing the number of flops involved to compute the element tensor to the weighted Laplace
example, it is clear that this problem is considerably more complex. The FFC compile times in
Table 8.2 show that the -simplify optimization, as anticipated, is the most expensive to perform.
The g++ compile times for all test cases were in the range two to six seconds for all optimization
options. A point to note is that the scope for reducing the flop count is considerably greater for
this problem than for the weighted Laplace problem, with a difference in the number of flops
spanning several orders of magnitude between the different FFC optimizations. This compares to
a difference in flops of roughly a factor two between the non-optimized and the most effective
optimization strategy for the weighted Laplace problem. In the case where no g++ optimization

8.3. PERFORMANCE COMPARISONS 161

is used the runtime performance for the hyperelastic problem can be directly related to the
number of floating point operations. When the g++ optimization -O2 is switched on, this effect
becomes less pronounced. Another point to note, in connection with the g++ optimizations, is
that switching on additional optimizations beyond -O2 does not seem to provide any further
improvements in run-time. For the hyperelasticity example, the option -zeros has a positive effect
on the performance, not only when used alone but in particular when combined with the other
FFC optimizations. This is in contrast with the weighted Laplace equation. The reason is that the
test and trial functions are vector valued rather than scalar valued, which allows more zeros to be
eliminated. Finally, it is noted that the -simplify option performs particularly well for this example
compared to the weighted Laplace problem. The reason is that the nature of the hyperelasticity
form results in a relatively complex expression to compute the entries in the local element tensor.
However, this expression only consists of a few different variables (components of the inverse of
the Jacobian and basis function values) which makes the -simplify option very efficient since
many terms are common and can be precomputed and hoisted. For the hyperelasticity form,
the optimal combination of optimizations is FFC option -simplify -zeros and g++ option -O2

-funroll-loops which improves the runtime performance of the code by a factor of 3149 when
compared to the case where no optimization is used by either FFC or g++.
For the considered examples, it is clear that no single optimization strategy is the best for all
cases. Furthermore, the generation phase optimizations that one can best use depends on which
optimizations are performed by the g++ compiler. It is also very likely that different C++ compilers
will give different results for the test cases presented above. The general recommendation for
selecting the appropriate optimization for production code will therefore be that the choice should
be based on a benchmark program for the specific problem.

8.3.2 Relative performance of the quadrature and tensor representations

As demonstrated in the previous section, a given type of optimization may be effective for one class
of forms, and be less effective for another class of forms. Similarly, differences can be observed
between the quadrature and tensor representations for different equations. A detailed study on this
issue was carried out in Ølgaard and Wells [2010]. For convenience we reproduce here the main
conclusions along with Table 8.3, which has been reproduced from the paper. The results shown in
this section pertain to an elasticity-like bilinear form in two dimensions that is premultiplied by a
number of scalar coefficients fi:

a (u, v) =
∫

Ω
(f0 f1, . . . , fn f) ∇su : ∇sv dx, (8.7)

where n f is the number of premultiplying coefficients. The test and trial functions are denoted by
v, u ∈ Vh, with

Vh =
{

v ∈ [H1 (Ω)]2 : v|T ∈ [Pq (T)]2∀ T ∈ T
}

(8.8)

and the coefficient functions fi ∈Wh with

Wh =
{

f ∈ H1 (Ω) : f |T ∈ Pp (T) ∀ T ∈ T
}

, (8.9)

where q and p denote the polynomial order of the Lagrange basis functions. The number of
coefficients and the polynomial orders are varied and the number of flops needed to compute the
local element tensor is recorded for both tensor and quadrature representations. The results were
obtained by using the optimization options -f eliminate_zeros -f simplify_expressions for

162CHAPTER 8. QUADRATURE REPRESENTATION OF FINITE ELEMENT VARIATIONAL FORMS

n f = 1 n f = 2 n f = 3
flops q/t flops q/t flops q/t

p = 1, q = 1 888 0.34 3060 0.36 10224 0.11

p = 1, q = 2 3564 1.42 11400 1.01 35748 0.33

p = 1, q = 3 10988 3.23 34904 1.82 100388 0.63

p = 1, q = 4 26232 5.77 82548 2.87 254304 0.93

p = 2, q = 1 888 1.20 8220 0.31 54684 0.09

p = 2, q = 2 7176 1.59 41712 0.49 284232 0.11

p = 2, q = 3 22568 2.80 139472 0.71 856736 0.17

p = 2, q = 4 54300 4.36 337692 1.01 2058876 0.23

p = 3, q = 1 3044 0.36 30236 0.16 379964 0.02

p = 3, q = 2 12488 0.92 126368 0.26 1370576 0.03

p = 3, q = 3 36664 1.73 391552 0.37 4034704 0.05

p = 3, q = 4 92828 2.55 950012 0.49 9566012 0.06

p = 4, q = 1 3660 0.68 73236 0.11 1275624 0.01

p = 4, q = 2 17652 1.16 296712 0.16 4628460 0.02

p = 4, q = 3 57860 1.71 903752 0.22 13716836 0.02

p = 4, q = 4 138984 2.46 2133972 0.29 32289984 0.03

Table 8.3: The number of operations and the ratio between number of operations for the two representations
for the elasticity-like tensor in two dimensions as a function of different polynomial orders and numbers of
functions (taken from Ølgaard and Wells [2010].

the quadrature representation. In Table 8.3 the flops for the tensor representation is presented
together with the ratio given by the flops for quadrature representation divided by the flops for
tensor representation, denoted by q/t. In terms of flops, a ratio q/t > 1 indicates that the tensor
representation is more efficient while q/t < 1 indicates that the quadrature representation is more
efficient. It was found that when comparing the runtime performance of the two representations
for this problem that the number of flops is a good indicator of performance. However, as we
have shown in the previous section, the quadrature code with the lowest number of flops does
not always perform best for a given form. Furthermore, the runtime performance even depends
on which g++ options are used. This begs the question of whether or not it is possible to make
a sound selection between representations based only on an estimation of flops, as suggested
in Ølgaard and Wells [2010].
Nevertheless, some general trends can still be read from the table. Increasing the number of coeffi-
cient functions n f in the form clearly works in favor of quadrature representation. For n f = 3 the
quadrature representation can be expected to perform best for all values of q and p. Increasing the
polynomial order of the coefficients, p, also works in favor of quadrature representation although
the effect is less pronounced compared to the effect of increasing the number of coefficients. The
tensor representation appears to perform better when the polynomial order of the test and trial
functions, q, is increased although the effect is most pronounced when the number of coefficients
is low.

8.4 Automatic selection of representation

We have illustrated how the runtime performance of the generated code for variational forms
can be improved by using various optimization options for the FFC and g++ compilers, and by
changing the representation of the form. Choosing the combination of form representation and
optimization options that leads to optimal performance will inevitably require a benchmark study

8.4. AUTOMATIC SELECTION OF REPRESENTATION 163

of the specific problem. However, very often many variational forms of varying complexity are
needed to solve more complex problems. Setting up benchmarks for all of them is cumbersome
and time consuming. Additionally, during the model development stage runtime performance is
of minor importance compared to rapid prototyping of variational forms as long as the generated
code performs reasonably well.
The default behavior of FFC is, therefore, to automatically determine which form representation
should be used based on a measure for the cost of using the tensor representation. In short, the
cost is simply computed as the maximum value of the sum of the number of coefficients and
derivatives present in the monomials representing the form. If this cost is larger than a specified
threshold, currently set to three, the quadrature representation is selected. Recall from Table 8.3
that when n f = 3 the flops for quadrature representation was significantly lower for virtually
all the test cases. Although this approach may seem ad hoc, it will work well for those situations
where the difference in runtime performance is significant. It is important to remember that
the generated code is only concerned with the evaluation of the local element tensor and that
the time needed to insert the values into a sparse matrix and to solve the system of equations
will reduce any difference, particularly for simple forms. Therefore, making a correct choice of
representation is less important for forms where the difference in runtime performance is small. A
future improvement could be to devise a strategy for also letting the system select the optimization
strategy for the quadrature representation automatically.

9 Tensor representation of finite element variational
forms

By Robert C. Kirby and Anders Logg

In Chapter 7, we saw that an important step in the assembly of matrices and vectors for the
discretization of finite element variational problems is the evaluation of the cell (element) tensor
AT defined by

AT,i = aT(φ
T,ρ
iρ , . . . , φT,2

i2
, φT,1

i1
). (9.1)

Here, aT is the local contribution to a multilinear form a : Vρ × · · · ×V2 ×V1, i = (i1, i2, . . . , iρ) is a

multi-index of length ρ, and {φT,j
k }

nj
k=1 is a basis for the local finite element space of Vj,h ⊂ Vj on a

local cell T for j = 1, 2, . . . , ρ. In this chapter, we describe how the cell tensor AT can be computed
efficiently by an approach referred to as tensor representation.

9.1 Tensor representation for Poisson equation

We first describe how one may express the cell tensor for Poisson’s equation as a special tensor
contraction and explain below how this may be generalized to other variational forms. For
Poisson’s equation, the cell tensor (matrix) AT is defined by

AT,i =
∫

T
∇φT,1

i1
· ∇φT,2

i2
dx =

∫

T

d

∑
β=1

∂φT,1
i1

∂xβ

∂φT,2
i2

∂xβ
dx. (9.2)

Let FT : T̂ → T be an affine map from a reference cell T̂ to the current cell T as illustrated in
Figure 9.1. Using this affine map, we make a change of variables to obtain

AT,i =
∫

T̂

d

∑
β=1

d

∑
α1=1

∂x̂α1

∂xβ

∂φ̂1
i1

∂x̂α1

d

∑
α2=1

∂x̂α2

∂xβ

∂φ̂2
i2

∂x̂α2

det F′T dx̂. (9.3)

Here, φ̂
j
i = φ

T,j
i ◦ FT denotes the basis function on the reference cell T̂ corresponding to the basis

function φ
T,j
i on the current cell T. Since FT is affine, the derivatives ∂x̂/∂x and the determi-

nant det F′T are constant. We thus obtain

AT,i = det F′T
d

∑
α1=1

d

∑
α2=1

d

∑
β=1

∂x̂α1

∂xβ

∂x̂α2

∂xβ

∫

T̂

∂φ̂1
i1

∂x̂α1

∂φ̂2
i2

∂x̂α2

dx̂ =
d

∑
α1=1

d

∑
α2=1

A0
iαGα

T , (9.4)

165

166 CHAPTER 9. TENSOR REPRESENTATION OF FINITE ELEMENT VARIATIONAL FORMS

x̂

x̂1 = (0, 0) x̂2 = (1, 0)

x̂3 = (0, 1) x = FT(x̂)

T̂

T

x1

x2

x3

FT

Figure 9.1: The (affine) map FT from a
reference cell T̂ to a cell T ∈ Th.

where

A0
iα =

∫

T̂

∂φ̂1
i1

∂x̂α1

∂φ̂2
i2

∂x̂α2

dx̂,

Gα
T = det F′T

d

∑
β=1

∂x̂α1

∂xβ

∂x̂α2

∂xβ
.

(9.5)

We refer to the tensor A0 as the reference tensor and to the tensor GT as the geometry tensor. We may
thus express the computation of the cell tensor AT for Poisson’s equation as the tensor contraction

AT = A0 : GT . (9.6)

This tensor contraction may be computed efficiently by precomputing the entries of the reference
tensor A0. This is possible since the reference tensor is constant and does not depend on the
cell T or the mesh Th = {T}. On each cell T ∈ Th, the cell tensor may thus be computed by first
computing the geometry tensor GT and then contracting it with the precomputed reference tensor.
In Chapter 12, we describe the FEniCS Form Compiler (FFC) which precomputes the reference
tensor A0 at compile-time and generates code for computing the tensor contraction.

For Poisson’s equation in two space dimensions, the tensor contraction involves contracting the
2× 2 geometry tensor GT with each corresponding block of the 3× 3× 2× 2 reference tensor A0 to
form the entries of the 3× 3 cell tensor AT . Each of these entries may thus be computed in only four
multiply-add pairs (plus the cost of computing the geometry tensor). This brings a considerable
speedup compared to evaluation by run-time quadrature, in particular for higher-order elements.
In Chapter 10, we discuss how this may be improved further by examining the structure of the
reference tensor A0 to find a reduced-arithmetic computation for the tensor contraction.

9.2. A REPRESENTATION THEOREM 167

a(u, v) = 〈u, v〉 rank

A0
iα =

∫
T̂ φ̂1

i1
φ̂2

i2
dx̂ |iα| = 2

Gα
T = det F′T |α| = 0

Table 9.1: Tensor representation AT = A0 : GT of the cell tensor AT for the bilinear form associated with a
mass matrix.

9.2 A representation theorem

In Kirby and Logg [2006], it was proved that the cell tensor for any affinely mapped monomial
multilinear form may be expressed as a tensor contraction AT = A0 : GT , that is,

AT,i = ∑
α

A0
iαGα

T . (9.7)

More precisely, the cell tensor may be expressed as a sum of tensor contractions:

AT = ∑
k

A0,k : GT,k. (9.8)

By a monomial multilinear form, we here mean a multilinear form that can be expressed as a sum
of monomials, where each monomial is a product of coefficients, trial/test functions and their
derivatives. This class covers all forms that may be expressed by addition, multiplication and
differentiation. Early versions of the form compiler FFC implemented a simple form language that
was limited to these three operations. This simple form language is now replaced by the new and
more expressive UFL form language
The representation theorem was later extended to Piola-mapped elements in Rognes et al. [2009],
and in Ølgaard et al. [2008] it was demonstrated how the tensor representation may be computed
for discontinuous Galerkin methods.
The ranks of the reference and geometry tensors are determined by the multilinear form a, in
particular by the number of coefficients and derivatives of the form. Since the rank of the cell
tensor AT is equal to the arity ρ of the multilinear form a, the rank of the reference tensor A0

must be |iα| = ρ + |α|, where |α| is the rank of the geometry tensor. For Poisson’s equation, we
have |iα| = 4 and |α| = 2. In Tables 9.1 and 9.2, we demonstrate how the tensor representation
may be computed for the bilinear forms a(u, v) = 〈u, v〉 (mass matrix) and a(w; u, v) = 〈w · ∇u, v〉
(advection).

a(w; u, v) = 〈w · ∇u, v〉 rank

A0
iα = ∑d

β=1
∫

T̂
∂φ̂2

i2
[β]

∂x̂α3
φ̂3

α1
[α2]φ̂

1
i1
[β]dx̂ |iα| = 5

Gα
T = wT

α1
det F′T

∂x̂α3
∂xα2

|α| = 3

Table 9.2: Tensor representation AT = A0 : GT of the cell tensor AT for the bilinear form associated with
advection w · ∇u. It is assumed that the velocity field w may be interpolated into a local finite element
space with expansion coefficients wT

α1
. Note that w is a vector-valued function, the components of which are

referenced by w[β].

168 CHAPTER 9. TENSOR REPRESENTATION OF FINITE ELEMENT VARIATIONAL FORMS

9.3 Extensions and limitations

The tensor contraction (9.8) assumes that the map FT from the reference cell is affine, allowing
the transforms ∂x̂/∂x and the determinant det F′K to be pulled out of the integral. If the map is
non-affine (sometimes called a “higher-order” map), one may expand it in the basis functions of
the corresponding finite element space and pull the coefficients outside the integral, as done for
the advection term from Table 9.2. Alternatively, one may evaluate the cell tensor by quadrature
and express the summation over quadrature points as a tensor contraction as explained in Kirby
and Logg [2006]. As noted above, the tensor contraction readily extends to basis functions mapped
by Piola transforms.
One limitation of this approach is it requires each basis function on a cell T to be the image of a
single reference element basis function under an affine Piola transformation. While this covers
a wide range of commonly used elements, it does not include certain kinds of elements with
derivative-based degrees of freedom such as the Hermite and Argyris elements. Let FT be the
mapping of the reference element function space to the function space over the cell T, such as the
affine map or Piola transform. Then the physical element basis functions can be expressed as a
linear combination of the transformed reference element basis functions,

φT
i =

n

∑
j=1

MT,ijFT
(
φ̂j
)

. (9.9)

The structure of this matrix MT depends on the kinds of degrees freedom, and the values typically
vary for each T based on the cell geometry. Frequently, the matrix MT is sparse. Given MT , the
tensor-contraction framework may be extended to handle these more general elements. As before,
one may compute the reference tensor A0 by mapping the reference element basis functions. But
in addition, the tensor contraction A0 : GT must be corrected by acting on it with the matrix MT .
This is currently not implemented in the form compiler FFC and thus FEniCS does not support
Hermite and Argyris elements.
For many simple variational forms, such as those for Poisson’s equation, the mass matrix and
the advection term discussed above, the tensor contraction (9.8) leads to significant speedups
over numerical quadrature, sometimes as much as several orders of magnitude. However, as the
complexity of a form increases, the relative efficiency of quadrature also increases. In simple
terms, the complexity of a form can be measured as the number of derivatives and the number
of coefficients appearing in a form. For each derivative and coefficient, the rank of the reference
tensor A0 increases by one. Thus, for Poisson’s equation, the rank is 2 + 2 = 4 since the form has
two derivatives and for the mass matrix, the rank is 2 + 0 since there are neither derivatives nor
coefficients. For the advection term, the rank is 2 + 2 + 1 = 5 since the form has one derivative,
one coefficient, and also an inner product w · ∇. Since the size of the reference tensor A0 grows
exponentially with its rank, the tensor contraction may become very costly for forms of high
complexity. In these cases, quadrature is more efficient. Quadrature may sometimes also be the
only available option as the tensor contraction is not directly applicable to forms that are not
expressed as simple sums of products of coefficients, trial/test functions and their derivatives. For
this reason, it is important to be able to choose between both approaches; tensor representation
may sometimes be the most efficient approach whereas in other cases quadrature is more efficient
or even the only possible alternative. Such trade-offs are discussed in Chapter 8 and Chapter 13.

10 Discrete optimization of finite element matrix
evaluation

By Robert C. Kirby, Matthew G. Knepley, Anders Logg, L. Ridgway Scott and
Andy R. Terrel

The tensor contraction structure for the computation of the element tensor AT obtained in Chapter 9,
enables not only the construction of a compiler for variational forms, but an optimizing compiler.
For typical variational forms, the reference tensor A0 has significant structure that allows the
element tensor AT to be computed on an arbitrary cell T at a lower computational cost. Reducing
the number of operations by making use of this structure, leads naturally to several problems
in discrete mathematics. This chapter introduces some of the optimizations that are possible,
and discusses compile-time combinatorial optimization problems that form the core of the FErari
project [Kirby et al., 2006, Kirby and Scott, 2007, Kirby and Logg, 2008], which is the subject of
Chapter 13.
We consider two basic kinds of optimizations in this chapter. First, we consider relations between
pairs of rows in the reference tensor. This naturally leads to a graph that models proximity among
these pairs. If two rows are “close” together, then one may reuse results computed with the first
row to compute a desired quantity with the second. The proximity of two such rows is computed
using a Hamming distance and linearity relations. This approach gives rise to a weighted graph
that is (almost) a metric space, so we designate such optimizations as “topological”. Second, we
consider relations between more than two rows of the reference tensor. Such relations typically
rely on sets of rows, considered as vectors in Euclidean space. Because we are using planes and
hyperplanes to reduce the amount of computation, we describe these optimizations as “geometric”.
For comparison, we briefly discuss optimizations using more traditional optimized dense linear
algebra packages.

10.1 Optimization framework

The tensor paradigm developed in Chapter 9 arrives at the representation

AT,i = ∑
α∈A

A0
iαGα

T ∀ i ∈ I , (10.1)

or simply
AT = A0 : GT , (10.2)

where I is the set of admissible multi-indices for the element tensor AT and A is the set of
admissible multi-indices for the geometry tensor GT . The reference tensor A0 can be computed

169

170 CHAPTER 10. DISCRETE OPTIMIZATION OF FINITE ELEMENT MATRIX EVALUATION

at compile-time, and may then be contracted with a GT to obtain the element tensor AT for each
cell T in the finite element mesh at run-time. The case of computing local finite element stiffness
matrices of size nT × nT corresponds to I consisting of |I| = n2

T multi-indices of length two, where
nT is the dimension of the local finite element space on T.
It is convenient to recast (10.2) in terms of a matrix–vector product:

A0 : GT ↔ Ã0 g̃T . (10.3)

Here, the matrix Ã lies in R|I|×|A|, and the vector g̃T lies in R|A|. The resulting matrix–vector
product can then be reshaped into the element tensor AT . As this computation must occur for each
cell T in a finite element mesh, it makes sense to try to make this operation as efficient as possible.
In the following, we will drop the subscripts and superscripts of (10.3) and consider the problem
of computing a general matrix–vector product

y = Ax, (10.4)

efficiently, where A = Ã0 is a constant matrix known a priori, and x = g̃Tis an arbitrary vector. We
will study structure of A that allows for a reduction in the number of arithmetic operations required
to form these products. With this structure, we are able to produce a routine that computes the
action of the system in less operations than would be performed using general sparse or dense
linear algebra routines.
Before proceeding with the mathematical formulation, we give an example of a matrix A that we
would like to optimize. In (10.5), we display the reference tensor A0 for computing a standard
stiffness matrix discretizing a two–dimensional Laplacian with quadratic Lagrange elements on
triangles. The rank four tensor is depicted here as a 6× 6 matrix of 2× 2 matrices. Full analysis
would use a corresponding flattened 36× 4 matrix A.

A0 =




3 0 0 −1 1 1 −4 −4 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 3 1 1 0 0 4 0 −4 −4
1 0 0 1 3 3 −4 0 0 0 0 −4
1 0 0 1 3 3 −4 0 0 0 0 −4
−4 0 0 0 −4 −4 8 4 0 −4 0 4
−4 0 0 0 0 0 4 8 −4 −8 4 0
0 0 0 4 0 0 0 −4 8 4 −8 −4
4 0 0 0 0 0 −4 −8 4 8 −4 0
0 0 0 −4 0 0 0 4 −8 −4 8 4
0 0 0 −4 −4 −4 4 0 −4 0 4 8




(10.5)

10.2 Topological optimization

It is possible to apply the matrix A, corresponding to the reference tensor A0 depicted in (10.5),
to an arbitrary vector x in fewer operations than the 144 multiply–add pairs required by a
standard matrix–vector multiplication. This requires offline analysis of A and special-purpose code
generation that applies the particular A to a generic x. For A ∈ RM×N , let {ai}M

i=1 ⊂ RN denote
the rows of A. The vector y = Ax may then be computed by M dot products of the form yi = aix.
Below, we investigate relationships among the rows of A to find an optimized computation of the
matrix–vector product.

10.2. TOPOLOGICAL OPTIMIZATION 171

For the purpose of illustration, we consider the following subset of (10.5), which would only cost
40 multiply–add pairs but contains all the relations we use to optimize the larger version:

A =




a1 ↔ A0
1,3

a2 ↔ A0
1,4

a3 ↔ A0
2,3

a4 ↔ A0
3,3

a5 ↔ A0
4,6

a6 ↔ A0
4,4

a7 ↔ A0
4,5

a8 ↔ A0
5,6

a9 ↔ A0
6,1

a10 ↔ A0
6,6




=




1 1 0 0
−4 −4 0 0
0 0 1 1
3 3 3 3
0 4 4 0
8 4 4 8
0 −4 −4 −8
−8 −4 −4 0
0 0 0 0
8 4 4 8




. (10.6)

Inspection of (10.6) shows that a9 is zero; therefore, it does not need to be multiplied by the entries
of x. In particular, if z entries of ai are zero, then the dot product aix requires N − z multiply–add
pairs rather than N.
If ai = aj for some i 6= j, as seen in the sixth and tenth rows of A, then it follows that yi = yj, and
only one dot product needs to be performed instead of two. A similar case is where αai = aj for
some number α, as in the first and second rows of A. This means that after yi has been computed,
yj = αyi may be computed with a single multiplication.
In addition to equality and collinearity discussed above, one may also consider other relations
between the rows of A. Further inspection of A in (10.6) reveals rows that have some entries in
common but are neither equal nor collinear. Such rows have a small Hamming distance, that is, the
number of entries in which the two rows differ is small. This occurs frequently, as seen in, for
example, rows five and six . We can write aj = ai + (aj − ai), where aj − ai has dH 6 N nonzero
entries and where dH is the Hamming distance between ai and aj. Once yi has been computed,
one may thus compute yj as

yj = yi +
(

aj − ai
)

x, (10.7)

which requires only dH additional multiply–add pairs. If dH is small compared to N, the savings
are considerable.
In Wolf and Heath [2009], these binary relations are extended to include the partial collinearity
of two vectors. For example, the sixth and seventh rows have parts that are collinear, namely
a6

2:4 = −a7
2:4. This allows yj to be computed via:

yj = α(yi − yi,nonmatching) + aj
nonmatching x, (10.8)

where the subscript indicates non-matching portions of the vectors padded with zeroes. Such
relationships reduce the computation of yj to the subtraction of the non-matching contributions, a
scaling of the result computed with yi, and then an additional multiplication with the non-matching
entries in aj.
All of these examples of structure relate to either a single row of A or a pair of rows of A. Such
binary relations between pairs of rows are amenable to the formulation of graph-theoretic structures,
as is developed in Section 10.3. Higher-order relations also occur between the rows of A. For
example, the first and third rows may be added and scaled to make the fourth row. In this case,
once a1x and a3x are known, the results may be used to compute a4x using one addition and one
multiplication, compared to four multiplications and three additions for direct evaluation of the

172 CHAPTER 10. DISCRETE OPTIMIZATION OF FINITE ELEMENT MATRIX EVALUATION

1 2 2
23

a3
3

4
a1

a4

a5 a7

a2 a6 a8

Figure 10.1: Minimum spanning tree
(forest) for the vectors in (10.6). The
dashed edges represent edges that do
not reduce the number of operations
(relative to N− z) and thus disconnect
the graph.

dot product a4x.

10.3 A graph problem

If we restrict consideration to binary relations between the rows of A, we are led naturally to
a weighted, undirected graph whose vertices are the rows ai of A. An edge between ai and aj

with weight d indicates that if aix is known, then that result may be used to compute ajx with d
multiply–add pairs. In practice, such edges also need to be labeled with information indicating the
kind of relationship such as equality, collinearity or a low Hamming distance.
To find the optimal computation through the graph, we use Prim’s algorithm [Prim, 1957] for
computing a minimum-spanning tree. A minimum spanning tree is a tree that connects all the
vertices of the graph and has minimum total edge weight. In Kirby et al. [2006], it is demonstrated
that, under a given set of relationships between rows, a minimum spanning tree in fact encodes an
algorithm that optimally reduces the number of arithmetic operations required. This discussion
assumes that the initial graph is connected. In principle, every ai is no more than a distance of N
away from any aj. In practice, however, only edges with d < N − z are included in a graph since
N is the cost of computing yi without reference to yj. This often makes the graph unconnected
and thus one must construct a minimum spanning forest instead of a tree (a set of disjoint trees
that together touch all the vertices of the graph). An example of a minimum spanning tree using
the binary relations is shown in Figure 10.1.
Such a forest may then be used to determine an efficient algorithm for evaluating Ax as follows.
Start with some ai and compute yi = aix directly in at most N multiply–add pairs. The number of
multiply–add pairs may be less than N if one or more entries of ai are zero. Then, if aj is a nearest
neighbor of ai in the forest, use the relationship between aj and ai to compute yj = ajx. After this,
take a nearest neighbor of aj, and continue until all the entries of y have been computed.
Additional improvements may be obtained by recognizing that the input tensor GT ↔ x is
symmetric for certain operators like the Laplacian. In two spatial dimensions, GT for the Laplacian
is 2× 2 with only 3 unique entries, and in three spatial dimensions it is 3× 3 with only 6 unique
entries. This fact may be used to construct a modified reference tensor A0 with fewer columns. For
other operators, it might have symmetry along some but not all of the axes.
Heath and Wolf proposed a slight variation on this algorithm. Rather than picking an arbitrary
starting row ai, they enrich the graph with an extra vertex labeled IP for “inner product.” Each
ai is a distance N − z from IP, where z is the number of vanishing entries in ai. The IP vertex is
always selected as the root of the minimum spanning tree. It allows for a more robust treatment of
unary relations such as sparsity, and detection of partial collinearity relations.

10.4 Geometric optimization

When relations between more than two rows are considered, the optimization problem may no
longer be phrased in terms of a graph, but requires some other structure. In these cases, proving

10.4. GEOMETRIC OPTIMIZATION 173

Figure 10.2: Generating graph for the
vectors in (10.6).

a1 a4

a3

a6 a5

a8 a7

that one has found an optimal solution is typically difficult, and it is suspected that the associated
combinatorial problems are NP-hard.
As a first attempt, one can work purely from linear dependencies among the data as follows. Let
B = {bi}i ⊆ {ai}N

i=1 be a maximal set of nonzero rows of A, such that no two rows are collinear.
Then enumerate all triples which are linearly dependent,

S =
{{

bi, bj, bk
}
⊆ B : ∃ α1, α2, α3 6= 0 : α1bi + α2bj + α3bk = 0

}
. (10.9)

The idea is now to identify some subset C of B that may be used to recursively construct the rest
of the rows in B using the relationships in S.
Given some C ⊂ B, we may define the closure of C, denoted by C̄, as follows. First of all, if b ∈ C,
then b ∈ C̄. Second, if b ∈ B and there exist c, d ∈ C̄ such that {b, c, d} ∈ S, then b ∈ C̄ as well. If
C̄ = B, we say that C is a generator for B or that C generates B.
The recursive definition suggests a greedy process for constructing the closure of any set C. Each
vector in B is put in a priority queue with an initial value of the cost to compute independent of
other vectors. While C 6= B, a vector from B\C with the minimum cost to compute is added to C
and the priorities of B are updated according to S. This process constructs a directed, acyclic graph
that indicates the linear dependence being used. Each b ∈ C will have no out-neighbors, while
each b ∈ C̄\C will point to two other members of C̄. This graph is called a generating graph. Using
(10.6), we have the following sets B, S, and C, with the generating graph shown in Figure 10.2:

B = {a1, a3, a4, a5, a6, a7, a8}
S = {(a1, a3, a4), (a4, a5, a6), (a4, a7, a8)}
C = {a3, a4, a5, a7}

(10.10)

If C generates B, then the generating graph indicates an optimized (but perhaps not optimal)
process for computing {yi = bix}i. Take a topological ordering of the vectors bi according to
this graph. Then, for each bi in the topological ordering, if bi has no out-neighbors, then bix is
computed explicitly. Otherwise, bi will point to two other vectors bj and bk for which the dot
products with x will already be known. Since the generating graph has been built from the set of
linearly dependent triples S, there must exist some β1, β2 such that bi = β1bj + β2bk. We may thus
compute yi by

yi = bix = β1bjx + β2bkx, (10.11)

which requires only two multiply–add pairs instead of N.
To make best use of the linear dependence information, one would like to find a generator C that
has as few members as possible. We say that a generator C is minimal for B if no C′ ⊂ C also
generates B. A stronger requirement is for a generator to be minimum. A generator C is minimum
if no other generator C′ has lower cardinality. More complete details and heuristics for constructing
minimal generators are considered in Kirby and Scott [2007]; it is not currently known whether
such heuristics construct minimum generators or how hard the problem of finding minimum
generators is.
Given a minimal generator C for B, one may consider searching for higher order linear relations
among the elements of C, such as sets of four items that have a three-dimensional span. The

174 CHAPTER 10. DISCRETE OPTIMIZATION OF FINITE ELEMENT MATRIX EVALUATION

triangles
degree M N MN MAPs

1 6 3 18 9

2 21 3 63 17

3 55 3 165 46

tetrahedra
degree M N MN MAPs

1 10 6 60 27

2 55 6 330 101

3 210 6 1260 370

Table 10.1: Number of multiply–add pairs for graph-optimized Laplace operator (MAPS) compared to the
basic number of multiply–add pairs (MN).

degree topological geometric
2 101 105

3 370 327

4 1118 1072

Table 10.2: Comparison of topological and geometric optimizations for the Laplace operator on tetrahedra
using polynomial degrees two through four. In each case, the final number of MAPs for the optimized
algorithm is reported. The case q = 1 is not reported since then both strategies yield the same number of
operations.

discussion of generating graphs and their utilization is the same in this case.
In Wolf and Heath [2009], a combination of the binary and higher-order relations between the
rows of A in a hypergraph model is studied. While greedy algorithms provide optimal solutions
for a graph model, it is demonstrated that the obvious generalizations to hypergraphs can be
suboptimal. While the hypergraph problems are most likely very hard, heuristics perform well
and provide additional optimizations beyond the graph models. So, even if a non-optimal solution
is found, it still provides an improved reduction in arithmetic requirements.
In Table ??, topological and geometric optimization are compared for the Laplacian using quadratic
through quartic polynomials on tetrahedra. In the geometric case, the vectors ai were filtered for
unique direction; that is, only one vector for each class of collinear vectors was retained. Then,
a generating graph was constructed for the remaining vectors using pairwise linear dependence.
The generator for this set was then searched for linear dependence among sets of four vectors,
and a generating graph constructed. Perhaps surprisingly, the geometric optimization found flop
reductions comparable to or better than graph-based binary relations. These are shown in Table ??.

10.5 Optimization by dense linear algebra

As an alternative to optimizations that try to find a reduced arithmetic for computing the element
tensor AT , one may consider computing the element tensor by efficient dense linear algebra. As

10.6. NOTES ON IMPLEMENTATION 175

above, we note that the entries of the element tensor AT may be computed by the matrix–vector
product Ã0 g̃T . Although zeros may appear in Ã0, this is typically a dense matrix and so the
matrix–vector product may be computed efficiently with Level 2 BLAS, in particular using a call
to dgemv. There exist a number of optimized implementations of BLAS, including hand-optimized
vendor implementations, empirically and automatically tuned libraries [Whaley et al., 2001] and
formal methods for automatic derivation of algorithms Bientinesi et al. [2005].
The computation of the element tensor AT may be optimized further by recognizing that one may
compute the element tensor for a batch of elements {Ti}i ⊂ T in one matrix–matrix multiplication:

[
Ã0 g̃T1 Ã0 g̃T2 · · ·

]
= Ã0 [g̃T1 g̃T2 · · ·

]
. (10.12)

This matrix–matrix product may be computed efficiently using a single Level 3 BLAS call (dgemm)
instead of a sequence of Level 2 BLAS calls, and typically leads to better floating-point performance.

10.6 Notes on implementation

A subset of the optimizations discussed in this chapter are available as part of the FErari Python
module. FErari (0.2.0) implements optimization based on finding binary relations between the
entries of the element tensor. With optimizations turned on, FFC calls FErari at compile-time to gen-
erate optimized code. Optimization for FFC can be turned on either by the -O parameter when FFC
is called from the command-line, or by setting parameters["form_compiler"]["optimization"]

= True when FFC is called as a just-in-time compiler from the DOLFIN Python interface. Note that
the FErari optimizations are only used when FFC generates code based on the tensor representation
described in Chapter 9. When FFC generates code based on quadrature, optimization is handled
differently, as described in Chapter 8. Improved run-times for several problems are detailed in
Kirby and Logg [2008].

Part II

Implementation

177

11 DOLFIN: A C++/Python finite element library

By Anders Logg, Garth N. Wells and Johan Hake

DOLFIN is a C++/Python library that functions as the main user interface of FEniCS. In this
chapter, we review the functionality of DOLFIN. We also discuss the implementation of some
key features of DOLFIN in detail. For a general discussion on the design and implementation of
DOLFIN, we refer to Logg and Wells [2010].

11.1 Overview

A large part of the functionality of FEniCS is implemented as part of DOLFIN. It provides a problem
solving environment for models based on partial differential equations and implements core parts
of the functionality of FEniCS, including data structures and algorithms for computational meshes
and finite element assembly. To provide a simple and consistent user interface, DOLFIN wraps the
functionality of other FEniCS components and external software, and handles the communication
between these components.

Figure 11.1 presents an overview of the relationships between the components of FEniCS and
external software. The software map presented in the figure shows a user application implemented
on top of the DOLFIN user interface, either in C++ or in Python. User applications may also be
developed using FEniCS Apps, a collection of solvers implemented on top of FEniCS/DOLFIN.
DOLFIN itself functions as both a user interface and a core component of FEniCS. All communica-
tion between a user program, other core components of FEniCS and external software is routed
through wrapper layers that are implemented as part of the DOLFIN user interface. In particular,
variational forms expressed in the UFL form language (Chapter 18) are passed to the form compiler
FFC (Chapter 12) or SFC (Chapter 16) to generate UFC code (Chapter 17), which can then be used
by DOLFIN to assemble linear systems. In the case of FFC, this code generation depends on the
finite element backend FIAT (Chapter 14), the just-in-time compilation utility Instant (Chapter 15)
and the optional optimizing backend FErari (Chapter 13). Finally, the plotting capabilities provided
by DOLFIN are implemented by Viper. Some of this communication is exposed to users of the
DOLFIN C++ interface, which requires a user to explicitly generate UFC code from a UFL form
file by calling a form compiler on the command-line.

DOLFIN also relies on external software for important functionality such as the linear algebra
libraries PETSc, Trilinos, uBLAS and MTL4, and the mesh partitioning libraries ParMETIS and
SCOTCH [Pellegrini].

179

180 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

DOLFIN

FIAT FErariInstant

FEniCS Apps

UFC

ViperSyFi

PETSc uBLAS UMFPACK SCOTCHNumPy VTK

UFL

Application

Applications

Interfaces

Core components

External libraries

Trilinos GMP ParMETIS CGAL MPI SLEPc

FFC

Figure 11.1: DOLFIN functions as the
main user interface of FEniCS and han-
dles the communication between the
various components of FEniCS and ex-
ternal software. Solid lines indicate
dependencies and dashed lines indi-
cate data flow.

11.2 User interfaces

DOLFIN provides two user interfaces. One interface is implemented as a traditional C++ library,
and another interface is implemented as a standard Python module. The two interfaces are near-
identical, but in some cases particular language features of either C++ or Python require variations
in the interfaces. In particular, the Python interface adds an additional level of automation
by employing run-time (just-in-time) code generation. Below, we comment on the design and
implementation of the two user interfaces of DOLFIN.

11.2.1 C++ interface

The DOLFIN C++ interface is designed as a standard object-oriented C++ library. It provides
classes such as Matrix, Vector, Mesh, FiniteElement, FunctionSpace and Function, which model
important concepts for finite element computing (see Figure 11.2). It also provides a small number
of free functions (a function that is not a member function of a class), most notably assemble and
solve, which can be used in conjunction with DOLFIN class objects to implement finite element
solvers. The interface is designed to be as simple as possible, and without compromising on
generality. When external software is wrapped, a simple and consistent user interface is provided
to allow the rapid development of solvers without needing to deal with differences in the interfaces
of external libraries. However, DOLFIN has been designed to interact flexibly with external
software. In particular, in cases where DOLFIN provides wrappers for external libraries, such as
the Matrix and Vector classes which wrap data structures from linear algebra libraries like PETSc
and Trilinos, advanced users may, if necessary, access the underlying data structures in order to
use native functionality from the wrapped external libraries.

11.2. USER INTERFACES 181

Figure 11.2: Schematic overview of
some of the most important compo-
nents and classes of DOLFIN. Arrows
indicate dependencies.

To solve partial differential equations using the DOLFIN C++ interface, users must express finite
element variational problems in the UFL form language. This is accomplished by entering the
forms into separate .ufl files and compiling those files using a form compiler to generate UFC-
compliant C++ code. The generated code may then be included in a DOLFIN C++ program. We
return to this issue in Section 11.3.
To use DOLFIN from C++, users need to include one or more header files from the DOLFIN C++
library. In the simplest case, one includes the header file dolfin.h, which in turn includes all other
DOLFIN header files:

C++ code
#include <dolfin.h>

using namespace dolfin;

int main()

{

return 0;

}

11.2.2 Python interface

Over the last decade, Python has emerged as an attractive choice for the rapid development of
simulation codes for scientific computing. Python brings the benefits of a high-level scripting
language, the strength of an object-oriented language and a wealth of libraries for numerical
computation.
The bulk of the DOLFIN Python interface is automatically generated from the C++ interface using
SWIG [Beazley, 1996, SWIG]. Since the functionality of both the C++ and Python interfaces are
implemented as part of the DOLFIN C++ library, DOLFIN is equally efficient via the C++ and
Python interfaces for most operations.

182 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

The DOLFIN Python interface offers some functionality that is not available from the C++ interface.
In particular, the UFL form language is seamlessly integrated into the Python interface and code
generation is automatically handled at run-time. To use DOLFIN from Python, users need to
import functionality from the DOLFIN Python module. In the simplest case, one includes all
functionality from the Python module named dolfin:

Python code
from dolfin import *

11.3 Functionality

DOLFIN is organized as a collection of libraries (modules), with each covering a certain area
of functionality. We review here these areas and explain the purpose and usage of the most
commonly used classes and functions. The review is bottom-up; that is, we start by describing
the core low-level functionality of DOLFIN (linear algebra and meshes) and then move upwards
to describe higher level functionality. For further details, we refer to the DOLFIN Programmer’s
Reference on the FEniCS Project web page and to Logg and Wells [2010].

11.3.1 Linear algebra

DOLFIN provides a range of linear algebra objects and functionality, including vectors, dense
and sparse matrices, direct and iterative linear solvers and eigenvalues solvers, and does so
via a simple and consistent interface. For the bulk of underlying functionality, DOLFIN relies
on third-party libraries such as PETSc and Trilinos. DOLFIN defines the abstract base classes
GenericTensor, GenericMatrix and GenericVector, and these are used extensively throughout
the library. Implementations of these generic interfaces for a number of backends are provided in
DOLFIN, thereby achieving a common interface for different backends. Users can also wrap other
linear algebra backends by implementing the generic interfaces.

Matrices and vectors. The simplest way to create matrices and vectors is via the classes Matrix and
Vector. In general, Matrix and Vector represent distributed linear algebra objects that may be
stored across (MPI) processes when running in parallel. Consistent with the most common usage
in a finite element library, a Vector uses dense storage and a Matrix uses sparse storage. A Vector

can be created as follows:

C++ code
Vector x;

Python code
x = Vector()

and a matrix can be created by:

C++ code
Matrix A;

Python code
A = Matrix()

11.3. FUNCTIONALITY 183

In most applications, a user may need to create a matrix or a vector, but most operations on the
linear algebra objects, including resizing, will take place inside the library and a user will not have
to operate on the objects directly.
The following code illustrates how to create a vector of size 100:

C++ code
Vector x(100);

Python code
x = Vector(100)

A number of backends support distributed linear algebra for parallel computation, in which case
the vector x will have global size 100, and DOLFIN will partition the vector across processes in
(near) equal-sized portions.
Creating a Matrix of a given size is more involved as the matrix is sparse and in general needs to
be initialized (data structures allocated) based on the structure of the sparse matrix (its sparsity
pattern). Initialization of sparse matrices is handled by DOLFIN when required.
While DOLFIN supports distributed linear algebra objects for parallel computation, it is rare that a
user is exposed to details at the level of parallel data layouts. The distribution of objects across
processes is handled automatically by the library.

Solving linear systems. The simplest approach to solving the linear system Ax = b is to use

C++ code
solve(A, x, b);

Python code
solve(A, x, b)

DOLFIN will use a default method to solve the system of equations. Using the function solve

is straightforward, but it offers little control over details of the solution process. For many
applications, it is desirable to exercise a degree of control over the solution process. It is possible in
DOLFIN to select the solver type (direct or iterative) and to control details of the solution method,
and this is expanded upon below.
The linear system Ax = b can be solved using LU decomposition (a direct method) as follows:

C++ code
LUSolver solver(A);

solver.solve(x, b);

Python code
solver = LUSolver(A)

solver.solve(x, b)

Alternatively, the operator A associated with the linear solver can be set post-construction:

C++ code
LUSolver solver;

solver.set_operator(A);

solver.solve(x, b);

184 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

C++ code
solver = LUSolver()

solver.set_operator(A)

solver.solve(x, b)

This can be useful when passing a linear solver via a function interface and setting the operator
inside a function.
In some cases, the system Ax = b may be solved a number of times for a given A, or for different
A but with the same nonzero structure. If the nonzero structure of A does not change, then some
efficiency gains for repeated solves can be achieved by informing the LU solver of this fact:

C++ code
solver.parameters["same_nonzero_pattern"] = true;

Python code
solver.parameters["same_nonzero_pattern"] = True

In the case that A does not change, the solution time for subsequent solves can be reduced
dramatically by re-using the LU factorization of A. Re-use of the factorization is controlled by the
parameter "reuse_factorization".
It is possible for some backends to prescribe the specific LU solver to be used. This depends on the
backend, which solvers that have been configured by DOLFIN and how third-party linear algebra
backends have been configured.
The system of equations Ax = b can be solved using a preconditioned Krylov solver by:

C++ code
KrylovSolver solver(A);

solver.solve(x, b);

Python code
solver = KrylovSolver(A)

solver.solve(x, b)

The above will use a default preconditioner and solver, and default parameters. If a KrylovSolver

is constructed without a matrix operator A, the operator can be set post-construction:

C++ code
KrylovSolver solver;

solver.set_operator(A);

Python code
solver = KrylovSolver()

solver.set_operator(A)

In some cases, it may be useful to use a preconditioner matrix P that differs from A:

C++ code
KrylovSolver solver;

solver.set_operators(A, P)

11.3. FUNCTIONALITY 185

Python code
solver = KrylovSolver()

solver.set_operators(A, P)

Various parameters for Krylov solvers can be set. Some common parameters are:

Python code
solver = KrylovSolver()

solver.parameters["relative_tolerance"] = 1.0e-6

solver.parameters["absolute_tolerance"] = 1.0e-15

solver.parameters["divergence_limit"] = 1.0e4

solver.parameters["maximum_iterations"] = 1.0e4

solver.parameters["error_on_nonconvergence"] = True

solver.parameters["nonzero_initial_guess"] = False

The parameters may be set similarly from C++. Printing a summary of the convergence of a
KrylovSolver and printing details of the convergence history can be controlled via parameters:

C++ code
KrylovSolver solver;

solver.parameters["report"] = true;

solver.parameters["monitor_convergence"] = true;

Python code
solver = KrylovSolver()

solver.parameters["report"] = True

solver.parameters["monitor_convergence"] = True

The specific Krylov solver and preconditioner to be used can be set at construction of a solver object.
The simplest approach is to set the Krylov method and the preconditioner via string descriptions.
For example:

C++ code
KrylovSolver solver("gmres", "ilu");

Python code
solver = KrylovSolver("gmres", "ilu")

The above specifies the Generalized Minimum Residual (GMRES) method as a solver, and in-
complete LU (ILU) preconditioning. The available methods and preconditioners depend on the
configured backends, but common methods, such as GMRES ("gmres"), the Conjugate Gradient
method ("cg") and ILU preconditioning ("ilu") are available for all backends.
When backends such as PETSc and Trilinos are configured, a wide range of Krylov methods and
preconditioners can be applied, and a large number of solver and preconditioner parameters can
be set. In addition to what is described here, DOLFIN provides more advanced interfaces which
permit finer control of the solution process. It is also possible for users to provide their own
preconditioners.

Solving eigenvalue problems. DOLFIN uses the library SLEPc, which builds on PETSc, to solve
eigenvalue problems. The SLEPc interface works only with PETSc-based linear algebra objects.
Therefore it is necessary to use PETSc-based objects, or to set the default linear algebra backend to
PETSc and downcast objects (as explained in the next section). The following code illustrates the
solution of the eigenvalue problem Ax = λx:

186 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

C++ code
// Create matrix

PETScMatrix A;

// Code omitted for setting the entries of A

// Create eigensolver

SLEPcEigenSolver eigensolver(A);

// Compute all eigenvalues of A

eigensolver.solve();

// Get first eigenpair

double lambda_real, lambda_complex;

PETScVector x_real, x_complex;

eigensolver.get_eigenpair(lambda_real, lambda_complex, x_real, x_complex, 0);

Python code
Create matrix

A = PETScMatrix()

Code omitted for setting the entries of A

Create eigensolver

eigensolver = SLEPcEigenSolver(A)

Compute all eigenvalues of A

eigensolver.solve()

Get first eigenpair

lambda_r, lambda_c, x_real, x_complex = eigensolver.get_eigenpair(0)

The real and complex components of the eigenvalue are returned in lambda_real and lambda_complex,
respectively, and the real and complex components of the eigenvector are returned in x_real and
x_complex, respectively.
To create a solver for the generalized eigenvalue problem Ax = λMx, the eigensolver can be
constructed using A and M:

C++ code
PETScMatrix A;

PETScMatrix M;

// Code omitted for setting the entries of A and M

SLEPcEigenSolver eigensolver(A, M);

Python code
A = PETScMatrix()

M = PETScMatrix()

Code omitted for setting the entries of A and M

eigensolver = SLEPcEigenSolver(A, M)

There are many options that a user can set via the parameter system to control the eigenproblem
solution process. To print a list of available parameters, call info(eigensolver.parameters, true)

and info(eigensolver.parameters, True) from C++ and Python, respectively.

11.3. FUNCTIONALITY 187

Selecting a linear algebra backend. The Matrix, Vector, LUSolver and KrylovSolver objects are all
based on a specific linear algebra backend. The default backend depends on which backends
are enabled when DOLFIN is configured. The backend can be set via the global parameter
"linear_algebra_backend". To use PETSc as the linear algebra backend:

C++ code
parameters["linear_algebra_backend"] = "PETSc";

Python code
parameters["linear_algebra_backend"] = "PETSc"

This parameter should be set before creating linear algebra objects. To use Epetra from the Trilinos
collection, the parameter "linear_algebra_backend" should be set to "Epetra". For uBLAS, the
parameter should be set to "uBLAS" and for MTL4, the parameter should be set to "MTL4".
Users can explicitly create linear algebra objects that use a particular backend. Generally, such
objects are prefixed with the name of the backend. For example, a PETSc-based vector and LU
solver are created by:

C++ code
PETScVector x;

PETScLUSolver solver;

Python code
x = PETScVector()

solver = PETScLUSolver()

Solving nonlinear systems. DOLFIN provides a Newton solver in the form of the class NewtonSolver
for solving nonlinear systems of equations of the form

F(x) = 0, (11.1)

where x ∈ Rn and F : Rn → Rn. To solve such a problem using the DOLFIN Newton solver, a
user needs to provide a subclass of NonlinearProblem. The purpose of a NonlinearProblem object
is to evaluate F and the Jacobian of F, which will be denoted by J : Rn → Rn ×Rn. An outline of
a user-provided MyNonlinearProblem class for solving a nonlinear differential equation is shown
below.

C++ code
class MyNonlinearProblem : public NonlinearProblem

{

public:

// Constructor

MyNonlinearProblem(const Form& L, const Form& a,

const BoundaryCondition& bc) : L(L), a(a), bc(bc) {}

// User-defined residual vector F

void F(GenericVector& b, const GenericVector& x)

{

assemble(b, L);

bc.apply(b, x);

}

188 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

// User-defined Jacobian matrix J

void J(GenericMatrix& A, const GenericVector& x)

{

assemble(A, a);

bc.apply(A);

}

private:

const Form& L;

const Form& a;

const BoundaryCondition& bc;

};

A MyNonlinearProblem object is constructed using a linear form L, that when assembled corre-
sponds to F, and a bilinear form a, that when assembled corresponds to J. The classes Form

and BoundaryCondition used in the example are discussed in more detail later. The same
MyNonlinearProblem class can be defined in Python:

Python code
class MyNonlinearProblem(NonlinearProblem):

def __init__(self, L, a, bc):

NonlinearProblem.__init__(self)

self.L = L

self.a = a

self.bc = bc

def F(self, b, x):

assemble(self.L, tensor=b)

self.bc.apply(b, x)

def J(self, A, x):

assemble(self.a, tensor=A)

self.bc.apply(A)

Once a nonlinear problem class has been defined, a NewtonSolver object can be created and the
Newton solver can be used to compute the solution vector x to the nonlinear problem:

C++ code
MyNonlinearProblem problem(L, a, bc);

NewtonSolver newton_solver;

Vector x;

newton_solver.solve(problem, x);

Python code
problem = MyNonlinearProblem(L, a, bc)

newton_solver = NewtonSolver()

x = Vector()

newton_solver.solve(problem, x)

A number of parameters can be set for a NewtonSolver. Some parameters that determine the
behavior of the Newton solver are:

Python code
newton_solver = NewtonSolver()

newton_solver.parameter["maximum_iterations"] = 20

11.3. FUNCTIONALITY 189

newton_solver.parameter["relative_tolerance"] = 1.0e-6

newton_solver.parameter["absolute_tolerance"] = 1.0e-10

newton_solver.parameter["error_on_nonconvergence"] = False

The parameters may be set similarly from C++. When testing for convergence, usually a norm
of the residual F is checked. Sometimes it is useful instead to check a norm of the iterative
correction dx. This is controlled by the parameter "convergence_criterion", which can be set to
"residual", for checking the size of the residual F, or "incremental", for checking the size of the
increment dx.
For more advanced usage, a NewtonSolver can be constructed with arguments that specify the
linear solver and preconditioner to be used in the solution process.

11.3.2 Meshes

A central part of DOLFIN is its mesh library and the Mesh class. The mesh library provides
data structures and algorithms for computational meshes, including the computation of mesh
connectivity (incidence relations), mesh refinement, mesh partitioning and mesh intersection.
The mesh library is implemented in C++ and has been optimized to minimize storage requirements
and to enable efficient access to mesh data. In particular, a DOLFIN mesh is stored in a small
number of contiguous arrays, on top of which a light-weight object-oriented layer provides a view
to the underlying data. For a detailed discussion on the design and implementation of the mesh
library, we refer to Logg [2009].

Creating a mesh. DOLFIN provides functionality for creating simple meshes, such as meshes of
unit squares and unit cubes, spheres, rectangles and boxes. The following code demonstrates how
to create a 16× 16 triangular mesh of the unit square (consisting of 2× 16× 16 = 512 triangles)
and a 16× 16× 16 tetrahedral mesh of the unit cube (consisting of 6× 16× 16× 16 = 24, 576
tetrahedra).

C++ code
UnitSquare unit_square(16, 16);

UnitCube unit_cube(16, 16, 16);

Python code
unit_square = UnitSquare(16, 16)

unit_cube = UnitCube(16, 16, 16)

Simplicial meshes (meshes consisting of intervals, triangles or tetrahedra) may be constructed
explicitly by specifying the cells and vertices of the mesh. An interface for creating simplicial
meshes is provided by the class MeshEditor. The following code demonstrates how to create a
mesh consisting of two triangles covering the unit square.

C++ code
Mesh mesh;

MeshEditor editor;

editor.open(mesh, 2, 2);

editor.init_vertices(4);

editor.init_cells(2);

editor.add_vertex(0, 0.0, 0.0);

editor.add_vertex(1, 1.0, 0.0);

editor.add_vertex(2, 1.0, 1.0);

editor.add_vertex(3, 0.0, 1.0);

190 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

editor.add_cell(0, 0, 1, 2);

editor.add_cell(1, 0, 2, 3);

editor.close();

Python code
mesh = Mesh();

editor = MeshEditor();

editor.open(mesh, 2, 2)

editor.init_vertices(4)

editor.init_cells(2)

editor.add_vertex(0, 0.0, 0.0)

editor.add_vertex(1, 1.0, 0.0)

editor.add_vertex(2, 1.0, 1.0)

editor.add_vertex(3, 0.0, 1.0)

editor.add_cell(0, 0, 1, 2)

editor.add_cell(1, 0, 2, 3)

editor.close()

Reading a mesh from file. Although the built-in classes UnitSquare and UnitCube are useful for
testing, a typical application will need to read from file a mesh that has been generated by an
external mesh generator. To read a mesh from file, simply supply the filename to the constructor
of the Mesh class:

C++ code
Mesh mesh("mesh.xml");

Python code
mesh = Mesh("mesh.xml")

Meshes must be stored in the DOLFIN XML format. The following example illustrates the XML
format for a 2× 2 mesh of the unit square:

XML code
<?xml version="1.0" encoding="UTF-8"?>

<dolfin xmlns:dolfin="http://www.fenicsproject.org">

<mesh celltype="triangle" dim="2">

<vertices size="9">

<vertex index="0" x="0" y="0"/>

<vertex index="1" x="0.5" y="0"/>

<vertex index="2" x="1" y="0"/>

<vertex index="3" x="0" y="0.5"/>

<vertex index="4" x="0.5" y="0.5"/>

<vertex index="5" x="1" y="0.5"/>

<vertex index="6" x="0" y="1"/>

<vertex index="7" x="0.5" y="1"/>

<vertex index="8" x="1" y="1"/>

</vertices>

<cells size="8">

<triangle index="0" v0="0" v1="1" v2="4"/>

<triangle index="1" v0="0" v1="3" v2="4"/>

<triangle index="2" v0="1" v1="2" v2="5"/>

<triangle index="3" v0="1" v1="4" v2="5"/>

<triangle index="4" v0="3" v1="4" v2="7"/>

<triangle index="5" v0="3" v1="6" v2="7"/>

<triangle index="6" v0="4" v1="5" v2="8"/>

11.3. FUNCTIONALITY 191

Figure 11.3: Each entity of a mesh is
identified by a pair (d, i) which spec-
ifies the topological dimension d and
a unique index i for the entity within
the set of entities of dimension d.

<triangle index="7" v0="4" v1="7" v2="8"/>

</cells>

</mesh>

</dolfin>

Meshes stored in other data formats may be converted to the DOLFIN XML format using the
command dolfin-convert, as explained in more detail below.

Mesh entities. Conceptually, a mesh (modeled by the class Mesh), consists of a collection of mesh
entities. A mesh entity is a pair (d, i), where d is the topological dimension of the mesh entity
and i is a unique index of the mesh entity. Mesh entities are numbered within each topological
dimension from 0 to nd − 1, where nd is the number of mesh entities of topological dimension d.
For convenience, mesh entities of topological dimension 0 are referred to as vertices, entities of
dimension 1 as edges, entities of dimension 2 as faces. Entities of codimension 1 are referred to as
facets and entities of codimension 0 as cells. These concepts are summarized in Figure 11.3 and
Table ??. We note that a triangular mesh consists of vertices, edges and cells, and that the edges
may alternatively be referred to as facets and the cells as faces. We further note that a tetrahedral
mesh consists of vertices, edges, faces and cells, and that the faces may alternatively be referred to
as facets. These concepts are implemented by the classes MeshEntity, Vertex, Edge, Face, Facet
and Cell. These classes do not store any data. Instead, they are light-weight objects that provide
views of the underlying mesh data. A MeshEntity may be created from a Mesh, a topological
dimension and an index. The following code demonstrates how to create various entities on a
mesh.

C++ code
MeshEntity entity(mesh, 0, 33); // vertex number 33

Vertex vertex(mesh, 33); // vertex number 33

Cell cell(mesh, 25); // cell number 25

Python code
entity = MeshEntity(mesh, 0, 33) # vertex number 33

vertex = Vertex(mesh, 33) # vertex number 33

cell = Cell(mesh, 25) # cell number 25

192 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Entity Dimension Codimension
Vertex 0 D
Edge 1 D− 1
Face 2 D− 2

Facet D− 1 1
Cell D 0

Table 11.1: Mesh entities and their dimensions/codimensions. The codimension of an entity is D− d where
D is the maximal dimension and d is the dimension.

Mesh topology and geometry. The topology of a mesh is stored separately from its geometry. The
topology of a mesh is a description of the relations between the various entities of the mesh, while
the geometry describes how those entities are embedded in Rd.
Users are rarely confronted with the MeshTopology and MeshGeometry classes directly since most
algorithms on meshes can be expressed in terms of mesh iterators. However, users may sometimes
need to access the dimension of a Mesh, which involves accessing either the MeshTopology or
MeshGeometry, which are stored as part of the Mesh, as illustrated in the following code examples:

C++ code
uint gdim = mesh.topology().dim();

uint tdim = mesh.geometry().dim();

Python code
gdim = mesh.topology().dim()

tdim = mesh.geometry().dim()

It should be noted that the topological and geometric dimensions may differ. This is the case
in particular for the boundary of a mesh, which is typically a mesh of topological dimension D
embedded in RD+1. That is, the geometry dimension is D + 1.

Mesh connectivity. The topology of a Mesh is represented by the connectivity (incidence relations)
of the mesh, which is a complete description of which entities of the mesh are connected to which
entities. Such connectivity is stored in DOLFIN by the MeshConnectivity class. One such data
set is stored as part of the class MeshTopology for each pair of topological dimensions d→ d′ for
d, d′ = 0, 1, . . . , D, where D is the topological dimension.
When a Mesh is created, a minimal MeshTopology is created. Only the connectivity from cells
(dimension D) to vertices (dimension 0) is stored (MeshConnectivity D → 0). When a certain
connectivity is requested, such as for example the connectivity 1 → 1 (connectivity from edges
to edges), DOLFIN automatically computes any other connectivities required for computing the
requested connectivity. This is illustrated in Table 11.2, where we indicate which connectivities are
required to compute the 1→ 1 connectivity. The following code demonstrates how to initialize
various kinds of mesh connectivity for a tetrahedral mesh (D = 3).

C++ code
mesh.init(2); // Compute faces

mesh.init(0, 0); // Compute vertex neighbors for each vertex

mesh.init(1, 1); // Compute edge neighbors for each edge

11.3. FUNCTIONALITY 193

0 1 2 3

0 – × – ×
1 × × – –
2 – – – –
3 × × – ×

Table 11.2: DOLFIN computes the connectivity d → d′ of a mesh for any pair d, d′ = 0, 1, . . . , D. The table
indicates which connectivity pairs (indicated by ×) have been computed in order to compute the connectivity
1→ 1 (edge–edge connectivity) for a tetrahedral mesh.

Python code
mesh.init(2) # Compute faces

mesh.init(0, 0) # Compute vertex neighbors for each vertex

mesh.init(1, 1) # Compute edge neighbors for each edge

Mesh iterators. Algorithms operating on a mesh can often be expressed in terms of iterators.
The mesh library provides the general iterator MeshEntityIterator for iteration over mesh en-
tities, as well as the specialized mesh iterators VertexIterator, EdgeIterator, FaceIterator,
FacetIterator and CellIterator.
The following code illustrates how to iterate over all incident (connected) vertices of all vertex
neighbors of all cells of a given mesh. The code implies that two vertices are considered as
neighbors if they both belong to the same cell. For simplex meshes, this is equivalent to an edge
connecting the two vertices.

C++ code
for (CellIterator c(mesh); !c.end(); ++c)

for (VertexIterator v0(*c); !v0.end(); ++v0)

for (VertexIterator v1(*v0); !v1.end(); ++v1)

cout << *v1 << endl;

Python code
for c in cells(mesh):

for v0 in vertices(c):

for v1 in vertices(v0):

print v1

This may alternatively be implemented using the general iterator MeshEntityIterator as follows:

C++ code
uint D = mesh.topology().dim();

for (MeshEntityIterator c(mesh, D); !c.end(); ++c)

for (MeshEntityIterator v0(*c, 0); !v0.end(); ++v0)

for (MeshEntityIterator v1(*v0, 0); !v1.end(); ++v1)

cout << *v1 << endl;

Python code
D = mesh.topology().dim()

for c in entities(mesh, D):

for v0 in entities(c, 0):

for v1 in entities(v0, 0):

print v1

194 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Mesh functions. A useful class for storing data associated with a Mesh is the MeshFunction class.
This makes it simple to store, for example, material parameters, subdomain indicators, refinement
markers on the Cells of a Mesh or boundary markers on the Facets of a Mesh. A MeshFunction is a
discrete function that takes a value on each mesh entity of a given topological dimension d. The
number of values stored in a MeshFunction is equal to the number of entities nd of dimension d. A
MeshFunction is templated over the value type and may thus be used to store values of any type.
For convenience, named MeshFunctions are provided by the classes VertexFunction, EdgeFunction,
FaceFunction, FacetFunction and CellFunction. The following code illustrates how to create a
pair of MeshFunctions, one for storing subdomain indicators on Cells and one for storing boundary
markers on Facets.

C++ code
CellFunction<uint> sub_domains(mesh);

sub_domains.set_all(0);

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

Point p = cell.midpoint();

if (p.x() > 0.5)

sub_domains[cell] = 1;

}

FacetFunction<uint> boundary_markers(mesh);

boundary_markers.set_all(0);

for (FacetIterator facet(mesh); !facet.end(); ++facet)

{

Point p = facet.midpoint();

if (near(p.y(), 0.0) || near(p.y(), 1.0))

boundary_markers[facet] = 1;

}

Python code
sub_domains = CellFunction("uint", mesh)

sub_domains.set_all(0)

for cell in cells(mesh):

p = cell.midpoint()

if p.x() > 0.5:

sub_domains[cell] = 1

boundary_markers = FacetFunction("uint", mesh)

boundary_markers.set_all(0)

for facet in facets(mesh):

p = facet.midpoint()

if near(p.y(), 0.0) or near(p.y(), 1.0):

boundary_markers[facet] = 1

Mesh data. The MeshData class provides a simple way to associate data with a Mesh. It allows
arbitrary MeshFunctions (and other quantities) to be associated with a Mesh. The following code
illustrates how to attach and retrieve a MeshFunction named "sub_domains" to/from a Mesh.

C++ code
MeshFunction<uint>* sub_domains = mesh.data().create_mesh_function("sub_domains");

sub_domains = mesh.data().mesh_function("sub_domains");

Python code

11.3. FUNCTIONALITY 195

sub_domains = mesh.data().create_mesh_function("sub_domains")

sub_domains = mesh.data().mesh_function("sub_domains")

DOLFIN uses MeshData internally to store various data associated with a Mesh. To list data
that is associated with a given Mesh, issue the command info(mesh.data(), true) in C++ or
info(mesh.data(), True) in Python.

Mesh refinement. A Mesh may be refined, by either uniform or local refinement, by calling the
refine function, as illustrated in the code examples below.

C++ code
// Uniform refinement

mesh = refine(mesh);

// Local refinement

CellFunction<bool> cell_markers(mesh);

cell_markers.set_all(false);

Point origin(0.0, 0.0, 0.0);

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

Point p = cell.midpoint();

if (p.distance(origin) < 0.1)

cell_markers[cell] = true;

}

mesh = refine(mesh, cell_markers);

Python code
Uniform refinement

mesh = refine(mesh)

Local refinement

cell_markers = CellFunction("bool", mesh)

cell_markers.set_all(False)

origin = Point(0.0, 0.0, 0.0)

for cell in cells(mesh):

p = cell.midpoint()

if p.distance(origin) < 0.1:

cell_markers[cell] = True

mesh = refine(mesh, cell_markers)

Currently, local refinement defaults to recursive refinement by edge bisection [Rivara, 1984, 1992].
An example of a locally refined mesh obtained by a repeated marking of the cells close to one of
the corners of the unit cube is shown in Figure 11.4.

Parallel meshes. When running a program in parallel on a distributed memory architecture (using
MPI by invoking the program with the mpirun wrapper), DOLFIN automatically partitions and
distributes meshes. Each process then stores a portion of the global mesh as a standard Mesh object.
In addition, it stores auxiliary data needed for correctly computing local-to-global maps on each
process and for communicating data to neighboring regions. Parallel computing with DOLFIN is
discussed in Section 11.4.

196 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Figure 11.4: A locally refined mesh
obtained by repeated marking of the
cells close to one of the corners of the
unit cube.

11.3.3 Finite elements

The concept of a finite element as discussed in Chapters 3 and 4 (the Ciarlet definition) is
implemented by the DOLFIN FiniteElement class. This class is implemented differently in the
C++ and Python interfaces.
The C++ implementation of the FiniteElement class relies on code generated by a form com-
piler such as FFC or SFC, which are discussed in Chapters 12 and 16, respectively. The class
FiniteElement is essentially a wrapper class for the UFC class ufc::finite_element. A C++
FiniteElement provides all the functionality of a ufc::finite_element. Users of the DOLFIN C++
interface will typically not use the FiniteElement class directly, but it is an important building
block for the FunctionSpace class, which is discussed below. However, users developing advanced
algorithms that require run-time evaluation of finite element basis function will need to familiarize
themselves with the FiniteElement interface. For details, we refer to the DOLFIN Programmer’s
Reference.
The Python interface also provides a FiniteElement class. The Python FiniteElement class is
imported directly from the UFL Python module (see Chapter 18). As such, it is just a label for a
particular finite element that can be used to define variational problems. Variational problems are
more conveniently defined in terms of the DOLFIN FunctionSpace class, so users of the Python
interface are rarely confronted with the FiniteElement class. However, advanced users who wish
to develop algorithms in Python that require functionality defined in the UFC interface, such as
run-time evaluation of basis functions, can access such functionality by explicitly generating code
from within the Python interface. This can be accomplished by a call to the DOLFIN jit function
(just-in-time compilation), which takes as input a UFL FiniteElement and returns a pair containing
a ufc::finite_element and a ufc::dofmap. The returned objects are created by first generating
the corresponding C++ code, then compiling and wrapping that C++ code into a Python module.
The returned objects are therefore directly usable from within Python.
The degrees of freedom of a FiniteElement can be plotted directly from the Python interface by a
call to plot(element). This will draw a picture of the shape of the finite element, along with a
graphical representation of its degrees of freedom in accordance with the notation described in
Chapter 4.

11.3. FUNCTIONALITY 197

Name Symbol

Argyris ARG
Arnold–Winther AW
Brezzi–Douglas–Marini BDM
Crouzeix–Raviart CR
Discontinuous Lagrange DG
Hermite HER
Lagrange CG
Mardal–Tai–Winther MTW
Morley MOR
Nédélec 1st kind H(curl) N1curl
Nédélec 2nd kind H(curl) N2curl
Raviart–Thomas RT

Table 11.3: List of finite elements supported by DOLFIN 1.0. Elements in grey italics are partly supported in
FEniCS but not throughout the entire tool-chain.

Table 11.3 lists the finite elements currently supported by DOLFIN (and the tool-chain FIAT–UFL–
FFC/SFC–UFC). A FiniteElement may be specified (from Python) using either its full name or its
short symbol, as illustrated in the code example below:

UFL code
element = FiniteElement("Lagrange", tetrahedron, 5)

element = FiniteElement("CG", tetrahedron, 5)

element = FiniteElement("Brezzi-Douglas-Marini", triangle, 3)

element = FiniteElement("BDM", triangle, 3)

element = FiniteElement("Nedelec 1st kind H(curl)", tetrahedron, 2)

element = FiniteElement("N1curl", tetrahedron, 2)

11.3.4 Function spaces

The DOLFIN FunctionSpace class represents a finite element function space Vh, as defined in
Chapter 3. The data of a FunctionSpace is represented in terms of a triplet consisting of a Mesh, a
DofMap and a FiniteElement:

FunctionSpace = (Mesh, DofMap, FiniteElement).

The Mesh defines the computational domain and its discretization. The DofMap defines how the
degrees of freedom of the function space are distributed. In particular, the DofMap provides the
function tabulate_dofs which maps the local degrees of freedom on any given cell of the Mesh to
global degrees of freedom. The DofMap plays a role in defining the global regularity of the finite
element function space. The FiniteElement defines the local function space on any given cell
of the Mesh. Note that if two or more FunctionSpaces are created on the same Mesh, that Mesh is
shared between the two FunctionSpaces.

Creating function spaces. As for the FiniteElement class, FunctionSpaces are handled differently
in the C++ and Python interfaces. In C++, the instantiation of a FunctionSpace relies on generated

198 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

code. As an example, we consider here the creation of a FunctionSpace representing continuous
piecewise linear Lagrange polynomials on triangles. First, the corresponding finite element must
be defined in the UFL form language. We do this by entering the following code into a file named
Lagrange.ufl:

UFL code
element = FiniteElement("Lagrange", triangle, 1)

We may then generate C++ code using a form compiler such as FFC:

Bash code
ffc -l dolfin Lagrange.ufl

This generates a file named Lagrange.h that we may include in our C++ program to instantiate a
FunctionSpace on a given Mesh:

C++ code
#include <dolfin.h>

#include "Lagrange.h"

using namespace dolfin;

int main()

{

UnitSquare mesh(8, 8);

Lagrange::FunctionSpace V(mesh);

...

return 0;

}

In typical applications, a FunctionSpace is not generated through a separate .ufl file, but is
instead generated as part of the code generation for a variational problem.
From the Python interface, one may create a FunctionSpace directly, as illustrated by the following
code which creates the same function space as the above example (piecewise linear Lagrange
polynomials on triangles):

Python code
mesh = UnitSquare(8, 8)

V = FunctionSpace(mesh, "Lagrange", 1)

Mixed spaces. Mixed function spaces may be created from arbitrary combinations of function
spaces. As an example, we consider here the creation of the Taylor–Hood function space for the
discretization of the Stokes or incompressible Navier–Stokes equations. This mixed function space
is the tensor product of a vector-valued continuous piecewise quadratic function space for the
velocity field and a scalar continuous piecewise linear function space for the pressure field. This
may be easily defined in either a UFL form file (for code generation and subsequent inclusion in a
C++ program) or directly in a Python script as illustrated in the following code examples:

UFL code
V = VectorElement("CG", triangle, 2)

Q = FiniteElement("CG", triangle, 1)

W = V*Q

11.3. FUNCTIONALITY 199

Python code
V = VectorFunctionSpace("CG", triangle, 2)

Q = FunctionSpace("CG", triangle, 1)

W = V*Q

DOLFIN allows the generation of arbitrarily nested mixed function spaces. A mixed function
space can be used as a building block in the construction of a larger mixed space. When a mixed
function space is created from more than two function spaces (nested on the same level), then one
must use the MixedElement constructor (in UFL/C++) or the MixedFunctionSpace constructor (in
Python). This is because Python will interpret the expression V*Q*P as (V*Q)*P, which will create
a mixed function space consisting of two subspaces: the mixed space V*Q and the space P. If that is
not the intention, one must instead define the mixed function space using MixedElement([V, Q,

P]) in UFL/C++ or MixedFunctionSpace([V, Q, P]) in Python.

Subspaces. For a mixed function space, one may access its subspaces. These subspaces differ,
in general, from the function spaces that were used to create the mixed space in their degree of
freedom maps (DofMap objects). Subspaces are particularly useful for applying boundary conditions
to components of a mixed element. We return to this issue below.

11.3.5 Functions

The Function class represents a finite element function uh in a finite element space Vh as defined
in Chapter 3:

uh(x) =
N

∑
j=1

Ujφj(x), (11.2)

where U ∈ RN is the vector of degrees of freedom for the function uh and {φj}N
j=1 is a basis for Vh.

A Function is represented in terms of a FunctionSpace and a GenericVector:

Function = (FunctionSpace, GenericVector).

The FunctionSpace defines the function space Vh and the GenericVector holds the vector U of
degrees of freedom; see Figure 11.5. When running in parallel on a distributed memory architecture,
the FunctionSpace and the GenericVector are distributed across the processes.

Creating functions. To create a Function on a FunctionSpace, one simply calls the constructor of
the Function class with the FunctionSpace as the argument, as illustrated in the following code
examples:

C++ code
Function u(V);

Python code
u = Function(V)

If two or more Functions are created on the same FunctionSpace, the FunctionSpace is shared
between the Functions.
A Function is typically used to hold the computed solution to a partial differential equation. One
may then obtain the degrees of freedom U by solving a system of equations, as illustrated in the
following code examples:

200 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

uh

Th

T

Figure 11.5: A piecewise linear finite
element function uh on a mesh consist-
ing of triangular elements. The vector
of degrees of freedom U is given by
the values of uh at the mesh vertices.

C++ code
Function u(V);

solve(A, u.vector(), b);

C++ code
u = Function(V)

solve(A, u.vector(), b)

The process of assembling and solving a linear system is handled automatically by the class
VariationalProblem, which will be discussed in more detail below.

Function evaluation. A Function may be evaluated at arbitrary points inside the computational
domain1. The value of a Function is computed by first locating the cell of the mesh containing the
given point, and then evaluating the linear combination of basis functions on that cell. Finding the
cell exploits an efficient search tree algorithm that is implemented as part of CGAL.
The following code examples illustrate function evaluation in the C++ and Python interfaces for
scalar- and vector-valued functions:

C++ code
Evaluation of scalar function

double scalar = u(0.1, 0.2, 0.3);

Evaluation of vector-valued function

Array<double> vector(3);

u(vector, 0.1, 0.2, 0.3);

1One may also evaluate a Function outside of the computational domain by setting the global parameter value
"allow_extrapolation" to true. This may sometimes be necessary when evaluating a Function on the boundary of a
domain since round-off errors may result in points slightly outside of the domain.

11.3. FUNCTIONALITY 201

Python code
Evaluation of scalar function

scalar = u(0.1, 0.2, 0.3)

Evaluation of vector-valued function

vector = u(0.1, 0.2, 0.3)

When running in parallel with a distributed mesh, functions can only be evaluated at points
located in the portion of the mesh that is stored by the local process.

Subfunctions. For Functions constructed on a mixed FunctionSpace, subfunctions (components)
of the Function can be accessed, for example to plot the solution components of a mixed system.
Subfunctions may be accessed as either shallow or deep copies. By default, subfunctions are accessed
as shallow copies, which means that the subfunctions share data with their parent functions. They
provide views to the data of the parent function. Sometimes, it may also be desirable to access
subfunctions as deep copies. A deep copied subfunction does not share its data (namely, the
vector holding the degrees of freedom) with the parent Function. Both shallow and deep copies
of Function objects are themselves Function objects and may (with some exceptions) be used as
regular Function objects.
Creating shallow and deep copies of subfunctions is done differently in C++ and Python, as
illustrated by the following code examples:

C++ code
Function w(W);

// Create shallow copies

Function& u = w[0];

Function& p = w[1];

// Create deep copies

Function uu = w[0];

Function pp = w[1];

Python code
w = Function(W)

Create shallow copies

u, p = w.split()

Create deep copies

uu, pp = w.split(deepcopy=True)

Note that component access, such as w[0], from the Python interface does not create a new
Function object as in the C++ interface. Instead, it creates a UFL expression that denotes a
component of the original Function.

11.3.6 Expressions

The Expression class is closely related to the Function class in that it represents a function that
can be evaluated on a finite element space. However, where a Function must be defined in terms
of a vector of degrees of freedom, an Expression may be freely defined in terms of, for example,
coordinate values, other geometric entities, or a table lookup.

202 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

An Expression may be defined in both C++ and Python by subclassing the Expression class and
overloading the eval function, as illustrated in the following code examples which define the
function f (x, y) = sin x cos y as an Expression:

C++ code
class MyExpression : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const

{

values[0] = sin(x[0])*cos(x[1]);

}

};

MyExpression f;

Python code
class MyExpression(Expression):

def eval(self, values, x):

values[0] = sin(x[0])*cos(x[1])

f = MyExpression()

For vector-valued (or tensor-valued) Expressions, one must also specify the value shape of the
Expression. The following code examples demonstrate how to implement the vector-valued
function g(x, y) = (sin x, cos y). The value shape is defined slightly differently in C++ and Python.

C++ code
class MyExpression : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const

{

values[0] = sin(x[0]);

values[1] = cos(x[1]);

}

uint value_rank() const

{

return 1;

}

uint value_dimension(uint i) const

{

return 2;

}

};

MyExpression g;

Python code
class MyExpression(Expression):

def eval(self, values, x):

values[0] = sin(x[0])

values[1] = cos(x[1])

def value_shape(self):

return (2,)

11.3. FUNCTIONALITY 203

g = MyExpression()

The above functor construct for the definition of expressions is powerful and allows a user to define
complex expressions, the evaluation of which may involve arbitrary operations as part of the eval

function. For simple expressions like f (x, y) = sin x cos y and g(x, y) = (sin x, cos y), users of the
Python interface may, alternatively, use a simpler syntax:

Python code
f = Expression("sin(x[0])*cos(x[1])")

g = Expression(("sin(x[0])", "cos(x[1])"))

The above code will automatically generate subclasses of the DOLFIN C++ Expression class that
overload the eval function. This has the advantage of being more efficient, since the callback to
the eval function takes place in C++ rather than in Python.
A feature that can be used to implement a time-dependent Expression in the Python interface is
to use a variable name in an Expression string. For example, one may use the variable t to denote
time:

Python code
h = Expression("t*sin(x[0])*cos(x[1])")

while t < T:

h.t = t

...

t += dt

The t variable has here been used to create a time-dependent Expression. Arbitrary variable
names may be used as long as they do not conflict with the names of built-in functions, such as
sin or exp.
In addition to the above examples, the Python interface allows the direct definition of (more
complex) subclasses of the C++ Expression class by supplying C++ code for their definition. For
more information, we refer to the DOLFIN Programmer’s Reference.

11.3.7 Variational forms

DOLFIN relies on the FEniCS tool-chain FIAT–UFL–FFC/SFC–UFC for the evaluation of finite
element variational forms. Variational forms expressed in the UFL form language (Chapter 18) are
compiled using one of the form compilers FFC or SFC (Chapters 12 and 16), and the generated
UFC code (Chapter 17) is used by DOLFIN to evaluate (assemble) variational forms.
The UFL form language allows a wide range of variational forms to be expressed in a language
close to the mathematical notation, as exemplified by the following expressions defining (in part)
the bilinear and linear forms for the discretization of a linear elastic problem:

UFL code
a = inner(sigma(u), epsilon(v))*dx

L = dot(f, v)*dx

This should be compared to the corresponding mathematical notation:

a(u, v) =
∫

Ω
σ(u) : ε(v)dx, (11.3)

L(v) =
∫

Ω
f · v dx. (11.4)

204 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Here, ε(v) = (∇v + (∇v)T)/2 denotes the symmetric gradient and σ(v) = 2µ ε(v) + λtr ε(v)I is
the stress tensor. For a detailed presentation of the UFL form language, we refer to Chapter 18.
The code generation process must be handled explicitly by users of the C++ interface by calling a
form compiler on the command-line. To solve the linear elastic problem above for a specific choice
of parameter values (the Lamé constants µ and λ), a user may enter the following code in a file
named Elasticity.ufl2:

UFL code
V = VectorElement("Lagrange", tetrahedron, 1)

u = TrialFunction(V)

v = TestFunction(V)

f = Coefficient(V)

E = 10.0

nu = 0.3

mu = E/(2.0*(1.0 + nu))

lmbda = E*nu/((1.0 + nu)*(1.0 - 2.0*nu))

def sigma(v):

return 2.0*mu*sym(grad(v)) + lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx

This code may be compiled using a UFL/UFC compliant form compiler to generate UFC C++ code.
For example, using FFC:

Bash code
ffc -l dolfin Elasticity.ufl

This generates a C++ header file (including implementation) named Elasticity.h which may be
included in a C++ program and used to instantiate the two forms a and L:

C++ code
#include <dolfin.h>

#include "Elasticity.h"

using namespace dolfin;

int main()

{

UnitSquare mesh(8, 8);

Elasticity::FunctionSpace V(mesh);

Elasticity::BilinearForm a(V, V);

Elasticity::LinearForm L(V);

MyExpression f; // code for the definition of MyExpression omitted

L.f = f;

return 0;

}

The instantiation of the forms involves the instantiation of the FunctionSpace on which the forms
are defined. Any coefficients appearing in the definition of the forms (here the right-hand side f)
must be attached after the creation of the forms.

2Note that ‘lambda’ has been deliberately misspelled since it is a reserved keyword in Python.

11.3. FUNCTIONALITY 205

Python users may rely on automated code generation, and define variational forms directly as part
of a Python script:

Python code
from dolfin import *

mesh = UnitSquare(8, 8)

V = VectorElement("Lagrange", tetrahedron, 1)

u = TrialFunction(V)

v = TestFunction(V)

f = MyExpression() # code emitted for the definition of f

E = 10.0

nu = 0.3

mu = E/(2.0*(1.0 + nu))

lmbda = E*nu/((1.0 + nu)*(1.0 - 2.0*nu))

def sigma(v):

return 2.0*mu*sym(grad(v)) + lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx

This script will trigger automatic code generation for the definition of the FunctionSpace V. Code
generation of the two forms a and L is postponed until the point when the corresponding discrete
operators (the matrix and vector) are assembled.

11.3.8 Finite element assembly

A core functionality of DOLFIN is the assembly of finite element variational forms. Given a
variational form (a), DOLFIN assembles the corresponding discrete operator (A). The assembly of
the discrete operator follows the general algorithm described in Chapter 7. The following code
illustrates how to assemble a scalar (m), a vector (b) and a matrix (A) from a functional (M), a linear
form (L) and a bilinear form (a), respectively:

C++ code
Vector b;

Matrix A;

double m = assemble(M);

assemble(b, L);

assemble(A, a);

Python code
m = assemble(M)

b = assemble(L)

A = assemble(a)

The assembly of variational forms from the Python interface automatically triggers code generation,
compilation and linking at run-time. The generated code is automatically instantiated and sent
to the DOLFIN C++ compiler. As a result, finite element assembly from the Python interface is
equally efficient as assembly from the C++ interface, with only a small overhead for handling the
automatic code generation. The generated code is cached for later reuse, hence repeated assembly

206 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

of the same form or running the same program twice does not re-trigger code generation. Instead,
the previously generated code is automatically loaded.
DOLFIN provides a common assembly algorithm for the assembly of tensors of any rank (scalars,
vectors, matrices, . . .) for any form. This is possible since the assembly algorithm relies on
the GenericTensor interface, portions of the assembly algorithm that depend on the variational
form and its particular discretization are generated prior to assembly, and the mesh interface
is dimension-independent. The assembly algorithm accepts a number of optional arguments
that control whether the sparsity of the assembled tensor should be reset before assembly and
whether the tensor should be zeroed before assembly. Arguments may also be supplied to specify
subdomains of the Mesh if the form is defined over particular subdomains (using dx(0), dx(1)
etc.).
In addition to the assemble function, DOLFIN provides the assemble_system function which
assembles a pair of forms consisting of a bilinear and a linear form and applies essential boundary
conditions during the assembly process. The application of boundary conditions as part of the call
to assemble_system preserves symmetry of the matrix being assembled (see Chapter 7).
The assembly algorithms have been parallelized for both distributed memory architectures (clusters)
using MPI and shared memory architectures (multi-core) using OpenMP. This is discussed in more
detail in Section 11.4.

11.3.9 Boundary conditions

DOLFIN handles the application of both Neumann (natural) and Dirichlet (essential) boundary
conditions.3 Natural boundary conditions are usually applied via the variational statement of
a problem, whereas essential boundary conditions are usually applied to the discrete system of
equations.

Natural boundary conditions. Natural boundary conditions typically appear as boundary terms
as the result of integrating by parts a partial differential equation multiplied by a test function.
As a simple example, we consider the linear elastic variational problem. The partial differential
equation governing the displacement of an elastic body may be expressed as

−∇ · σ(u) = f in Ω,
σn = g on ΓN ⊂ ∂Ω,

u = u0 on ΓD ⊂ ∂Ω,
(11.5)

where u is the unknown displacement field to be computed, σ(u) is the stress tensor, f is a given
body force, g is a given traction on a portion ΓN of the boundary, and u0 is a given displacement
on a portion ΓD of the boundary. Multiplying by a test function v and integrating by parts, we
obtain ∫

Ω
σ(u) : ε(v)dx−

∫

∂Ω
σn · v ds =

∫

Ω
f · v dx, (11.6)

where we have used the symmetry of σ(u) to replace ∇v by the symmetric gradient ε(v). Since
the displacement u is known on the Dirichlet boundary ΓD, we let v = 0 on ΓD. Furthermore, we
replace σn by the given traction g on the remaining (Neumann) portion of the boundary ΓN to
obtain ∫

Ω
σ(u) : ε(v)dx =

∫

Ω
f · v dx +

∫

ΓN

g · v ds. (11.7)

3As noted in Chapter 3, Dirichlet boundary conditions may sometimes be natural and Neumann boundary conditions
may sometimes be essential.

11.3. FUNCTIONALITY 207

The following code demonstrates how to implement this variational problem in the UFL form
language, either as part of a .ufl file or as part of a Python script:

UFL code
a = inner(sigma(u), sym(grad(v)))*dx

L = dot(f, v)*dx + dot(g, v)*ds

To specify that the boundary integral dot(g, v)*ds should only be evaluated along the Neumann
boundary ΓN, one must specify which part of the boundary is included in the ds integral. An easy
way to accomplish this is to specify g in such a way that it is zero on the Neumann boundary. In
cases where this is not convenient, one must instead specify the Neumann boundary in terms of a
FacetFunction. This FacetFunction must specify for each facet of the Mesh to which part of the
boundary it belongs. For the current example, an appropriate strategy is to mark each facet on
the Neumann boundary by 0 and all other facets (including facets internal to the domain) by 1.
This can be accomplished in a number of different ways. One simple way to do this is to use the
program MeshBuilder and graphically mark the facets of the Mesh. Another option is through the
DOLFIN class SubDomain. The following code illustrates how to mark all boundary facets to the
left of x = 0.5 as the Neumann boundary. Note the use of the on_boundary argument supplied
by DOLFIN to the inside function. This argument informs whether a point is located on the
boundary ∂Ω of Ω, and this allows us to mark only facets that are on the boundary and to the left
of x = 0.5. Also note the use of DOLFIN_EPS which makes sure that we include points that, as a
result of finite precision arithmetic, may be located just to the right of x = 0.5.

C++ code
class NeumannBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return x[0] < 0.5 + DOLFIN_EPS && on_boundary;

}

};

NeumannBoundary neumann_boundary;

FacetFunction<uint> exterior_facet_domains(mesh);

exterior_facet_domains.set_all(1);

neumann_boundary.mark(exterior_facet_domains, 0);

Python code
class NeumannBoundary(SubDomain):

def inside(self, x, on_boundary):

return x[0] < 0.5 + DOLFIN_EPS and on_boundary

neumann_boundary = NeumannBoundary()

exterior_facet_domains = FacetFunction("uint", mesh)

exterior_facet_domains.set_all(1)

neumann_boundary.mark(exterior_facet_domains, 0)

The correct specification of boundaries is a common error source. For debugging the specification
of boundary conditions, it can be helpful to plot the FacetFunction that specifies the boundary
markers by writing the FacetFunction to a VTK file (see the file I/O section) or using the plot

command. When using the plot command, the plot shows the facet values interpolated to the
vertices of the Mesh. As a result, care must be taken to interpret the plot close to domain boundaries
(corners) in this case. The issue is not present in the VTK output.

208 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

In the above example, we mark the Neumann boundary by 0. This is appropriate since in the UFL
form language, ds is the same as ds(0). The default domain of integration is the domain marked
by 0. One could also have used ds(1) and marked the Neumann boundary by 1.

Essential boundary conditions. The application of essential boundary conditions is handled by the
class DirichletBC. Using this class, one may specify a Dirichlet boundary condition in terms of a
FunctionSpace, a Function or an Expression, and a subdomain. The subdomain may be specified
either in terms of a SubDomain object or in terms of a FacetFunction. A DirichletBC specifies that
the solution should be equal to the given value on the given subdomain.
The following code examples illustrates how to define the Dirichlet condition u(x) = u0(x) = sin x
on the Dirichlet boundary ΓD (assumed here to be the part of the boundary to the right of x = 0.5)
for the elasticity problem (11.5) using the SubDomain class. Alternatively, the subdomain may be
specified using a FacetFunction.

C++ code
class DirichletValue : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const

{

values[0] = sin(x[0]);

}

};

class DirichletBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return x[0] > 0.5 - DOLFIN_EPS && on_boundary;

}

};

DirichletValue u_0;

DirichletBoundary Gamma_D;

DirichletBC bc(V, u_0, Gamma_D);

Python code
class DirichletValue(Expression):

def eval(self, value, x):

values[0] = sin(x[0])

class DirichletBoundary(SubDomain):

def inside(self, x, on_boundary):

return x[0] > 0.5 - DOLFIN_EPS and on_boundary

u_0 = DirichletValue()

Gamma_D = DirichletBoundary()

bc = DirichletBC(V, u_0, Gamma_D)

Python users may also use the following compact syntax:

Python code
u_0 = Expression("sin(x[0])")

bc = DirichletBC(V, u_0, "x[0] > 0.5 and on_boundary")

11.3. FUNCTIONALITY 209

To speed up the application of Dirichlet boundary conditions, users of the Python interface may also
use the function compile_subdomains. For details of this, we refer to the DOLFIN Programmer’s
Reference.
A Dirichlet boundary condition can be applied to a linear system or to a vector of degrees of
freedom associated with a Function, as illustrated by the following code examples:

C++ code
bc.apply(A, b);

bc.apply(u.vector());

Python code
bc.apply(A, b)

bc.apply(u.vector())

The application of a Dirichlet boundary condition to a linear system will identify all degrees of
freedom that should be set to the given value and modify the linear system such that its solution
respects the boundary condition. This is accomplished by zeroing and inserting 1 on the diagonal
of the rows of the matrix corresponding to Dirichlet values, and inserting the Dirichlet value in
the corresponding entry of the right-hand side vector. This application of boundary conditions
does not preserve symmetry. If symmetry is required, one may alternatively consider using the
assemble_system function which applies Dirichlet boundary conditions symmetrically as part of
the assembly process.
Multiple boundary conditions may be applied to a single system or vector. If two different
boundary conditions are applied to the same degree of freedom, the last applied value will
overwrite any previously set values.

11.3.10 Variational problems

Variational problems (finite element discretizations of partial differential equations) can be eas-
ily solved in DOLFIN using the class VariationalProblem. This is done by first specifying a
VariationalProblem in terms of a pair of forms and (possibly) boundary conditions, and then
calling the solve member function.
Both linear and nonlinear problems can be solved. A linear problem must be expressed in the
following canonical form: find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂. (11.8)

A nonlinear problem must be expressed in the following canonical form: find u ∈ V such that

F(u; v) = 0 ∀ v ∈ V̂. (11.9)

In the case of a linear variational problem specified in terms of a bilinear form a and a linear
form L, the solution is computed by assembling the matrix A and vector b of the corresponding
linear system, then applying boundary conditions to the system, and finally solving the linear
system. In the case of a nonlinear variational problem specified in terms of a linear form F and a
bilinear form dF (the derivative or Jacobian of F), the solution is computed by Newton’s method.
DOLFIN determines whether a problem is linear or nonlinear based on the given forms; if a pair
of bilinear and linear forms (a and L) are given, then the problem is assumed to be linear, and if a
pair of linear and bilinear forms (F and dF) are given, then the problem is assumed to be nonlinear.

210 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

The code examples below demonstrate how to solve a linear variational problem specified in
terms of a bilinear form a, a linear form L and a list of Dirichlet boundary conditions given as
DirichletBC objects:

C++ code
std::vector<const BoundaryCondition*> bcs;

bcs.push_back(&bc0);

bcs.push_back(&bc1);

bcs.push_back(&bc2);

VariationalProblem problem(a, L, bcs);

Function u(V);

problem.solve(u);

Python code
bcs = [bc0, bc1, bc2]

problem = VariationalProblem(a, L, bcs)

u = problem.solve()

To solve a nonlinear variational problem, one must supply both a linear form F and its derivative dF,
which is a bilinear form. In many cases, the derivative can be easily computed using the function
derivative, either in a .ufl form file or as part of a Python script. We here demonstrate how a
nonlinear problem may be solved using the Python interface:

Python code
u = Function(V)

du = TrialFunction(V)

v = TestFunction(V)

F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx

dF = derivative(F, u, du)

problem = VariationalProblem(F, dF, bcs)

problem.solve(u)

A VariationalProblem provides a range of parameters that can be adjusted to control the solution
process. To view the list of available parameters for a VariationalProblem object problem, issue
the command info(problem, true) from C++ or info(problem, True) from Python.

11.3.11 File I/O and visualization

Preprocessing. DOLFIN has capabilities for mesh generation only in the form of the built-in
meshes UnitSquare, UnitCube, etc. External software must be used to generate more complicated
meshes. To simplify this process, DOLFIN provides a simple script dolfin-convert to convert
meshes from other formats to the DOLFIN XML format. Currently supported file formats are
listed in Table 11.4. The following code illustrates how to convert a mesh from the Gmsh format
(suffix .msh or .gmsh) to the DOLFIN XML format:

Bash code
dolfin-convert mesh.msh mesh.xml

Once a mesh has been converted to the DOLFIN XML file format, it can be read into a program, as
illustrated by the following code examples:

C++ code

11.3. FUNCTIONALITY 211

Suffix File format

.xml DOLFIN XML format

.ele / .node Triangle file format

.mesh Medit format, generated by TetGen with option -g

.msh / .gmsh Gmsh version 2.0 format

.grid Diffpack tetrahedral grid format

.inp Abaqus tetrahedral grid format

.e / .exo Sandia Exodus II file format

.ncdf ncdump’ed Exodus II file format

.vrt/.cell Star-CD tetrahedral grid format

Table 11.4: List of file formats supported by the dolfin-convert script.

Figure 11.6: Plotting a mesh us-
ing the DOLFIN plot command,
here the mesh dolfin-1.xml.gz dis-
tributed with DOLFIN.

Mesh mesh("mesh.xml");

Python code
mesh = Mesh("mesh.xml")

Postprocessing. To visualize a solution (Function), a Mesh or a MeshFunction, the plot command4

can be issued, from either C++ or Python:

C++ code
plot(u);

plot(mesh);

plot(mesh_function);

Python code
plot(u)

plot(mesh)

plot(mesh_function)

Example plots generated using the plot command are presented in Figures 11.6 and 11.7.
From Python, one can also plot expressions and finite elements:

4The plot command requires a working installation of the viper Python module. Plotting finite elements requires access
to the ffc plotting module.

212 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Figure 11.7: Plotting a scalar and
a vector-valued function using the
DOLFIN plot command, here the
pressure (left) and velocity (right) from
a solution of the Stokes equations on
the mesh from Figure 11.6.

Python code
plot(u)

plot(grad(u))

plot(u*u)

element = FiniteElement("BDM", tetrahedron, 3)

plot(element)

To enable interaction with a plot window (rotate, zoom) from Python, call the function interactive,
or add an optional argument interactive=True to the plot command.
The plot command provides rudimentary plotting, and advanced postprocessing is better handled
by external software such as ParaView and MayaVi2. This is easily accomplished by storing the
solution (a Function object) to file in PVD format (ParaView Data, an XML-based format). This
can be done in both C++ and Python by writing to a file with the .pvd extension, as illustrated in
the following code examples:

C++ code
File file("solution.pvd");

file << u;

Python code
file = File("solution.pvd")

file << u

The standard PVD format is ASCII based, hence the file size can become very large for large data
sets. To use a compressed binary format, a string "compressed" can be used when creating a
PVD-based File object:

C++ code
File file("solution.pvd", "compressed");

If multiple Functions are written to the same file (by repeated use of <<), then the data is interpreted
as a time series, which may then be animated in ParaView or MayaVi2. Each frame of the time
series is stored as a .vtu (VTK unstructured data) file, with references to these files stored in the
.pvd file. When writing time-dependent data, it can be useful to store the time t of each snapshot.
This is done as illustrated below:

C++ code
File file("solution.pvd", "compressed");

file << std::make_pair<const Function*, double>(&u, t);

11.3. FUNCTIONALITY 213

Python code
file = File("solution.pvd", "compressed");

file << (u, t)

Storing the time is particularly useful when animating simulations that use a varying time step.
The PVD format supports parallel post-processing. When running in parallel, a single .pvd file is
created and a .vtu file is created for the data on each partition. Results computed in parallel can
be viewed seamlessly using ParaView.

DOLFIN XML format. DOLFIN XML is the native format of DOLFIN. An advantage of XML
is that it is a robust and human-readable format. If the files are compressed, there is also little
overhead in terms of file size compared to a binary format.
Many of the classes in DOLFIN can be written to and from DOLFIN XML files using the standard
stream operators << and >>, as illustrated in the following code examples:

C++ code
File vector_file("vector.xml");

vector_file << vector;

vector_file >> vector;

File matrix_file("matrix.xml");

matrix_file << matrix;

matrix_file >> matrix;

File mesh_file("mesh.xml");

mesh_file << mesh;

mesh_file >> mesh;

File parameters_file("parameters.xml");

parameters_file << parameters;

parameters_file >> parameters;

Python code
vector_file = File("vector.xml")

vector_file << vector

vector_file >> vector

matrix_file = File("matrix.xml")

matrix_file << matrix

matrix_file >> matrix

mesh_file = File("mesh.xml")

mesh_file << mesh

mesh_file >> mesh

parameters_file = File("parameters.xml")

parameters_file << parameters

parameters_file >> parameters

One cannot read/write Function and FunctionSpace objects since the representation of a FunctionSpace

(and thereby the representation of a Function) relies on generated code.
DOLFIN automatically handles reading of gzipped XML files. Thus, one may save space by storing
meshes and other data in gzipped XML files (with suffix .xml.gz).

214 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Time series. For time-dependent problems, it may be useful to store a sequence of solutions or
meshes in a format that enables fast reading/writing of data. For this purpose, DOLFIN provides
the TimeSeries class. This enables the storage of a series of Vectors (of degrees of freedom) and/or
Meshes. The following code illustrates how to store a series of Vectors and Meshes to a TimeSeries:

C++ code
TimeSeries time_series("simulation_data");

while (t < T)

{

...

time_series.store(u.vector(), t);

time_series.store(mesh, t);

t += dt;

}

Python code
time_series = TimeSeries("simulation_data")

while t < T:

...

time_series.store(u.vector(), t)

time_series.store(mesh, t)

t += dt

Data in a TimeSeries are stored in a binary format with one file for each stored dataset (Vector
or Mesh) and a common index. Data may be retrieved from a TimeSeries by calling the retrieve

member function as illustrated in the code examples below. If a dataset is not stored at the
requested time, then the values are interpolated linearly for Vectors. For Meshes, the closest data
point will be used.

C++ code
time_series.retrieve(u.vector(), t);

time_series.retrieve(mesh, t);

Python code
time_series.retrieve(u.vector(), t);

time_series.retrieve(mesh, t);

11.3.12 Logging / diagnostics

DOLFIN provides a simple interface for the uniform handling of log messages, including warnings
and errors. All messages are collected to a single stream, which allows the destination and
formatting of the output from an entire program, including the DOLFIN library, to be controlled
by the user.

Printing messages. Informational messages from DOLFIN are normally printed using the info

command. This command takes a string argument and an optional list of variables to be formatted,
much like the standard C printf command. Note that the info command automatically appends a
newline to the given string. Alternatively, C++ users may use the dolfin::cout and dolfin::endl

object for C++ style formatting of messages as illustrated below.

11.3. FUNCTIONALITY 215

C++ code
info("Assembling system of size %d x %d.", M, N);

cout << "Assembling system of size " << M << " x " << N << "." << endl;

Python code
info("Assembling system of size %d x %d." % (M, N))

The info command and the dolfin::cout/endl objects differ from the standard C printf com-
mand and the C++ std::cout/endl objects in that the output is directed into a special stream,
the output of which may be redirected to destinations other than standard output. In particular,
one may completely disable output from DOLFIN, or select the verbosity of printed messages, as
explained below.

Warnings and errors. In addition to the info command, DOLFIN provides the commands warning
and error that can be used to issue warnings and errors, respectively. These two commands work
in much the same way as the info command. However, the warning command will prepend the
given message with "Warning: " and the error command will raise an exception that can be
caught, from both C++ and Python. Both commands will also print the message at a log level
higher than messages printed using info.

Setting the log level. The DOLFIN log level determines which messages routed through the logging
system will be printed. Only messages on a level higher than or equal to the current log level are
printed. The log level of DOLFIN may be set using the function set_log_level. This function
expects an integer value that specifies the log level. To simplify the specification of the log level, one
may use one of a number of predefined log levels as listed in the table below. The default log level is
INFO. Log messages may be switched off entirely by calling the command set_log_active(false)

from C++ and set_log_active(False) from Python. For technical reasons, the log level for
debugging messages is named DBG in C++ and DEBUG in Python.

Log level value

ERROR 40

WARNING 30

INFO 20

DBG / DEBUG 10

To print messages at an arbitrary log level, one may specify the log level to the info command, as
illustrated in the code examples below.

C++ code
info("Test message"); // will be printed

cout << "Test message" << endl; // will be printed

info(DBG, "Test message"); // will not be printed

info(15, "Test message"); // will not be printed

set_log_level(DBG);

info("Test message"); // will be printed

cout << "Test message" << endl; // will be printed

info(DBG, "Test message"); // will be printed

info(15, "Test message"); // will be printed

216 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

set_log_level(WARNING);

info("Test message"); // will not be printed

cout << "Test message" << endl; // will not be printed

warning("Test message"); // will be printed

std::cout << "Test message" << std::endl; // will be printed!

Python code
info("Test message") # will be printed

info(DEBUG, "Test message") # will not be printed

info(15, "Test message") # will not be printed

set_log_level(DEBUG)

info("Test message") # will be printed

info(DEBUG, "Test message") # will be printed

info(15, "Test message") # will be printed

set_log_level(WARNING)

info("Test message") # will not be printed

warning("Test message") # will be printed

print "Test message" # will be printed!

Printing objects. Many of the standard DOLFIN objects can be printed using the info command,
as illustrated in the code examples below.

C++ code
info(vector);

info(matrix);

info(solver);

info(mesh);

info(mesh_function);

info(function);

info(function_space);

info(parameters);

Python code
info(vector)

info(matrix)

info(solver)

info(mesh)

info(mesh_function)

info(function)

info(function_space)

info(parameters)

The above commands will print short informational messages. For example, the command
info(mesh) may result in the following output:

Generated code
<Mesh of topological dimension 2 (triangles) with 25 vertices and 32 cells, ordered>

In the Python interface, the same short informal message can be printed by calling print mesh. To
print more detailed data, one may set the verbosity argument of the info function to true (defaults
to false), which will print a detailed summary of the object.

11.3. FUNCTIONALITY 217

C++ code
info(mesh, true);

Python code
info(mesh, True)

The detailed output for some objects may be very lengthy.

Tasks and progress bars. In addition to basic commands for printing messages, DOLFIN provides a
number of commands for organizing the diagnostic output from a simulation program. Two such
commands are begin and end. These commands can be used to nest the output from a program;
each call to begin increases the indentation level by one unit (two spaces), while each call to end

decreases the indentation level by one unit.
Another way to provide feedback is via progress bars. DOLFIN provides the Progress class for
this purpose. Although an effort has been made to minimize the overhead of updating the progress
bar, it should be used with care. If only a small amount of work is performed in each iteration of a
loop, the relative overhead of using a progress bar may be substantial. The code examples below
illustrate the use of the begin/end commands and the progress bar.

C++ code
begin("Starting nonlinear iteration.");

info("Updating velocity.");

info("Updating pressure.");

info("Computing residual.");

end();

Progress p("Iterating over all cells.", mesh.num_cells());

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

...

p++;

}

Progress q("Time-stepping");

while (t < T)

{

...

t += dt;

q = t / T;

}

Python code
begin("Starting nonlinear iteration.")

info("Updating velocity.")

info("Updating pressure.")

info("Computing residual.")

end()

p = Progress("Iterating over all cells.", mesh.num_cells())

for cell in cells(mesh):

...

p += 1

q = Progress q("Time-stepping")

while t < T:

218 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

...

t += dt

q.update(t / T)

Setting timers. Timing can be accomplished using the Timer class. A Timer is automatically started
when it is created, and automatically stopped when it goes out of scope. Creating a Timer at the
start of a function is therefore a convenient way to time that function, as illustrated in the code
examples below.

C++ code
void solve(const Matrix& A, Vector& x, const Vector& b)

{

Timer timer("Linear solve");

...

}

Python code
def solve(A, b):

timer = Timer("Linear solve")

...

return x

One may explicitly call the start and stop member functions of a Timer. To directly access the
value of a timer, the value member function can be called. A summary of the values of all timers
created during the execution of a program can be printed by calling the summary function.

11.3.13 Parameters

DOLFIN keeps a global database of parameters that control the behavior of its various components.
Parameters are controlled via a uniform type-independent interface that allows the retrieval of
parameter values, modification of parameter values, and the addition of new parameters to the
database. Different components (classes) of DOLFIN also rely on parameters that are local to each
instance of the class. This permits different parameter values to be set for different objects of a
class.
Parameter values can be either integer-valued, real-valued (standard double or extended precision),
string-valued, or boolean-valued. Parameter names must not contain spaces.

Accessing parameters. Global parameters can be accessed through the global variable parameters.
The below code illustrates how to print the values of all parameters in the global parameter
database, and how to access and change parameter values.

C++ code
info(parameters, True);

uint num_threads = parameters["num_threads"];

bool allow_extrapolation = parameters["allow_extrapolation"];

parameters["num_threads"] = 8;

parameters["allow_extrapolation"] = true;

Python code
info(parameters, True)

num_threads = parameters["num_threads"]

11.3. FUNCTIONALITY 219

allow_extrapolation = parameters["allow_extrapolation"]

parameters["num_threads"] = 8

parameters["allow_extrapolation"] = True

Parameters that are local to specific components of DOLFIN can be controlled by accessing the
member variable named parameters. The following code illustrates how to set some parameters
for a Krylov solver.

C++ code
KrylovSolver solver;

solver.parameters["absolute_tolerance"] = 1e-6;

solver.parameters["report"] = true;

solver.parameters("gmres")["restart"] = 50;

solver.parameters("preconditioner")["reuse"] = true;

Python code
solver = KrylovSolver()

solver.parameters["absolute_tolerance"] = 1e-6

solver.parameters["report"] = True

solver.parameters["gmres"]["restart"] = 50

solver.parameters["preconditioner"]["reuse"] = True

The above example accesses the nested parameter databases "gmres" and "preconditioner".
DOLFIN parameters may be nested to arbitrary depths, which helps with organizing parameters
into different categories. Note the subtle difference in accessing nested parameters in the two
interfaces. In the C++ interface, nested parameters are accessed by brackets ("..."), and in the
Python interface are they accessed by square brackets ["..."]. The parameters that are available
for a certain component can be viewed by using the info function.

Adding parameters. Parameters can be added to an existing parameter database using the add

member function which takes the name of the new parameter and its default value. It is also
simple to create new parameter databases by creating a new instance of the Parameters class. The
following code demonstrates how to create a new parameter database and adding to it a pair of
integer-valued and floating-point valued parameters.

C++ code
Parameters parameters("my_parameters");

my_parameters.add("foo", 3);

my_parameters.add("bar", 0.1);

Python code
my_parameters = Parameters("my_parameters")

my_parameters.add("foo", 3)

my_parameters.add("bar", 0.1)

A parameter database resembles the dict class in the Python interface. A user can iterate over the
keys, values and items:

Python code
for key, value in parameters.items():

print key, value

A Python dict can also be used to update a Parameter database:

220 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Python code
d = dict(num_threads=4, krylov_solver=dict(absolute_tolerance=1e-6))

parameters.update(d)

A parameter database can also be created in more compact way in the Python interface:

Python code
my_parameters = Parameters("my_parameters", foo=3, bar=0.1,

nested=Parameters("nested", baz=True))

Parsing command-line parameters. Command-line parameters may be parsed into the global pa-
rameter database or into any other parameter database. The following code illustrates how to
parse command-line parameters in C++ and Python, and how to pass command-line parameters
to the program.

C++ code
int main(int argc, char* argv[])

{

...

parameters.parse(argc, argv);

...

}

Python code
parameters.parse()

Bash code
python myprogram.py --num_threads 8 --allow_extrapolation true

Storing parameters to file. It can be useful to store parameter values to file, for example to document
which parameter values were used to run a simulation or to reuse a set of parameter values from a
previous run. The following code illustrates how to write and then read back parameter values
to/from a DOLFIN XML file.

Python code
File file("parameters.xml");

file << parameters;

file >> parameters;

C++ code
file = File("parameters.xml")

file << parameters

file >> parameters

11.4 Implementation notes

In this section, we comment on specific aspects of the implementation of DOLFIN, including
parallel computing, the generation of the Python interface, and just-in-time compilation.

11.4. IMPLEMENTATION NOTES 221

Figure 11.8: A mesh that is (a) colored
based on facet connectivity such that
cells that share a common facet have
different colors and (b) partitioned
into 12 parts, with each partition in-
dicated by a color.

(a) (b)

11.4.1 Parallel computing

DOLFIN supports parallel computing on multi-core workstations through to massively parallel
supercomputers. It is designed such that users can perform parallel simulations using the same
code that is used for serial computations.
Two paradigms for parallel simulation are supported. The first paradigm is multithreading
for shared memory machines. The second paradigm is fully distributed parallelization for dis-
tributed memory machines. For both paradigms, special preprocessing of a mesh is required. For
multithreaded parallelization, a so-called coloring approach is used (see Figure 11.8a), and for
distributed parallelization a mesh partitioning approach is used (see Figure 11.8b). Aspects of
these two approaches are discussed below. It also possible to combine the approaches, thereby
yielding hybrid approaches to leverage the power of modern clusters of multi-core processors.

Shared memory parallel computing. Multithreaded assembly for finite element matrices and vectors
on shared memory machines is supported using OpenMP. It is activated by setting the number of
threads to use via the parameter system. For example, the code

C++ code
parameters["num_threads"] = 6;

instructs DOLFIN to use six threads in the assembly process. During assembly, DOLFIN loops
over the cells or cell facets in a mesh, and computes local contributions to the global matrix or
vector, which are then added to the global matrix or vector. When using multithreaded assembly,
each thread is assigned a collection of cells or facets for which it is responsible. This is transparent
to the user.
The use of multithreading requires design care to avoid race conditions, which occur if multiple
threads attempt to write to the same memory location at the same time. Race conditions will
typically result in unpredictable behavior of a program. To avoid race conditions during assembly,
which would occur if two threads were to add values to a global matrix or vector at almost the

222 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

same time, DOLFIN uses a graph coloring approach. Before assembly, the mesh on a given process
is ‘colored’ such that each cell is assigned a color (which in practice is an integer) and such that
no two neighboring cells have the same color. The sense in which cells are neighbors for a given
problem depends on the type of finite element being used. In most cases, cells that share a vertex
are considered neighbors, but in other cases cells that share edges or facets may be considered
neighbors. During assembly, cells are assembled by color. All cells of the first color are shared
among the threads and assembled, and this is followed by the next color. Since cells of the same
color are not neighbors, and therefore do not share entries in the global matrix or vector, race
conditions will not occur during assembly. The coloring of a mesh is performed in DOLFIN using
either the interface to the Boost Graph Library or the interface to Zoltan (which is part of the
Trilinos project). Figure 11.8a shows a mesh that has been colored such that no two neighboring
cells (in the sense of a shared facet) are of the same color.
Multithreaded support in third-party linear algebra libraries is limited at the present time, but is
an area of active development. The LU solver PaStiX, which can be accessed via the PETSc linear
algebra backend, supports multithreaded parallelism.

Distributed parallel computing. Fully distributed parallel computing is supported using the Mes-
sage Passing Interface (MPI). To perform parallel simulations, DOLFIN should be compiled with
MPI and a parallel linear algebra backend (such as PETSc or Trilinos) enabled. To execute a parallel
simulation, a DOLFIN program should be launched using mpirun (the name of the program to
launch MPI programs may differ on some computers). A C++ program using 16 processes can be
executed using:

Bash code
mpirun -n 16 ./myprogram

and for Python:

Bash code
mpirun -n 16 python myprogram.py

DOLFIN supports fully distributed parallel meshes, which means that each processor has a copy
of only the portion of the mesh for which it is responsible. This approach is scalable since no
processor is required to hold a copy of the full mesh. An important step in a parallel simulation is
the partitioning of the mesh. DOLFIN can perform mesh partitioning in parallel using the libraries
ParMETIS and SCOTCH [Pellegrini]. The library to be used for mesh partitioning can be specified
via the parameter system, e.g., to use SCOTCH:

C++ code
parameters["mesh_partitioner"] = "SCOTCH";

or to use ParMETIS:

Python code
parameters["mesh_partitioner"] = "ParMETIS"

Figure 11.8b shows a mesh that has been partitioned in parallel into 12 domains. One process
would take responsibility for each domain.
If a parallel program is launched using MPI and a parallel linear algebra backend is enabled,
then linear algebra operations will be performed in parallel. In most applications, this will be
transparent to the user. Parallel output for postprocessing is supported through the PVD output

11.4. IMPLEMENTATION NOTES 223

format, and is used in the same way as for serial output. Each process writes an output file, and
the single main output file points to the files produced by the different processes.

11.4.2 Implementation and generation of the Python interface

The DOLFIN C++ library is wrapped to Python using the Simplified Wrapper and Interface
Generator SWIG [Beazley, 1996, SWIG] (see Chapter 20 for more details). The wrapped C++ library
is accessible in a Python module named cpp residing inside the main dolfin module of DOLFIN.
This means that the compiled module, with all its functions and classes, can be accessed directly
by:

Python code
from dolfin import cpp

Function = cpp.Function

assemble = cpp.assemble

The classes and functions in the cpp module have the same functionality as the corresponding
classes and functions in the C++ interface. In addition to the wrapper layer automatically generated
by SWIG, the DOLFIN Python interface relies on a number of components implemented directly
in Python. Both are imported into the Python module named dolfin. In the following sections,
the key customizations to the DOLFIN interface that facilitate this integration are presented. The
Python interface also integrates well with the NumPy and SciPy toolkits, which is also discussed
below.

11.4.3 UFL integration and just-in-time compilation

In the Python interface, the UFL form language has been integrated with the Python wrapped
DOLFIN C++ module. When explaining the integration, we use in this section the notation
dolfin::Foo or dolfin::bar to denote a C++ class or function in DOLFIN. The corresponding
SWIG-wrapped classes or functions will be referred to as cpp.Foo and cpp.bar. A class in UFL
will be referred to as ufl.Foo and a class in UFC as ufc::foo (note lower case). The Python classes
and functions in the added Python layer on top of the wrapped C++ library, will be referred to
as dolfin.Foo or dolfin.bar. The prefixes of the classes and functions are sometimes skipped
for convenience. Most of the code snippets presented in this section are pseudo code. Their
purpose is to illustrate the logic of a particular method or function. Parts of the actual code may
be intentionally excluded. A reader can examine particular classes or functions in the code for a
full understanding of the implementation.

Construction of function spaces. In the Python interface, ufl.FiniteElement and dolfin::FunctionSpace

are integrated. The declaration of a FunctionSpace is similar to that of a ufl.FiniteElement, but
instead of a cell type (for example, triangle) the FunctionSpace constructor takes a cpp.Mesh

(dolfin.Mesh):

Python code
mesh = UnitSquare(8, 8)

V = FunctionSpace(mesh, "Lagrange", 1)

In the Python constructor of FunctionSpace, a ufl.FiniteElement is instantiated. The FiniteElement
is passed to a just-in-time (JIT) compiler, which returns compiled and Python-wrapped ufc objects:
a ufc::finite_element and a ufc::dofmap. These two objects, together with the mesh, are used
to instantiate a cpp.FunctionSpace. The following pseudo code illustrates the instantiation of a
FunctionSpace from the Python interface:

224 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Python code
class FunctionSpace(cpp.FunctionSpace):

def __init__(self, mesh, family, degree):

Figure out the domain from the mesh topology

if mesh.topology().dim() == 2:

domain = ufl.triangle

else:

domain = ufl.tetrahedron

Create the UFL FiniteElement

self.ufl_element = ufl.FiniteElement(family, domain, degree)

JIT compile and instantiate the UFC classes

ufc_element, ufc_dofmap = jit(self.ufl_element)

Instantiate DOLFIN classes and finally the FunctionSpace

dolfin_element = cpp.FiniteElement(ufc_element)

dolfin_dofmap = cpp.DofMap(ufc_dofmap, mesh)

cpp.FunctionSpace.__init__(self, mesh, dolfin_element, dolfin_dofmap)

Constructing arguments (trial and test functions). The ufl.Argument class (the base class of ufl.TrialFunction
and ufl.TestFunction) is subclassed in the Python interface. Instead of using a ufl.FiniteElement

to instantiate the classes, a DOLFIN FunctionSpace is used:

Python code
u = TrialFunction(V)

v = TestFunction(V)

The ufl.Argument base class is instantiated in the subclassed constructor by extracting the
ufl.FiniteElement from the passed FunctionSpace, which is illustrated by the following pseudo
code:

Python code
class Argument(ufl.Argument):

def __init__(self, V, index=None):

ufl.Argument.__init__(self, V.ufl_element, index)

self.V = V

The TrialFunction and TestFunction are then defined using the subclassed Argument class:

Python code
def TrialFunction(V):

return Argument(V, -1)

def TestFunction(V):

return Argument(V, -2)

Coefficients, functions and expressions. When a UFL form is defined using a Coefficient, a user
must associate with the form either a discrete finite element Function or a user-defined Expression

before the form is assembled. In the C++ interface of DOLFIN, a user needs to explicitly carry
out this association (L.f = f). In the Python interface of DOLFIN, the ufl.Coefficient class
is combined with the DOLFIN Function and Expression classes, and the association between
the coefficient as a symbol in the form expression (Coefficient) and its value (Function or
Expression) is automatic. A user can therefore assemble a form defined using instances of these
combined classes directly:

11.4. IMPLEMENTATION NOTES 225

Python code
class Source(Expression):

def eval(self, values, x):

values[0] = sin(x[0])

v = TestFunction(V)

f = Source()

L = f*v*dx

b = assemble(L)

The Function class in the Python interface inherits from both ufl.Coefficient and cpp.Function,
as illustrated by the following pseudo code:

Python code
class Function(ufl.Coefficient, cpp.Function):

def __init__(self, V):

ufl.Coefficient.__init__(self, V.ufl_element)

cpp.Function().__init__(self, V)

The actual constructor also includes logic to instantiate a Function from other objects. A more
elaborate logic is also included to handle access to subfunctions.
A user-defined Expression can be created in two different ways: (i) as a pure Python Expression;
or (ii) as a JIT compiled Expression. A pure Python Expression is an object instantiated from a
subclass of Expression in Python. The Source class above is an example of this. Pseudo code for
the constructor of the Expression class is similar to that for the Function class:

Python code
class Expression(ufl.Coefficient, cpp.Expression):

def __init__(self, element=None):

if element is None:

element = auto_select_element(self.value_shape())

ufl.Coefficient.__init__(self, element)

cpp.Expression(element.value_shape())

If the ufl.FiniteElement is not defined by the user, DOLFIN will automatically choose an element
using the auto_select_element function. The function takes the value shape of the Expression as
argument. This has to be supplied by the user for any vector- or tensor-valued Expressions, by
overloading the value_shape method. The base class cpp.Expression is initialized using the value
shape of the ufl.FiniteElement.
The actual code is considerably more complex than indicated above, as the same class, Expression,
is used to handle both JIT compiled and pure Python Expressions. Also note that the actual
subclass is eventually generated by a metaclass in Python, which makes it possible to include sanity
checks for the declared subclass.
The cpp.Expression class is wrapped by a so-called director class in the SWIG-generated C++ layer.
This means that the whole Python class is wrapped by a C++ subclass of dolfin::Expression.
Each virtual method of the C++ base class is implemented by the SWIG-generated subclass in C++.
These methods call the Python version of the method, which the user eventually implements by
subclassing cpp.Expression in Python.

Just-in-time compilation of expressions. The performance of a pure Python Expression may be
suboptimal because of the callback from C++ to Python each time the Expression is evaluated. To
circumvent this, a user can instead subclass the C++ version of Expression using a JIT compiled
Expression. Because the subclass is implemented in C++, it will not involve any callbacks to

226 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Python, and can therefore be significantly faster than a pure Python Expression. A JIT compiled
Expression is generated by passing a string of C++ code to the Expression constructor:

Python code
e = Expression("sin(x[0])")

The passed string is used to generate a subclass of dolfin::Expression in C++, where it is inlined
into an overloaded eval method. The final code is JIT compiled and wrapped to Python using
Instant (see Chapter 15). The generated Python class is then imported into Python. The class is not
yet instantiated, as the final JIT compiled Expression also needs to inherit from ufl.Coefficient.
To accomplish this, we dynamically create a class which inherits from both the generated class and
ufl.Coefficient.
Classes in Python can be created during run-time by using the type function. The logic of
creating a class and returning an instance of that class is handled in the __new__ method of
dolfin.Expression, as illustrated by the following pseudo code:

Python code
class Expression(object):

def __new__(cls, cppcode=None):

if cls.__name__ != "Expression":

return object.__new__(cls)

cpp_base = compile_expressions(cppcode)

def __init__(self, cppcode):

...

generated_class = type("CompiledExpression",

(Expression, ufl.Coefficient, cpp_base),

{"__init__": __init__})

return generated_class()

The __new__ method is called when a JIT compiled Expression is instantiated. However, it will
also be called when a pure Python subclass of Expression is instantiated during initialization of
the base-class. We handle the two different cases by checking the name of the instantiated class.
If the name of the class is not "Expression", then the call originates from the instantiation of a
subclass of Expression. When a pure Python Expression is instantiated, like the Source instance
in the code example above, the __new__ method of object is called and the instantiated object is
returned. In the other case, when a JIT compiled Expression is instantiated, we need to generate
the JIT compiled base class from the passed Python string, as explained above. This is done by
calling the function compile_expressions. Before type is called to generate the final class, an
__init__ method for the class is defined. This method initiates the new object by automatically
selecting the element type and setting dimensions for the created Expression. This procedure is
similar to what is done for the Python derived Expression class. Finally, we construct the new
class which inherits the JIT compiled class and ufl.Coefficient by calling type.
The type function takes three arguments: the name of the class ("CompiledExpression"), the
bases of the class (Expression, ufl.Coefficient, cpp_base), and a dict defining the interface
(methods and attributes) of the class. The only new method or attribute we provide to the
generated class is the __init__ method. After the class is generated, we instantiate it and the
object is returned to the user.

Assembly of UFL forms. The assemble function in the Python interface of DOLFIN enables a user
to directly assemble a declared UFL form:

Python code

11.4. IMPLEMENTATION NOTES 227

mesh = UnitSquare(8, 8)

V = FunctionSpace("CG", mesh, 1)

u = TrialFunction(V)

v = TestFunction(V)

c = Expression("sin(x[0])")

a = c*dot(grad(u), grad(v))*dx

A = assemble(a)

The assemble function is a thin wrapper layer around the wrapped cpp.assemble function. The
following pseudo code illustrates what happens in this layer:

Python code
def assemble(form, tensor=None, mesh=None):

dolfin_form = Form(form)

if tensor is None:

tensor = create_tensor(dolfin_form.rank())

if mesh is not None:

dolfin_form.set_mesh(mesh)

cpp.assemble(dolfin_form, tensor)

return tensor

Here, form is a ufl.Form, which is used to generate a dolfin.Form, as explained below. In addition
to the form argument, a user can choose to provide a tensor and/or a mesh. If a tensor is not
provided, one will automatically be generated by the create_tensor function. The optional mesh
is needed if the form does not contain any Arguments, or Functions; for example when a functional
containing only Expressions is assembled. Note that the length of the above signature has been
shortened. Other arguments to the assemble function exist but are skipped here for clarity.
The following pseudo code demonstrates what happens in the constructor of dolfin.Form, where
the base class cpp.Form is initialized from a ufl.Form:

Python code
class Form(cpp.Form):

def __init__(self, form):

compiled_form, form_data = jit(form)

function_spaces = extract_function_spaces(form_data)

coefficients = extract_coefficients(form_data)

cpp.Form.__init__(self, compiled_form, function_spaces, coefficients)

The form is first passed to the dolfin.jit function, which calls the registered form compiler to
generate code and JIT compile it. There are presently two form compilers that can be chosen:
"ffc" and "sfc" (see Chapters 12 and 16). Each one of these form compilers defines its own jit

function, which eventually will receive the call. The form compiler can be chosen by setting:

Python code
parameters["form_compiler"]["name"] = "sfc"

The default form compiler is "ffc". The jit function of the form compiler returns the JIT compiled
ufc::form together with a ufl.FormData object. The latter is a data structure containing meta data
for the ufl.form, which is used to extract the function spaces and coefficients that are needed to
instantiate a cpp.Form. The extraction of these data is handled by the extract_function_spaces

and the extract_coefficients functions.

11.4.4 NumPy and SciPy integration

The values of the Matrix and Vector classes in the Python interface of DOLFIN can be viewed as
NumPy arrays. This is done by calling the array method of the vector or matrix:

228 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Python code
A = assemble(a)

AA = A.array()

Here, A is a matrix assembled from the form a. The NumPy array AA is a dense structure and all
values are copied from the original data. The array function can be called on a distributed matrix
or vector, in which case it will return the locally stored values.

Direct access to linear algebra data. Direct access to the underlying data is possible for the uBLAS

and MTL4 linear algebra backends. A NumPy array view into the data will be returned by the
method data:

Python code
parameters["linear_algebra_backend"] = "uBLAS"

b = assemble(L)

bb = b.data()

Here, b is a uBLAS vector and bb is a NumPy view into the data of b. Any changes to bb will
directly affect b. A similar method exists for matrices:

Python code
parameters["linear_algebra_backend"] = "MTL4"

A = assemble(a)

rows, columns, values = A.data()

The data is returned in a compressed row storage format as the three NumPy arrays rows, columns,
and values. These are also views of the data that represent A. Any changes in values will directly
result in a corresponding change in A.

Sparse matrix and SciPy integration. The rows, columns, and values data structures can be used to
instantiate a csr_matrix from the scipy.sparse module [Jones et al., 2009]:

Python code
from scipy.sparse import csr_matrix

rows, columns, values = A.data()

csr = csr_matrix(values, rows, columns)

The csr_matrix can then be used with other Python modules that support sparse matrices, such
as the scipy.sparse module and pyamg, which is an algebraic multigrid solver [Bell et al., 2011].

Slicing vectors. NumPy provides a convenient slicing interface for NumPy arrays. The Python
interface of DOLFIN also provides such an interface for vectors (see Chapter 20 for details of the
implementation). A slice can be used to access and set data in a vector:

Python code
Create copy of vector

b_copy = b[:]

Slice assignment (c can be a scalar, a DOLFIN vector or a NumPy array)

b[:] = c

Set negative values to zero

b[b < 0] = 0

Extract every second value

11.5. HISTORICAL NOTES 229

b2 = b[::2]

A difference between a NumPy slice and a slice of a DOLFIN vector is that a slice of a NumPy
array provides a view into the original array, whereas in DOLFIN we provide a copy. A list/tuple
of integers or a NumPy array can also be used to both access and set data in a vector:

Python code
b1 = b[(0, 4, 7, 10)]

b2 = b[array((0, 4, 7, 10))]

11.5 Historical notes

The first public version of DOLFIN, version 0.2.0, was released in 2002. At that time, DOLFIN
was a self-contained C++ library with minimal external dependencies. All functionality was then
implemented as part of DOLFIN itself, including linear algebra and finite element form evaluation.
Although only piecewise linear elements were supported, DOLFIN provided rudimentary auto-
mated finite element assembly of variational forms. The form language was implemented by C++
operator overloading. For an overview of the development of the FEniCS form language and an
example of the early form language implemented in DOLFIN, see Chapter 12.
Later, parts of the functionality of DOLFIN have been moved to either external libraries or other
FEniCS components. In 2003, the FEniCS project was born and shortly after, with the release of
version 0.5.0 in 2004, the form evaluation system in DOLFIN was replaced by an automated code
generation system based on FFC and FIAT. In the following year, the linear algebra was replaced
by wrappers for PETSc data structures and solvers. At this time, the DOLFIN Python interface
(PyDOLFIN) was introduced. Since then, the Python interface has developed from a simple
auto-generated wrapper layer for the DOLFIN C++ functionality to a mature problem-solving
environment with support for just-in-time compilation of variational forms and integration with
external Python modules like NumPy.
In 2006, the DOLFIN mesh data structures were simplified and reimplemented to improve efficiency
and expand functionality. The new data structures were based on a light-weight object-oriented
layer on top of an underlying data storage by plain contiguous C/C++ arrays and improved
the efficiency by orders of magnitude over the old implementation, which was based on a fully
object-oriented implementation with local storage of all mesh entities like cells and vertices. The
first release of DOLFIN with the new mesh library was version 0.6.2.
In 2007, the UFC interface was introduced and the FFC form language was integrated with the
DOLFIN Python interface. Just-in-time compilation was also introduced. The following year,
the linear algebra interfaces of DOLFIN were redesigned to allow flexible handling of multiple
linear algebra backends. In 2009, a major milestone was reached when parallel computing was
introduced in DOLFIN.
Over the years, DOLFIN has undergone a large number of changes to its design, interface and
implementation. However, since the release of DOLFIN 0.9.0, which introduced a redesign of the
DOLFIN function classes based on the new function space abstraction, only minor changes have
been made to the interface. Since the release of version 0.9.0, most work has gone into refining
the interface, implementing missing functionality, fixing bugs and improving documentation, in
anticipation of the first stable release of DOLFIN, version 1.0.

12 FFC: the FEniCS form compiler

By Anders Logg, Kristian B. Ølgaard, Marie E. Rognes and Garth N. Wells

One of the key features of FEniCS is automated code generation for the general and efficient
solution of finite element variational problems. This automated code generation relies on a form
compiler for offline or just-in-time compilation of code for individual forms. Two different form
compilers are available as part of FEniCS. This chapter describes the form compiler FFC. The other
form compiler, SFC, is described in Chapter 16.

12.1 Compilation of variational forms

In simple terms, the solution of finite element variational problems is based on two ingredients:
the assembly of linear or nonlinear systems of equations and the solution of those equations. As a
result, many finite element codes are similar in their design and implementation. In particular, a
central part of most finite element codes is the assembly of sparse matrices from finite element
bilinear forms. In Chapter 7, we saw that one may formulate a general algorithm for assembly of
sparse tensors from variational forms. However, this algorithm relies on the computation of the
element tensor AT as well as the local-to-global mapping ιT . Both AT and ιT differ greatly between
different finite elements and different variational forms. Special-purpose code is therefore needed.
As a consequence, the code for computing AT and ιT must normally be developed by hand for a
given application. This is both tedious and error-prone.

The issue of having to develop code for AT and ιT by hand can be resolved by a form compiler.
A form compiler generates code for computing AT and ιT . This code may then be called by
a general purpose routine for assembly of finite element matrices and vectors. In addition to
reduced development time, performance may be improved by using code generation since the form
compiler can generate efficient code for the computation of AT by using optimization techniques
that are not readily applicable if the code is developed by hand. In Chapters 8, 9 and 10, two
different approaches to the optimized computation of the element tensor AT are presented.

From an input describing a finite element variational problem in mathematical notation, the form
compiler FFC generates code for the efficient computation of AT and ιT , as well as code for
computing related quantities. More specifically, FFC takes as input a variational form specified
in the UFL form language (described in Chapter 18) and generates as output C++ code that
conforms to the UFC interface (described in Chapter 17). This process is illustrated schematically
in Figure 12.1.

231

232 CHAPTER 12. FFC: THE FENICS FORM COMPILER

UFL
FFC

UFC
Figure 12.1: The form compiler FFC
generates C++ code in UFC format
from a given finite element variational
form in UFL format.

12.2 Compiler interfaces

FFC provides three different interfaces: a Python interface, a command-line interface, and a just-in-
time (JIT) compilation interface. The first two are presented here, while the third is discussed below
in Section 12.7. Although FFC provides three different interfaces, many users are never confronted
with any of these interfaces; Python users mostly rely on DOLFIN to handle the communication
with FFC. The command-line interface is familiar for DOLFIN C++ users, who must call FFC
on the command-line to generate code for inclusion in their C++ programs. The JIT interface is
rarely called directly by users, but it is the main interface between DOLFIN and FFC, which allows
DOLFIN to seamlessly generate and compile code when running solver scripts implemented in
Python.

12.2.1 Python interface

The Python interface to FFC takes the form of a standard Python module. There are two main
entry point functions to the functionality of FFC: compile_form and compile_element, to compile
forms and elements, respectively.
The compile_form function provides the main functionality of FFC, which is to generate code for
assembly of matrices and vectors (tensors) from finite element variational forms. The compile_form

function expects a form or a list of forms as input along with a set of optional arguments:

Python code
compile_form(forms,

object_names={},

prefix="Form",

parameters=default_parameters())

The above function generates UFC conforming code for each of the given forms and each of the
finite elements involved in the definition of the forms, as well as their corresponding degree-of-
freedom maps. The prefix argument can be used to control the prefix of the file containing the
generated code; the default is “Form”. The suffix “.h” will be added automatically. The second
optional argument parameters should be a Python dictionary with code generation parameters
and is described further below. The object_names dictionary is an optional argument that specifies
the names of the coefficients that were used to define the form. This is used by the command-line
interface of FFC to allow a user to refer to any coefficients in a form by their names (f, g, etc.).
Sometimes, it may be desirable to compile single elements, which means generating code for
run-time evaluation of basis functions and other entities associated with the definition of a finite
element. The compile_element function expects a finite element or a list of finite elements as its
first argument. In addition, a set of optional arguments can be provided:

Python code
compile_element(elements,

prefix="Element",

parameters=default_parameters())

12.2. COMPILER INTERFACES 233

Figure 12.2: Compiling a form using
the FFC Python interface. Python code

from ufl import *
from ffc import *

element = FiniteElement("Lagrange", triangle, 1)
u = TrialFunction(element)
v = TestFunction(element)
f = Coefficient(element)

a = inner(grad(u), grad(v))*dx
L = f*v*dx

compile_form([a, L], prefix="Poisson")

The above function generates UFC conforming code for the specified finite element spaces and
their corresponding degree-of-freedom maps. The arguments prefix and parameters play the
same role as for compile_form.
As an illustration, we list in Figure 12.2 the specification and compilation of a variational formula-
tion of Poisson’s equation in two dimensions using the Python interface. The last line calls the
compile_form function. When run, code will be generated for the forms a and L, and the finite
element and degree-of-freedom map associated with the element element, and then written to the
file “Poisson.h”. In Figure 12.3, we list (a part of) the generated C++ code for the input displayed
in Figure 12.2.
In Figure 12.4, we list the specification and compilation of a piecewise continuous quartic finite
element (Lagrange element of degree 4) in three dimensions using the FFC Python interface. The
two first lines import the UFL and FFC modules respectively. The third line specifies the finite
element in the UFL syntax. The last line calls the FFC compile_element function. The generated
code is written to the file P4tet.h, as specified by the argument prefix. In Figure 12.5, we list (a
part of) the generated C++ code for the input displayed in Figure 12.4.

12.2.2 Command-line interface

The command-line interface takes a UFL form file or a list of form files as input:

Bash code
$ ffc FormFile.ufl

The form file should contain the specification of elements and/or forms in the UFL syntax, and is
very similar to the FFC Python interface, as illustrated by the following specification of the same
variational problem as in Figure 12.2:

UFL code
element = FiniteElement("Lagrange", triangle, 1)

u = TrialFunction(element)

v = TestFunction(element)

f = Coefficient(element)

a = inner(grad(u), grad(v))*dx

L = f*v*dx

The contents of each form file are wrapped in a Python script and then executed. Such a script
is simply a copy of the form file that includes the required imports of FFC and UFL and calls
compile_element or compile_form from the FFC Python interface. The variable names a, L and

234 CHAPTER 12. FFC: THE FENICS FORM COMPILER

C++ code
virtual void tabulate_tensor(double* A,

const double * const * w,
const ufc::cell& c) const

{
[...]

// Extract vertex coordinates
const double * const * x = c.coordinates;

// Compute Jacobian of affine map from reference cell
const double J_00 = x[1][0] - x[0][0];
const double J_01 = x[2][0] - x[0][0];
const double J_10 = x[1][1] - x[0][1];
const double J_11 = x[2][1] - x[0][1];

// Compute determinant of Jacobian
double detJ = J_00*J_11 - J_01*J_10;

// Compute inverse of Jacobian
const double K_00 = J_11 / detJ;
const double K_01 = -J_01 / detJ;
const double K_10 = -J_10 / detJ;
const double K_11 = J_00 / detJ;

// Set scale factor
const double det = std::abs(detJ);

// Compute geometry tensor
const double G0_0_0 = det*(K_00*K_00 + K_01*K_01);
const double G0_0_1 = det*(K_00*K_10 + K_01*K_11);
const double G0_1_0 = det*(K_10*K_00 + K_11*K_01);
const double G0_1_1 = det*(K_10*K_10 + K_11*K_11);

// Compute element tensor
A[0] = 0.500000000000000*G0_0_0

+ 0.500000000000000*G0_0_1
+ 0.500000000000000*G0_1_0
+ 0.500000000000000*G0_1_1;

A[1] = -0.500000000000000*G0_0_0
-0.500000000000000*G0_1_0;

A[2] = -0.500000000000000*G0_0_1
-0.500000000000000*G0_1_1;

A[3] = -0.500000000000000*G0_0_0
-0.500000000000000*G0_0_1;

A[4] = 0.500000000000000*G0_0_0;
A[5] = 0.500000000000000*G0_0_1;
A[6] = -0.500000000000000*G0_1_0

-0.500000000000000*G0_1_1;
A[7] = 0.500000000000000*G0_1_0;
A[8] = 0.500000000000000*G0_1_1;

}

Figure 12.3: Excerpt of the C++ code
generated for the input listed in Fig-
ure 12.2. In this example, the element
tensor is evaluated by computing a
tensor contraction between a reference
tensor A0 (containing values that are
either zero or 0.5) and the geometry
tensor GT computed based on geomet-
rical data from the current cell. See
Chapter 9 for further details.

Python code
from ufl import *
from ffc import *
element = FiniteElement("Lagrange", tetrahedron, 4)
compile_element(element, prefix="P4tet")

Figure 12.4: Compiling an element us-
ing the FFC Python interface.

12.2. COMPILER INTERFACES 235

Figure 12.5: Excerpt of the C++ code
generated for the input listed in Fig-
ure 12.4. The evaluation of a basis
function is a complex process that in-
volves mapping the given point back
to a reference cell and evaluating the
given basis function as a linear com-
bination of a special set of basis func-
tions (the “prime basis”) on the refer-
ence cell. The code generated by FFC
is based on information given to FFC
by FIAT at compile-time.

C++ code
virtual void evaluate_basis(unsigned int i,

double* values,
const double* coordinates,
const ufc::cell& c) const

{
// Extract vertex coordinates
const double * const * x = c.coordinates;

// Compute Jacobian of affine map from reference cell
const double J_00 = x[1][0] - x[0][0];
const double J_01 = x[2][0] - x[0][0];
const double J_02 = x[3][0] - x[0][0];
const double J_10 = x[1][1] - x[0][1];
const double J_11 = x[2][1] - x[0][1];
[...]

// Reset values.

*values = 0.000000000000000;
switch (i)
{
case 0:
{
[...]
for (unsigned int r = 1; r < 4; r++)
{
rr = (r + 1)*((r + 1) + 1)*((r + 1) + 2)/6;
ss = r*(r + 1)*(r + 2)/6;
[...]

}
[...]
for (unsigned int r = 0; r < 35; r++)
{

*values += coefficients0[r]*basisvalues[r];
}
[...]

}
[...]
}
[...]

}

[...]

virtual void tabulate_dofs(unsigned int* dofs,
const ufc::mesh& m,
const ufc::cell& c) const

{
unsigned int offset = 0;
dofs[0] = offset + c.entity_indices[0][0];
dofs[1] = offset + c.entity_indices[0][1];
dofs[2] = offset + c.entity_indices[0][2];
dofs[3] = offset + c.entity_indices[0][3];
offset += m.num_entities[0];
[...]

}

[...]

236 CHAPTER 12. FFC: THE FENICS FORM COMPILER

element are recognized as a bilinear form, a linear form and a finite element, respectively. In
addition, FFC recognizes the variable name M as a functional.

12.3 Parameters affecting code generation

The code generated by FFC can be controlled by a number of optional parameters. Through the
Python interface, parameters are set in the dictionary parameters which is passed to the compile

functions. The default values for these may be obtained by calling the function default_parameters

from the Python interface. Most parameters can also be set on the command-line. All available
command-line parameters are listed on the FFC manual page (man ffc). We here list some of
the parameters which affect the code generation. We list the dictionary key associated with each
parameter, and the command-line version in parentheses, if available.

"format" (-l) This parameter controls the output format for the generated code. The default
value is “ufc”, which indicates that the code is generated according to the UFC specification.
Alternatively, the value “dolfin” may be used to generate code according to the UFC format
with a small set of additional DOLFIN-specific wrappers.

"representation" (-r) This parameter controls the representation used for the generated element
tensor code. There are three possibilities: “auto” (the default), “quadrature” and “tensor”.
See Section 12.5, and Chapters 8 and 9 for more details on the different representations.
In the case “auto”, either the quadrature or tensor representation is selected by FFC. FFC
attempts to select the representation which will lead to the most efficient code for the given
form.

"split" (-f split) This option controls the output of the generated code into a single or multiple
files. The default is False, in which case the generated code is written to a single file. If set
to True, separate header (.h) and implementation (.cpp) files are generated.

"optimize" (-O) This option controls code optimization features, and the default is False. If set
to True, the code generated for the element tensor is optimized for run-time performance.
The optimization strategy used depends on the chosen representation. In general, this will
increase the time required for FFC to generate code, but should reduce the run-time for the
generated code.

"log_level" This option controls the verbosity level of the compiler. The possible values are, in
order of decreasing verbosity: DEBUG, INFO (default), ERROR and CRITICAL.

12.4 Compiler design

FFC breaks compilation into several stages. The output generated at each stage serves as input
for the following stage, as illustrated in Figure 12.6. We describe each of these stages below. The
individual compiler stages may be accessed through the ffc.compiler module. We consider here
only the stages involved when compiling forms. For compilation of elements a similar (but simpler)
set of stages is used.

Compiler stage 0: Language (parsing). In this stage, the user-specified form is interpreted and
stored as a UFL abstract syntax tree (AST). The actual parsing is handled by Python and the
transformation to a UFL form object is implemented by operator overloading in UFL.

Input: Python code or .ufl file
Output: UFL form

12.4. COMPILER DESIGN 237

Figure 12.6: Form compilation bro-
ken into six sequential stages: Lan-
guage, Analysis, Representation, Opti-
mization, Code generation and Code
Formatting. Each stage generates out-
put based on input from the previous
stage. The input/output data consist
of a UFL form file (in the case of call-
ing FFC from the command-line), a
UFL object, a UFL object and meta-
data computed from the UFL object,
an intermediate representation (IR), an
optimized intermediate representation
(OIR), C++ code and, finally, C++ code
files.

238 CHAPTER 12. FFC: THE FENICS FORM COMPILER

Compiler stage 1: Analysis. This stage preprocesses the UFL form and extracts form meta data
(FormData), such as which elements were used to define the form, the number of coefficients
and the cell type (intervals, triangles, or tetrahedra). This stage also involves selecting a
suitable representation for the form if that has not been specified by the user (see Section 12.5
below).

Input: UFL form
Output: preprocessed UFL form and form meta data

Compiler stage 2: Code representation. This stage examines the input and generates all data
needed for the code generation. This includes generation of finite element basis functions,
extraction of data for mapping of degrees of freedom, and possible precomputation of
integrals. Most of the complexity of compilation is handled in this stage.

The intermediate representation is stored as a dictionary, mapping names of UFC func-
tions to the data needed for generation of the corresponding code. In simple cases,
like ufc::form::rank, this data may be a simple number like 2. In other cases, like
ufc::cell_tensor::tabulate_tensor, the data may be a complex data structure that de-
pends on the choice of form representation.

Input: preprocessed UFL form and form meta data
Output: intermediate representation (IR)

Compiler stage 3: Optimization. This stage examines the intermediate representation and per-
forms optimizations. Such optimization may involve FErari based optimizations as discussed
in Chapter 13 or symbolic optimization as discussed in Chapter 8. Data stored in the inter-
mediate representation dictionary is then replaced by new data that encode an optimized
version of the function in question.

Input: intermediate representation (IR)
Output: optimized intermediate representation (OIR)

Compiler stage 4: Code generation. This stage examines the optimized intermediate representa-
tion and generates the actual C++ code for the body of each UFC function. The code is stored
as a dictionary, mapping names of UFC functions to strings containing the C++ code. As an
example, the data generated for ufc::form::rank may be the string “return 2;”.

We emphasize the importance of separating stages 2, 3 and 4. This allows stages 2 and 3 to
focus on algorithmic aspects related to finite elements and variational forms, while stage 4

is concerned only with generating C++ code from a set of instructions prepared in earlier
compilation stages.

Input: optimized intermediate representation (OIR)
Output: C++ code

Compiler stage 5: Code formatting. This stage examines the generated C++ code and formats it
according to the UFC format, generating as output one or more .h/.cpp files conforming to
the UFC specification. This is where the actual writing of C++ code takes place. This stage
relies on templates for UFC code available as part of the UFC module ufc_utils.

Input: C++ code
Output: C++ code files

12.5. FORM REPRESENTATION 239

12.5 Form representation

Two different approaches to code generation are implemented in FFC. One based on traditional
quadrature and another on a special tensor representation. We address these representations here
briefly and refer readers to Chapter 8 for details of the quadrature representation and to Chapter 9

for details of the tensor representation.

12.5.1 Quadrature representation

The quadrature representation in FFC is selected using the option -r quadrature. As the name
suggests, the method to evaluate the local element tensor AT involves a loop over integration
points and adding the contribution from each point to AT . To generate code for quadrature, FFC
calls FIAT during code generation to tabulate finite element basis functions and their derivatives
at a suitable set of quadrature points on the reference element. It then goes on to generate code
for computing a weighted average of the integrand defined by the UFL AST at these quadrature
points.

12.5.2 Tensor representation

When FFC is called with the -r tensor option, it attempts to extract a monomial representation
of the given UFL form, that is, rewrite the given form as a sum of products of basis functions
and their derivatives. Such a representation is not always possible, in particular if the form is
expressed using operators other than addition, multiplication and linear differential operators. If
unsuccessful, FFC falls back to using quadrature representation.
If the transformation is successful, FFC computes the tensor representation AT = A0 : GT , as
described in Chapter 9, by calling FIAT to compute the reference tensor A0. Code is then generated
for computing the element tensor. Each entry of the element tensor is obtained by computing an
inner product between the geometry tensor GT and a particular slice of the reference tensor. It
should be noted that the entries of the reference tensor are known during code generation, so these
numbers enter directly into the generated code.

12.5.3 Automatic selection of representation

If the user does not specify which representation to use, FFC will try to automatically select
the “best” representation, that is, the representation that is believed to yield the best run-time
performance. As described in Chapter 8, the run-time performance depends on many factors
and it might not be possible to give a precise a priori answer as to which representation will be
best for a particular variational form. In general, the more complex the form (in terms of the
number of derivatives and the number of function products), the more likely quadrature is to
be preferable. See Ølgaard and Wells [2010] for a detailed discussion on form complexity and
comparisons between tensor and quadrature representations. In Ølgaard and Wells [2010], it was
suggested that the selection should be based on an estimate of the operation count to compute the
element tensor AT . However, it turns out to be difficult to obtain an estimate which is accurate
enough for this purpose. Therefore, the following crude strategy to select the representation has
been implemented. First, FFC will try to generate the tensor representation and in case it fails,
quadrature representation will be selected. If the tensor representation is generated successfully,
each monomial is investigated and if the number of coefficients plus derivatives is greater than
three, then quadrature representation is selected for the given variational form.

240 CHAPTER 12. FFC: THE FENICS FORM COMPILER

12.6 Optimization

The optimization stage of FFC is concerned with the run-time efficiency of the generated code for
computing the local finite element tensor. Optimization is available for both quadrature and tensor
representations, and they both operate on the intermediate representation generated in stage two.
The output in both cases is a new set of instructions (an optimized intermediate representation)
for the code generation stage. The goal of the optimization is to reduce the number of operations
needed to compute the element tensor AT .
Due to the dissimilar nature of the quadrature and tensor representations, the optimizations
applied to the two representations are different. To optimize the tensor representation, FFC
relies on the Python module FErari (see Chapter 13) to perform the optimizations. Optimization
strategies for the quadrature representation are implemented as part of the FFC module itself
and are described in Chapter 8. For both representations, the optimizations come at the expense
of an increased generation time for FFC and for very complicated variational forms, hardware
limitations can make the compilation impossible.
Optimizations are switched on by using the command-line option -O or through the Python
interface by setting the parameter optimize equal to True. For the quadrature representation, there
exist four optimization strategy options, and these can be selected through the command-line
interface by giving the additional options -f eliminate_zeros, -f simplify_expressions, -f
precompute_ip_const and -f precompute_basis_const, and through the Python interface by set-
ting these parameters equal to True in the options dictionary. The option -f eliminate_zeros can
be combined with any of the other three options. Only one of the optimizations -f simplify_expressions,
-f precompute_ip_const and -f precompute_basis_const can be switched on at one time, and if
two are given -f simplify_expressions takes precedence over -f precompute_ip_const which
in turn takes precedence over the option -f precompute_basis_const. If no specific optimization
options are given, that is, only -O is specified, the default is to switch on the optimizations -f

eliminate_zeros and -f simplify_expressions.

12.7 Just-in-time compilation

FFC can also be used as a just-in-time (JIT) compiler. In a scripted environment, UFL objects can
be passed to FFC, and FFC will return Python modules. Calling the JIT compiler involves calling
the jit function available as part of the FFC Python module:

Python code
(compiled_object, compiled_module, form_data, prefix) \

= jit(ufl_object, parameters=None, common_cell=None)

where ufl_object is either a UFL form or finite element object, parameters is an optional dictionary
containing form compiler parameters and common_cell is an optional argument. The common_cell

argument may be used to specify the cell (interval, triangle or tetrahedron) when the cell is not
specified as part of the form1. The jit function returns a tuple, where compiled_form is a Python
object which wraps either ufc::form or ufc::finite_element (depending on the type of UFL
object passed to the form compiler), compiled_module is a Python module which wraps all the
generated UFC code (this includes finite elements, degree of freedom maps, etc.), form_data is a
UFL object that contains form metadata such as the number of coefficient functions in a form, and
prefix is a string identifier for the form.

1This is used by DOLFIN to allow simple specification of expressions such as f = Expression("sin(x[0])") where the
choice of cell type is not specified as part of the expression.

12.8. EXTENDING FFC 241

Figure 12.7: JIT compilation of varia-
tional forms coordinated by DOLFIN,
and relying on UFL, FFC, UFL, SWIG,
and GCC.

When the JIT compiler is called, internally FFC generates UFC code for the given form or finite
element, compiles the generated code using a C++ compiler, and then wraps the result as a Python
module using SWIG and Instant (see Chapter 15). The returned objects are ready to be used from
Python. The generated and wrapped code is cached by the JIT compiler, so if the JIT compiler is
called twice for the same form or finite element, the cached version is used. The cache directory is
created by Instant, and can be cleaned by running the command instant-clean. The interactions
of various components in the JIT process are illustrated in Figure 12.7.
The Python interface of DOLFIN makes extensive use of JIT compilation. It makes it possible to
combine the performance features of generated C++ code with the ease of a scripted interface.

12.8 Extending FFC

FFC may be extended to add support for other languages, architectures and code generation
techniques. For code that conforms to the UFC interface specification, only compiler stage 4 is
affected. In this stage, the compiler needs to translate the intermediate representation of the form
into actual C++ code that will later be formatted as part of UFC C++ classes and functions. Possible
extensions in this stage of the compilation process can be to replace loops by special-purpose
library calls (like low-level BLAS calls), SSE instructions or code targeted for graphical processing
units (GPU).
Functionality that requires extending the UFC interface is usually handled by adding new experi-
mental virtual (but non-abstract) functions2 to the UFC interface, which may later be proposed to
be included in the next stable specification of the UFC interface. Extensions to other languages are
also possible by replacing the UFC code generation templates.

12.9 Historical notes

FFC was first released in 2004 as a research code capable of generating C++ code for simple
variational forms [Kirby and Logg, 2006, 2007]. Ever since its first release, FFC has relied on FIAT
as a backend for computing finite element basis functions. In 2005, the DOLFIN assembler was
redesigned to rely on code generated by FFC at compile-time for evaluation of the element tensor.
Earlier versions of DOLFIN were based on a run-time system for evaluation of variational forms in
C++ via operator overloading, see Figures 12.8–12.10.

2The functions are made virtual, but non-abstract to ensure backwards compatibility with old generated code.

242 CHAPTER 12. FFC: THE FENICS FORM COMPILER

C++ code
class Poisson : public PDE
{
public:

Poisson(Function& source) : PDE(3)
{
add(f, source);

}

real lhs(const ShapeFunction& u,
const ShapeFunction& v)

{
return (grad(u), grad(v))*dx;

}

real rhs(const ShapeFunction& v)
{
return f*v*dx;

}

private:

ElementFunction f;

};

Figure 12.8: Implementation of Pois-
son’s equation in DOLFIN 0.5.2 using
C++ operator overloading. Note the
use of operator, for inner product.

Python code
name = "Poisson"
element = FiniteElement("Lagrange", "triangle", 1)

v = BasisFunction(element)
u = BasisFunction(element)
f = Function(element)

a = v.dx(i)*u.dx(i)*dx
L = v*f*dx

Figure 12.9: Implementation of Pois-
son’s equation in DOLFIN 0.5.3 using
the new FFC form language. Note that
the grad operator was missing in FFC
at this time. It was also at this time that
the test and trial functions changed
places.

UFL code
element = FiniteElement("Lagrange", triangle, 1)

u = TrialFunction(element)
v = TestFunction(element)
f = Coefficient(element)

a = inner(grad(u), grad(v))*dx
L = f*v*dx

Figure 12.10: Implementation of Pois-
son’s equation in DOLFIN 1.0 using
the new UFL form language which
was introduced in FFC 0.6.2. The or-
der of trial and test functions has been
restored.

12.9. HISTORICAL NOTES 243

Important milestones in the development of FFC include support for mixed elements (2005),
FErari-based optimizations (2006), JIT compilation (2007), discontinuous Galerkin methods (2007)
[Ølgaard et al., 2008], H(div)/H(curl) elements (2007–2008) [Rognes et al., 2009], code generation
based on quadrature (2007) [Ølgaard and Wells, 2010], the introduction of the UFC interface (2007),
and optimized quadrature code generation (2008). In 2009, the FFC form language was replaced
by the new UFL form language.

13 FErari: an optimizing compiler for variational
forms

By Robert C. Kirby and Anders Logg

In Chapter 9, we presented a framework for efficient evaluation of multilinear forms based on
expressing the multilinear form as a special tensor contraction. This allows generation of efficient
low-level code for assembly of a range of multilinear forms. Moreover, in Chapter 10 it was shown
that the tensor contraction may sometimes possess a special structure that allows the contraction
to be performed in a reduced number of arithmetic operations. This has led to the FErari project
[Kirby et al., 2005, 2006, Kirby and Scott, 2007, Kirby and Logg, 2008], which provides an option
within the form compiler FFC described in Chapter 12 to apply graph-based optimizations at
compile-time. In this chapter, we describe the interface between FFC and FErari and present
empirical results indicating the practical effect of the FErari optimizations on run-time evaluation
of variational forms. In particular, we study the effect of optimizations on the run-time cost of
forming the cell tensor AT defined in Chapter 6.
Before proceeding, it is important to put these optimizations in the proper context. While FErari
does not reduce the overall order of complexity of finite element calculations, it provides a practical
benefit of reducing run-time from a few percent to sometimes tens of percent. Viewed as a
domain-specific compiler optimization, this is quite respectable.

13.1 Optimized form compilation

FFC supports two different modes of code generation depending on how the multilinear form is
represented. A user may select the tensor representation AT = A0 : GT discussed in Chapter 9

by supplying the -r tensor option to FFC, or alternatively select quadrature representation by
supplying the -r quadrature option. While running in tensor mode, FFC constructs the reference
tensor A0 and generates code for contracting it with GT . Sometimes, the form is expressed as a
sum of tensor contractions. FFC then generates code for computing a sum of tensor contractions.
When optimizations are enabled (using the -O option), the standard code generator for A0 : GT
is bypassed. The reference tensor A0 is then passed to FErari. Initially, FErari computes a graph
indicating relationships between the elements of AT based on the entries of A0 as described
in Chapters 10 and 9. The edges are annotated with the cost of the calculation and the type
of dependency such as collinearity or Hamming distance. Then, this graph is sequenced by
topological sorting so that entries of AT appear after those upon which they depend. The edge
annotations are then used by FFC to generate straight-line code for evaluating each entry of AT . In
Figures 13.1 and 13.2, we display the code generated by FFC for evaluation of the cell tensor AT
for Poisson’s equation using standard and optimized tensor representation respectively.

245

246 CHAPTER 13. FERARI: AN OPTIMIZING COMPILER FOR VARIATIONAL FORMS

C++ code
/// Tabulate the tensor for the contribution from a

local cell
virtual void tabulate_tensor(double* A,

const double * const * w,
const ufc::cell& c) const

{
[...]

// Extract vertex coordinates
const double * const * x = c.coordinates;

// Compute Jacobian of affine map from reference cell
const double J_00 = x[1][0] - x[0][0];
const double J_01 = x[2][0] - x[0][0];
const double J_10 = x[1][1] - x[0][1];
const double J_11 = x[2][1] - x[0][1];

// Compute determinant of Jacobian
double detJ = J_00*J_11 - J_01*J_10;

// Compute inverse of Jacobian
const double K_00 = J_11 / detJ;
const double K_01 = -J_01 / detJ;
const double K_10 = -J_10 / detJ;
const double K_11 = J_00 / detJ;

// Set scale factor
const double det = std::abs(detJ);

// Compute geometry tensor
const double G0_0_0 = det*(K_00*K_00 + K_01*K_01);
const double G0_0_1 = det*(K_00*K_10 + K_01*K_11);
const double G0_1_0 = det*(K_10*K_00 + K_11*K_01);
const double G0_1_1 = det*(K_10*K_10 + K_11*K_11);

// Compute element tensor
A[0] = 0.500000000000000*G0_0_0 +

0.500000000000000*G0_0_1 +
0.500000000000000*G0_1_0 +
0.500000000000000*G0_1_1;

A[1] = -0.500000000000000*G0_0_0
-0.500000000000000*G0_1_0;

A[2] = -0.500000000000000*G0_0_1
-0.500000000000000*G0_1_1;

A[3] = -0.500000000000000*G0_0_0
-0.500000000000000*G0_0_1;

A[4] = 0.500000000000000*G0_0_0;
A[5] = 0.500000000000000*G0_0_1;
A[6] = -0.500000000000000*G0_1_0

-0.500000000000000*G0_1_1;
A[7] = 0.500000000000000*G0_1_0;
A[8] = 0.500000000000000*G0_1_1;

}

Figure 13.1: Code generated by FFC
for evaluation of the cell tensor for the
Laplacian using piecewise linears on
triangles (standard tensor representa-
tion). The first part of the code is stan-
dard non-optimized code for comput-
ing the entries of the geometry tensor
based on coordinate data (inverse of
the Jacobian). The second part (com-
puting the cell tensor) is the FFC gener-
ated non-optimized tensor contraction
for the Laplacian.

13.2. PERFORMANCE OF OPTIMIZATIONS 247

Figure 13.2: Code generated by FFC
for evaluation of the cell tensor for the
Laplacian using piecewise linears on
triangles (FErari optimized tensor rep-
resentation).

C++ code
virtual void tabulate_tensor(double* A,

const double * const * w,
const ufc::cell& c) const

{
[...]

// ... omitting identical code for geometry tensor

A[1] = -0.500000000000000*G0_0_0
-0.500000000000000*G0_1_0;

A[5] = 0.500000000000000*G0_0_1;
A[0] = -A[1] +

0.500000000000000*G0_0_1 +
0.500000000000000*G0_1_1;

A[7] = 0.500000000000000*G0_1_0;
A[6] = -A[7] - 0.500000000000000*G0_1_1;
A[8] = 0.500000000000000*G0_1_1;
A[2] = -A[8] - 0.500000000000000*G0_0_1;
A[4] = 0.500000000000000*G0_0_0;
A[3] = -A[4] - 0.500000000000000*G0_0_1;

}

13.2 Performance of optimizations

Now, we turn to the practical effect of using these optimizations. Several things are to be observed.
First, running FErari within FFC leads to significantly increased times to generate the C++ code.
Part of this increase results from a naive Python implementation of graph optimizations as part of
FErari. Similar optimizations in Wolf and Heath [2009] have been implemented in C++ and run
quite fast. Moreover, the code generated by FErari/FFC is itself quite large since one line of code
is generated for each entry of AT . It is often significantly larger than the code generated using
quadrature, but marginally smaller than the standard tensor-contraction code generated by FFC.
Because the generated C++ source code is quite large, it is also expensive to compile to machine
code, both in terms of memory usage and CPU time. In situations where the source code size and
compile time are paramount, the quadrature mode of FFC is a better choice.
On the other hand, once the code is actually generated and compiled, we find modest improvements
in its execution time. We compare below FErari-optimized code to standard tensor contraction,
which we denote by the corresponding FFC command-line options -r tensor -O and -r tensor

respectively. FFC may also generate code based on quadrature, with and without optimization
as discussed in Chapter 8. These options are denoted by -r quadrature -O and -r quadrature

respectively. All calculations were performed using FErari 0.2.0 and FFC 0.9.2 on a system running
Ubuntu GNU/Linux 10.04 with an Intel 2.83 GHz quad core processor and 16 GB of RAM. The
benchmarks may be repeated by running the the script bench/bench.py available as part of FFC.
The C++ compiler used was GCC 4.4.3 without any optimization flags. The reported timings are
the CPU time in seconds for computing the cell tensor AT .

13.2.1 Mass matrix for H1

We consider forming the standard mass matrix on triangles defined by the bilinear form

a(u, v) =
∫

Ω
uv dx, (13.1)

248 CHAPTER 13. FERARI: AN OPTIMIZING COMPILER FOR VARIATIONAL FORMS

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

10-8

10-7

10-6

10-5

10-4

10-3

10-2

M
as

sH
1

CPU time

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

10-1

100

101

102

103

104

Speedup vs '-r quadrature'

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

Figure 13.3: Speedup results for two-
dimensional mass matrix using La-
grange polynomials.

where we use Lagrange basis functions of orders one through five. The timing results, as well as
speedup relative to non-optimized quadrature, are shown in Figure 13.3. As can be seen, tensor
contraction is to be preferred over quadrature for this form (each cell tensor is a scaled version of
the reference tensor), and FErari optimizations accelerate the calculation over tensor contraction by
up to about 10%.

13.2.2 Stiffness matrix for H1

Next, we consider the stiffness matrix on triangles defined by

a(u, v) =
∫

Ω
∇u · ∇v dx, (13.2)

again using Lagrange elements of orders one through five. The speedup results for this case are
shown in Figure 13.4.
Again, we see that tensor contraction is preferred to quadrature for this form. Unlike the mass
matrix, we find that FErari optimizations yield little result in the lowest order cases, but improve
significantly as the degree increases.

13.2.3 Variable coefficient stiffness matrix

We also consider the stiffness matrix with a variable coefficient,

a(w; u, v) =
∫

Ω
w∇u · ∇v dx, (13.3)

where w lies in the same polynomial space as u and v, that is, Lagrange elements of orders one
through five. The speedup results are shown in Figure 13.5.

13.2. PERFORMANCE OF OPTIMIZATIONS 249

Figure 13.4: Speedup results for two-
dimensional stiffness matrix using La-
grange polynomials.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Po
is

so
n

CPU time

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

10-1

100

101

102

103

104

Speedup vs '-r quadrature'

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

Figure 13.5: Speedup results for two-
dimensional variable coefficient stiff-
ness matrix using Lagrange polynomi-
als.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

10-7

10-6

10-5

10-4

10-3

10-2

W
ei

gh
te

dP
oi

ss
on

CPU time

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

10-1

100

101

102

103

Speedup vs '-r quadrature'

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

250 CHAPTER 13. FERARI: AN OPTIMIZING COMPILER FOR VARIATIONAL FORMS

1.0 1.5 2.0 2.5 3.0
degree

10-7

10-6

10-5

10-4

10-3

10-2

Na
vi

er
St

ok
es

CPU time

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

1.0 1.5 2.0 2.5 3.0
degree

100

101

102

103

Speedup vs '-r quadrature'

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

Figure 13.6: Speedup results for the
two-dimensional convective term in
Navier–Stokes using Lagrange poly-
nomials.

The difference between quadrature and tensor methods is smaller than for the bilinear case with
no coefficient, but tensor contraction is still faster. FErari improves the tensor contraction by about
5-20% in each case.

13.2.4 Navier–Stokes convective term

Another problem where a variable coefficient taken from a finite element space naturally arises is
the Navier–Stokes equations. For typical linearizations, one must evaluate the matrix associated
with the form

a(w, ρ; u, v) =
∫

T
ρ∇u w · v dx, (13.4)

where w is taken from the same finite element space as u and v, namely vector-valued polynomials.
The function ρ is a scalar-valued polynomial of the same degree as the other functions. Such a
function ρ will appear when one solves problems with a spatially variable fluid density.
This problem is far more challenging than the previous ones and we only consider up to cubic
functions (not to exhaust system resources). The two coefficient functions w and ρ tend to make
the quadrature-based methods more competitive with tensor contraction. Still, even for this more
complicated form, FErari delivered on the order of 10% speedup over the tensor-based method
and outperforms quadrature.

13.2.5 Mass matrices for H(div) and H(curl)

Next we consider again the mass matrix (13.1), but for H(div) and H(curl) elements. For a
discussion of the treatment of the required Piola transforms, see Rognes et al. [2009]. In these cases,
the Piola transforms make the computational pattern similar to the H1 stiffness matrix, but with
different numerical values in the reference tensor and hence potentially different speedup results

13.3. CONCLUSIONS 251

Figure 13.7: Speedup results for two-
dimensional H(div) mass matrix us-
ing BDM elements.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
as

sH
di

v

CPU time

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

100

101

102

103

104

Speedup vs '-r quadrature'

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

for FErari. We consider the Brezzi–Douglas–Marini elements of orders one through five for H(div)
and the first kind Nédélec elements for H(curl). The speedup plots are posted in Figures 13.7
and 13.8.
Tensor contraction methods outperform quadrature methods for these forms. For the H(div) case,
speedup of FErari over standard tensor contraction ranges from a few percent to nearly a factor of
two. However, for H(curl), FErari offers very little speedup.

13.3 Conclusions

We have studied a range of forms of various complexity. In most cases, FErari-based optimizations
provide modest to considerable speedup in the run-time evaluation of variational forms. On
the other hand, they can greatly increase the time FFC requires to generate code and so are less
suitable for a development phase or a just-in-time compilation strategy. As a general guideline,
one may also state that quadrature becomes more efficient relative to tensor contraction when
the complexity of a form increases as measured in the number of coefficients and the number of
differential operators, while the tensor contraction approach is relatively more efficient for simple
forms and high order polynomials. Moreover, the construction of cell tensors is only part of the
overall consideration in making finite element methods efficient.

13.4 Historical notes

Support for FErari optimizations was introduced in FFC version 0.3.2 in 2006 but was lost in a
later rewrite of FFC. Starting with FErari 0.2.0 and FFC 0.9.1, which were released in 2010, FErari
optimizations are again supported in FFC.

252 CHAPTER 13. FERARI: AN OPTIMIZING COMPILER FOR VARIATIONAL FORMS

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

10-8

10-7

10-6

10-5

10-4

10-3

10-2

M
as

sH
cu

rl

CPU time

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
degree

100

101

102

103

104

Speedup vs '-r quadrature'

-r quadrature
-r quadrature -O
-r tensor
-r tensor -O

Figure 13.8: Speedup results for two-
dimensional H(curl) mass matrix us-
ing Nédélec elements.

14 FIAT: numerical construction of finite element
basis functions

By Robert C. Kirby

14.1 Introduction

The FIAT project [Kirby, 2004, 2006a] implements the mathematical framework described in
Chapter 5 as a Python package, working mainly in terms of numerical linear algebra. Although
an implementation in floating-point arithmetic presents some challenges relative to symbolic
computation, it can allow greater efficiency in terms of work and memory usage, especially for
high order elements. To obtain efficiency in Python, the compute-intensive operations are expressed
in terms of numerical linear algebra and performed using the widely distributed numpy package.
FIAT is one of the first FEniCS projects, providing the basis function back-end for FFC and enabling
high-order H1, H(div) and H(curl) elements. It is widely distributed, with downloads on every
inhabited continent and in over sixty countries, averaging about 100 downloads per month.
This chapter works in the context of a Ciarlet triple (T,V ,L) [Ciarlet, 2002], where T is a fixed
reference domain, typically a triangle or tetrahedron. V is a finite-dimensional polynomial space,
though perhaps vector- or tensor-valued and not coincident with polynomials of some fixed degree.
L = {`i}|V|i=1 is a set of linear functionals spanning V ′. Recalling Chapter 5, the goal is first to

enumerate a convenient basis {φi}|V|i=1 for V and then to form a generalized Vandermonde system

VA = I, (14.1)

where Vij = `i(φj). Of course, forming this matrix requires some calculations, and we will discuss
this further in a later section. The columns of A = V−1 store the expansion coefficients of the
nodal basis for (T,V ,L) in terms of some basis {φi}.

14.2 Prime basis: collapsed-coordinate polynomials

High order polynomials in floating-point arithmetic require stable evaluation algorithms. FIAT uses
the so-called collapsed-coordinate polynomials [Karniadakis and Sherwin, 2005] on the triangle
and tetrahedra. Let Pα,β

i (x) denote the Jacobi polynomial of degree i with weights α and β. On
the triangle T with vertices (−1,−1), (1,−1), (−1, 1) and Cartesian coordinates x and y, the

253

254CHAPTER 14. FIAT: NUMERICAL CONSTRUCTION OF FINITE ELEMENT BASIS FUNCTIONS

polynomials are of the form

Dp,q(x, y) = P0,0
p (η1)

(
1− η2

2

)p
P2p+1,0

q (η2). (14.2)

Here, η1 and η2 are the Cartesian coordinates on the biunit square, and the so-called collapsed-
coordinate mapping

η1 = 2
(

1 + x
1− y

)
− 1

η2 = y

maps from the triangle to the square. The set {Dp,q(x, y)}p+q6n
p,q>0 forms a basis for polynomials of

degree n. Moreover, they are orthogonal in the L2(T) inner product. Recently, it has been shown
that these polynomials may be computed directly on the triangle without reference to the singular
mapping [Kirby, 2011]. This means that no special treatment of the singular point is required,
allowing use of standard automatic differentiation techniques to compute derivatives.
The recurrences are obtained by rewriting the polynomials as

Dp,q(x, y) = χp(x, y)ψp,q(y),

where

χp(x, y) = P0,0
p (η1)

(
1− η2

2

)p

and
ψp,q(y) = P2p+1,0

q (η2) = P2p+1,0
q (y).

This representation is not separable in η1 and η2, which may seem to be a drawback to readers
familiar with the usage of these polynomials in spectral methods. However, they do still admit sum-
factorization techniques. More importantly for present purposes, each χp is in fact a polynomial
in x and y and may be computed by recurrence. ψp,q is just a Jacobi polynomial in y and so has
a well-known three-term recurrence. The recurrences derived in Kirby [2011] are presented in
Algorithm 4, where, the coefficients aα,β

n , bα,β
n , cα,β

n refer to those used in the Jacobi polynomial
recurrences.

aα,β
n =

(2n + 1 + α + β)(2n + 2 + α + β)

2(n + 1)(n + 1 + α + β)

bα,β
n =

(α2 − β2)(2n + 1 + α + β)

2(n + 1)(2n + α + β)(n + 1 + α + β)

cα,β
n =

(n + α)(n + β)(2n + 2 + α + β)

(n + 1)(n + 1 + α + β)(2n + α + β)
.

(14.3)

14.3 Representing polynomials and functionals

Even using recurrence relations and NumPy vectorization for arithmetic, further care is required to
optimize performance. In this section, standard operations on polynomials will be translated into
vector operations, and then batches of such operations cast as matrix multiplication. This helps

14.3. REPRESENTING POLYNOMIALS AND FUNCTIONALS 255

Algorithm 4 Computes all triangular orthogonal polynomials up to degree d by recurrence

1: D0,0(x, y) := 1
2: D1,0(x, y) := 1+2x+y

2
3: for p← 1, d− 1 do

4: Dp+1,0(x, y) :=
(

2p+1
p+1

) (
1+2x+y

2

)
Dp,0(x, y)−

(
p

p+1

) (
1−y

2

)2
Dp−1,0(x, y)

5: end for
6: for p← 0, d− 1 do
7: Dp,1(x, y) := Dp,0(x, y)

(
1+2p+(3+2p)y

2

)

8: end for
9: for p← 0, d− 1 do

10: for q← 1, d− p− 1 do
11: Dp,q+1(x, y) :=

(
a2p+1,0

q y + b2p+1,0
q

)
Dp,q(x, y)− c2p+1,0

q Dp,q−1(x, y)
12: end for
13: end for

eliminate the interpretive overhead of Python while moving numerical computation into optimized
library routines, since numpy.dot wraps level 3 BLAS and other functions such as numpy.svd wrap
relevant LAPACK routines.
Since polynomials and functionals over polynomials both form vector spaces, it is natural to
represent each of them as vectors representing expansion coefficients in some basis. So, let {φi} be
the Dubiner polynomials described above, where we have assumed some linear indexing of the
Dubiner polynomials.
Now, any p ∈ V is written as a linear combination of the basis functions {φi}. Introduce a mapping
R from V into R|V| by taking the expansion coefficients of p in terms of {φi}. That is,

p = R(p)iφi,

where summation is implied over i.
A polynomial p may then be evaluated at a point x as follows. Let Φ be the vector of basis functions
tabulated at x. That is,

Φi = φi(x). (14.4)

Then, evaluating p follows by a simple dot product:

p(x) = R(p)iΦi. (14.5)

More generally in FIAT, a set of polynomials {pi} will need to be evaluated simultaneously, such
as evaluating all of the members of a finite element basis. The coefficients of the set of polynomials
may be stored in the rows of a matrix C, so that

Cij = R(pi)j.

Tabulating this entire set of polynomials at a point x is simply obtained by matrix-vector multipli-
cation. Let Φi be as in (14.4). Then,

pi(x) = CijΦj.

The basis functions are typically needed at a set of points, such as those of a quadrature rule. Let

256CHAPTER 14. FIAT: NUMERICAL CONSTRUCTION OF FINITE ELEMENT BASIS FUNCTIONS

{xj} now be a collection of points in T and let

Φij = φi(xj),

where the rows of Φ run over the basis functions and the columns over the collection of points. As
before, the set of polynomials may be tabulated at all the points by

pi(xj) = CikΦkj,

which is just the matrix product CΦ and may be efficiently carried out by a library operation, such
as the numpy.dot wrapper to level 3 BLAS.

Finite element computation also requires the evaluation of derivatives of polynomials. In a
symbolic context, differentiation presents no particular difficulty, but working in a numerical
context requires some special care.

For some differential operator ∂, the derivatives ∂φi are computed at a point x, any polynomial
p = R(p)iφi may be differentiated at x by

∂p(x) = R(p)i(∂φi),

which is exactly analogous to (14.5). By analogy, sets of polynomials may be differentiated at sets
of points just like evaluation.

The formulae in Algorithm 4 and their tetrahedral counterpart are fairly easy to differentiate, but
derivatives may also be obtained through automatic differentiation. Some experimental support
for this using the AD tools in Scientific Python has been developed in an unreleased version of
FIAT.

The released version of FIAT currently evaluates derivatives in terms of linear operators, which
allows the coordinate singularity in the standard recurrence relations to be avoided. For each
Cartesian partial derivative ∂

∂xk
, a matrix ∂k is calculated such that

R
(

∂p
∂xk

)

i
= ∂k

ijR(p)j.

Then, derivatives of sets of polynomials may be tabulated by premultiplying the coefficient matrix
C with such a ∂k matrix. These matrices are constructed by tabulating the partial derivatives of
the Dubiner bases at a lattice of points and then multiplying by a Vandermonde-type matrix that
converts the lattice point values to the expansion coefficients back in the Dubiner basis.

This paradigm may also be extended to vector- and tensor-valued polynomials, making use of the
multidimensional arrays implemented in numpy. Let P be a space of scalar-valued polynomials and
m > 0 an integer. Then, a member of (P)m, a vector with m components in P, may be represented
as a two-dimensional array. Let p ∈ (P)m and pj be the jth component of p. Then pj = R(p)jkφk,
so that R(p)jk is the coefficient of φk for pj.

The previous discussion of tabulating collections of functions at collections of points is naturally
extended to this context. If {pi} is a set of members of (P)m, then their coefficients may be stored
in an array Cijk, where Ci is the two-dimensional array R(p)jk of coefficients for pi. As before,
Φij = φi(xj) contains the values of the basis functions at a set of points. Then, the jth component
of p at the point xk is naturally given by a three-dimensional array

pi(xk)
j = Cijlφlk.

14.3. REPRESENTING POLYNOMIALS AND FUNCTIONALS 257

If Cijl is stored contiguously in generalized row-major format, this is just a matrix product and no
data motion is required to use a library call.
Returning for the moment to scalar-valued polynomials, linear functionals may also be represented
as Euclidean vectors. Let ` : P→ R be a linear functional. Then, for any p ∈ P,

`(p) = `(R(p)iφi) = R(p)i`(φi),

so that ` acting on p is determined entirely by its action on the basis {φi}. As with R, define
R′ : P′ → R|P| by

R′(`)i = `(φi),

so that
`(p) = R′(`)iR(p)i.

Note that the inverse of R′ is the Banach-space adjoint of R.
Just as with evaluation, sets of linear functionals can be applied to sets of functions via matrix
multiplication. Let {`i}N

i=1 ⊂ P′ and {pi}N
i=1 ⊂ P. The functionals are represented by a matrix

Lij = R′(`i)j

and the functions by
Cij = R(pi)j

Then, evaluating all of the functionals on all of the functions is computed by the matrix product

Aij = LikCjk, (14.6)

or A = LC>. This is especially useful in the setting of the next section, where the basis for the
finite element space needs to be expressed as a linear combination of orthogonal polynomials.
Also, the formalism of R′ may be generalized to functionals over vector-valued spaces. As before,
let P be a polynomial space of degree n with basis {φi}|P|i=1 and to each v ∈ (P)m associate the
representation vi = R(v)ijφj. In this notation, vi = R(v)ijφj is the vector indexed over i. For any
functional ` ∈

(
(P)m)′, a representation R′(`)ij must be defined such that

`(v) = R′(`)ijR(v)ij,

with summation implied over i and j. To determine the representation of R′(`), let ej be the
canonical basis vector with (ej)i = δij and write

`(v) = `(Rijφj)

= `(R(v)ijδikekφj)

= `(R(v)ijeiφj)

= R(v)ij`(eiφj).

(14.7)

From this, it is seen that R′(`)ij = `(eiφj).

Editor note: Something is wrong in (14.7).

Now, let {vi}N
i=1 be a set of vector-valued polynomials and {`i}M

i=1 a set of linear functionals acting
on them. The polynomials may be stored by a coefficient tensor Cijk = R(vi)jk. The functionals

258CHAPTER 14. FIAT: NUMERICAL CONSTRUCTION OF FINITE ELEMENT BASIS FUNCTIONS

may be represented by a tensor Lijk = R′(`i)jk. The matrix Aij = `i(vj) is readily computed by the
contraction

Aij = LiklCjkl .

Despite having three indices, this calculation may still be performed by matrix multiplication.
Since numpy stores arrays in row-major format, a simple reshaping may be performed without
data motion so that A = L̃C̃>, for L̃ and C̃ reshaped to two-dimensional arrays by combining the
second and third axes.

14.4 Other polynomial spaces

Besides polynomial spaces of some fixed, complete degree, FIAT is motived by more complicated
spaces. Once some basis for such spaces is obtained, the preceding techniques apply directly. Most
finite element polynomial spaces may described either by adding a few basis functions to some
polynomials of complete degree or else by constraining such a space by some linear functionals.
We describe such techniques in this section.

14.4.1 Supplemented polynomial spaces

A classic example of the first case is the Raviart–Thomas element, where the function space of
order q is

RTq =
(
Pq−1(T)

)d ⊕
(

P̃q−1(T)
)

x,

where x ∈ Rd is the coordinate vector and P̃q is the space of homogeneous polynomials of degree q.
Given any basis {φi} for Pq(T) such as the Dubiner basis, it is easy to obtain a basis for (Pq(T))d

by taking vectors where one component is some φi and the rest are zero. The issue is obtaining a
basis for the entire space.
Consider the case d = 2 (triangles). While monomials of the form xiyq−i span the space of
homogeneous polynomials, they are subject to ill-conditioning in numerical computations. On the

other hand, the Dubiner basis of order q, {φi}
|Pq |
i=1 may be ordered so that the last q + 1 functions,

{φi}
|Pq |
i=|Pq |−q, have degree exactly q. While they do not span P̃q, the span of {xφi}

|Pq |
i=|Pq |−q together

with a basis for (Pq(T))2 does span RTq−1.
So, this gives a basis for the Raviart–Thomas space that can be evaluated and differentiated using
the recurrence relations in Algorithm 4. A similar technique may be used to construct elements
that consist of standard elements augmented with some kind of bubble function, such as the
PEERS element of elasticity or MINI element for Stokes flow.

14.4.2 Constrained polynomial spaces

An example of the second case is the Brezzi–Douglas–Fortin–Marini element [Brezzi and Fortin,
1991]. Let E(T) be the set of facets of T (edges in 2d, faces in 3d). Then the function space is

BDFMq(T) = {u ∈ (Pq(T))d : u · n|γ ∈ Pq−1(γ), γ ∈ E(T)}

This space is naturally interpreted as taking a function space, (Pq(T))d, and imposing linear
constraints. For the case d = 2, there are exactly three such constraints. For γ ∈ E(T), let µγ

be the Legendre polynomial of degree q mapped to γ. Then, if a function u ∈ (Pq(T))d, it is in

14.5. CONVEYING TOPOLOGICAL INFORMATION TO CLIENTS 259

Figure 14.1: The reference triangle,
with vertices, edges, and the face num-
bered.

BDFMq(T) if and only if ∫

γ
(u · n)µγ ds = 0

for each γ ∈ E(T).
Number the edges by {γi}3

i=1 and introduce linear functionals `i(u) =
∫

γi
(u · n)µγi ds. Then,

BDFMq(T) = ∩3
i=1null(`i).

This may naturally be cast into linear algebra and so evaluated with LAPACK. Following the
techniques for constructing Vandermonde matrices, a constraint matrix may be constructed. Let
{φ̄i} be a basis for (Pq(T))2. Define the 3× |(Pq)|2 matrix

Cij = `i(φj).

Then, a basis for the null space of this matrix is constructed using the singular value decomposi-
tion [Golub and Van Loan, 1996]. The vectors of this null-space basis are readily seen to contain the
expansion coefficients of a basis for BDFMq in terms of a basis for Pq(T)2. With this basis in hand,
the nodal basis for BDFMq(T) is obtained by constructing the generalized Vandermonde matrix.
This technique may be generalized to three dimensions, and it also applies to Nédélec [Nédélec,
1980], Arnold-Winther [Arnold and Winther, 2002], Mardal-Tai-Winther [Mardal et al., 2002], and
many other elements.

14.5 Conveying topological information to clients

Most of this chapter has provided techniques for constructing finite element bases and evaluating
and differentiating them. FIAT must also indicate which degrees of freedom are associated with
which entities of the reference element. This information is required when local-global mappings
are generated by a form compiler such as FFC.
The topological information is provided by a “graded incidence relation” [Kirby, 2006b, Knepley
and Karpeev, 2009] and is similar to the presentation of finite element meshes in Logg [2009]. Each
entity in the reference element is labeled by its topological dimension (e.g. 0 for vertices and 1 for
edges), and then the entities of the same dimension are ordered by some convention. To each entity,
a list of the local nodes is associated. For example, the reference triangle with entities labeled is
shown in Figure ??, and the cubic Lagrange triangle with nodes in the dual basis labeled is shown
in Figure ??.
For this example, the graded incidence relation is stored as

260CHAPTER 14. FIAT: NUMERICAL CONSTRUCTION OF FINITE ELEMENT BASIS FUNCTIONS

Figure 14.2: The cubic Lagrange trian-
gle, with nodes in the dual basis la-
belled. Note that the labels in this fig-
ure correspond to the FIAT reference
element numbering which is different
from the numbering imposed by the
UFC ordering convention explained in
Chapter 17.

{ 0: { 0: [0] ,

1: [1] ,

2: [2] } ,

1: { 0: [3 , 4] ,

1: [5 , 6] ,

2: [7 , 8] } ,

2: { 0: [9] } }

14.6 Functional evaluation

In order to construct nodal interpolants or strongly enforce boundary conditions, FIAT also
provides information to numerically evaluate linear functionals. These rules are typically exact for
a certain degree polynomial and only approximate on general functions. For scalar functions, these
rules may be represented by a collection of points and corresponding weights {xi}, {wi} so that

`(f) ≈ wi f (xi).

For example, pointwise evaluation at a point x is simply represented by the coordinates of x
together with a weight of one. If the functional is an integral moment, such as

`(f) =
∫

T
g f dx,

then the points {xi} will be those of some quadrature rule and the weights will be wi = ωig(xi),
where the ωi are the quadrature weights.

This framework is extended to support vector- and tensor-valued function spaces, by including a
component corresponding to each point and weight. If v is a vector-valued function and vα is its
component, then functionals are written in the form

`(v) ≈ wivαi (xi),

so that the sets of weights, components, and points must be conveyed to the client.

This framework may also support derivative-based degrees of freedom by including a multi-index
at each point corresponding to a particular partial derivative.

14.7. OVERVIEW OF FUNDAMENTAL CLASS STRUCTURE 261

14.7 Overview of fundamental class structure

Many FEniCS users will never directly use FIAT; for them, interaction will be moderated through a
form compiler such as FFC. Others will want to use the FIAT basis functions in other contexts. At a
basic level, a user will access FIAT through top-level classes such as Lagrange and RaviartThomas

that implement the elements. Typically, the class constructors accept the reference element and
order of function space as arguments. This gives an interface that is parametrized by dimension
and degree. The classes such as Lagrange derive from a base class FiniteElement that provides
access to the three components of the Ciarlet triple.
The function space P is modelled by the base class PolynomialSet, which contains a rule for
constructing the base polynomials φi (e.g. the Dubiner basis) and a multidimensional array of
expansion coefficients for the basis of P. Special subclasses of this provide (possibly array-valued)
orthogonal bases as well as the rules for constructing supplemented and constrained bases. These
classes provide mechanisms for tabulating and differentiating the polynomials at input points as
well as basic queries such as the dimension of the space.
The set of finite element nodes is similarly modeled by a class DualBasis. This provides the
functionals of the dual basis as well as their connection to the reference element facets. The
functionals are modeled by a FunctionalSet object, which is a collection of Functional objects.
Each Functional object contains a reference to the PolynomialSet over which it is defined and the
array of coefficients representing it and owns a FunctionalType class providing the information
described in the previous section. The FunctionalSet class batches these coefficients together in a
single large array.
The constructor for the FiniteElement class takes a PolynomialSet modeling the starting basis
and a DualBasis defined over this basis and constructs a new PolynomialSet by building and
inverting the generalized Vandermonde matrix.
Beyond this basic finite element structure, FIAT provides quadrature such as Gauss-Jacobi rules in
one dimension and collapsed-coordinate rules in higher dimensions. It also provides routines for
constructing lattices of points on each of the reference element shapes and their facets.
In the future, FIAT will include the developments discussed already (more general reference
element geometry/topology and automatic differentiation). Automatic differentiation will make it
easier to construct finite elements with derivative-type degrees of freedom such as Hermite, Morley,
and Argyris. Additionally, we hope to expand the collection of quadrature rules and provide more
advanced point distributions, such as Warburton’s warp-blend points [Warburton, 2005].
Finally, we may group the classes used in FIAT into several kinds, and the relationship between
these kinds of classes is expressed in Figure 14.3. Top-level classes implement particular finite
elements, such as Lagrange or Raviart–Thomas. These depend on classes that implement the
underlying reference shapes, polynomial sets, and dual bases. The polynomial sets are linear
combinations of orthogonal expansions. Sometimes those linear combinations are constructed via
projection (requiring quadrature) or null spaces of linear functionals. Dual bases are collections of
linear functionals that can act on a polynomial set over some domain.

262CHAPTER 14. FIAT: NUMERICAL CONSTRUCTION OF FINITE ELEMENT BASIS FUNCTIONS

Finite Element Classes

Polynomial Sets

Dual Sets

Reference Shapes

Orthogonal expansionsQuadrature Functionals

Quadrature Methods

Figure 14.3: General relationship be-
tween the kinds of classes in FIAT.

15 Instant: just-in-time compilation of C/C++ in
Python

By Ilmar M. Wilbers, Kent-Andre Mardal and Martin S. Alnæs

Instant is a small Python module for just-in-time compilation (JIT) (or inlining) of C/C++ code.
Instant accepts plain C/C++ and is therefore conveniently combined with the code generating
tools in DOLFIN, FFC, and SFC.

15.1 Brief overview of Instant and its role in FEniCS

In FEniCS, FFC and SFC are form compilers that generate UFC compliant C++ code based on
the language UFL. Within FFC and SFC, Instant is used to JIT-compile the C++ code to a Python
module. Similarly, Instant is used in DOLFIN to JIT-compile Expressions and SubDomains. See the
Chapters 16, 12 and 20 for more information on these topics.
Instant relies on SWIG, Beazley [1996] for the generation of wrapper code needed for making
the C/C++ code usable from Python. The code to be inlined, in addition to the wrapper code, is
then compiled into a Python extension module (a shared library with functionality as specified by
the Python C-API) by using Distutils or CMake. To check whether the C/C++ code has changed
since the last execution, Instant computes the SHA1 sum [Hansen and Wollman] of the code and
compares it to the SHA1 checksum of the code used in the previous execution. Finally, Instant has
implemented a set of SWIG typemaps, allowing the user to transfer NumPy arrays between the
Python code and the C/C++ code.

15.2 Examples

15.2.1 Hello world

Our first example demonstrates the usage of Instant in a very simple case:

Python code
from instant import inline

c_code = r’’’

double add(double a, double b)

{

printf("Hello world! C function add is being called...\n");

return a+b;

}’’’

add_func = inline(c_code)

sum = add_func(3, 4.5)

print ’The sum of 3 and 4.5 is’, sum

263

264 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

When run, this script produces the following output:

Output
> python ex1.py

--- Instant: compiling ---

Hello world! C function add is being called...

The sum of 3 and 4.5 is 7.5

Here Instant will wrap the C-function add into a Python extension module by using SWIG and
Distutils. The inlined function is written in standard C. SWIG supports almost all of C and C++,
including classes and templates. The first time the Python script is run, it will use a few second to
compile the C code. The next time, however, the compilation is omitted, given that no changes
have been made to the C source code.
Although Instant notifies the user when it is compiling, it might sometimes be necessary, e.g. when
debugging, to see the details of the Instant internals. We can do this by setting the logging level
before calling any other Instant functions:

Python code
from instant import output

output.set_logging_level(’DEBUG’)

15.2.2 NumPy arrays

One basic problem with wrapping C and C++ code is how to handle dynamically allocated arrays.
Arrays allocated dynamically are typically represented in C/C++ by a pointer to the first element
of an array and a separate integer variable holding the array size. In Python the array variable is
itself an object containing the data array, array size, type information etc. SWIG provides typemaps
to specify mappings between Python and C/C++ types. We will not go into details on typemaps
in this chapter, but the reader should be aware that it is a powerful tool that may greatly enhance
your code, but also lead to mysterious bugs when used wrongly. Typemaps are discussed in
Chapter 20 and at length in the SWIG documentation. In this chapter, it is sufficient to illustrate
how to deal with arrays in Instant using the NumPy module.
To illustrate the use of NumPy arrays with Instant, we introduce a solver for an ordinary differential
equation (ODE) modeling blood pressure by using a Windkessel model. The ODE is as follows:

d
dt

p(t) = BQ(t)− Ap(t), t ∈ (0, 1), (15.1)

p(0) = p0. (15.2)

Here p(t) is the blood pressure, Q(t) is the volume flux of blood, while A and B are real numbers
representing resistance and compliance, respectively. An explicit scheme is:

pi = pi−1 + ∆t(BQi−1 − Api−1), for i = 1, . . . , N − 1, (15.3)

p0 = p0. (15.4)

The scheme can be implemented in Python as follows using NumPy arrays:

Python code
def time_loop_py(p, Q, A, B, dt, N, p0):

p[0] = p0

for i in range(1, N):

p[i] = p[i-1] + dt*(B*Q[i-1] - A*p[i-1])

15.2. EXAMPLES 265

The corresponding C code is:

C++ code
void time_loop_c(int n, double* p,

int m, double* Q,

double A, double B,

double dt, int N, double p0)

{

if (n != m || N != m)

{

printf("n, m and N should be equal\n");

return;

}

p[0] = p0;

for (int i=1; i<n; i++)

{

p[i] = p[i-1] + dt*(B*Q[i-1] - A*p[i-1]);

}

}

In this example, (int n, double* p) represents an array of doubles with length n. However, this
can not be determined by the function signature:

C++ code
void time_loop_c(int n, double* p, int m, double* Q, ...)

For example, double* p may be an array of length m or it may simply be output. In Instant you
must therefore specify what the arrays are:

Python code
time_loop_c = inline_with_numpy(c_code,

arrays = [[’n’, ’p’],

[’m’, ’Q’]])

Here, we tell Instant that (int n, double* p) and (int m, double* Q) are NumPy arrays (and
Instant then generates the proper typemaps). Notice that the order of the elements in the array
specification is: 1) the length of the array and 2) the array pointer. The order of the arguments in
the C code may differ from the order in the array specification. We may then call the time_loop

function as follows:

Python code
time_loop_c(p, Q, 1.0, 1.0, 1.0/(N-1), N, 1.0)

In Table 15.1 we compare the above mentioned code with pure C code, pure Python, and NumPy.
We obtain a speed-up of about a factor 350 when compared with NumPy, using 105 time steps. The
performance of the code using Instant is actually the same as a pure C program. The comparison
between NumPy and Instant may not be completely fair. NumPy is primarily intended for
algorithms that can be vectorized, which is not the case with ODEs. In fact, utilizing pure Python
lists instead of NumPy arrays, reduces the speed-up to a factor 65. For code that can be vectorized,
the speed-up is about one order of magnitude, when using Instant instead of NumPy [Wilbers
et al., 2009]. The result of solving the ODE can be seen in Figure 15.1.
The complete code for this example can be found in ex2.py.

266 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

Figure 15.1: Plot of pressure and blood
volume flux computed by solving the
Windkessel model.

N 102 103 104 105 106

CPU time with NumPy 3.9e-4 3.9e-3 3.8e-2 3.8e-1 3.8
CPU time with Python 0.7e-4 0.7e-3 0.7e-2 0.7e-1 0.7
CPU time with Instant 5.0e-6 1.4e-5 1.0e-4 1.0e-3 1.1e-2
CPU time with C 4.0e-6 1.1e-5 1.0e-4 1.0e-3 1.1e-2

Table 15.1: CPU times (in seconds) for solving the ODEs from the Windkessel model using different
implementations.

15.2. EXAMPLES 267

15.2.3 NumPy arrays and OpenMP

It is easy to speed up code on parallel computers with OpenMP. In the following code preprocessor
directives like ’#pragma omp ...’ are OpenMP directives and OpenMP functions always start with
omp. In this example, we want to solve a standard 2-dimensional wave equation in a heterogeneous
medium with local wave velocity k:

∂2u
∂t2 = ∇ · [k∇u] . (15.5)

We set the boundary condition to u = 0 for the whole boundary of a rectangular domain
Ω = (0, 1)× (0, 1). Further, u has the initial value I(x, y) at t = 0 while ∂u/∂t = 0. We solve the
wave equation using the following finite difference scheme:

ul
i,j =

(
∆t
∆x

)2
[ki+ 1

2 ,j(ui+1,j − ui,j)− ki− 1
2 ,j(ui,j − ui−1,j)]

l−1

+

(
∆t
∆y

)2
[ki,j+ 1

2
(ui,j+1 − ui,j)− ki,j− 1

2
(ui,j − ui,j−1)]

l−1. (15.6)

Here, ul
i,j represents u at the grid point xi and yj at time level tl , where

xi = i∆x, i = 0, . . . , n (15.7)

yi = j∆y, j = 0, . . . , m and (15.8)

tl = l∆t, (15.9)

Also, ki+ 1
2 ,j is short for k(xi+ 1

2
, yj).

The code for calculating the next time step using OpenMP looks like:

C++ code
void stencil(double dt, double dx, double dy,

int ux, int uy, double* u,

int umx, int umy, double* um,

int kx, int ky, double* k,

int upn, double* up){

#define index(u, i, j) u[(i)*m + (j)]

int i=0, j=0, m = ux, n = uy;

double hx, hy, k_c, k_ip, k_im, k_jp, k_jm;

hx = pow(dt/dx, 2);

hy = pow(dt/dy, 2);

j = 0; for (i=0; i<m; i++) index(up, i, j) = 0;

j = n-1; for (i=0; i<m; i++) index(up, i, j) = 0;

i = 0; for (j=0; j<n; j++) index(up, i, j) = 0;

i = m-1; for (j=0; j<n; j++) index(up, i, j) = 0;

#pragma omp for

for (i=1; i<m-1; i++){

for (j=1; j<n-1; j++){

k_c = index(k, i, j);

k_ip = 0.5*(k_c + index(k, i+1, j));

k_im = 0.5*(k_c + index(k, i-1, j));

k_jp = 0.5*(k_c + index(k, i, j+1));

k_jm = 0.5*(k_c + index(k, i, j-1));

index(up, i, j) = 2*index(u, i, j) - index(um, i, j) +

hx*(k_ip*(index(u, i+1, j) - index(u, i, j)) -

k_im*(index(u, i, j) - index(u, i-1, j))) +

268 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

N 1e+8 2e+8

CPU time with Instant 1 CPU 0.80 1.59

CPU time with Instant 2 CPU 0.42 0.81

CPU time with Instant 3 CPU 0.37 0.75

CPU time with Instant 4 CPU 0.34 0.67

Table 15.2: CPU times (in seconds) for the implementation of the solution of a wave equation using Instant
and OpenMP on different numbers of CPUs/threads.

hy*(k_jp*(index(u, i, j+1) - index(u, i, j)) -

k_jm*(index(u, i, j) - index(u, i, j-1)));

}

}

}

We also need to add the OpenMP header omp.h and compile with the flag -fopenmp and link with
the OpenMP shared library, e.g. libgomp.so for Linux (specified with -lgomp). This can be done
as follows:

Python code
instant_ext = \

build_module(code=c_code,

system_headers=[’numpy/arrayobject.h’,

’omp.h’],

include_dirs=[numpy.get_include()],

init_code=’import_array();’,

cppargs=[’-fopenmp’],

lddargs=[’-lgomp’],

arrays=[[’ux’, ’uy’, ’u’],

[’umx’, ’umy’, ’um’],

[’kx’, ’ky’, ’k’],

[’upn’, ’up’, ’out’]])

Note that the arguments include_headers, init_code, and the first element of system_headers
could have been omitted if we used inline_module_with_numpy(see below) instead of build_-

module. The complete code can be found in ex3.py.
In Table 15.2 we have compared the timings of running with different numbers of CPUs. The
timings in this table are performed on a quad-core machine with 32GB memory. We see a speed-up
of factor two when doubling the number of CPUs, but further increasing the number of CPUs has
a limited effect. We have not been able to investigate this further, but suspect that the physical
layout of the machine with two dual cores causes this, as the two CPUs on the same core share
some of the resources.

15.3 Errors encountered when using Instant

There are basically three different types of errors you can encounter when using Instant. These are:
1) errors caused by non-compilable C/C++ code, 2) errors caused by wrong usage of SWIG, and 3)
errors related to importing the module from the cache. We will now go briefly through these three
different types of errors.
Let us start by removing a ’;’ in the C++ code of ex2.py, making the C++ compiler unable to
compile the code. We will then get errors on the following form:

15.3. ERRORS ENCOUNTERED WHEN USING INSTANT 269

Output
--- Instant: compiling ---

In instant.recompile: The module did not compile,

see ’/tmp/tmpZ4M_ZO2010-11-9-08-24_instant/instant_module_dff94651124193a[...]

Traceback (most recent call last):

File "test2.py", line 21, in <module>

sum_func = inline_with_numpy(c_code, arrays = [[’n1’, ’array1’]])

File "/usr/local/lib/python2.6/dist-packages/instant/inlining.py", line 95, in

inline_with_numpy

module = build_module(**kwargs)

File "/usr/local/lib/python2.6/dist-packages/instant/build.py", line 474, in

build_module

recompile(modulename, module_path, setup_name, new_compilation_checksum)

File "/usr/local/lib/python2.6/dist-packages/instant/build.py", line 100, in recompile

"compile, see ’%s’" % compile_log_filename)

File "/usr/local/lib/python2.6/dist-packages/instant/output.py", line 49, in

instant_error

raise RuntimeError(text)

RuntimeError: In instant.recompile: The module did not compile,

see ’/tmp/tmpZ4M_ZO2010-11-9-08-24_instant/instant_module_dff946511241[...]

The error message from the compiler is located in the file compile.log in the temporary directory
/tmp/tmpZ4M_ZO2010-11-9-08-24_instant/instant_module_dff946511241aab327593a2d71105c5fc/.
The compile error message will here refer to line numbers in the wrapper code generated by SWIG.
You should still be able to locate the C++ error, by looking at the error message in compile.log

and the file containing the wrapper code (named *_wrap.cxx) in the temporary directory.
The second type of error occurs when SWIG is not able to parse the code. These errors are easily
identified by the first line in the error message, namely Error: Syntax error in input(1).

Output
instant_module_815d9b7181988c1596a71b62f8a17936a77e5944.i:39: Error: Syntax error in input(1).

running build_ext

building ’_instant_module_815d9b7181988c1596a71b62f8a17936a77e5944’ extension

creating build

creating build/temp.linux-i686-2.6

gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fPIC

-I/usr/lib/python2.6/dist-packages/numpy/core/include -I/usr/include/python2.6

-c instant_module_815d9b7181988c1596a71b62f8a17936a77e5944_wrap.cxx

-o build/temp.linux-i686-2.6/instant_module_815d9b7181988c1596a71b62f8a1[...].o -O2

gcc: instant_module_815d9b7181988c1596a71b62f8a17936a77e5944_wrap.cxx: No such file or directory

gcc: no input files

SWIG reports that it is unable to parse the Instant generated interface file (named *.i) and that
the problem arises at line 39. In this case, you should have a look in the generated interface file in
the temporary directory.
Finally, Python may not be able to import the module from the cache. There might be numerous
reasons for this; the cache may be old and incompatible with the current version of Python,
the cache may be corrupted due to disk failure, some shared libraries might be missing from
$LD_LIBRARY_PATH and so on. Such error messages look like:

Output
In instant.import_module_directly:

Failed to import module ’instant_module_4b41549bc6282877d3f97d54ef664d4’ from

’/home/kent-and/.instant/cache’.

Traceback (most recent call last):

File "test2.py", line 21, in <module>

sum_func = inline_with_numpy(c_code, arrays = [[’n1’, ’array1’]])

270 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

File "/usr/local/lib/python2.6/dist-packages/instant/inlining.py", line 95, in

inline_with_numpy

module = build_module(**kwargs)

File "/usr/local/lib/python2.6/dist-packages/instant/build.py", line 383, in build_module

module = check_disk_cache(modulename, cache_dir, moduleids)

File "/usr/local/lib/python2.6/dist-packages/instant/cache.py", line 121, in check_disk_cache

module = import_and_cache_module(path, modulename, moduleids)

File "/usr/local/lib/python2.6/dist-packages/instant/cache.py", line 67, in

import_and_cache_module

instant_assert(module is not None, "Failed to import module found in cache."

File "/usr/local/lib/python2.6/dist-packages/instant/output.py", line 55, in instant_assert

raise AssertionError(text)

In this case it is advantageous to make a local cache in the current working directory, using
cache_dir="test_cache", and go to the local cache to find the error.

15.4 Instant explained

The previous section concentrated on the usage of Instant. In this section we explain what Instant
does. We will again use our first example, but we set the module name explicitly with the keyword
argument modulename to see more clearly what happens:

Python code
from instant import inline

code = r’’’

double add(double a, double b)

{

printf("Hello world! C function add is being called...\n");

return a+b;

}’’’

add_func = inline(code, modulename=’ex4’)

sum = add_func(3, 4.5)

print ’The sum of 3 and 4.5 is’, sum

After running this code there is a new directory ex4 in our directory. The contents are:

Output
~/instant_doc/code$ cd ex4/

~/instant_doc/code/ex4$ ls -g

total 224

drwxr-xr-x 4 ilmarw 4096 2009-05-18 16:52 build

-rw-r--r-- 1 ilmarw 844 2009-05-18 16:52 compile.log

-rw-r--r-- 1 ilmarw 183 2009-05-18 16:52 ex4-0.0.0.egg-info

-rw-r--r-- 1 ilmarw 40 2009-05-18 16:52 ex4.checksum

-rw-r--r-- 1 ilmarw 402 2009-05-18 16:53 ex4.i

-rw-r--r-- 1 ilmarw 1866 2009-05-18 16:52 ex4.py

-rw-r--r-- 1 ilmarw 2669 2009-05-18 16:52 ex4.pyc

-rwxr-xr-x 1 ilmarw 82066 2009-05-18 16:52 _ex4.so

-rw-r--r-- 1 ilmarw 94700 2009-05-18 16:52 ex4_wrap.cxx

-rw-r--r-- 1 ilmarw 23 2009-05-18 16:53 __init__.py

-rw-r--r-- 1 ilmarw 448 2009-05-18 16:53 setup.py

The file ex4.i is the SWIG interface file. Another central file is the Distutils file setup.py, which
is generated and executed. During execution, setup.py first runs SWIG on the interface file,
producing ex4_wrap.cxx and ex4.py. The first file is then compiled into a shared library _ex4.so

(note the leading underscore). The file ex4-0.0.0.egg-info and the directory build are also
created by Distutils. The output from executing the Distutils file is stored in the file compile.log.

15.4. INSTANT EXPLAINED 271

Finally, a checksum file named ex4.checksum is generated, containing a checksum based on the
files present in the directory. The final step consists of moving the whole directory from its
temporary location to either cache or a user-specified directory. The file __init__.py imports the
module ex4 into Python.
The script instant-clean removes compiled modules from the Instant cache, located in the
directory .instant in the home directory of the user running it. The script instant-showcache
shows the modules located in the Instant cache.

15.4.1 Arrays and typemaps

Instant has support for converting NumPy arrays to C arrays and vice versa. Each array specifica-
tion is a list containing the names of the variables describing that array in the C code. For a 1D
array, this means the names of the variables containing the length of the array (an int), and the
array pointer. The array pointer can have several types, but the default is double. For 2D arrays
we need three strings, two for the length in each dimension, and one for the array pointer. This
following example illustrate the array specification:

Python code
arrays = [[’len_a’, ’a’], # a 1D array / vector

[’len_bx’, ’len_by’, ’b’], # a matrix

[’len_cx’, ’len_cy’, ’len_cz’, ’c’]] # a 3D tensor

The variables names specified reflect the variable names in the C function signature. It is important
that the order of the variables in the signature is retained for each array; that is, the signature
should be:

C++ code
double sum (int len_a, double*a,

int len_bx, int len_by, double* b,

int len_cx, int len_cy, int_cz, double* c)

The arrays are assumed to be of type double by default, but several other types are supported.
These types are float, short, int, long, long long, unsigned short, unsigned int, unsigned
long, and unsigned long long. The type can be specified by adding an additional value to the list
describing the array, e.g.

Python code
arrays = [[’len_a’, ’a’, ’long’]]

It is important that there is correspondence between the type of the NumPy array and the type in
the signature of the C function. For arrays that are changed in-place (the arrays are both input and
output) the types have to match exactly. For arrays that are input or output (see next paragraph),
one has to make sure that the implicit casting is done to a type with higher precision. For input
arrays, the C type must be of the same or higher precision as the NumPy array, while for output
arrays the NumPy array type must be of the same or higher precision as the C array. The NumPy
type float32 corresponds to the C type float, while float64 corresponds to double. The NumPy
type float is the same as float64. For integer arrays, the mapping between NumPy types and C
types depends on your system. Using long as the C type will work in most cases.
Instant supports both input, output and in-place (input-output) arrays. The default behavior is to
treat the arrays as in-place arrays, provided that the input are NumPy arrays. Python lists and
sequences are converted to NumPy arrays automatically. The following code shows an example
where we calculate the matrix-vector multiplication x = Ab. The integer matrix A and double

272 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

vector b are marked as input, while the double vector x is output. The code can be found in:
ex5.py.

Python code
c_code = ’’’

void dot_c(int Am, int An, long* A, int bn, long* b, int xn, double* x)

{

for (int i=0; i<Am; i++)

{

x[i] = 0;

for (int j=0; j<An; j++)

{

x[i] += A[i*Am + j]*b[j];

}

}

}

’’’

dot = inline_with_numpy(c_code,

arrays = [[’Am’, ’An’, ’A’, ’in’, ’long’],

[’bn’, ’b’, ’in’, ’long’],

[’xn’, ’x’, ’out’, ’double’]])

a = arange(9)

a.shape = (3, 3)

b = arange(3)

x1 = dot(a, b, a.shape[1])

Notice that we obtain the desired behavior, namely that b is input and x is output that should have
dimension a.shape[1].
Finally, it is possible to work with arrays that are more than 3-dimensional. However, the typemaps
used for this employ less error checking, and can currently only be used for the C type double. The
list describing the array should contain the variable name for holding the number of dimensions,
the variable name for an integer array holding the size in each dimension, the variable name for
the array, and the argument ’multi’, indicating that it has more than 3 dimensions. The arrays

argument could for example be:

Python code
arrays = [[’m’, ’mp’, ’ar1’, ’multi’],

[’n’, ’np’, ’ar2’, ’multi’]]

In this case, the C function signature should look like:

C++ code
void sum (int m, int* mp, double* ar1, int n,

int* np, double* ar2)

15.4.2 Module name, signature, and cache

The Instant cache resides in the directory .instant in the home directory of the user. It is possible
to specify a different directory, but the instant-clean script will not remove these when executed.
The three keyword arguments modulename, signature, and cache_dir are related. If none of them
are given, the default behavior is to create a signature from the contents of the files and arguments
to the build_module function. In this case the resulting name starts with instant_module_ and is
followed by a long checksum. The resulting code is copied to the Instant cache unless cache_dir

is set to a specific directory. Note that changing the arguments, code or compile arguments will

15.5. INSTANT API 273

result in a new directory in the Instant cache. Before compiling a module, Instant will always
check if the module is cached in either the Instant cache or in the current working directory.
If modulename is used, the directory with the resulting code is named accordingly, but not copied
to the Instant cache. Instead, it is stored in the current working directory. Any changes to the
argument or the source files will automatically result in a recompilation. The argument cache_dir
is ignored.
When signature is given as argument, Instant uses the signature instead of computing the
checksum. The resulting directory has the same name if the signature contains less than or equal
to 100 characters (letters, numbers, or underscores). If this is not the case, the module name
is generated based on the checksum of this string, resulting in a module name starting with
instant_module_ followed by the checksum. Because the user specifies the signature herself,
changes in the arguments or source code will not cause a recompilation.
In addition to the disk cache discussed so far, Instant also has a memory cache. All modules used
during the life-time of a program are stored in memory for faster access. The memory cache is
always checked before the disk cache.

15.4.3 Locking

Instant provides file locking functionality for cache modules. If multiple processes are working on
the same module, race conditions could potentially occur, where two or more processes believe
the module is missing from the cache and try to write it simultaneously. To avoid race conditions,
lock files have been introduced. The lock files reside in the Instant cache, and locking is only
enabled for modules that should be cached; that is, where the module name is not given explicitly
as argument to build_module or one of its wrapper functions. The first process to reach the stage
where the module is copied from its temporary location to the Instant cache will acquire a lock,
and other processes cannot access this module while it is being copied.

15.5 Instant API

In this section we will describe the various Instant functions and their arguments. The first six
functions are the core Instant functions. The function build_module is the main function, while the
five next functions are wrappers around this function. Finally, there are also four helper functions
available, intended for using Instant with other applications.

15.5.1 build_module

This function is the most important one in Instant, and for most applications the only one that
developers need to use (together with the wrapper functions). The return argument is the compiled
module, which can be used directly in the calling code.
There are a number of keyword arguments, and we will explain them in detail here. Although
one of the aims of Instant is to minimize the direct interaction with SWIG, some of the keywords
require knowledge of SWIG in order to make sense. In this way, Instant can be used both by
programmers new to the use of extension languages for Python, as well as by experienced SWIG
programmers. The keywords arguments are as follows:

• modulename

– Default: None

– Type: String

274 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

– Comment: The name you want for the module. If specified, the module will not be
cached. If missing, a name will be constructed based on a checksum of the other
arguments, and the module will be placed in the global cache.

• source_directory

– Default: ’.’

– Type: String

– Comment: The directory where user supplied files reside. The files given in sources,
wrap_headers, and local_headers are expected to exist in this directory.

• code

– Default: ”

– Type: String

– Comment: The C or C++ code to be compiled and wrapped.

• init_code

– Default: ”

– Type: String

– Comment: Code that should be executed when the Instant module is initialized. An
example of initialization code is the call import_array() required for initialization of
NumPy.

• additional_definitions

– Default: ”

– Type: String

– Comment: Additional definitions needed in the interface file. These definitions should
be additional code that is not found elsewhere, but is needed by the wrapper code.
These definitions should be given as triple-quoted strings in the case they span multiple
lines, and are placed both in the initial block for C/C++ code (%{,%}-block), and the
main section of the interface file.

• additional_declarations

– Default: ”

– Type: String

– Comment: Additional declarations needed in the interface file. These declarations
should be declarations of code that is found elsewhere, but is needed to make SWIG
generate wrapper code properly. These declarations should be given as triple-quoted
strings in the case they span multiple lines, and are placed in the main section of the
interface file.

• sources

– Default: []

– Type: List of strings

15.5. INSTANT API 275

– Comment: Source files to compile and link with the module. These files are compiled
together with the SWIG-generated wrapper file into the shared library file. Should
reside in the directory specified in source_directory.

• wrap_headers

– Default: []

– Type: List of strings

– Comment: Local header files that should be wrapped by SWIG. The files specified will
be included both in the initial block for C/C++ code (with a C directive) and in the
main section of the interface file (with a SWIG directive). Should reside in the directory
specified in source_directory.

• local_headers

– Default: []

– Type: List of strings

– Comment: Local header files required to compile the wrapped code. The files specified
will be included in the initial block for C/C++ code (with a C directive). Should reside
in the directory specified in source_directory.

• system_headers

– Default: []

– Type: List of strings

– Comment: System header files required to compile the wrapped code. The files specified
will be included in the initial block for C/C++ code (with a C directive).

• include_dirs

– Default: []

– Type: List of strings

– Comment: Directories to search for header files for building the extension module.
Need to be absolute path names.

• library_dirs

– Default: []

– Type: List of strings

– Comment: Directories to search for libraries (-l) for building the extension module.
Need to be absolute paths.

• libraries

– Default: []

– Type: List of strings

– Comment: Libraries needed by the Instant module. The libraries will be linked in from
the shared object file. The initial -l is added automatically.

• swigargs

276 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

– Default: [’-c++’, ’-fcompact’, ’-O’, ’-I.’, ’-small’]

– Type: List of strings

– Comment: Arguments to swig, e.g. [’-lpointers.i’] to include the SWIG library
pointers.i.

• swig_include_dirs

– Default: []

– Type: List of strings

– Comment: Directories to include in the swig command.

• cppargs

– Default: [’-O2’]

– Type: List of strings

– Comment: Arguments to the C++ compiler (except include directories) e.g. [’-Wall’,
’-fopenmp’].

• lddargs

– Default: []

– Type: List of strings

– Comment: Arguments to the linker, other than libraries and library directories, e.g.
[’-E’, ’-U’].

• arrays

– Default: []

– Type: List of strings

– Comment: A nested list describing the C arrays to be made from the NumPy arrays.
For 1D arrays, the list should contain strings with the variable names for the length of
the arrays and the array itself. Matrices should contain the names of the dimensions in
the two directions as well as the name of the array, and 3D tensors should contain the
names of the dimensions in the three directions in addition to the name of the array. If
the NumPy array has more than three dimensions, the list should contain strings with
variable names for the number of dimensions, the length in each dimension as a pointer,
and the array itself, respectively.

• generate_interface

– Default: True

– Type: Boolean

– Comment: Indicate whether you want to generate the interface files.

• generate_setup

– Default: True

– Type: Boolean

– Comment: Indicate if you want to generate the setup.py file.

15.5. INSTANT API 277

• signature

– Default: None

– Type: String

– Comment: A signature string to identify the form instead of the source code. See Section
15.4.2.

• cache_dir

– Default: None

– Type: String

– Comment: A directory to look for cached modules and place new ones. If missing,
a default directory is used. Note that the module will not be cached if modulename is
specified.

15.5.2 inline

The function inline returns a compiled function if the input is a valid C/C++ function and a
module if not.

15.5.3 inline_module

The same as inline, but returns the whole module rather than a single function.

15.5.4 inline_with_numpy

The difference between this function and the inline function is that C arrays can be used. This
means that the necessary arguments (init_code (import_array), system_headers, and include_-

dirs) for converting NumPy arrays to C arrays are set by the function.

15.5.5 inline_module_with_numpy

The difference between this function and the inline_module function is that C arrays can be used.
This means that the necessary arguments (init_code, system_headers, and include_dirs) for
converting NumPy arrays to C arrays are set by the function.

15.5.6 import_module

This function can be used to import cached modules from the current work directory or the Instant
cache. It has one mandatory argument, moduleid, and one keyword argument cache_dir. If the
latter is given, Instant searches the specified directory instead of the Instant cache, if this directory
exists. If the module is not found, None is returned. The moduleid arguments can be either the
module name, a signature, or an object with a function signature.
Using the module name or signature, assuming the module instant_ext exists in the current
working directory or the Instant cache, we import a module in the following way:

Python code
instant_ext = import_module(’instant_ext’)

An object and a directory can be used as input provided that this object includes a function
signature() and that the module is located in the directory:

278 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

Python code
instant_ext = import_module(object, dir)

If the module is found, the imported module is placed in the memory cache.

15.5.7 header_and_libs_from_pkgconfig

This function returns a list of include files, flags, libraries and library directories obtained from
pkg-config. It takes any number of arguments, one string for every package name. It returns four
or five arguments. Unless the keyword argument returnLinkFlags is given with the value True, it
returns lists with the include directories, the compile flags, the libraries, and the library directories
of the package names given as arguments. If returnLinkFlags is True, the link flags are returned
as a fifth list. It is used as follows:

Python code
inc_dirs, comp_flags, libs, lib_dirs, link_flags = \

header_and_libs_from_pkgconfig(’ufc-1’, ’libxml-2.0’,

’numpy-1’,

returnLinkFlags=True)

15.5.8 get_status_output

This function provides a platform-independent way of running processes in the terminal and
extracting the output using the Python module subprocess. The one mandatory argument is the
command we want to run. Further, there are three keyword arguments. The first is input, which
should be a string containing input to the process once it is running. The other two are cwd and
env. We refer to the documentation of subprocess for a more detailed description of these, but in
short the first is the directory in which the process should be executed, while the second is used
for setting the necessary environment variables.
Editor note: Where is the documentation for subprocess?

15.5.9 get_swig_version

The function returns the SWIG version number like ’1.3.36’.

15.5.10 check_swig_version

Takes a single argument, which should be a string on the same format as the output of get_swig_-
version. Returns True if the version of the installed SWIG is equal to or greater than the version
passed to the function. It also has a keyword argument same for testing whether the two versions
are the same.

15.6 Related work

There exist several packages that are similar to Instant. We mention Weave, Cython, and F2PY.
Weave, which is part of SciPy, allows inlining of C code directly in Python code. Unlike Instant,
Weave does not require the specification of a function signature. For specific examples of Weave
and the other mentioned packages, we refer to [Wilbers et al., 2009]. F2PY, which is part of NumPy,
is primarily intended for wrapping Fortran code although it can be used for wrapping C code.
Cython is a rather new project, branched from the Pyrex. Cython is attractive because of its

15.6. RELATED WORK 279

integration with NumPy arrays. Cython differs from the other projects by being a programming
language of its own, which extends Python with static typing. Cython can be used to wrap C code
and to transform Python code to C, and is currently gaining a lot of momentum.

16 SyFi and SFC: symbolic finite elements and
form compilation

By Martin Sandve Alnæs and Kent-Andre Mardal

16.1 Introduction

This chapter concerns the finite element library SyFi and its form compiler SFC. SyFi is a framework
for defining finite elements symbolically, using the C++ library GiNaC [Bauer et al., 2002] and its
Python interface Swiginac [Skavhaug and Certik, 2009]. In many respects, SyFi is the equivalent of
FIAT, Chapter 14, whereas SFC corresponds to FFC, see Chapter 12. SyFi and SFC comes with an
extensive manual [Alnæs and Mardal, 2009] and can be found on the FEniCS web page. SFC can
be used in FEniCS as a form compiler. Similar to FFC it translates UFL code (see Chapter 18) into
UFC code (see Chapter 17), which can be used by the DOLFIN assembler described in Chapter 7.
The UFC code is JIT-compiled using Instant, see Chapter 15.
This chapter is deliberately short and only gives the reader a taste of the capabilities of SyFi and
SFC. However, most features are covered by the more comprehensive manual. This chapter is
organized as follows: We begin with a short description of GiNaC and Swiginac before we present
how finite elements are used and defined using SyFi. Then, we present how to use SFC in the
DOLFIN environment, and end with a short description of the basic structure of SFC. SyFi is
implemented in C++, but has a Python interface. SFC is implemented in Python because code
generation is much more convenient in this language.

16.2 GiNaC and Swiginac

GiNaC [Bauer et al., 2002] is an open source C++ library for symbolic calculations. It contains the
tools for doing basic manipulations of polynomials like algebraic operations, differentiation, and
integration. The following example shows basic usage of the library,

C++ code
// create a polynomial function

symbol x("x");

ex f = x*(1-x);

// evaluate f

ex fvalue = f.subs(x == 0.5);

std::cout << " f(0.5) = " << fvalue << std::endl;

// differentiation

281

282 CHAPTER 16. SYFI AND SFC: SYMBOLIC FINITE ELEMENTS AND FORM COMPILATION

ex dfdx = diff(f,x);

std::cout << " df/dx = " << dfdx << std::endl;

// integration

ex intf = integral(x,0,1,f).eval_integ();

std::cout << " integral of f from 0 to 1 is: " << intf << std::endl;

We will not go deeply into GiNaC here, but refer the reader to the GiNaC tutorial and reference
which can be found on its web page. There are, however, a few issues we need to address to
explain basic GiNaC usage. First of all, GiNaC contains many different types like symbol, matrix,
function, etc. Normally, one does not need to worry about these types since the type ex, which
was used above, can represent any mathematical object (ex is basically a place-holder for the
underlying object). Still, there are mathematical operations that can only be applied to particular
types. For instance, functions can only be differentiated with respect to symbols, as shown above.
Notice also that GiNaC overloads operators like == to enable creation of equations and inequalities,
which may be represented as expressions of type relations (or ex).
Symbolic calculations can be computationally demanding. Therefore, GiNaC separates between
the construction and evaluation of expressions. This is illustrated in the above example by the fact
that we create an integral object using the function integral, but we need to explicitly call the
function eval_integ to compute the integral. In a similar fashion one may use functions like eval,
evalm, expand, simplify, and collect_common_factors etc. to evaluate and simplify expressions.
Finally, GiNaC implements its own memory management system using reference counting. The
complete code can be found at syfi-sfc/ginac.
Swiginac is a Python interface to GiNaC created using SWIG. Swiginac provides a more or less
direct translation of GiNaC to Python, but has features that makes it easy to program in a Pythonic
way. For instance, Swiginac unwraps the ex objects and provides typemaps between Python lists
and GiNaC lists (lst). The following code translates the above C++ example to Python, using
Swiginac:

Python code
from swiginac import *
x = symbol(’x’)

f = x*(1-x)

fvalue = f.subs(x == 0.5)

print "fvalue = ", fvalue

dfdx = diff(f,x)

print "df/dx = ", dfdx

intf = integral(x,0,1,f).eval_integ()

print "integral of f from 0 to 1 is:", intf

16.3 SyFi: symbolic finite elements

GiNaC provides the basic utilities for SyFi in the sense that it provides manipulation of polynomials,
as well as differentiation and integration with respect to one variable. SyFi extends GiNaC with
polynomial spaces and differentiation operators like ∇, ∇·, and ∇×, in addition to integration
over a number of polygonal domains. With these utilities it is easy to define finite elements.
Some elements that have been implemented include: continuous and discontinuous Lagrange
elements, the Crouzeix–Raviart element, the Raviart–Thomas element, various H(div) and H(curl)

16.3. SYFI: SYMBOLIC FINITE ELEMENTS 283

Nédélec elements, and the Hermite elements. See Chapter 4 for a description of the above-
mentioned elements. A complete list of elements can be found in the user manual. The mentioned
elements are defined for arbitrary order, except for the Crouzeix–Raviart and Hermite elements.
Not all of these elements are, however, supported by the form compiler.
The following example illustrates how to use SyFi to do finite element calculations in Python. Here,
we create a Lagrange element of second order and use the basis functions to compute a element
stiffness matrix on a reference triangle. We also print both the integrand and the element matrix
entries to the screen.

Python code
from swiginac import *
from SyFi import *

#initialize SyFi in 2D

initSyFi(2)

create reference triangle

t = ReferenceTriangle()

create second order Langrange element

fe = Lagrange(t,2)

for i in range(0, fe.nbf()):

for j in range(0, fe.nbf()):

integrand = inner(grad(fe.N(i)), grad(fe.N(j)))

print "integrand[%d, %d] =%s;" % (i, j, integrand.printc())

integral = t.integrate(integrand)

print "A[%d, %d] =%s;" % (i, j, integral.printc())

The output from executing the above code is:

C++ code
integrand[0, 0] =2.0*pow(4.0*y+4.0*x-3.0,2.0);

A[0, 0] =1.0;

integrand[0, 1] = -4.0*(4.0*y+4.0*x-3.0)*x+-4.0*(y+2.0*x-1.0)*(4.0*y+4.0*x-3.0);

A[0, 1] =-(2.0/3.0);

integrand[0, 2] =(4.0*y+4.0*x-3.0)*(4.0*x-1.0);

A[0, 2] =(1.0/6.0);

integrand[0, 3] = -4.0*y*(4.0*y+4.0*x-3.0)+-4.0*(4.0*y+4.0*x-3.0)*(2.0*y+x-1.0);

A[0, 3] =-(2.0/3.0);

....

Here, we see that the expressions are printed to the screen as symbolic expressions in C++ syntax.
Hence, the output is very reader–friendly and this can be very useful during debugging. We
remark that also Python and LaTeX output can be generated using the printpython and printlatex

functions.
All elements in SyFi are implemented in C++. Here, however, for simplicity we list a definition
of the Crouzeix–Raviart element in Python. The following code is the complete finite element
definition:

Python code
from swiginac import *
from SyFi import *

class CrouzeixRaviart(object):

"""Python implementation of the Crouzeix-Raviart element."""

284 CHAPTER 16. SYFI AND SFC: SYMBOLIC FINITE ELEMENTS AND FORM COMPILATION

def __init__(self, polygon):

"""Constructor"""

self.Ns = []

self.dofs = []

self.polygon = polygon

self.compute_basis_functions()

def compute_basis_functions(self):

"""Compute the basis functions and degrees of freedom

and put them in Ns and dofs, respectively."""

create the polynomial space

N, variables, basis = bernstein(1,self.polygon,"a")

define the degrees of freedom

for i in range(0,3):

edge = self.polygon.line(i)

dofi = edge.integrate(N)

self.dofs.append(dofi)

compute and solve the system of linear equations

for i in range(0,3):

equations = []

for j in range(0,3):

equations.append(self.dofs[j] == dirac(i,j))

sub = lsolve(equations, variables)

Ni = N.subs(sub)

self.Ns.append(Ni);

def N(self,i): return self.Ns[i]

def dof(self,i): return self.dofs[i]

def nbf(self): return len(self.Ns)

The process of defining a finite element in SyFi is similar for all elements. As the above code
shows, it resembles the Ciarlet definition closely, see also the Chapters 5 and 4. First, we construct
a polynomial space. In the code above, this is performed by calling the bernstein function. The
bernstein function takes as input a simplex and the order of the Bernstein polynomial. Arbitrary
order polynomials are supported. This function produces a tuple consisting of the polynomial, its
coefficients (or degrees of freedom), and the basis functions representing the polynomial space P:

Python code
In : bernstein(1, triangle, "a")

Out : [-a0_2*(-1+y+x)+y*a0_0+x*a0_1, [a0_0, a0_1, a0_2], [y, x, 1-y-x]]

In the above code, we used a triangle and the order of the polynomial was one. The next task is to
define a set of degrees of freedom; that is, a set of functionals Li : P→ R. For the Crouzeix–Raviart
element, the degrees of freedom are simply the integrals over an edge; that is, Li(P) =

∫
Ei

P dx,
where Ei for i = (0, 1, 2) are the edges of the triangle. Alternatively we could have used the value
at the midpoint of the edges since the polynomial P is linear. Finally, the different basis functions
{Ni} are determined by the set of equations Li(Nj) = δij. These equations are then solved, using
lsolve, to compute the basis functions of the elements; that is, the coefficients [a0_0, a0_1, a0_2]

are determined for each specific basis function.
The basis functions of this element can then be displayed as follows:

Python code
p0 = [0,0,0]; p1 = [1,0,0]; p2 = [0,1,0];

triangle = Triangle(p0, p1, p2)

16.4. SFC: SYFI FORM COMPILER 285

fe = CrouzeixRaviart(triangle)

for i in range(0,fe.nbf()):

print "N(%d) = "%i, fe.N(i)

print "grad(N(%d)) = "%i, grad(fe.N(i))

giving the following output:

C++ code
N(0) = 1/6*(-3+3*x+3*y+z)*2**(1/2)+1/6*2**(1/2)*(3*x-z)+1/6*2**(1/2)*(3*y-z)

grad(N(0)) = [[2**(1/2)],[2**(1/2)],[-1/6*2**(1/2)]]

N(1) = 1-2*x-1/3*z

grad(N(1)) = [[-2],[0],[-1/3]]

...

16.4 SFC: SyFi form compiler

As mentioned earlier, SFC translates UFL code to UFC code. Consider the following UFL code
for defining the variational problem for solving the Poisson problem, implemented in a file
Poisson.ufl:

Python code
cell = triangle

element = FiniteElement("CG", cell, 1)

u = TrialFunction(element)

v = TestFunction(element)

c = Coefficient(element)

f = Coefficient(element)

g = Coefficient(element)

a = c*dot(grad(u),grad(v))*dx

L = -f*v*dx + g*v*ds

SFC translates this UFL form to UFC code as follows:

Bash code
sfc -w1 -ogenerated_code Poisson.ufl

Here, -w1 means that DOLFIN wrappers are generated, while -ogenerate_code means that the
generated code should be located in the directory generate_code. Notice that the flags and
corresponding options are not separated by spaces. A complete list of options is obtained with sfc

-h. The generated code can be utilized in DOLFIN in a standard fashion. For a complete example
consider the demo demo/Poisson2D/cpp that comes with the SyFi package.
In DOLFIN, the form compiler may be chosen at run-time by setting:

Python code
parameters["form_compiler"]["name"] = "sfc"

The form compiler can be tuned with a range of options. A complete list of options is obtained as
follows:

Python code
from sfc.common.options import default_options

sfc_options = default_options()

286 CHAPTER 16. SYFI AND SFC: SYMBOLIC FINITE ELEMENTS AND FORM COMPILATION

The object sfc_options is of type ParameterDict, which is a dictionary with some additional
functionality. One may use the following forms to set options before passing them to assemble.

Python code
sfc_options.code.integral.integration_method = "symbolic" # default is "quadrature"

alternatively:

sfc_options["code"]["integral"]["integration_method"] = "symbolic"

A = assemble(a, form_compiler_parameters=sfc_options)

Earlier versions of SFC produced slow code for complicated nonlinear equations as shown in Alnæs
and Mardal [2010]. Furthermore, the code generation was expensive both in terms of memory
and the number of operations required in the computations, because the SFC implementation
did not scale linearly with the complexity of the equations. However, a significant speed-up
came with the introduction of UFL with its expression tree traversal algorithms. Now, quite
complicated equations can be handled without losing computational efficiency. Consider for
example an elasticity problem where the constitutive law is a quite complicated variant of Fung
[1993], described by the following equations:

F = I + (∇u), (16.1)

C = FT : F, (16.2)

E = (C− I)/2, (16.3)

ψ =
λ

2
tr(E)2 + K exp((EA, E)), (16.4)

P =
∂ψ

∂E
, (16.5)

L =
∫

Ω
P : (∇v)dx, (16.6)

JF =
∂L
∂u

. (16.7)

Here, u is the unknown displacement, v is a test function, I is the identity matrix, A is a matrix, λ
and K are material parameters, L is the system of nonlinear equations to be solved, and JF is the
corresponding Jacobian. This variational form is implemented in DOLFIN as follows:

Python code
mesh = UnitSquare(N, N)

V = VectorFunctionSpace(mesh, "CG", order)

Q = FunctionSpace(mesh, "CG", order)

U = Function(V)

v = TestFunction(V)

u = TrialFunction(V)

lamda = Constant(1.0)

A = Expression (((’1.0’, ’0.3’), (’0.3’, ’2.3’)))

K = Constant(1.0)

n = U.cell().n

I = Identity(U.cell().d)

F = I + grad(U)

J = det(F)

C = F.T*F

16.5. CODE GENERATION DESIGN 287

N 100 200 400

JL, p = 1 0.08 0.27 1.04

JL, p = 2 0.36 1.41 5.45

JF, p = 1 0.33 0.84 3.36

JF, p = 2 0.68 2.26 8.55

Table 16.1: Comparison of the time (in seconds) for computing the Jacobian matrix for the two elasticity
problems on a N × N unit square mesh for linear (p = 1) and quadratic elements (p = 2).

E = (C-I)/2

E = variable(E)

psi = lamda/2 * tr(E)**2 + K*exp(inner(A*E,E))

P = F*diff(psi, E)

a_f = psi*dx

L = inner(P, grad(v))*dx

J = derivative(L, U, u)

A = assemble(J)

To test the computational efficiency of the generated code for this problem, we compare the
assembly of JF with the assembly of a corresponding linear elasticity problem with the following
matrix JL:

JL =
∫

Ω
λ∇ · u∇ · v + (λ + µ)∇u : ∇v dx. (16.8)

In Table 16.1 we see a comparison of the efficiency for the above examples. Clearly, the nonlinear
example is no more than 4 times as slow as the linear problem when using linear elements, and
only a factor 2 when using quadratic elements.
We refer to Alnæs and Mardal [2010], Ølgaard et al. [2008], Kirby and Logg [2008], Ølgaard and
Wells [2010] for more discussions on the topic of efficient compilation of linear and nonlinear
variational formulations.

16.5 Code generation design

Finally, we briefly describe the overall design of the code generation software. UFC defines the
interface of the code produced by SFC. In SFC, each UFC class is mirrored by subclasses of the class
CodeGenerator called FormCG, DofMapCG, FiniteElementCG, and CellIntegralCG, etc. These classes
are used to generate code for the corresponding UFC classes, form, dofmap, finite_element,
cell_integral, etc. These classes have a common function for generating the code, called
generate_code_dict. The function generate_code_dict generates a dictionary containing named
pieces of UFC code, most of which are function body implementations. This dictionary with
code is then combined with format strings from the UFC utility Python module to generate UFC
compliant code. An example of a format string is shown below.

Python code
cell_integral_implementation = """\

/// Constructor

%(classname)s::%(classname)s() : ufc::cell_integral()

{

%(constructor)s

}

288 CHAPTER 16. SYFI AND SFC: SYMBOLIC FINITE ELEMENTS AND FORM COMPILATION

/// Destructor

%(classname)s::~%(classname)s()

{

%(destructor)s

}

/// Tabulate the tensor for the contribution from a local cell

void %(classname)s::tabulate_tensor(double* A,

const double * const * w,

const ufc::cell& c) const

{

%(tabulate_tensor)s

}

"""

Using this template, the code generation in SFC is then performed as follows:

Python code
def generate_cell_integral_code(integrals, formrep):

sfc_debug("Entering generate_cell_integral_code")

itgrep = CellIntegralRepresentation(integrals, formrep)

cg = CellIntegralCG(itgrep)

vars = cg.generate_code_dict()

supportcode = cg.generate_support_code()

hcode = ufc_utils.cell_integral_header % vars

ccode = supportcode + "\n"*3 + ufc_utils.cell_integral_implementation % vars

includes = cg.hincludes() + cg.cincludes()

system_headers = common_system_headers()

hincludes = "\n".join(’#include "%s"’ % inc for inc in cg.hincludes())

cincludes = "\n".join(’#include <%s>’ % f for f in system_headers)

cincludes += "\n"

cincludes += "\n".join(’#include "%s"’ % inc for inc in cg.cincludes())

hcode = _header_template % \

{ "body": hcode, "name": itgrep.classname, "includes": hincludes }

ccode = _implementation_template % \

{ "body": ccode, "name": itgrep.classname, "includes": cincludes }

sfc_debug("Leaving generate_cell_integral_code")

return itgrep.classname, (hcode, ccode), includes

As seen above, the CellIntegralCG class is again mirrored by a corresponding class
CellIntegralRepresentation,

Python code
class CellIntegralRepresentation(IntegralRepresentation):

def __init__(self, integrals, formrep):

IntegralRepresentation.__init__(self, integrals, formrep, False)

def compute_A(self, data, iota, facet=None):

"Compute expression for A[iota]."

if data.integration_method == "quadrature":

if self.options.safemode:

integrand = data.integral.integrand()

16.5. CODE GENERATION DESIGN 289

data.evaluator.update(iota)

integrand = data.evaluator.visit(integrand)

else:

n = len(data.G.V())

integrand = data.vertex_data_set[iota][n-1]

D = self.formrep.D_sym

A = integrand * D

...

The representation classes are quite involved, in particular when using quadrature where the gen-
erated code involves multiple loops and quite a few temporary variables. To generate quadrature
based code, the computational graph algorithms from UFL (in particular the class ufl.Graph) are
used to split the expression tree into smaller subexpressions. SFC makes GiNaC symbols that
represent temporary variables for all subexpressions. To place the temporary variables inside
the correct loops in the generated code, the computational graph is partitioned based on the
dependencies of subexpressions. See Chapter 18 for an explanation of the partitioning algorithm
provided by UFL. The subexpression associated with each temporary variable is then translated to
a C/C++ string using GiNaC. Finally, SFC puts it all together into a tabulate tensor implementation
in the code generation classes (*CG).

17 UFC: a finite element code generation interface

By Martin Sandve Alnæs, Anders Logg and Kent-Andre Mardal

A central component of FEniCS is the UFC interface (Unified Form-assembly Code). UFC is an
interface between problem-specific and general-purpose components of finite element programs.
In particular, the UFC interface defines the structure and signature of the code that is generated by
the form compilers FFC and SFC for DOLFIN. The UFC interface applies to a wide range of finite
element problems (including mixed finite elements and discontinuous Galerkin methods) and may
be used with libraries that differ widely in their design. For this purpose, the interface does not
depend on any other FEniCS components (or other libraries) and consists only of a minimal set of
abstract C++ classes using plain C arrays for data transfer. This chapter gives a short overview
of the UFC interface. For a more comprehensive discussion, we refer to the UFC manual [Alnæs
et al., 2007] and the paper Alnæs et al. [2009].

17.1 Overview

A key step in the solution of partial differential equations by the finite element method is the
assembly of linear and nonlinear systems of equations. The implementation of such solvers is much
helped by the existence of generic software libraries that provide data structures and algorithms for
computational meshes and linear algebra. This allows the implementation of a generic assembly
algorithm that may be partly reused from one application to another. However, since the inner loop
of the assembly algorithm inherently depends on the partial differential equation being solved and
the finite elements used to produce the discretization, this inner loop must typically be supplied by
the user. Writing the inner loop is a challenging task that is prone to errors, and which prohibits
rapid prototyping and experimentation with models and discretization methods.

The FEniCS tool-chain of FIAT–UFC–FFC/SFC–UFC–DOLFIN is an attempt to solve this problem.
By generating automatically the inner loop based on a high-level description of the finite element
variational problem (in the UFL form language), FEniCS is able to provide a completely generic
implementation of the assembly algorithm as part of DOLFIN. This is illustrated in Figure 17.1. We
note from this figure that the user input is partitioned into two sets: a first subset consisting of the
finite element variational problem that requires code generation, and a second subset consisting of
the mesh and coefficient data that is given as input to the assembler.

291

292 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

UFL
Form compiler

UFC
Assembler

Mesh

Coefficients

Tensor

(form) (C++ code) (matrix)

Figure 17.1: A flow diagram of finite
element assembly in FEniCS.

17.2 Finite element discretization and assembly

In Chapter 7, we described the assembly algorithm for computing the global rank ρ tensor A
corresponding to a multilinear form a of arity ρ:

a : W1,h ×W2,h × · · · ×Wn,h × Vρ,h × · · · ×V2,h ×V1,h → R,

a 7→ a(w1, w2, . . . , wn; vρ, . . . , v2, v1);
(17.1)

Here, {Vj,h}ρ
j=1 is a sequence of discrete function spaces for the arguments {vj}ρ

j=1 of the form and

{W j
j,h}n

j=1 is a sequence of discrete function spaces for the coefficients {wj}n
j=1 of the form. Typically,

the arity is ρ = 1 for a linear form or ρ = 2 for a bilinear form. In the simplest case, all function
spaces are equal but there are many important examples, such as mixed methods, where the
arguments come from different function spaces. The choice of coefficient function spaces depends
on the application; a polynomial basis simplifies exact integration, while in some cases evaluating
coefficients in quadrature points may be required.

As we saw in Chapter 7, the global tensor A can be computed by summing contributions from
the cells and facets of a mesh. We refer to these contributions as either cell tensors or facet tensors.
Although one may formulate a generic assembly algorithm, the cell and facet tensors must be
computed differently depending on the variational form, and their entries must be inserted
differently into the global tensor depending on the choice of finite element spaces. This is handled
in FEniCS by implementing a generic assembly algorithm (as part of DOLFIN) that relies on
special-purpose generated code (by FFC or SFC) for computing the cell and facet tensors, and for
computing the local-to-global map for insertion of the cell and facet tensors into the global matrix.

The UFC interface assumes that the multilinear form a in (17.1) can be expressed as a sum of
integrals over the cells Th, the exterior facets ∂h, and the interior facets ∂0

h of the mesh. The integrals

may then be expressed on disjoint subsets Th = ∪nc
k=1Th,k, ∂h = ∪n f

k=1∂h,k, and ∂0
h,k = ∪n0

f
k=1∂0

h,k,
respectively. In particular, it is assumed that the multilinear form can be expressed in the following
canonical form:

a(w1, w2, . . . , wn; vρ, . . . , v2, v1) =
nc

∑
k=1

∑
T∈Th,k

∫

T
Ic
k(w1, w2, . . . , wn; vρ, . . . , v2, v1)dx

+

n f

∑
k=1

∑
S∈∂h,k

∫

S
I f
k (w1, w2, . . . , wn; vρ, . . . , v2, v1)ds

+

n0
f

∑
k=1

∑
S0∈∂0

h,k

∫

S0
I f ,0
k (w1, w2, . . . , wn; vρ, . . . , v2, v1)dS.

(17.2)

17.3. THE UFC INTERFACE 293

Figure 17.2: Schematic overview of
some of the UFC classes. Arrows indi-
cate dependencies.

ufc::form ufc::finite_element

ufc::dofmap

ufc::cell_integral

ufc::exterior_facet_integral

ufc::interior_facet_integral

ufc::mesh

ufc::cell

ufc::function

We refer to an integral Ic
k over a cell T as a cell integral, an integral I f

k over an exterior facet S
as an exterior facet integral (typically used to implement Neumann and Robin type boundary
conditions), and to an integral I f ,0

k over an interior facet S0 as an interior facet integral (typically
used in discontinuous Galerkin methods).

17.3 The UFC interface

The UFC interface1 consists of a small collection of abstract C++ classes that represent common
components for assembling tensors using the finite element method. The full UFC interface is
specified in a single header file ufc.h. The UFC classes are accompanied by a set of conventions
for numbering of cell data and other arrays. Data is passed as plain C arrays for efficiency and
minimal dependencies. Most functions are declared const, reflecting that the operations they
represent should not change the outcome of future operations.2

17.3.1 Class relations

Figure (17.2) shows all UFC classes and their relations. The classes mesh, cell, and function

provide the means for communicating mesh and coefficient function data as arguments. The
integrals of (17.2) are represented by one of the following classes:

• cell_integral,

• exterior_facet_integral,

• interior_facet_integral.

Subclasses of form must implement factory functions which may be called to create integral objects.
These objects in turn know how to compute their respective contribution from a cell or facet during
assembly. A code fragment from the form class declaration is shown below.

C++ code
class form

{

public:

1This chapter describes version 1.4 of the UFC interface.
2The exceptions are the functions to initialize a dofmap.

294 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

...

/// Create a new cell integral on sub domain i

virtual cell_integral* create_cell_integral(unsigned int i) const = 0;

/// Create a new exterior facet integral on sub domain i

virtual exterior_facet_integral*
create_exterior_facet_integral(unsigned int i) const = 0;

/// Create a new interior facet integral on sub domain i

virtual interior_facet_integral*
create_interior_facet_integral(unsigned int i) const = 0;

};

The form class also specifies functions for creating finite_element and dofmap objects for the
finite element function spaces {Vj,h}ρ

j=1 and {Wj,h}n
j=1 of the variational form. The finite_element

object provides functionality such as evaluation of degrees of freedom and evaluation of basis
functions and their derivatives. The dofmap object provides functionality such as tabulating the
local-to-global map of degrees of freedom on a single element, as well as tabulation of subsets
associated with particular mesh entities, which is used to apply Dirichlet boundary conditions and
build connectivity information.
Both the finite_element and dofmap classes can represent mixed elements, in which case it is
possible to obtain finite_element and dofmap objects for each subelement in a hierarchical manner.
Vector elements composed of scalar elements are in this context seen as special cases of mixed
elements where all subelements are equal. As an example, consider the dofmap for a P2–P1
Taylor–Hood element. From this dofmap it is possible to extract one dofmap for the quadratic vector
element and one dofmap for the linear scalar element. From the vector element, a dofmap for the
quadratic scalar element of each vector component can be obtained. This can be used to access
subcomponents from the solution of a mixed system.

17.3.2 Stages in the assembly algorithm

Next, we focus on a few key parts of the interface and explain how these can be used to implement
the assembly algorithm presented in Chapter 7. The general algorithm consists of three stages:
(i) assembling the contributions from all cells, (ii) assembling the contributions from all exterior
facets, and (iii) assembling the contributions from all interior facets.
Each of the three assembly stages (i)–(iii) is further composed of five steps. In the first step, a cell T
is fetched from the mesh, typically implemented by filling a cell structure (see Figure 17.3) with
coordinate data and global numbering of the mesh entities in the cell. This step depends on the
specific mesh being used.
In the second step, the coefficients in {Wj,h}n

j=1 are restricted to the local cell T. If a coefficient wj is
not given as a linear combination of basis functions for Wj,h, it must at this step be interpolated into
Wj,h, using the interpolant defined by the degrees of freedom of Wj,h. One common choice of inter-
polation is point evaluation at the set of nodal points. In this case, the coefficient function is passed
as an implementation of the function interface (a simple functor) to the function evaluate_dofs

in the UFC finite_element class.

C++ code
/// Evaluate linear functionals for all dofs on the function f

virtual void evaluate_dofs(double* values,

17.3. THE UFC INTERFACE 295

Figure 17.3: Data structure for commu-
nicating cell data. C++ code

class cell
{
public:

/// Constructor
cell(): cell_shape(interval),

topological_dimension(0),
geometric_dimension(0),

entity_indices(0), coordinates(0) {}

/// Destructor
virtual ~cell() {}

/// Shape of the cell
shape cell_shape;

/// Topological dimension of the mesh
unsigned int topological_dimension;

/// Geometric dimension of the mesh
unsigned int geometric_dimension;

/// Array of global indices for the mesh entities of
the cell

unsigned int** entity_indices;

/// Array of coordinates for the vertices of the cell
double** coordinates;

/// Cell index (short-cut for
entity_indices[topological_dimension][0])

unsigned int index;

/// Local facet index
int local_facet;

/// Unique mesh identifier
int mesh_identifier;

};

296 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

const function& f,

const cell& c) const = 0;

Here, double* values is a pointer to the first element of an array of double precision floating point
numbers which will be filled with the values of the degrees of freedom of the function f on the
current cell.
In the third step, the local-to-global map of degrees of freedom is tabulated for each of the
function spaces. That is, for each of the local discrete finite element spaces on T, we tabulate the
corresponding global degrees of freedom.

C++ code
/// Tabulate the local-to-global mapping of dofs on a cell

void dofmap::tabulate_dofs(unsigned int* dofs,

const mesh& m,

const cell& c) const

Here, unsigned int* dofs is a pointer to the first element of an array of unsigned integers that
will be filled with the local-to-global map on the current cell during the function call.
In the fourth step, the local element tensor contribution (cell or exterior/interior facet tensor) is
computed. This is done by a call to the function tabulate_tensor, illustrated below for a cell
integral.

C++ code
/// Tabulate the tensor for the contribution from a local cell

virtual void tabulate_tensor(double* A,

const double * const * w,

const cell& c) const = 0;

Here, double* A is a pointer to the first element of an array of double precision floating point
numbers which will be filled with the values of the element tensor, flattened into one array of
numbers. Similarly, one may evaluate interior and exterior facet contributions using slightly
different function signatures.
Finally, at the fifth step, the local element tensor contributions are added to the global tensor, using
the local-to-global maps previously obtained by calls to the tabulate_dofs function. This is an
operation that depends on the linear algebra backend used to store the global tensor.

17.3.3 Code generation utilities

UFC provides a number of utilities that can be used by form compilers to simplify the code
generation process, including templates for creating subclasses of UFC classes and utilities for
just-in-time compilation. These are distributed as part of the ufc_utils Python module.
Templates are available for all UFC classes listed in Figure 17.2 and consist of format strings for
the skeleton of each subclass. The following code illustrates how to generate a subclass of the UFC
form class.

C++ code
from ufc_utils import form_combined

implementation = {}

implementation["classname"] = "my_form"

implementation["members"] = ""

implementation["constructor_arguments"] = ""

implementation["initializer_list"] = ""

implementation["constructor"] = "// Do nothing"

17.4. EXAMPLES 297

implementation["destructor"] = "// Do nothing"

implementation["signature"] = "return \"my form\""

implementation["rank"] = "return 2;"

implementation["num_coefficients"] = "return 0;"

implementation["num_cell_domains"] = "return 3;"

implementation["num_interior_facet_domains"] = "return 1;"

implementation["num_exterior_facet_domains"] = "return 0;"

implementation["create_finite_element"] = "\

switch (i)

{

case 0:

return new my_finite_element_0();

case 1:

return new my_finite_element_1();

default:

return 0;

}"

implementation["create_dofmap"] = "\

switch (i)

{

case 0:

return new my_dofmap_0();

case 1:

return new my_dofmap_1();

default:

return 0;

}"

implementation["create_cell_integral"] = "\

switch (i)

{

case 0:

return new my_cell_integral_0();

case 1:

return new my_cell_integral_1();

case 2:

return new my_cell_integral_2();

default:

return 0;

}"

implementation["create_exterior_facet_integral"] = "\

return new my_exterior_facet_integral();"

implementation["create_interior_facet_integral"] = "return 0;"

print form_combined % implementation

This generates code for a single header file that also contains the implementation of each function
in the UFC form interface. It is also possible to generate code for separate header (.h) and
implementation (.cpp) files by using the form_header and form_implementation templates.
The ufc_utils module also contains the utility function build_ufc_module that can be called to
build a Python module based on generated UFC code. This process involves compilation, linking,
and loading of the generated C++ code as well as generating a Python wrapper module using
Instant/SWIG as described in Chapter 15.

17.4 Examples

In this section, we demonstrate how UFC can be used in practice for assembly of finite element
forms. First, we demonstrate how one may implement a simple assembler based on generated

298 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

UFC code. We then show examples of input to the form compilers FFC and SFC as well as part of
the corresponding UFC code generated as output.

17.4.1 Assembler

The simple assembler presented in this section assumes that the degrees of freedom of the finite
element spaces involved depend only on vertices; that is, we assume piecewise linear elements.
We also assume that the assembled form is a tensor of rank two (a matrix), that we may insert
values into the given matrix data structure by simply assigning values to the entries of the matrix,
that the form does not depend on any coefficients, and that the form is expressed as a single
cell integral. In practice, the efficient insertion of entries into a sparse matrix typically requires
a the use of a special optimized library call. For example, entries may be inserted (added) to
a sparse PETSc matrix by a call to MatSetValues and to a sparse Trilinos/Epetra matrix by a
call to SumIntoGlobalValues. For a complete implementation of an assembler for general rank
tensors and generic linear algebra libraries that provide an insertion operation, we refer to the
class Assembler in DOLFIN (Assembler.cpp). The code example presented below is available in
the supplementary material for this chapter (assemble.cpp).

C++ code
void assemble(Matrix& A, ufc::form& form, dolfin::Mesh& mesh)

{

// Get dimensions

const uint D = mesh.topology().dim();

const uint d = mesh.geometry().dim();

// Initialize UFC mesh data structure

ufc::mesh ufc_mesh;

ufc_mesh.topological_dimension = D;

ufc_mesh.geometric_dimension = d;

ufc_mesh.num_entities = new uint[D + 1];

for (uint i = 0; i <= D; i++)

ufc_mesh.num_entities[i] = 0;

ufc_mesh.num_entities[0] = mesh.num_vertices();

ufc_mesh.num_entities[D] = mesh.num_cells();

// Initialize UFC cell data structure, assuming that the

// cell is a simplex and only vertices are used for dofs

ufc::cell ufc_cell;

switch (D)

{

case 1:

ufc_cell.cell_shape = ufc::interval;

break;

case 2:

ufc_cell.cell_shape = ufc::triangle;

break;

default:

ufc_cell.cell_shape = ufc::tetrahedron;

break;

}

ufc_cell.topological_dimension = D;

ufc_cell.geometric_dimension = d;

ufc_cell.entity_indices = new uint * [D + 1];

for (uint i = 0; i <= D; i++)

ufc_cell.entity_indices[i] = 0;

uint vertices_per_cell = D + 1;

ufc_cell.entity_indices[0] = new uint[vertices_per_cell];

17.4. EXAMPLES 299

ufc_cell.entity_indices[D] = new uint[1];

ufc_cell.coordinates = new double * [vertices_per_cell];

for (uint i = 0; i <= D; i++)

ufc_cell.coordinates[i] = new double[d];

// Create cell integrals, assuming there is only one

ufc::cell_integral* cell_integral = form.create_cell_integral(0);

// Create dofmaps for rows and columns

ufc::dofmap* dofmap_0 = form.create_dofmap(0);

ufc::dofmap* dofmap_1 = form.create_dofmap(1);

// Initialize dofmaps

dofmap_0->init_mesh(ufc_mesh);

dofmap_1->init_mesh(ufc_mesh);

// Omitting code for dofmap initialization on cells, which is not

// needed for code generated by FFC but which is generally required

// Get local and global dimensions

uint m = dofmap_0->max_local_dimension();

uint n = dofmap_1->max_local_dimension();

uint M = dofmap_0->global_dimension();

uint N = dofmap_1->global_dimension();

// Initialize array of local-to-global maps

uint* dofs_0 = new uint[m];

uint* dofs_1 = new uint[n];

// Initialize array of values for the cell matrix

double* A_T = new double[m * n];

// Initialize global matrix

A.init(M, N);

// Iterate over the cells of the mesh

for (dolfin::CellIterator cell(mesh); !cell.end(); ++cell)

{

// Update UFC cell data structure for current cell

ufc_cell.entity_indices[D][0] = cell->index();

for (dolfin::VertexIterator vertex(*cell); !vertex.end(); ++vertex)

{

ufc_cell.entity_indices[0][vertex.pos()] = vertex->index();

for (uint i = 0; i < d; i++)

ufc_cell.coordinates[vertex.pos()][i] = vertex->x(i);

}

// Compute local-to-global map for degrees of freedom

dofmap_0->tabulate_dofs(dofs_0, ufc_mesh, ufc_cell);

dofmap_1->tabulate_dofs(dofs_1, ufc_mesh, ufc_cell);

// Compute the cell matrix A_T

cell_integral->tabulate_tensor(A_T, 0, ufc_cell);

// Add entries to global matrix

for (uint i = 0; i < m; i++)

for (uint j = 0; j < m; j++)

A(dofs_0[i], dofs_1[j]) += A_T[i*n + j];

}

// Omitting code for deleting allocated arrays

300 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

}

17.4.2 Generated UFC code

The form language UFL described in Chapter 18 provides a simple language for specification of
variational forms, which may be entered either directly in Python or in text files given to a form
compiler. We consider the following definition of the bilinear form a(u, v) = 〈∇u,∇v〉 in UFL:

C++ code
element = FiniteElement("CG", "triangle", 1)

u = TrialFunction(element)

v = TestFunction(element)

a = inner(grad(u), grad(v))*dx

When compiling this code, a C++ header file is created, containing UFC code that may be used
to assemble the global sparse stiffness matrix for Poisson’s equation. Below, we present the code
generated for evaluation of the element stiffness matrix for the bilinear form a using FFC. Similar
code may be generated using SFC.

C++ code
/// Tabulate the tensor for the contribution from a local cell

virtual void tabulate_tensor(double* A,

const double * const * w,

const ufc::cell& c) const

{

// Number of operations (multiply-add pairs) for Jacobian data: 11

// Number of operations (multiply-add pairs) for geometry tensor: 8

// Number of operations (multiply-add pairs) for tensor contraction: 11

// Total number of operations (multiply-add pairs): 30

// Extract vertex coordinates

const double * const * x = c.coordinates;

// Compute Jacobian of affine map from reference cell

const double J_00 = x[1][0] - x[0][0];

const double J_01 = x[2][0] - x[0][0];

const double J_10 = x[1][1] - x[0][1];

const double J_11 = x[2][1] - x[0][1];

// Compute determinant of Jacobian

double detJ = J_00*J_11 - J_01*J_10;

// Compute inverse of Jacobian

const double K_00 = J_11 / detJ;

const double K_01 = -J_01 / detJ;

const double K_10 = -J_10 / detJ;

const double K_11 = J_00 / detJ;

// Set scale factor

const double det = std::abs(detJ);

// Compute geometry tensor

const double G0_0_0 = det*(K_00*K_00 + K_01*K_01);

const double G0_0_1 = det*(K_00*K_10 + K_01*K_11);

const double G0_1_0 = det*(K_10*K_00 + K_11*K_01);

17.4. EXAMPLES 301

const double G0_1_1 = det*(K_10*K_10 + K_11*K_11);

// Compute element tensor

A[0] = 0.500000000000000*G0_0_0 + 0.500000000000000*G0_0_1

+ 0.500000000000000*G0_1_0 + 0.500000000000000*G0_1_1;

A[1] = -0.500000000000000*G0_0_0 - 0.500000000000000*G0_1_0;

A[2] = -0.500000000000000*G0_0_1 - 0.500000000000000*G0_1_1;

A[3] = -0.500000000000000*G0_0_0 - 0.500000000000000*G0_0_1;

A[4] = 0.500000000000000*G0_0_0;

A[5] = 0.500000000000000*G0_0_1;

A[6] = -0.500000000000000*G0_1_0 - 0.500000000000000*G0_1_1;

A[7] = 0.500000000000000*G0_1_0;

A[8] = 0.500000000000000*G0_1_1;

}

Having computed the element tensor, one needs to compute the local-to-global map in order to
know where to insert the local contributions in the global tensor. This map may be obtained by
calling the member function tabulate_dofs of the class dofmap. FFC uses an implicit ordering
scheme, based on the indices of the topological entities in the mesh. This information may be
extracted from the cell attribute entity_indices. For linear Lagrange elements on triangles, each
degree of freedom is associated with a global vertex. Hence, FFC constructs the map by picking
the corresponding global vertex number for each degree of freedom as demonstrated below.

C++ code
virtual void tabulate_dofs(unsigned int* dofs,

const ufc::mesh& m,

const ufc::cell& c) const

{

dofs[0] = c.entity_indices[0][0];

dofs[1] = c.entity_indices[0][1];

dofs[2] = c.entity_indices[0][2];

}

For quadratic Lagrange elements, a similar map is generated based on global vertex and edge
numbers (entities of dimension zero and one respectively). We list the code for tabulate_dofs

generated by FFC for quadratic Lagrange elements below.

C++ code
virtual void tabulate_dofs(unsigned int* dofs,

const ufc::mesh& m,

const ufc::cell& c) const

{

unsigned int offset = 0;

dofs[0] = offset + c.entity_indices[0][0];

dofs[1] = offset + c.entity_indices[0][1];

dofs[2] = offset + c.entity_indices[0][2];

offset += m.num_entities[0];

dofs[3] = offset + c.entity_indices[1][0];

dofs[4] = offset + c.entity_indices[1][1];

dofs[5] = offset + c.entity_indices[1][2];

offset += m.num_entities[1];

}

302 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

17.5 Numbering conventions

UFC relies on a set of numbering conventions for cells, vertices and other mesh entities. The
numbering scheme ensures that form compilers (FFC and SFC) and assemblers (DOLFIN) can
communicate data required for tabulating the cell and facet tensors as well as local-to-global maps.

17.5.1 Reference cells

The following five reference cells are covered by the UFC specification: the reference interval, the
reference triangle, the reference quadrilateral, the reference tetrahedron, and the reference hexahedron.
The UFC specification assumes that each cell in a finite element mesh is always isomorphic to one
of the reference cells. The UFC reference cells are listed in the table below.

Reference cell Dimension #Vertices #Facets
The reference interval 1 2 2

The reference triangle 2 3 3

The reference quadrilateral 2 4 4

The reference tetrahedron 3 4 4

The reference hexahedron 3 8 6

The reference interval. The reference interval and the coordinates of its two vertices are shown in
the figure and table below.

0 1

v0 v1 Vertex Coordinates
v0 x = 0
v1 x = 1

The reference triangle. The reference triangle and the coordinates of its three vertices are shown in
figure and table below.

v0 v1

v2

Vertex Coordinates
v0 x = (0, 0)
v1 x = (1, 0)
v2 x = (0, 1)

The reference quadrilateral. The reference quadrilateral and the coordinates of its four vertices are
shown in the figure and table below.

17.5. NUMBERING CONVENTIONS 303

v0 v1

v2v3

Vertex Coordinates
v0 x = (0, 0)
v1 x = (1, 0)
v2 x = (1, 1)
v3 x = (0, 1)

The reference tetrahedron. The reference tetrahedron and the coordinates of its four vertices are
shown in the figure and table below.

v0

v1

v2

v3

Vertex Coordinates
v0 x = (0, 0, 0)
v1 x = (1, 0, 0)
v2 x = (0, 1, 0)
v3 x = (0, 0, 1)

The reference hexahedron. The reference hexahedron and the coordinates of its eight vertices are
shown in the figure and table below.

v0

v1

v2

v4
v6

v7 Vertex Coordinate
v0 x = (0, 0, 0)
v1 x = (1, 0, 0)
v2 x = (1, 1, 0)
v3 x = (0, 1, 0)
v4 x = (0, 0, 1)
v5 x = (1, 0, 1)
v6 x = (1, 1, 1)
v7 x = (0, 1, 1)

17.5.2 Numbering of mesh entities

The UFC specification dictates a certain numbering of the vertices, edges etc. of the cells of a finite
element mesh. First, an ad hoc numbering may be picked for the vertices of each cell. Then, the
remaining entities are ordered based on a simple rule, as described in detail below.

304 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

0

1

3

2v0

v1

v2

v0

v1

v2

Figure 17.4: The vertices of a simplicial
mesh are numbered locally based on
the corresponding global vertex num-
bers.

Basic concepts The topological entities of a cell (or mesh) are referred to as mesh entities. A mesh
entity can be identified by a pair (d, i), where d is the topological dimension of the mesh entity
and i is a unique index of the mesh entity. Mesh entities are numbered within each topological
dimension from 0 to nd − 1, where nd is the number of mesh entities of topological dimension d.
For convenience, mesh entities of topological dimension 0 are referred to as vertices, entities of
dimension 1 as edges, entities of dimension 2 as faces, entities of codimension 1 as facets, and entities
of codimension 0 as cells. These concepts are summarized in the table below.

Entity Dimension Codimension
Vertex 0 –
Edge 1 –
Face 2 –

Facet – 1
Cell – 0

Thus, the vertices of a tetrahedron are identified as v0 = (0, 0), v1 = (0, 1), v2 = (0, 2) and
v3 = (0, 3), the edges are e0 = (1, 0), e1 = (1, 1), e2 = (1, 2), e3 = (1, 3), e4 = (1, 4) and e5 = (1, 5),
the faces (facets) are f0 = (2, 0), f1 = (2, 1), f2 = (2, 2) and f3 = (2, 3), and the cell itself is
c0 = (3, 0).

Numbering of vertices. For simplicial cells (intervals, triangles and tetrahedra) of a finite element
mesh, the vertices are numbered locally based on the corresponding global vertex numbers. In
particular, a tuple of increasing local vertex numbers corresponds to a tuple of increasing global
vertex numbers. This is illustrated in Figure 17.4 for a mesh consisting of two triangles.
For non-simplicial cells (quadrilaterals and hexahedra), the numbering is arbitrary, as long as
each cell is topologically isomorphic to the corresponding reference cell by matching each vertex

17.5. NUMBERING CONVENTIONS 305

Figure 17.5: The local numbering of
vertices of a non-simplicial mesh is ar-
bitrary, as long as each cell is topologi-
cally isomorphic to the reference cell
by matching each vertex to the corre-
sponding vertex of the reference cell.

5

v0

0 1 2

34

v1

v2v3

v0 v3

v2v1

Figure 17.6: Mesh entities are ordered
based on a lexicographical ordering of
the corresponding ordered tuples of
non-incident vertices. The first edge e0
is non-incident to vertex v0.

v0 v1

v2

e0

with the corresponding vertex in the reference cell. This is illustrated in Figure 17.5 for a mesh
consisting of two quadrilaterals.

Numbering of other mesh entities. When the vertices have been numbered, the remaining mesh
entities are numbered within each topological dimension based on a lexicographical ordering of the
corresponding ordered tuples of non-incident vertices.
As an illustration, consider the numbering of edges (the mesh entities of topological dimension
one) on the reference triangle in Figure 17.6. To number the edges of the reference triangle, we
identify for each edge the corresponding non-incident vertices. For each edge, there is only one
such vertex (the vertex opposite to the edge). We thus identify the three edges in the reference
triangle with the tuples (v0), (v1), and (v2). The first of these is edge e0 between vertices v1 and v2
opposite to vertex v0, the second is edge e1 between vertices v0 and v2 opposite to vertex v1, and
the third is edge e2 between vertices v0 and v1 opposite to vertex v2.
Similarly, we identify the six edges of the reference tetrahedron with the corresponding non-
incident tuples (v0, v1), (v0, v2), (v0, v3), (v1, v2), (v1, v3) and (v2, v3). The first of these is edge e0
between vertices v2 and v3 opposite to vertices v0 and v1 as shown in Figure 17.7.

Relative ordering. The relative ordering of mesh entities with respect to other incident mesh entities
follows by sorting the entities by their (global) indices. Thus, the pair of vertices incident to the

306 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

v0

v1

v2

v3

e0

Figure 17.7: Mesh entities are ordered
based on a lexicographical ordering of
the corresponding ordered tuples of
non-incident vertices. The first edge e0
is non-incident to vertices v0 and v1.

first edge e0 of a triangular cell is (v1, v2), not (v2, v1). Similarly, the first face f0 of a tetrahedral
cell is incident to vertices (v1, v2, v3).

For simplicial cells, the relative ordering in combination with the convention of numbering the
vertices locally based on global vertex indices means that two incident cells will always agree on
the orientation of incident subsimplices. Thus, two incident triangles will agree on the orientation
of the common edge and two incident tetrahedra will agree on the orientation of the common
edge(s) and the orientation of the common face (if any). This is illustrated in Figure 17.8 for two
incident triangles sharing a common edge. This leads to practical advantages in the assembly of
higher-order, H(div) and H(curl) elements.

Limitations. The UFC specification is only concerned with the ordering of mesh entities with
respect to entities of larger topological dimension. In other words, the UFC specification is only
concerned with the ordering of incidence relations of the class d− d′ where d > d′. For example,
the UFC specification is not concerned with the ordering of incidence relations of the class 0− 1,
that is, the ordering of edges incident to vertices.

Numbering of mesh entities on intervals. The numbering of mesh entities on interval cells is sum-
marized in the table below.

Entity Incident vertices Non-incident vertices
v0 = (0, 0) (v0) (v1)
v1 = (0, 1) (v1) (v0)
c0 = (1, 0) (v0, v1) ∅

Numbering of mesh entities on triangular cells. The numbering of mesh entities on triangular cells
is summarized in the table below.

17.5. NUMBERING CONVENTIONS 307

Figure 17.8: Two incident triangles will
always agree on the orientation of the
common edge.

v0

v1

v2

v0

v1

v2

Entity Incident vertices Non-incident vertices
v0 = (0, 0) (v0) (v1, v2)
v1 = (0, 1) (v1) (v0, v2)
v2 = (0, 2) (v2) (v0, v1)
e0 = (1, 0) (v1, v2) (v0)
e1 = (1, 1) (v0, v2) (v1)
e2 = (1, 2) (v0, v1) (v2)
c0 = (2, 0) (v0, v1, v2) ∅

Numbering of mesh entities on quadrilateral cells. The numbering of mesh entities on quadrilateral
cells is summarized in the table below.

Entity Incident vertices Non-incident vertices
v0 = (0, 0) (v0) (v1, v2, v3)
v1 = (0, 1) (v1) (v0, v2, v3)
v2 = (0, 2) (v2) (v0, v1, v3)
v3 = (0, 3) (v3) (v0, v1, v2)
e0 = (1, 0) (v2, v3) (v0, v1)
e1 = (1, 1) (v1, v2) (v0, v3)
e2 = (1, 2) (v0, v3) (v1, v2)
e3 = (1, 3) (v0, v1) (v2, v3)
c0 = (2, 0) (v0, v1, v2, v3) ∅

Numbering of mesh entities on tetrahedral cells. The numbering of mesh entities on tetrahedral cells
is summarized in the table below.

308 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

Entity Incident vertices Non-incident vertices
v0 = (0, 0) (v0) (v1, v2, v3)
v1 = (0, 1) (v1) (v0, v2, v3)
v2 = (0, 2) (v2) (v0, v1, v3)
v3 = (0, 3) (v3) (v0, v1, v2)
e0 = (1, 0) (v2, v3) (v0, v1)
e1 = (1, 1) (v1, v3) (v0, v2)
e2 = (1, 2) (v1, v2) (v0, v3)
e3 = (1, 3) (v0, v3) (v1, v2)
e4 = (1, 4) (v0, v2) (v1, v3)
e5 = (1, 5) (v0, v1) (v2, v3)
f0 = (2, 0) (v1, v2, v3) (v0)
f1 = (2, 1) (v0, v2, v3) (v1)
f2 = (2, 2) (v0, v1, v3) (v2)
f3 = (2, 3) (v0, v1, v2) (v3)
c0 = (3, 0) (v0, v1, v2, v3) ∅

Numbering of mesh entities on hexahedral cells. The numbering of mesh entities on hexahedral cells
is summarized in the table below.

Entity Incident vertices Non-incident vertices
v0 = (0, 0) (v0) (v1, v2, v3, v4, v5, v6, v7)
v1 = (0, 1) (v1) (v0, v2, v3, v4, v5, v6, v7)
v2 = (0, 2) (v2) (v0, v1, v3, v4, v5, v6, v7)
v3 = (0, 3) (v3) (v0, v1, v2, v4, v5, v6, v7)
v4 = (0, 4) (v4) (v0, v1, v2, v3, v5, v6, v7)
v5 = (0, 5) (v5) (v0, v1, v2, v3, v4, v6, v7)
v6 = (0, 6) (v6) (v0, v1, v2, v3, v4, v5, v7)
v7 = (0, 7) (v7) (v0, v1, v2, v3, v4, v5, v6)
e0 = (1, 0) (v6, v7) (v0, v1, v2, v3, v4, v5)
e1 = (1, 1) (v5, v6) (v0, v1, v2, v3, v4, v7)
e2 = (1, 2) (v4, v7) (v0, v1, v2, v3, v5, v6)
e3 = (1, 3) (v4, v5) (v0, v1, v2, v3, v6, v7)
e4 = (1, 4) (v3, v7) (v0, v1, v2, v4, v5, v6)
e5 = (1, 5) (v2, v6) (v0, v1, v3, v4, v5, v7)
e6 = (1, 6) (v2, v3) (v0, v1, v4, v5, v6, v7)
e7 = (1, 7) (v1, v5) (v0, v2, v3, v4, v6, v7)
e8 = (1, 8) (v1, v2) (v0, v3, v4, v5, v6, v7)
e9 = (1, 9) (v0, v4) (v1, v2, v3, v5, v6, v7)

e10 = (1, 10) (v0, v3) (v1, v2, v4, v5, v6, v7)
e11 = (1, 11) (v0, v1) (v2, v3, v4, v5, v6, v7)

f0 = (2, 0) (v4, v5, v6, v7) (v0, v1, v2, v3)
f1 = (2, 1) (v2, v3, v6, v7) (v0, v1, v4, v5)
f2 = (2, 2) (v1, v2, v5, v6) (v0, v3, v4, v7)
f3 = (2, 3) (v0, v3, v4, v7) (v1, v2, v5, v6)
f4 = (2, 4) (v0, v1, v4, v5) (v2, v3, v6, v7)
f5 = (2, 5) (v0, v1, v2, v3) (v4, v5, v6, v7)
c0 = (3, 0) (v0, v1, v2, v3, v4, v5, v6, v7) ∅

17.6. DISCUSSION 309

17.6 Discussion

UFC has been used for many applications, including the Poisson equation; convection–diffusion–
reaction equations; continuum equations for linear elasticity, hyperelasticity and plasticity; the
incompressible Navier–Stokes equations; mixed formulations for the Hodge Laplacian; and many
more. The types of finite elements involved include standard continuous Lagrange elements of
arbitrary order, discontinuous Galerkin formulations, Brezzi–Douglas–Marini elements, Raviart–
Thomas elements, Crouzeix–Raviart elements and Nédélec elements.
The form compilers FFC and SFC described in Chapters 12 and 17 are UFC compliant, both
generating efficient UFC code from an abstract problem definition. The assembler in DOLFIN
uses the generated UFC code, communicates with the DOLFIN mesh data structure to extract
ufc::mesh and ufc::cell data, and assembles the global tensor into a data structure implemented
by one of a number of linear algebra backends supported by DOLFIN, including PETSc, Trilinos
(Epetra), uBLAS and MTL4.
One of the main limitations in the current version (1.4) of the UFC interface is the assumption of a
homogeneous mesh; that is, only one cell shape is allowed throughout the mesh. Thus, although
mesh ordering conventions have been defined for the interval, triangle, tetrahedron, quadrilateral
and hexahedron, only one type of shape can be used at any time. Another limitation is that
only one fixed finite element space can be chosen for each argument of the form, which excludes
p-refinement (increasing the element order in a subset of the cells). These limitations may be
addressed in future versions of the UFC interface.

17.7 Historical notes

UFC was introduced in 2007 when the first version of UFC (1.0) was released. The UFC interface
has been used by DOLFIN since the release of DOLFIN 0.7.0 in 2007. The 1.0 release of UFC
was followed by version 1.1 in 2008, version 1.2 in 2009, and version 1.4 in 2010. The new
releases have involved minor corrections to the initial UFC interface but have also introduced
some new functionality, like functions for evaluating multiple degrees of freedom (evaluate_dofs
in addition to evaluate_dof) and multiple basis functions (evaluate_basis_all in addition to
evaluate_basis). In contrast to other FEniCS components, few changes are made to the UFC
interface in order to maintain a stable interface for both form compilers (FFC and SFC) and
assemblers (DOLFIN).

Acknowledgment

The authors would like to thank Johan Hake, Ola Skavhaug, Garth Wells, Kristian Ølgaard and
Hans Petter Langtangen for their contributions to UFC.

18 UFL: a finite element form language
By Martin Sandve Alnæs

The Unified Form Language – UFL [Alnæs and Logg, 2009] – is a domain specific language for the
declaration of finite element discretizations of variational forms and functionals. More precisely,
the language defines a flexible user interface for defining finite element spaces and expressions for
weak forms in a notation close to mathematical notation.
The FEniCS project provides a framework for building applications for solving partial differential
equations (PDEs). UFL is one of the core components of this framework. It defines the language
you express your PDEs in. It is the input language and front-end of the form compilers FFC and
SFC, which are covered in Chapter 12 and Chapter 16. The UFL implementation also provides
algorithms that the form compilers can use to simplify the compilation process. The output from
these form compilers is C++ [Stroustrup, 1997] code that conforms to the UFC specification, which
is explained in Chapter 17. This code can be used with the C++/Python library DOLFIN, which is
covered in Chapter 11, to efficiently assemble linear systems and compute solutions to PDEs. Note
that this chapter does not cover how to actually solve equations defined in UFL. See Chapter 2 for
a tutorial on how to use the complete FEniCS framework to solve equations.
This chapter is intended both for the FEniCS user who wants to learn how to express her equations,
and for other FEniCS developers and technical users who wants to know how UFL works on the
inside. Therefore, the sections of this chapter are organized with an increasing amount of technical
details. Sections 18.1-18.5 give an overview of the language as seen by the end-user and is intended
for all audiences. Sections 18.6-18.9 explain the design of the implementation and dive into some
implementation details. Many details of the language has to be omitted in a text such as this, and
we refer to the UFL manual [Alnæs and Logg, 2009] for a more thorough description. Note that
this chapter refers to UFL version 0.5.4, and both the user interface and the implementation may
change in future versions.
Starting with a brief overview, we mention the main design goals for UFL and show an example
implementation of a non-trivial PDE in Section 18.1. Next we will look at how to define finite
element spaces in Section 18.2, followed by the overall structure of forms and their declaration in
Section 18.3. The main part of the language is concerned with defining expressions from a set of
data types and operators, which are discussed in Section 18.4. Operators applying to entire forms
is the topic of Section 18.5.
The technical part of the chapter begins with Section 18.6 which discusses the representation
of expressions. Building on the notation and data structures defined there, how to compute
derivatives is discussed in Section 18.7. Some central internal algorithms and key issues in their
implementation are discussed in Section 18.8. Implementation details, some of which are specific
to the programming language Python [van Rossum et al.], is the topic of Section 18.9. Finally,
Section 18.10 discusses future prospects of the UFL project.

311

312 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

18.0.1 Related work

The combination of domain specific languages and symbolic computing with finite element
methods has been pursued from other angles in several other projects. Sundance [Long, 2003,
2004b,a] implements a symbolic engine directly in C++ to define variational forms, and has
support for automatic differentiation. The Life [Prud’homme, 2006b,a] project uses a domain
specific language embedded in C++, based on expression template techniques to specify variational
forms. SfePy [Cimrman et al., 2008] uses SymPy as a symbolic engine, extending it with finite
element methods. GetDP [Dular and Geuzaine, 2005] is another project using a domain specific
language for variational forms. The Mathematica package AceGen [Korelc, 1997, 2002] uses the
symbolic capabilities of Mathematica to generate efficient code for finite element methods. All
these packages have in common a focus on high level descriptions of partial differential equations
to achieve higher human efficiency in the development of simulation software.
UFL almost resembles a library for symbolic computing, but its scope, goals and priorities are
different from generic symbolic computing projects such as GiNaC [Bauer et al., 2002], Swiginac
[Skavhaug and Certik, 2009] and SymPy [Čertík et al., 2009]. Intended as a domain specific
language and form compiler frontend, UFL is not suitable for large scale symbolic computing.

18.1 Overview

18.1.1 Design goals

UFL is a unification, refinement and reimplementation of the form languages used in previous
versions of FFC and SFC. The development of this language has been motivated by several factors,
the most important being:

• A richer form language, especially for expressing nonlinear PDEs.

• Automatic differentiation of expressions and forms.

• Improving the performance of the form compiler technology to handle more complicated
equations efficiently.

UFL fulfills all these requirements, and by this it represents a major step forward in the capabilities
of the FEniCS project.
Tensor algebra and index notation support is modeled after the FFC form language and generalized
further. Several nonlinear operators and functions which only SFC supported before have been
included in the language. Differentiation of expressions and forms has become an integrated part
of the language, and is much easier to use than the way these features were implemented in SFC
before. In summary, UFL combines the best of FFC and SFC in one unified form language and
adds additional capabilities.
The efficiency of code generated by the new generation of form compilers based on UFL has been
verified to match previous form compiler benchmarks [Alnæs and Mardal, 2010, Ølgaard and
Wells, 2010]. The form compilation process is now fast enough to blend into the regular application
build process. Complicated forms that previously required too much memory to compile, or took
tens of minutes or even hours to compile, now compiles in seconds with both SFC and FFC.

18.1.2 Motivational example

One major motivating example during the initial development of UFL has been the equations
for elasticity with large deformations. In particular, models of biological tissue use complicated

18.1. OVERVIEW 313

hyperelastic constitutive laws with anisotropies and strong nonlinearities. To implement these
equations with FEniCS, all three design goals listed above had to be addressed. Below, one version
of the hyperelasticity equations and their corresponding UFL implementation is shown. Keep in
mind that this is only intended as an illustration of the close correspondence between the form
language and the natural formulation of the equations. The meaning of these equations is not
necessary for the reader to understand. Chapter 30 covers nonlinear elasticity in more detail. Note
that many other examples are distributed together with UFL.

In the formulation of the hyperelasticity equations presented here, the unknown function is the
displacement vector field u. The material coefficients c1 and c2 are scalar constants. The second
Piola-Kirchoff stress tensor S is computed from the strain energy function W(C). W defines the
constitutive law, here a simple Mooney-Rivlin law. The equations relating the displacement and
stresses read:

F = I + grad u,

C = FT F,

IC = tr(C),

I IC =
1
2
(tr(C)2 − tr(CC)),

W = c1(IC − 3) + c2(I IC − 3),

S = 2
∂W
∂C

.

(18.1)

For simplicity in this example, we ignore external body and boundary forces and assume a
quasi-stationary situation, leading to the following mechanics problem. Find u such that

div(FS) = 0, in dx, (18.2)

u = u0, on ds. (18.3)

The finite element method is presented in Chapter 3, so we will only very briefly cover the steps
we take here. First we multiply Equation (18.2) with a test function φ ∈ V, then integrate over the
domain Ω, and integrate by parts. The nonlinear variational problem then reads: Find u ∈ V such
that

L(u; φ) =
∫

Ω
FS : grad φ dx = 0 ∀ φ ∈ V. (18.4)

Here we have omitted the coefficients c1 and c2 for brevity. Approximating the displacement field
as u ≈ uh = ∑k ukψk, where ψk ∈ Vh ≈ V are trial functions, and using Newtons’s method to solve
the nonlinear equations, we end up with a system of equations to solve

|Vh |
∑
k=1

∂L(uh; φ)

∂uk
∆uk = −L(uh; φ) ∀ φ ∈ Vh. (18.5)

A bilinear form a(u; ψ, φ) corresponding to the left hand side of Equation (18.5) can be computed
automatically by UFL, such that

a(uh; ψk, φ) =
∂L(uh; φ)

∂uk
k = 1, . . . , |Vh|. (18.6)

314 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

UFL code
Finite element spaces
cell = tetrahedron
element = VectorElement("CG", cell, 1)

Form arguments
phi0 = TestFunction(element)
phi1 = TrialFunction(element)
u = Coefficient(element)
c1 = Constant(cell)
c2 = Constant(cell)

Deformation gradient Fij = dXi/dxj
I = Identity(cell.d)
F = I + grad(u)

Right Cauchy-Green strain tensor C with invariants
C = variable(F.T*F)
I_C = tr(C)
II_C = (I_C**2 - tr(C*C))/2

Mooney-Rivlin constitutive law
W = c1*(I_C-3) + c2*(II_C-3)

Second Piola-Kirchoff stress tensor
S = 2*diff(W, C)

Weak forms
L = inner(F*S, grad(phi0))*dx
a = derivative(L, u, phi1)

Figure 18.1: UFL implementation
of hyperelasticity equations with a
Mooney-Rivlin material law.

Figure ?? shows an implementation of equations (18.1), (18.4) and (18.6) in UFL. Notice the close
relation between the mathematical notation and the UFL source code. In particular, note the
automated differentiation of both the constitutive law and the residual equation. The operator
diff can be applied to expressions to differentiate w.r.t designated variables such as C here, while
the operator derivative can be applied to entire forms to differentiate w.r.t. each coefficient of a
discrete function such as u. The combination of these features allows a new material law to be
implemented by simply changing W, the rest is automatic. In the following sections, the notation,
definitions and operators used in this implementation will be explained.

18.2 Defining finite element spaces

A polygonal cell is defined in UFL by a basic shape, and is declared by

UFL code
cell = Cell(shapestring)

UFL defines a set of valid polygonal cell shapes: “interval”, “triangle”, “tetrahedron”, “quadri-
lateral”, and “hexahedron”. Cell objects of all shapes are predefined and can be used instead by
writing

UFL code
cell = tetrahedron

In the rest of this chapter, a variable name cell will be used where any cell is a valid argument, to
make the examples dimension independent wherever possible.

18.3. DEFINING FORMS 315

UFL defines syntax for declaring finite element spaces, but does not know anything about the
actual polynomial basis or degrees of freedom. The polynomial basis is selected implicitly by
choosing among predefined basic element families and providing a polynomial degree, but UFL
only assumes that there exists a basis with a fixed ordering for each finite element space Vh; that is,

Vh = span
{

φj
}n

j=1 . (18.7)

Basic scalar elements can be combined to form vector elements or tensor elements, and elements
can easily be combined in arbitrary mixed element hierarchies.
The set of predefined1 element family names in UFL includes “Lagrange” (short name “CG”),
representing scalar Lagrange finite elements (continuous piecewise polynomial functions), “Discon-
tinuous Lagrange” (short name “DG”), representing scalar discontinuous Lagrange finite elements
(discontinuous piecewise polynomial functions), and a range of other families that can be found in
the manual. Each family name has an associated short name for convenience. To print all valid
families to screen from Python, call show_elements().
The syntax for declaring elements is best explained with some examples.

UFL code
cell = tetrahedron

P = FiniteElement("Lagrange", cell, 1)

V = VectorElement("Lagrange", cell, 2)

T = TensorElement("DG", cell, 0, symmetry=True)

TH = V * P

ME = MixedElement(T, V, P)

In the first line a polygonal cell is selected from the set of predefined cells. Then a scalar linear
Lagrange element P is declared, as well as a quadratic vector Lagrange element V. Next a symmetric
rank 2 tensor element T is defined, which is also piecewise constant on each cell. The code proceeds
to declare a mixed element TH, which combines the quadratic vector element V and the linear scalar
element P. This element is known as the Taylor-Hood element. Finally another mixed element with
three subelements is declared. Note that writing T * V * P would not result in a mixed element
with three direct subelements, but rather MixedElement(MixedElement(T, V), P).

18.3 Defining forms

Consider Poisson’s equation with two different boundary conditions on ∂Ω0 and ∂Ω1,

a(w; u, v) =
∫

Ω
w grad u · grad v dx, (18.8)

L(f , g, h; v) =
∫

Ω
f v dx +

∫

∂Ω0

g2v ds +
∫

∂Ω1

hv ds. (18.9)

These forms can be expressed in UFL as

UFL code
a = w*dot(grad(u), grad(v))*dx

L = f*v*dx + g**2*v*ds(0) + h*v*ds(1)

1Form compilers can register additional element families.

316 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

where multiplication by the measures dx, ds(0) and ds(1) represent the integrals
∫

Ω0
(·)dx,∫

∂Ω0
(·)ds, and

∫
∂Ω1

(·)ds respectively.
Forms expressed in UFL are intended for finite element discretization followed by compilation to
efficient code for computing the element tensor. Considering the above example, the bilinear form
a with one coefficient function w is assumed to be evaluated at a later point with a range of basis
functions and the coefficient function fixed, that is

V1
h = span

{
φ1

k

}
, V2

h = span
{

φ2
k

}
, V3

h = span
{

φ3
k

}
, (18.10)

w =
|V3

h |
∑
k=1

wkφ3
k , {wk} given, (18.11)

Aij = a(w; φ1
i , φ2

j), i = 1, . . . , |V1
h |, j = 1, . . . , |V2

h |. (18.12)

In general, UFL is designed to express forms of the following generalized form:

a(w1, . . . , wn; φ1, . . . , φr) =
nc

∑
k=1

∫

Ωk

Ic
k dx +

ne

∑
k=1

∫

∂Ωk

Ie
k ds +

ni

∑
k=1

∫

Γk

Ii
k dS. (18.13)

Most of this chapter deals with ways to define the integrand expressions Ic
k , Ie

k and Ii
k. The rest of

the notation will be explained below.
The form arguments are divided in two groups, the basis functions φ1, . . . , φr and the coefficient
functions w1, . . . , wn. All {φk} and {wk} are functions in some discrete function space with a basis.
Note that the actual basis functions {φk

j } and the coefficients {wk} are never known to UFL, but
we assume that the ordering of the basis for each finite element space is fixed. A fixed ordering
only matters when differentiating forms, explained in Section 18.7.
Each term of a valid form expression must be a scalar-valued expression integrated exactly once,
and they must be linear in {φk}. Any term may have nonlinear dependencies on coefficient
functions. A form with one or two basis function arguments (r = 1, 2) is called a linear or bilinear
form respectively, ignoring its dependency on coefficient functions. These will be assembled to
vectors and matrices when used in an application. A form depending only on coefficient functions
(r = 0) is called a functional, since it will be assembled to a real number. Multilinear forms where
r > 2 are supported but not as commonly used.
The entire domain is denoted Ω, the external boundary is denoted ∂Ω, while the set of interior
facets of the triangulation is denoted Γ. Subdomains are marked with a suffix, e.g., Ωk ⊂ Ω. As
mentioned above, integration is expressed by multiplication with a measure, and UFL defines the
measures dx, ds and dS. In summary, there are three kinds of integrals with corresponding UFL
representations

•
∫

Ωk
(·)dx ↔ (·)*dx(k), called a cell integral,

•
∫

∂Ωk
(·)ds ↔ (·)*ds(k), called an exterior facet integral,

•
∫

Γk
(·)dS ↔ (·)*dS(k), called an interior facet integral,

Defining a different quadrature order for each term in a form can be achieved by attaching meta
data to measure objects, e.g.,

UFL code
dx02 = dx(0, { "integration_order": 2 })

dx14 = dx(1, { "integration_order": 4 })

18.4. DEFINING EXPRESSIONS 317

dx12 = dx(1, { "integration_order": 2 })

L = f*v*dx02 + g*v*dx14 + h*v*dx12

Meta data can also be used to override other form compiler specific options separately for each
term. For more details on this feature see the manuals of UFL and the form compilers.

18.4 Defining expressions

Most of UFL deals with how to declare expressions such as the integrand expressions in Equa-
tion 18.13. The most basic expressions are terminal values, which do not depend on other
expressions. Other expressions are called operators, which are discussed in sections 18.4.2-18.4.5.
Terminal value types in UFL include form arguments (which is the topic of Section 18.4.1),
geometric quantities, and literal constants. Among the literal constants are scalar integer and
floating point values, as well as the d by d identity matrix I = Identity(d). To get unit vectors,
simply use rows or columns of the identity matrix, e.g., e0 = I[0,:]. Similarly, I[i,j] represents
the Kronecker delta function δij (see Section 18.4.2 for details on index notation). Available
geometric values are the spatial coordinates x ↔ cell.x and the facet normal n ↔ cell.n. The
geometric dimension is available as cell.d.

18.4.1 Form arguments

Basis functions and coefficient functions are represented by Argument and Coefficient respectively.
The ordering of the arguments to a form is decided by the order in which the form arguments
were declared in the UFL code. Each basis function argument represents any function in the basis
of its finite element space

φj ∈ {φj
k}, V j

h = span
{

φ
j
k

}
. (18.14)

with the intention that the form is later evaluated for all φk such as in Equation (18.12). Each
coefficient function w represents a discrete function in some finite element space Vh; it is usually a
sum of basis functions φk ∈ Vh with coefficients wk

w =
|Vh |
∑
k=1

wkφk. (18.15)

The exception is coefficient functions that can only be evaluated point-wise, which are declared
with a finite element with family “Quadrature”. Basis functions are declared for an arbitrary
element as in the following manner:

UFL code
phi = Argument(element)

v = TestFunction(element)

u = TrialFunction(element)

By using TestFunction and TrialFunction in declarations instead of Argument you can ignore
their relative ordering. The only time Argument is needed is for forms of arity r > 2.
Coefficient functions are declared similarly for an arbitrary element, and shorthand notation exists
for declaring piecewise constant functions:

UFL code
w = Coefficient(element)

318 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

c = Constant(cell)

v = VectorConstant(cell)

M = TensorConstant(cell)

If a form argument u in a mixed finite element space Vh = V0
h × V1

h is desired, but the form is
more easily expressed using subfunctions u0 ∈ V0

h and u1 ∈ V1
h , you can split the mixed function

or basis function into its subfunctions in a generic way using split:

UFL code
V = V0 * V1

u = Coefficient(V)

u0, u1 = split(u)

The split function can handle arbitrary mixed elements. Alternatively, a handy shorthand notation
for argument declaration followed by split is

UFL code
v0, v1 = TestFunctions(V)

u0, u1 = TrialFunctions(V)

f0, f1 = Coefficients(V)

18.4.2 Index notation

UFL allows working with tensor expressions of arbitrary rank, using both tensor algebra and index
notation. A basic familiarity with tensor algebra and index notation is assumed. The focus here is
on how index notation is expressed in UFL.
Assuming a standard orthonormal Euclidean basis 〈ek〉dk=1 for Rd, a vector can be expressed
with its scalar components in this basis. Tensors of rank two can be expressed using their scalar
components in a dyadic basis {ei ⊗ ej}d

i, j=1. Arbitrary rank tensors can be expressed the same way,
as illustrated here.

v =
d

∑
k=1

vkek, (18.16)

A =
d

∑
i=1

d

∑
j=1

Aijei ⊗ ej, (18.17)

C =
d

∑
i=1

d

∑
j=1

∑
k

Cijkei ⊗ ej ⊗ ek. (18.18)

Here, v, A and C are rank 1, 2 and 3 tensors respectively. Indices are called free if they have no
assigned value, such as i in vi, and fixed if they have a fixed value such as 1 in v1. An expression
with free indices represents any expression you can get by assigning fixed values to the indices. The
expression Aij is scalar valued, and represents any component (i, j) of the tensor A in the Euclidean
basis. When working on paper, it is easy to switch between tensor notation (A) and index notation
(Aij) with the knowledge that the tensor and its components are different representations of the
same physical quantity. In a programming language, we must express the operations mapping
from tensor to scalar components and back explicitly. Mapping from a tensor to its components,
for a rank 2 tensor defined as

Aij = A : (ei ⊗ ej) (18.19)

18.4. DEFINING EXPRESSIONS 319

is accomplished using indexing with the notation A[i,j]. Defining a tensor A from component
values Aij is defined as

A = Aijei ⊗ ej, (18.20)

and is accomplished using the function as_tensor(Aij, (i,j)). To illustrate, consider the outer
product of two vectors A = u⊗ v = uivjei ⊗ ej, and the corresponding scalar components Aij. One
way to implement this is

UFL code
A = outer(u, v)

Aij = A[i, j]

Alternatively, the components of A can be expressed directly using index notation, such as
Aij = uivj. Aij can then be mapped to A in the following manner:

UFL code
Aij = v[j]*u[i]

A = as_tensor(Aij, (i, j))

These two pairs of lines are mathematically equivalent, and the result of either pair is that the
variable A represents the tensor A and the variable Aij represents the tensor Aij. Note that free
indices have no ordering, so their order of appearance in the expression v[j]*u[i] is insignificant.
Instead of as_tensor, the specialized functions as_vector and as_matrix can be used. Although
a rank two tensor was used for the examples above, the mappings generalize to arbitrary rank
tensors.
When indexing expressions, fixed indices can also be used such as in A[0,1] which represents a
single scalar component. Fixed indices can also be mixed with free indices such as in A[0,i]. In
addition, slices can be used in place of an index. An example of using slices is A[0,:] which is a
vector expression that represents row 0 of A. To create new indices, you can either make a single
one or make several at once:

UFL code
i = Index()

j, k, l = indices(3)

A set of indices i, j, k, l and p, q, r, s are predefined, and these should suffice for most applications.
If your components are not represented as an expression with free indices, but as separate unrelated
scalar expressions, you can build a tensor from them using as_tensor and its peers. As an example,
lets define a 2D rotation matrix and rotate a vector expression by π

2 :

UFL code
th = pi/2

A = as_matrix([[cos(th), -sin(th)],

[sin(th), cos(th)]])

u = A*v

When indices are repeated in a term, summation over those indices is implied in accordance with
the Einstein convention. In particular, indices can be repeated when indexing a tensor of rank two
or higher (A[i,i]), when differentiating an expression with a free index (v[i].dx(i)), or when
multiplying two expressions with shared free indices (u[i]*v[i]).

Aii ≡∑
i

Aii, viui ≡∑
i

viui, vi, i ≡∑
i

vi, i. (18.21)

320 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

An expression Aij = A[i,j] is represented internally using the Indexed class. Aij will reference
A, keeping the representation of the original tensor expression A unchanged. Implicit summation is
represented explicitly in the expression tree using the class IndexSum. Many algorithms become
easier to implement with this explicit representation, since e.g. a Product instance can never
implicitly represent a sum. More details on representation classes are found in Section 18.6.

18.4.3 Algebraic operators and functions

UFL defines a comprehensive set of operators that can be used for composing expressions. The
elementary algebraic operators +, -, *, / can be used between most UFL expressions with a few
limitations. Division requires a scalar expression with no free indices in the denominator. The
operands to a sum must have the same shape and set of free indices.
The multiplication operator * is valid between two scalars, a scalar and any tensor, a matrix and a
vector, and two matrices. Other products could have been defined, but for clarity we use tensor
algebra operators and index notation for those rare cases. A product of two expressions with
shared free indices implies summation over those indices, see Section 18.4.2 for more about index
notation.
Three often used operators are dot(a, b), inner(a, b), and outer(a, b). The dot product of two
tensors of arbitrary rank is the sum over the last index of the first tensor and the first index of the
second tensor. Some examples are

v · u = viui, (18.22)

A · u = Aijujei, (18.23)

A · B = AikBkjeiej, (18.24)

C · A = Cijk Akleiejel . (18.25)

The inner product is the sum over all indices, for example

v : u = viui, (18.26)

A : B = AijBij, (18.27)

C : D = Cijkl Dijkl . (18.28)

Some examples of the outer product are

v⊗ u = viujeiej, (18.29)

A⊗ u = Aijukeiejek, (18.30)

A⊗ B = AijBkleiejekel (18.31)

Other common tensor algebra operators are cross(u,v), transpose(A) (or A.T), tr(A), det(A),
inv(A), cofac(A), dev(A), skew(A), and sym(A). Most of these tensor algebra operators expect
tensors without free indices. The detailed definitions of these operators are found in the manual.
A set of common elementary functions operating on scalar expressions without free indices are
included, in particular abs(f), pow(f, g), sqrt(f), exp(f), ln(f), sin(f), cos(f), and sign(f).

18.4.4 Differential operators

UFL implements derivatives w.r.t. three different kinds of variables. The most used kind is spatial
derivatives. Expressions can also be differentiated w.r.t. arbitrary user defined variables. And the

18.4. DEFINING EXPRESSIONS 321

final kind of derivatives are derivatives of a form or functional w.r.t. the coefficients of a discrete
function; that is, a Coefficient or Constant. Form derivatives are explained in Section 18.5.1.
Note that derivatives are not computed immediately when declared. A discussion of how deriva-
tives are computed is found in Section 18.7.

Spatial derivatives Basic spatial derivatives ∂ f
∂xi

can be expressed in two equivalent ways:

UFL code
df = Dx(f, i)

df = f.dx(i)

Here, df represents the derivative of f in the spatial direction xi. The index i can either be an
integer, representing differentiation in one fixed spatial direction xi, or an Index, representing
differentiation in the direction of a free index. The notation f.dx(i) is intended to mirror the
index notation f,i, which is shorthand for ∂ f

∂xi
. Repeated indices imply summation, such that the

divergence of a vector valued expression v can be written vi, i, or v[i].dx(i).
Several common compound spatial derivative operators are defined, namely div, grad, curl and
rot (rot is a synonym for curl). Be aware that there are two common ways to define grad and div.
Let s be a scalar expression, v be a vector expression, and M be a tensor expression of rank r. In
UFL, the gradient is then defined as

(grad(s))i = s,i, (18.32)

(grad(v))ij = vi,j, (18.33)

(grad(M))i1 ... ir k = Mi1 ... ir , k, (18.34)

and the divergence is correspondingly defined as

div(v) = vi, i, (18.35)

(div(M))i1 ... ir−1
= Mi1 ... ir , ir . (18.36)

Thinking in terms of value shape, the gradient appends an axis to the end of the tensor shape of
its operand. Correspondingly, the divergence sums over the last index of its operand.
For 3D vector expressions, curl is defined in terms of the nabla operator and the cross product:

∇ ≡ ek
∂

∂xk
, (18.37)

curl(v) ≡ ∇× v. (18.38)

For 2D vector and scalar expressions the definitions are:

curl(v) ≡ v1,0 − v0,1, (18.39)

curl(f) ≡ f,1e0 − f,0e1. (18.40)

User defined variables The second kind of differentiation variables are user-defined variables,
which can represent arbitrary expressions. Automating derivatives w.r.t. arbitrary quantities
is useful for several tasks, from differentiation of material laws to computing sensitivities. An
arbitrary expression g can be assigned to a variable v. An expression f defined as a function of v

322 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

can be differentiated f w.r.t. v:

v = g, (18.41)

f = f (v), (18.42)

h(v) =
∂ f (v)

∂v
. (18.43)

Setting g = sin(x0) and f = ev2
, gives h = 2vev2

= 2 sin(x0)esin2(x0), which can be implemented as
follows:

UFL code
g = sin(cell.x[0])

v = variable(g)

f = exp(v**2)

h = diff(f, v)

Try running this code in a Python session and print the expressions. The result is

Python code
»> print v

var0(sin((x)[0]))

»> print h

d/d[var0(sin((x)[0]))] (exp((var0(sin((x)[0]))) ** 2))

Note that the variable has a label “var0”, and that h still represents the abstract derivative.
Section 18.7 explains how derivatives are computed.

18.4.5 Other operators

A few operators are provided for the implementation of discontinuous Galerkin methods. The
basic concept is restricting an expression to the positive or negative side of an interior facet, which
is expressed simply as v(’+’) or v(’-’) respectively. On top of this, the operators avg and jump

are implemented, defined as

avg(v) =
1
2
(v+ + v−), (18.44)

jump(v) = v+ − v−. (18.45)

These operators can only be used when integrating over the interior facets (*dS).
The only control flow construct included in UFL is conditional expressions. A conditional expres-
sion takes on one of two values depending on the result of a boolean logic expression. The syntax
for this is

UFL code
f = conditional(condition, true_value, false_value)

which is interpreted as

f =

{
t, if condition is true,
f , otherwise.

(18.46)

The condition can be one of

18.5. FORM OPERATORS 323

• lt(a, b)↔ (a < b)

• le(a, b)↔ (a ≤ b)

• eq(a, b)↔ (a = b)

• gt(a, b)↔ (a > b)

• ge(a, b)↔ (a ≥ b)

• ne(a, b)↔ (a 6= b)

18.5 Form operators

Once you have defined some forms, there are several ways to compute related forms from them.
While operators in the previous section are used to define expressions, the operators discussed
in this section are applied to forms, producing new forms. Form operators can both make form
definitions more compact and reduce the chances of bugs since changes in the original form
will propagate to forms computed from it automatically. These form operators can be combined
arbitrarily; given a semi-linear form only a few lines are needed to compute the action of the
adjoint of the Jacobi. Since these computations are done prior to processing by the form compilers,
there is no overhead at run-time.

18.5.1 Differentiating forms

The form operator derivative declares the derivative of a form w.r.t. coefficients of a discrete
function (Coefficient). This functionality can be used for example to linearize your nonlinear
residual equation (linear form) automatically for use with the Newton-Raphson method. It can also
be applied multiple times, which is useful to derive a linear system from a convex functional, in
order to find the function that minimizes the functional. For non-trivial equations such expressions
can be tedious to calculate by hand. Other areas in which this feature can be useful include optimal
control and inverse methods, as well as sensitivity analysis.
In its simplest form, the declaration of the derivative of a form L w.r.t. the coefficients of a function
w reads

UFL code
a = derivative(L, w, u)

The form a depends on an additional basis function argument u, which must be in the same finite
element space as the function w. If the last argument is omitted, a new basis function argument is
created.
Let us step through an example of how to apply derivative twice to a functional to derive a linear
system. In the following, Vh is a finite element space with some basis , w is a function in Vh, and
f = f (w) is a functional we want to minimize. Derived from f (w) is a linear form F(w; v), and a
bilinear form J(w; u, v).

Vh = span {φk} , (18.47)

w(x) =
|Vh |
∑
k=1

wkφk(x), (18.48)

f : Vh → R, (18.49)

F(w; φi) =
∂ f (w)

∂wi
, i = 1, . . . , |Vh|, (18.50)

J(w; φj, φ) =
∂F(w; φ)

∂wj
, j = 1, . . . , |Vh|, φ ∈ Vh. (18.51)

324 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

For a concrete functional f (w) =
∫

Ω
1
2 w2 dx, we can implement this as

UFL code
v = TestFunction(element)

u = TrialFunction(element)

w = Coefficient(element)

f = 0.5 * w**2 * dx

F = derivative(f, w, v)

J = derivative(F, w, u)

This code declares two forms F and J. The linear form F represents the standard load vector w*v*dx
and the bilinear form J represents the mass matrix u*v*dx.
Derivatives can also be defined w.r.t. coefficients of a function in a mixed finite element space.
Consider the Harmonic map equations derived from the functional

f (x, λ) =
∫

Ω
grad x : grad x + λx · x dx, (18.52)

where x is a function in a vector finite element space Vd
h and λ is a function in a scalar finite

element space Vh. The linear and bilinear forms derived from the functional in Equation 18.52 have
basis function arguments in the mixed space Vd

h ×Vh. The implementation of these forms with
automatic linearization reads

UFL code
Vx = VectorElement("CG", triangle, 1)

Vy = FiniteElement("CG", triangle, 1)

u = Coefficient(Vx * Vy)

x, y = split(u)

f = inner(grad(x), grad(x))*dx + y*dot(x,x)*dx

F = derivative(f, u)

J = derivative(F, u)

Note that the functional is expressed in terms of the subfunctions x and y, while the argument to
derivative must be the single mixed function u. In this example the basis function arguments to
derivative are omitted and thus provided automatically in the right function spaces.
Note that in computing derivatives of forms, we have assumed that

∂

∂wk

∫

Ω
I dx =

∫

Ω

∂

∂wk
I dx, (18.53)

or in particular that the domain Ω is independent of w. Also, any coefficients other than w are
assumed independent of w. Furthermore, note that there is no restriction on the choice of element
in this framework, in particular arbitrary mixed elements are supported.

18.5.2 Adjoint

Another form operator is the adjoint a∗ of a bilinear form a, defined as a∗(u, v) = a(v, u), which is
similar to taking the transpose of the assembled sparse matrix. In UFL this is implemented simply
by swapping the test and trial functions, and can be written using the adjoint form operator. An
example of its use on an anisotropic diffusion term looks like

UFL code
V = VectorElement("CG", cell, 1)

T = TensorElement("CG", cell, 1)

u = TrialFunction(V)

18.5. FORM OPERATORS 325

v = TestFunction(V)

M = Coefficient(T)

a = M[i,j] * u[k].dx(j) * v[k].dx(i) * dx

astar = adjoint(a)

which corresponds to

a(M; u, v) =
∫

Ω
Mijuk,jvk,i dx, (18.54)

a∗(M; u, v) = a(M; v, u) =
∫

Ω
Mijvk,juk,i dx. (18.55)

This automatic transformation is particularly useful if we need the adjoint of nonsymmetric bilinear
forms computed using derivative, since the explicit expressions for a are not at hand. Several of
the form operators below are most useful when used in conjunction with derivative.

18.5.3 Replacing functions

Evaluating a form with new definitions of form arguments can be done by replacing terminal
objects with other values. Lets say you have defined a form L that depends on some functions f

and g. You can then specialize the form by replacing these functions with other functions or fixed
values, such as

L(f , g; v) =
∫

Ω
(f 2/(2g))v dx, (18.56)

L2(f , g; v) = L(g, 3; v) =
∫

Ω
(g2/6)v dx. (18.57)

This feature is implemented with replace, as illustrated in this case:

UFL code
V = FiniteElement("CG", cell, 1)

v = TestFunction(V)

f = Coefficient(V)

g = Coefficient(V)

L = f**2 / (2*g) * v * dx

L2 = replace(L, { f: g, g: 3})

L3 = g**2 / 6 * v * dx

Here L2 and L3 represent exactly the same form. Since they depend only on g, the code generated
for these forms can be more efficient.

18.5.4 Action

In some applications the matrix is not needed explicitly, only the action of the matrix on a vector.
Assembling the resulting vector directly can be much more efficient than assembling the sparse
matrix and then performing the matrix-vector multiplication. Assume a is a bilinear form and w

is a Coefficient defined on the same finite element as the trial function in a. Let A denote the
sparse matrix that can be assembled from a. Then you can assemble the action of A on a vector
directly by defining a linear form L representing the action of a bilinear form a on a function w.
The notation for this is simply L = action(a, w), or even shorter L = a*w.

326 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

18.5.5 Splitting a system

If you prefer to write your PDEs with all terms on one side such as

a(u, v)− L(v) = 0, (18.58)

you can declare forms with both linear and bilinear terms and split the equations into a and L
afterwards. A simple example is

UFL code
V = FiniteElement("CG", cell, 1)

u = TrialFunction(V)

v = TestFunction(V)

f = Coefficient(V)

pde = u*v*dx - f*v*dx

a, L = system(pde)

Here system is used to split the PDE into its bilinear and linear parts. Alternatively, lhs and rhs

can be used to obtain the two parts separately. Make note of the resulting sign of the linear part,
which corresponds to moving L to the right hand side in Equation (18.58).

18.5.6 Computing the sensitivity of a function

If you have found the solution u to Equation (18.58), and u depends on some constant scalar value
c, you can compute the sensitivity of u w.r.t. changes in c. If u is represented by a coefficient vector
x that is the solution to the algebraic linear system Ax = b, the coefficients of ∂u

∂c are ∂x
∂c . Applying

∂
∂c to Ax = b and using the chain rule, we can write

A
∂x
∂c

=
∂b
∂c
− ∂A

∂c
x, (18.59)

and thus ∂x
∂c can be found by solving the same algebraic linear system used to compute x, only with

a different right hand side. The linear form corresponding to the right hand side of Equation (18.59)
can be written

UFL code
u = Coefficient(element)

sL = diff(L, c) - action(diff(a, c), u)

or you can use the equivalent form transformation

UFL code
sL = sensitivity_rhs(a, u, L, c)

Note that the solution u must be represented by a Coefficient, while u in a(u, v) is represented
by a Argument.

18.6 Expression representation

From a high level view, UFL is all about defining forms. Each form contains one or more scalar
integrand expressions, but the form representation is largely disconnected from the representation
of the integrand expressions. Indeed, most of the complexity of the UFL implementation is related
to expressing, representing, and manipulating expressions. The rest of this chapter will focus on

18.6. EXPRESSION REPRESENTATION 327

expression representations and algorithms operating on them. These topics will be of little interest
to the average user of UFL, and more directed towards developers and curious technically oriented
users.
To reason about expression algorithms without the burden of implementation details, we need
an abstract notation for the structure of an expression. UFL expressions are representations
of programs, and the notation should allow us to see this connection. Below we will discuss
the properties of expressions both in terms of this abstract notation, and related to specific
implementation details.

18.6.1 The structure of an expression

The most basic expressions, which have no dependencies on other expressions, are called terminal
expressions. Other expressions result from applying some operator to one or more existing expres-
sions. Consider an arbitrary (non-terminal) expression z. This expression depends on a set of
terminal expressions {ti}, and is computed using a set of operators { fi}. If each subexpression
of z is labeled with an integer, an abstract program can be written to compute z by computing a
sequence of subexpressions 〈yi〉ni=1 and setting z = yn. Algorithm 5 shows such a program.

Algorithm 5 Program to compute an expression z.
for i = 1, . . . , m:

yi = ti = terminal expression
for i = m + 1, . . . , n:

yi = fi(
〈
yj
〉

j∈Ii
)

z = yn

Each terminal expression ti is a literal constant or input argument to the program. This includes
coefficients, basis functions, and geometric quantities. A non-terminal subexpression yi is the
result of applying an operator fi to a sequence of previously computed expressions

〈
yj
〉

j∈Ii
, where

Ii is an ordered sequence of expression labels. Note that the order in which subexpressions must
be computed to produce the same value of z is not unique. For correctness we only require
j < i ∀ j ∈ Ii, such that all dependencies of a subexpression yi has been computed before yi. In
particular, all terminals are numbered first in this abstract algorithm for notational convenience
only.
The program to compute z can be represented as a graph, where each expression yi corresponds to
a graph vertex. There is a directed graph edge e = (i, j) from yi to yj if j ∈ Ii, that is if yi depends
on the value of yj. More formally, the graph G representing the computation of z consists of a set
of vertices V and a set of edges E defined by:

G = (V, E), (18.60)

V = 〈vi〉ni=1 = 〈yi〉ni=1 , (18.61)

E = {ek} =
n⋃

i=1
{(i, j) ∀ j ∈ Ii} . (18.62)

This graph is clearly directed, since dependencies have a direction. It is acyclic, since an expression
can only be constructed from existing expressions. Thus a UFL expression can be represented by a
directed acyclic graph (DAG). There are two ways this DAG can be represented in UFL. While
defining expressions, a linked representation called the expression tree is built. Technically this
is still a DAG since vertices can be reused in multiple subexpressions, but the representation

328 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

Expr

Terminal Operator

InnerArgument

Figure 18.2: Expression class hierar-
chy.

emphasizes the tree like structure of the DAG. The other representation is called the computational
graph, which closely mirrors the definition of G above. This representation is mostly useful for
form compilers. The details of these two DAG representations will be explained below. They both
share the representation of a vertex in the graph as an expression object, which will be explained
next.

18.6.2 Expression objects

Recall from Algorithm 5 that non-terminals are expressions yi = fi(
〈
yj
〉

j∈Ii
). The operator fi

is represented by the class of the expression object, while the expression yi is represented by
the instance of this class. In the UFL implementation, each expression object is an instance of
some subclass of Expr. The class Expr is the superclass of a hierarchy containing all terminal
expression types and operator types supported by UFL. Expr has two direct subclasses, Terminal
and Operator, which divides the expression type hierarchy in two, as illustrated in Figure 18.2.
All expression objects are considered immutable; once constructed an expression object will never
be modified. Manipulating an expression should always result in a new object being created. The
immutable property ensures that expression objects can be reused and shared between expressions
without side effects in other parts of a program. This both reduces memory usage, avoids needless
copying of objects, and simplifies recognition of common subexpressions.
Calling e.operands() on an Expr object e representing yi returns a tuple with expression objects
representing

〈
yj
〉

j∈Ii
. Note that this also applies to terminals where there are no outgoing edges

and t.operands() returns an empty tuple. Instead of modifying the operands of an expression
object, a new expression object of the same type can be constructed with modified operands using
e.reconstruct(operands), where operands is a tuple of expression objects. If the operands are the
same this function returns the original object, allowing many algorithms to save memory without
additional complications. The invariant e.reconstruct(e.operands()) == e should always hold.

18.6.3 Expression properties

In Section 18.4.2 the tensor algebra and index notation capabilities of UFL was discussed. Expres-
sions can be scalar or tensor-valued, with arbitrary rank and shape. Therefore, each expression
object e has a value shape e.shape(), which is a tuple of integers with the dimensions in each
tensor axis. Scalar expressions have shape (). Another important property is the set of free indices
in an expression, obtained as a tuple using e.free_indices(). Although the free indices have no
ordering, they are represented with a tuple of Index instances for simplicity. Thus the ordering
within the tuple carries no meaning.

18.6. EXPRESSION REPRESENTATION 329

Figure 18.3: Expression tree for
grad u : grad v. Inner

Grad Grad

Argument(V, 1)Argument(V, 0)

UFL expressions are referentially transparent with some exceptions. Referential transparency
means that a subexpression can be replaced by another representation of its value without changing
the meaning of the expression. A key point here is that the value of an expression in this context
includes the tensor shape and set of free indices. Another important point is that the derivative of
a function f (v) in a point, f ′(v)|v=g, depends on function values in the vicinity of v = g. The effect
of this dependency is that operator types matter when differentiating, not only the current value
of the differentiation variable. In particular, a Variable cannot be replaced by the expression it
represents, because diff depends on the Variable instance and not the expression it has the value
of. Similarly, replacing a Coefficient with some value will change the meaning of an expression
that contains derivatives w.r.t. function coefficients.
The following example illustrate the issue with Variable and diff.

UFL code
e = 0

v = variable(e)

f = sin(v)

g = diff(f, v)

Here v is a variable that takes on the value 0, but sin(v) cannot be simplified to 0 since the
derivative of f then would be 0. The correct result here is g = cos(v). Printing f and g gives the
strings sin(var1(0)) and d/d[var1(0)] (sin(var1(0))). Try just setting v = e and see how f

and g becomes zero.

18.6.4 Tree representation

The expression tree does not have a separate data structure. It is merely a way of viewing the
structure of an expression. Any expression object e can be seen as the root of a tree, where
e.operands() returns its children. If some of the children are equal, they will appear as many
times as they appear in the expression. Thus it is easy to traverse the tree nodes; that is, vi in the
DAG, but eventual reuse of subexpressions is not directly visible. Edges in the DAG does not
appear explicitly, and the list of vertices can only be obtained by traversing the tree recursively and
selecting unique objects.
An expression tree for the stiffness term grad u : grad v is illustrated in Figure 18.3. The terminals
u and v have no children, and the term grad u is itself represented by a tree with two nodes. Each
time an operator is applied to some expressions, it will return a new tree root that references its
operands. Note that the user will apply the functions grad and inner in her use of the language,
while the names Grad, Inner and Argument in this figure are the names of the Expr subclasses used
in UFL to represent the expression objects. In other words, taking the gradient of an expression
with grad(u) gives an expression representation Grad(u), and inner(a, b) gives an expression

330 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

representation Inner(a, b). This separation of language and representation is merely a design
choice in the implementation of UFL.

18.6.5 Graph representation

When viewing an expression as a tree, the lists of all unique vertices and edges are not directly avail-
able. Representing the DAG more directly allows many algorithms to be simplified or optimized.
UFL includes tools to build an array based representation of the DAG, the computational graph,
from any expression. The computational graph G = V, E is a data structure based on flat arrays,
directly mirroring the definition of the graph in equations (18.60)-(18.62). This representation
gives direct access to dependencies between subexpressions, and allows easy iteration over unique
vertices. The graph is constructed easily with the lines:

Python code
from ufl.algorithms import Graph

G = Graph(expression)

V, E = G

One array (Python list) V is used to store the unique vertices 〈vi〉ni=1 of the DAG. For each vertex
vi an expression node yi is stored to represent it. Thus the expression tree for each vertex is also
directly available, since each expression node is the root of its own expression tree. The edges are
stored in an array E with integer tuples (i,j) representing an edge from vi to vj; that is, vj is an
operand of vi. The vertex list in the graph is built using a postordering from a depth first traversal,
which guarantees that the vertices are topologically sorted such that j < i ∀ j ∈ Ii.
Let us look at an example of a computational graph. The following code defines a simple expression
and then prints the vertices and edges of its graph.

Python code
from ufl import *
cell = triangle

V = FiniteElement("CG", cell, 1)

u = TrialFunction(V)

v = TestFunction(V)

c = Constant(cell)

f = Coefficient(V)

e = c * f**2 * u * v

from ufl.algorithms import Graph, partition

G = Graph(e)

V, E, = G

print "str(e) = %s\n" % str(e)

print "\n".join("V[%d] = %s" % (i, v) for (i, v) in enumerate(V)), "\n"

print "\n".join("E[%d] = %s" % (i, e) for (i, e) in enumerate(E)), "\n"

An excerpt of the program output is shown here:

Generated code
V[0] = v_{-2}

...

V[7] = v_{-1} * c_0 * w_1 ** 2

V[8] = v_{-2} * v_{-1} * c_0 * w_1 ** 2

...

E[6] = (8, 0)

E[7] = (8, 7)

18.6. EXPRESSION REPRESENTATION 331

The two last edges shown here represent the dependencies of vertex 8 on vertex 7 and 0, since
v8 = v0v7. Run the code to see the full output of this code. Try changing the expression and see
what the graph looks like.
From the edges E, related arrays can be computed efficiently; in particular the vertex indices of
dependencies of a vertex vi in both directions are useful:

Vout = 〈Ii〉ni=1 ,

Vin =
〈
{j|i ∈ Ij}

〉n
i=1

(18.63)

These arrays can be easily constructed for any expression:

Python code
Vin = G.Vin()

Vout = G.Vout()

Similar functions exist for obtaining indices into E for all incoming and outgoing edges. A nice
property of the computational graph built by UFL is that no two vertices will represent the same
identical expression. During graph building, subexpressions are inserted in a hash map (Python
dictionary) to achieve this. Some expression classes sort their arguments uniquely such that e.g.
a*b and b*a will become the same vertex in the graph.
Free indices in expression nodes can complicate the interpretation of the linearized graph when
implementing some algorithms, because an expression object with free indices represents not one
value but a set of values, one for each permutation of the values its free indices can have. One
solution to this can be to apply expand_indices before constructing the graph, which will replace
all expressions with free indices with equivalent expressions with explicit fixed indices. Note
however that free indices cannot be regained after expansion. See Section 18.8.3 for more about
this transformation.

18.6.6 Partitioning

UFL is intended as a front-end for form compilers. Since the end goal is generation of code from
expressions, some utilities are provided for the code generation process. In principle, correct
code can be generated for an expression from its computational graph simply by iterating over
the vertices and generating code for each operation separately, basically mirroring Algorithm 5.
However, a good form compiler should be able to produce better code. UFL provides utilities
for partitioning the computational graph into subgraphs (partitions) based on dependencies of
subexpressions, which enables quadrature based form compilers to easily place subexpressions
inside the right sets of loops. The function partition implements this feature. Each partition
is represented by a simple array of vertex indices, and each partition is labeled with a set of
dependencies. By default, this set of dependencies use the strings ’x’, ’c’, and ’v%d’ to denote
dependencies on spatial coordinates, cell specific quantities, and form arguments (not coefficients)
respectively.
The following example code partitions the graph built above, and prints vertices in groups based
on their dependencies.

Python code
partitions, keys = partition(G)

for deps in sorted(partitions.keys()):

P = partitions[deps]

print "The following depends on", tuple(deps)

for i in sorted(P):

332 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

print "V[%d] = %s" % (i, V[i])

The output text from the program is included below. Notice that the literal constant 2 has no
dependencies. Expressions in this partition can always be precomputed compile time. The
Constant c_0 depends on data which varies for each cell, represented by ’c’ in the dependency set,
but not on spatial coordinates, so it can be placed outside the quadrature loop. The Function w_1

and expressions depending on it depends in addition on the spatial coordinates, represented by ’x’,
and therefore needs to be computed for each quadrature point. Expressions depending on only the
test or trial function are marked with ’v%d’ where the number is the internal counter used by UFL
to distinguish between arguments. Note that test and trial functions are here marked as depending
on the spatial coordinates, but not on cell dependent quantities. This is only true for finite elements
defined on a local reference element, in which case the basis functions can be precomputed in
each quadrature point. The actual runtime dependencies of a basis function in a finite element
space is unknown to UFL, which is why the partition function takes an optional multifunction
argument such that the form compiler writer can provide more accurate dependencies. We refer to
the implementation of partition for such implementation details.

Generated code
The following depends on ()

V[4] = 2

The following depends on (’c’,)

V[2] = c_0

The following depends on (’x’, ’c’)

V[3] = w_1

V[5] = w_1 ** 2

V[6] = c_0 * w_1 ** 2

The following depends on (’x’, ’v-1’)

V[1] = v_{-1}

The following depends on (’x’, ’c’, ’v-1’)

V[7] = v_{-1} * c_0 * w_1 ** 2

The following depends on (’x’, ’v-2’)

V[0] = v_{-2}

The following depends on (’x’, ’c’, ’v-2’, ’v-1’)

V[8] = v_{-2} * v_{-1} * c_0 * w_1 ** 2

18.7 Computing derivatives

When any kind of derivative expression is declared by the end-user of the form language, an
expression object is constructed to represent it, but nothing is computed. The type of this
expression object is a subclass of Derivative. Before low level code can be generated from the
derivative expression, some kind of algorithm to evaluate derivatives must be applied, since
differential operators are not available natively in low level languages such as C++. Computing
exact derivatives is important, which rules out approximations by divided differences. Several
alternative algorithms exist for computing exact derivatives. All relevant algorithms are based
on the chain rule combined with differentiation rules for each expression object type. The main
differences between the algorithms are in the extent of which subexpressions are reused, and in
the way subexpressions are accumulated.
Mixing derivative computation into the code generation strategy of each form compiler would
lead to a significant duplication of implementation effort. To separate concerns and keep the code
manageable, differentiation is implemented as part of UFL in such a way that the form compilers
are independent of the differentiation strategy chosen in UFL. Therefore, it is advantageous to use

18.7. COMPUTING DERIVATIVES 333

the same representation for the evaluated derivative expressions as for any other expression. Before
expressions are interpreted by a form compiler, differential operators should be evaluated such that
the only operators left are non-differential operators. An exception is made for spatial derivatives
of terminals which are unknown to UFL because they are provided by the form compilers.
Below, the differences and similarities between some of the simplest algorithms are discussed.
After the algorithm currently implemented in UFL has been explained, extensions to tensor and
index notation and higher order derivatives are discussed. Finally, the section is closed with some
remarks about the differentiation rules for terminal expressions.

18.7.1 Approaches to computing derivatives

Algorithms for computing derivatives are designed with different end goals in mind. Symbolic
Differentiation (SD) takes as input a single symbolic expression and produces a new symbolic
expression for its derivative. Automatic Differentiation (AD) takes as input a program to compute
a function and produces a new program to compute the derivative of the function. Several variants
of AD algorithms exist, the two most common being Forward Mode AD and Reverse Mode
AD [Griewank, 1989]. More advanced algorithms exist, and is an active research topic. A UFL
expression is a symbolic expression, represented by an expression tree. But the expression tree is a
directed acyclic graph that represents a program to evaluate said expression. Thus it seems the
line between SD and AD becomes less distinct in this context.
Naively applied, SD can result in huge expressions, which can both require a lot of memory
during the computation and be highly inefficient if written to code directly. However, some
illustrations of the inefficiency of symbolic differentiation, such as in Griewank [1989], are based on
computing closed form expressions of derivatives in some stand-alone computer algebra system
(CAS). Copying the resulting large expressions directly into a computer code can lead to very
inefficient code. The compiler may not be able to detect common subexpressions, in particular if
simplification and rewriting rules in the CAS has changed the structure of subexpressions with a
potential for reuse.
In general, AD is capable of handling algorithms that SD can not. A tool for applying AD to
a generic source code must handle many complications such as subroutines, global variables,
arbitrary loops and branches [Bischof et al., 1992, 2002, Giering and Kaminski, 1998]. Since the
support for program flow constructs in UFL is very limited, the AD implementation in UFL will
not run into such complications. In Section 18.7.2 the similarity between SD and forward mode
AD in the context of UFL is explained in more detail.

18.7.2 Forward mode automatic differentiation

Recall Algorithm 5, which represents a program for computing an expression z from a set of
terminal values {ti} and a set of elementary operations { fi}. Assume for a moment that there
are no differential operators among { fi}. The algorithm can then be extended to compute the
derivative dz

dv , where v represents a differentiation variable of any kind. This extension gives
Algorithm 6.
This way of extending a program to simultaneously compute the expression z and its derivative dz

dv
is called forward mode automatic differentiation (AD). By renaming yi and dyi

dv to a new sequence

of values
〈
ŷj
〉n̂

j=1, Algorithm 6 can be rewritten as shown in Algorithm 7, which is isomorphic to
Algorithm 5 (they have exactly the same structure).
Since the program in Algorithm 5 can be represented as a DAG, and Algorithm 7 is isomorphic to
Algorithm 5, the program in Algorithm 7 can also be represented as a DAG. Thus a program to

334 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

Algorithm 6 Forward mode AD on Algorithm 5.
for i = 1, . . . , m:

yi = ti
dyi
dv = dti

dv
for i = m + 1, . . . , n:

yi = fi(
〈
yj
〉

j∈Ii
)

dyi
dv = ∑k∈Ii

∂ fi
∂yk

dyk
dv

z = yn
dz
dv = dyn

dv

Algorithm 7 Program to compute dz
dv produced by forward mode AD

for i = 1, . . . , m̂:
ŷi = t̂i

for i = m̂ + 1, . . . , n̂:
ŷi = f̂i(

〈
ŷj
〉

j∈Îi
)

dz
dv = ŷn̂

compute dz
dv can be represented by an expression tree built from terminal values and non-differential

operators.
The currently implemented algorithm for computing derivatives in UFL follows forward mode
AD closely. Since the result is a new expression tree, the algorithm can also be called symbolic
differentiation. In this context, the differences between the two are implementation details. To
ensure that we can reuse expressions properly, simplification rules in UFL avoids modifying
the operands of an operator. Naturally repeated patterns in the expression can therefore be
detected easily by the form compilers. Efficient common subexpression elimination can then be
implemented by placing subexpressions in a hash map. However, there are simplifications such as
0 ∗ f → 0 and 1 ∗ f → f , called constant folding, which simplify the result of the differentiation
algorithm automatically as it is being constructed. These simplifications are crucial for the memory
use during derivative computations, and the performance of the resulting program.

18.7.3 Extensions to tensors and indexed expressions

So far we have not considered derivatives of non-scalar expression and expressions with free
indices. This issue does not affect the overall algorithms, but it does affect the local derivative rules
for each expression type.
Consider the expression diff(A, B) with A and B matrix expressions. The meaning of derivatives
of tensors w.r.t. to tensors is easily defined via index notation, which is heavily used within the
differentiation rules:

dA
dB

=
dAij

dBkl
ei ⊗ ej ⊗ ek ⊗ el (18.64)

Derivatives of subexpressions are frequently evaluated to literal constants. For indexed expres-
sions, it is important that free indices are propagated correctly with the derivatives. Therefore,
differentiated expressions will some times include literal constants annotated with free indices.
There is one rare and tricky corner case when an index sum binds an index i such as in (vivi)

18.7. COMPUTING DERIVATIVES 335

and the derivative w.r.t. xi is attempted. The simplest example of this is the expression (vivi),j,
which has one free index j. If j is replaced by i, the expression can still be well defined, but you
would never write (vivi),i manually. If the expression in the parenthesis is defined in a variable
e = v[i]*v[i], the expression e.dx(i) looks innocent. However, this will cause problems as
derivatives (including the index i) are propagated up to terminals. If this case is encountered in
the current implementation of UFL, it will be detected and an error message will be triggered. To
work around the problem, simply use different index instances. In a future version of UFL, this
case may be handled by relabeling indices to change any expression (∑i ei),i into (∑j ej),i.

18.7.4 Higher order derivatives

A simple forward mode AD implementation such as Algorithm 6 only considers one differenti-
ation variable. Higher order or nested differential operators must also be supported, with any
combination of differentiation variables. A simple example illustrating such an expression can be

a =
d

dx

(
d

dx
f (x) + 2

d
dy

g(x, y)
)

. (18.65)

Considerations for implementations of nested derivatives in a functional2 framework have been
explored in several papers [Karczmarczuk, 2001, Pearlmutter and Siskind, 2007, Siskind and
Pearlmutter, 2008].
In the current UFL implementation this is solved in a different fashion. Considering Equa-
tion (18.65), the approach is simply to compute the innermost derivatives d

dx f (x) and d
dy g(x, y)

first, and then computing the outer derivatives. This approach is possible because the result of a
derivative computation is represented as an expression tree just as any other expression. Mainly
this approach was chosen because it is simple to implement and easy to verify. Whether other
approaches are faster has not been investigated. Furthermore, alternative AD algorithms such as
reverse mode can be experimented with in the future without concern for nested derivatives in the
first implementations.
An outer controller function apply_ad handles the application of a single variable AD routine
to an expression with possibly nested derivatives. The AD routine is a function accepting a
derivative expression node and returning an expression where the single variable derivative has
been computed. This routine can be an implementation of Algorithm 7. The result of apply_ad is
mathematically equivalent to the input, but with no derivative expression nodes left3.
The function apply_ad works by traversing the tree recursively in post-order, discovering subtrees
where the root represents a derivative, and applying the provided AD routine to the derivative
subtree. Since the children of the derivative node has already been visited by apply_ad, they are
guaranteed to be free of derivative expression nodes and the AD routine only needs to handle the
case discussed above with algorithms 6 and 7.
The complexity of the ad_routine should be O(n), with n being the size of the expression tree.
The size of the derivative expression is proportional to the original expression. If there are d
derivative expression nodes in the expression tree, the complexity of this algorithm is O(dn),
since ad_routine is applied to subexpressions d times. As a result the worst case complexity of
apply_ad is O(n2), but in practice d� n. A recursive implementation of this algorithm is shown
in Figure 18.4.

2Functional as in functional languages.
3Except direct spatial derivatives of form arguments, but that is an implementation detail.

336 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

Python code
def apply_ad(e, ad_routine):

if isinstance(e, Terminal):
return e

ops = [apply_ad(o, ad_routine) for o in
e.operands()]

e = e.reconstruct(*ops)
if isinstance(e, Derivative):

e = ad_routine(e)
return e

Figure 18.4: Simple implementation of
recursive apply_ad procedure.

18.7.5 Basic differentiation rules

To implement the algorithm descriptions above, we must implement differentiation rules for all
expression node types. Derivatives of operators can be implemented as generic rules independent
of the differentiation variable, and these are well known and not mentioned here. Derivatives
of terminals depend on the differentiation variable type. Derivatives of literal constants are of
course always zero, and only spatial derivatives of geometric quantities are non-zero. Since form
arguments are unknown to UFL (they are provided externally by the form compilers), their spatial

derivatives (∂φk

∂xi
and ∂wk

∂xi
) are considered input arguments as well. In all derivative computations,

the assumption is made that form coefficients have no dependencies on the differentiation variable.
Two more cases needs explaining, the user defined variables and derivatives w.r.t. the coefficients
of a Coefficient.

If v is a Variable, then we define dt
dv ≡ 0 for any terminal t. If v is scalar valued then dv

dv ≡ 1.
Furthermore, if V is a tensor valued Variable, its derivative w.r.t. itself is

dV
dV

=
dVij

dVkl
ei ⊗ ej ⊗ ek ⊗ el = δikδjlei ⊗ ej ⊗ ek ⊗ el . (18.66)

In addition, the derivative of a variable w.r.t. something else than itself equals the derivative of the
expression it represents:

v = g, (18.67)
dv
dz

=
dg
dz

. (18.68)

Finally, we consider the operator derivative, which represents differentiation w.r.t. all coefficients
{wk} of a function w. Consider an object element which represents a finite element space Vh with
a basis {φk}. Next consider form arguments defined in this space:

UFL code
v = Argument(element)

w = Coefficient(element)

The Argument instance v represents any v ∈ {φk}, while the Coefficient instance w represents
the sum

w = ∑
k

wkφk(x). (18.69)

18.8. ALGORITHMS 337

The derivative of w w.r.t. any wk is the corresponding basis function in Vh,

∂w
∂wk

= φk, k = 1, . . . , |Vh|, (18.70)

(18.71)

which can be represented by v, since

v ∈ 〈φk〉|Vh |
k=1 =

〈
∂w
∂wk

〉|Vh |

k=1
. (18.72)

Note that v should be a basis function instance that has not already been used in the form.

18.8 Algorithms

In this section, some central algorithms and key implementation issues are discussed, much of
which relates to the Python programming language. Thus, this section is mainly intended for
developers and others who need to relate to UFL on a technical level. Python users may also find
some of the techniques here interesting.

18.8.1 Effective tree traversal in Python

Applying some action to all nodes in a tree is naturally expressed using recursion:

Python code
def walk(expression, pre_action, post_action):

pre_action(expression)

for o in expression.operands():

walk(o)

post_action(expression)

This implementation simultaneously covers pre-order traversal, where each node is visited before
its children, and post-order traversal, where each node is visited after its children.
A more “pythonic” way to implement iteration over a collection of nodes is using generators. A
minimal implementation of this could be

Python code
def post_traversal(root):

for o in root.operands():

yield post_traversal(o)

yield root

which then enables the natural Python syntax for iteration over expression nodes:

Python code
for e in post_traversal(expression):

post_action(e)

For efficiency, the actual implementation of post_traversal in UFL is not using recursion. Function
calls are very expensive in Python, which makes the non-recursive implementation an order of
magnitude faster than the above.

338 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

18.8.2 Type based function dispatch in Python

A common task in both symbolic computing and compiler implementation is the selection of some
operation based on the type of an expression node. For a selected few operations, this is done
using overloading of functions in the subclasses of Expr, but this is not suitable for all operations.
In many cases type-specific operations are better implemented together in the algorithm instead
of distributed across class definitions. This implementation pattern is called the Visitor pattern
[Gamma et al., 1995]. The implementation in UFL is somewhat different from the patterns used in
a statically typed language such as C++.
One way to implement type based operation selection is to use a type switch, or a sequence of
if-tests such as this:

Python code
if isinstance(expression, IntValue):

result = int_operation(expression)

elif isinstance(expression, Sum):

result = sum_operation(expression)

etc.

There are several problems with this approach, one of which is efficiency when there are many
types to check. A type based function dispatch mechanism with efficiency independent of
the number of types is implemented as an alternative through the class MultiFunction. The
underlying mechanism is a dictionary lookup (which is O(1)) based on the type of the input
argument, followed by a call to the function found in the dictionary. The lookup table is built in the
MultiFunction constructor only once. Functions to insert in the table are discovered automatically
using the introspection capabilities of Python.
A multifunction is declared as a subclass of MultiFunction. For each type that should be handled
particularly, a member function is declared in the subclass. The Expr classes use the CamelCaps

naming convention, which is automatically converted to underscore_notation for corresponding
function names, such as IndexSum and index_sum. If a handler function is not declared for a type,
the closest superclass handler function is used instead. Note that the MultiFunction implementa-
tion is specialized to types in the Expr class hierarchy. The declaration and use of a multifunction
is illustrated in Figure 18.5. Note that argument and sum will handle instances of the exact types
Argument and Sum, while terminal and operator will handle the types SpatialCoordinate and
Product since they have no specific handlers.

18.8.3 Implementing expression transformations

Many transformations of expressions can be implemented recursively with some type-specific
operation applied to each expression node. Examples of operations are converting an expression
node to a string representation, to an expression representation using an symbolic external library,
or to a UFL representation with some different properties. A simple variant of this pattern can be
implemented using a multifunction to represent the type-specific operation:

Python code
def apply(e, multifunction):

ops = [apply(o, multifunction) for o in e.operands()]

return multifunction(e, *ops)

The basic idea is as follows. Given an expression node e, begin with applying the transformation
to each child node. Then return the result of some operation specialized according to the type of e,
using the already transformed children as input.

18.8. ALGORITHMS 339

Figure 18.5: Example declaration and
use of a multifunction. Python code

class ExampleFunction(MultiFunction):
def __init__(self):

MultiFunction.__init__(self)

def terminal(self, expression):
return "Got a Terminal subtype %s." %

type(expression)

def operator(self, expression):
return "Got an Operator subtype %s." %

type(expression)

def argument(self, expression):
return "Got an Argument."

def sum(self, expression):
return "Got a Sum."

m = ExampleFunction()

cell = triangle
element = FiniteElement("CG", cell, 1)
x = cell.x
print m(Argument(element))
print m(x)
print m(x[0] + x[1])
print m(x[0] * x[1])

The Transformer class implements this pattern. Defining a new algorithm using this pattern
involves declaring a Transformer subclass, and implementing the type specific operations as
member functions of this class just as with MultiFunction. The difference is that member functions
take one additional argument for each operand of the expression node. The transformed child
nodes are supplied as these additional arguments. The following code replaces terminal objects
with objects found in a dictionary mapping, and reconstructs operators with the transformed
expression trees. The algorithm is applied to an expression by calling the function visit, named
after the similar Visitor pattern.

Python code
class Replacer(Transformer):

def __init__(self, mapping):

Transformer.__init__(self)

self.mapping = mapping

def operator(self, e, *ops):

return e.reconstruct(*ops)

def terminal(self, e):

return self.mapping.get(e, e)

f = Constant(triangle)

r = Replacer({f: f**2})

g = r.visit(2*f)

After running this code the result is g = 2 f 2. The actual implementation of the replace function is
similar to this code.

340 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

In some cases, child nodes should not be visited before their parent node. This distinction is
easily expressed using Transformer, simply by omitting the member function arguments for the
transformed operands. See the source code for many examples of algorithms using this pattern.

18.8.4 Important transformations

There are many ways in which expression representations can be manipulated. Here, we describe
three particularly important transformations. Note that each of these algorithms removes some ab-
stractions, and hence may remove some opportunities for analysis or optimization. To demonstrate
their effect, each transformation will be applied below to the expression

a = grad(f u) · grad v. (18.73)

At the end of the section, some example code is given to demonstrate more representation details.
Some operators in UFL are termed “compound” operators, meaning they can be represented by
other more elementary operators. Try defining an expression a = dot(grad(f*u), grad(v)), and
print repr(a). As you will see, the representation of a is Dot(Grad(Product(f, u)), Grad(v)),
with some more details in place of f, u and v. By representing the gradient directly with a high
level type Grad instead of more low level types, the input expressions are easier to recognize in the
representation, and rendering of expressions to for example LATEX format can show the original
compound operators as written by the end-user. However, since many algorithms must implement
actions for each operator type, the function expand_compounds is used to replace all expression
nodes of “compound” types with equivalent expressions using basic types. When this operation is
applied to the input forms from the user, algorithms in both UFL and the form compilers can still
be written purely in terms of more basic operators. Expanding the compound expressions from
Equation (18.73) results in the expression

ac = ∑
i

∂v
∂xi

∂(u f)
∂xi

. (18.74)

Another important transformation is expand_derivatives, which applies automatic differentiation
to expressions, recursively and for all kinds of derivatives. The end result is that most derivatives
are evaluated, and the only derivative operator types left in the expression tree applies to terminals.
The precondition for this algorithm is that expand_compounds has been applied. Expanding the
derivatives in ac from Equation (18.74) gives us

ad = ∑
i

∂v
∂xi

(u
∂ f
∂xi

+ f
∂u
∂xi

). (18.75)

Index notation and the IndexSum expression node type complicate interpretation of an expression
tree somewhat, in particular in expressions with nested index sums. Since expressions with
free indices will take on multiple values, each expression object represents not only one value
but a set of values. The transformation expand_indices then comes in handy. The precondition
for this algorithm is that expand_compounds and expand_derivatives have been applied. The
postcondition of this algorithm is that there are no free indices left in the expression. Expanding
the indices in Equation (18.75) finally gives

ai =
∂v
∂x0

(u
∂ f
∂x0

+ f
∂u
∂x0

) +
∂v
∂x1

(u
∂ f
∂x1

+ f
∂u
∂x1

). (18.76)

18.8. ALGORITHMS 341

We started with the higher level concepts gradient and dot product in Equation (18.73), and ended
with only scalar addition, multiplication, and partial derivatives of the form arguments. A form
compiler will typically start with ad or ai, insert values for the argument derivatives, apply some
other transformations, before finally generating code.
Some example code to play around with should help in understanding what these algorithms do
at the expression representation level. Since the printed output from this code is a bit lengthy, only
key aspects of the output is repeated below. Copy this code to a python file or run it in a python
interpreter to see the full output.

Python code
from ufl import *
V = FiniteElement("CG", triangle, 1)

u = TestFunction(V)

v = TrialFunction(V)

f = Coefficient(V)

Note no *dx! This is an expression, not a form.

a = dot(grad(f * u), grad(v))

from ufl.algorithms import *
ac = expand_compounds(a)

ad = expand_derivatives(ac)

ai = expand_indices(ad)

print "\na: ", str(a), "\n", tree_format(a)

print "\nac:", str(ac), "\n", tree_format(ac)

print "\nad:", str(ad), "\n", tree_format(ad)

print "\nai:", str(ai), "\n", tree_format(ai)

The print output showing a is (with the details of the finite element object cut away for shorter
lines):

Output
a: (grad(v_{-2} * w_0)) . (grad(v_{-1}))

Dot

(

Grad

Product

(

Argument(FiniteElement(...), -2)

Coefficient(FiniteElement(...), 0)

)

Grad

Argument(FiniteElement(...), -1)

)

The arguments labeled -1 and -2 refer to v and u respectively.
In ac, the Dot product has been expanded to an IndexSum of a Product with two Indexed operands:

Output
IndexSum

(

Product

(

Indexed

(

...

MultiIndex((Index(10),), {Index(10): 2})

)

342 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

Indexed

(

...

MultiIndex((Index(10),), {Index(10): 2})

)

)

MultiIndex((Index(10),), {Index(10): 2})

)

The somewhat complex looking expression MultiIndex((Index(10),), {Index(10): 2}) can be
read simply as “index named i10, bound to an axis with dimension 2”.
Zooming in to one of the ... lines above, the representation of grad(f u) must still keep the vector
shape after being transformed to more basic expressions, which is why the SpatialDerivative

object is wrapped in a ComponentTensor object:

Output
ComponentTensor

(

SpatialDerivative

(

Product

(

u

f

)

MultiIndex((Index(8),), {Index(8): 2})

)

MultiIndex((Index(8),), {Index(8): 2})

)

A common pattern occurs in the algorithmically expanded expressions:

Output
Indexed

(

ComponentTensor

(

...

MultiIndex((Index(8),), {Index(8): 2})

)

MultiIndex((Index(10),), {Index(10): 2})

)

This pattern acts as a relabeling of the index objects, renaming i8 from inside . . . to i10 on the
outside. When looking at the print of ad, the result of the chain rule ((f u)′ = u f ′ + f u′) can be
seen as the Sum of two Product objects.

Output
Sum

(

Product

(

u

SpatialDerivative

(

f

MultiIndex((Index(8),), {Index(8): 2})

)

18.8. ALGORITHMS 343

)

Product

(

f

SpatialDerivative

(

u

MultiIndex((Index(8),), {Index(8): 2})

)

)

)

Finally after index expansion in ai (not shown here), no free Index objects are left, but instead
a lot of FixedIndex objects can be seen in the print of ai. Looking through the full output from
the example code above is strongly encouraged if you want a good understanding of the three
transformations shown here.

18.8.5 Evaluating expressions

Even though UFL expressions are intended to be compiled by form compilers, it can be useful to
evaluate them to floating point values directly. In particular, this makes testing and debugging of
UFL much easier, and is used extensively in the unit tests. To evaluate an UFL expression, values
of form arguments and geometric quantities must be specified. Expressions depending only on
spatial coordinates can be evaluated by passing a tuple with the coordinates to the call operator.
The following code which can be copied directly into an interactive Python session shows the
syntax:

Python code
from ufl import *
cell = triangle

x = cell.x

e = x[0] + x[1]

print e((0.5, 0.7)) # prints 1.2

Other terminals can be specified using a dictionary that maps from terminal instances to values.
This code extends the above code with a mapping:

Python code
c = Constant(cell)

e = c * (x[0] + x[1])

print e((0.5, 0.7), { c: 10 }) # prints 12.0

If functions and basis functions depend on the spatial coordinates, the mapping can specify a
Python callable instead of a literal constant. The callable must take the spatial coordinates as input
and return a floating point value. If the function being mapped is a vector function, the callable
must return a tuple of values instead. These extensions can be seen in the following code:

Python code
element = VectorElement("CG", triangle, 1)

c = Constant(triangle)

f = Coefficient(element)

e = c * (f[0] + f[1])

def fh(x):

return (x[0], x[1])

print e((0.5, 0.7), { c: 10, f: fh }) # prints 12.0

344 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

To use expression evaluation for validating that the derivative computations are correct, spatial
derivatives of form arguments can also be specified. The callable must then take a second argument
which is called with a tuple of integers specifying the spatial directions in which to differentiate. A
final example code computing g2 + g2

,0 + g2
,1 for g = x0x1 is shown below.

Python code
element = FiniteElement("CG", triangle, 1)

g = Coefficient(element)

e = g**2 + g.dx(0)**2 + g.dx(1)**2

def gh(x, der=()):

if der == (): return x[0] * x[1]

if der == (0,): return x[1]

if der == (1,): return x[0]

print e((2, 3), { g: gh }) # prints 49

18.8.6 Viewing expressions

Expressions can be formatted in various ways for inspection, which is particularly useful while
debugging. The Python built in string conversion operator str(e) provides a compact human
readable string. If you type print e in an interactive Python session, str(e) is shown. An-
other Python built in string operator is repr(e). UFL implements repr correctly such that e ==

eval(repr(e)) for any expression e. The string repr(e) reflects all the exact representation types
used in an expression, and can therefore be useful for debugging. Another formatting function
is tree_format(e), which produces an indented multi-line string that shows the tree structure of
an expression clearly, as opposed to repr which can return quite long and hard to read strings.
Information about formatting of expressions as LATEX and the dot graph visualization format can
be found in the manual.

18.9 Implementation issues

18.9.1 Python as a basis for a domain specific language

Many of the implementation details detailed in this section are influenced by the initial choice of
implementing UFL as an embedded language in Python. Therefore some words about why Python
is suitable for this, and why not, are appropriate here.
Python provides a simple syntax that is often said to be close to pseudo-code. This is a good
starting point for a domain specific language. Object orientation and operator overloading is
well supported, and this is fundamental to the design of UFL. The functional programming
features of Python (such as generator expressions) are useful in the implementation of algorithms
and form compilers. The built-in data structures list, dict and set play a central role in fast
implementations of scalable algorithms.
There is one problem with operator overloading in Python, and that is the comparison operators.
The problem stems from the fact that __eq__ or __cmp__ are used by the built-in data structures
dictionary and set to compare keys, meaning that a == b must return a boolean value for Expr

to be used as keys. The result is that __eq__ can not be overloaded to return some Expr type
representation such as Equals(a, b) for later processing by form compilers. The other problem is
that and and or cannot be overloaded, and therefore cannot be used in conditional expressions.
There are good reasons for these design choices in Python. This conflict is the reason for the
somewhat non-intuitive design of the comparison operators in UFL.

18.10. CONCLUSIONS AND FUTURE DIRECTIONS 345

18.9.2 Ensuring unique form signatures

The form compilers need to compute a unique signature of each form for use in a cache system
to avoid recompilations. A convenient way to define a signature is using repr(form), since the
definition of this in Python is eval(repr(form)) == form. Therefore __repr__ is implemented for
all Expr subclasses.
Some forms are mathematically equivalent even though their representation is not exactly the
same. UFL does not use a truly canonical form for its expressions, but takes some measures to
ensure that trivially equivalent forms are recognized as such.
Some of the types in the Expr class hierarchy (subclasses of Counted), has a global counter to
identify the order in which they were created. This counter is used by form arguments (both
Argument and Coefficient) to identify their relative ordering in the argument list of the form.
Other counted types are Index and Label, which only use the counter as a unique identifier.
Algorithms are implemented for renumbering of all Counted types such that all counts start from
0.
In addition, some operator types such as Sum and Product maintains a sorted list of operands
such that a+b and b+a are both represented as Sum(a, b). This operand sorting is intentionally
independent of the numbering of indices because that would not be stable. The reason for this
instability is that the result of algorithms for renumbering indices depends on the order of operands.
The operand sorting and renumberings combined ensure that the signature of equal forms will
stay the same. Note that the representation, and thus the signature, of a form may change with
versions of UFL. The following line prints the signature of a form with expand_derivatives and
renumbering applied.

Python code
print repr(preprocess(myform).form_data().form)

18.9.3 Efficiency considerations

By writing UFL in Python, we clearly do not put peak performance as a first priority. If the form
compilation process can blend into the application build process, the performance is sufficient.
We do, however, care about scaling performance to handle complicated equations efficiently, and
therefore about the asymptotic complexity of the algorithms we use.
To write clear and efficient algorithms in Python, it is important to use the built in data structures
correctly. These data structures include in particular list, dict and set. CPython [van Rossum
et al.], the reference implementation of Python, implements the data structure list as an array,
which means append, and pop, and random read or write access are all O(1) operations. Random
insertion, however, is O(n). Both dict and set are implemented as hash maps, the latter simply
with no value associated with the keys. In a hash map, random read, write, insertion and deletion
of items are all O(1) operations, as long as the key types implement __hash__ and __eq__ efficiently.
The dictionary data structure is used extensively by the Python language, and therefore particular
attention has been given to make it efficient [Kuchling, 2007]. Thus to enjoy efficient use of
these containers, all Expr subclasses must implement these two special functions efficiently. Such
considerations have been important for making the UFL implementation perform efficiently.

18.10 Conclusions and future directions

Many additional features can be introduced to UFL. Which features are added will depend on the
needs of FEniCS users and developers. Some features can be implemented in UFL alone, but most

346 CHAPTER 18. UFL: A FINITE ELEMENT FORM LANGUAGE

features will require updates to other parts of the FEniCS project. Thus the future directions for
UFL is closely linked to the development of the FEniCS project as a whole.
Improvements to finite element declarations is likely easy to do in UFL. The added complexity
will mostly be in the form compilers. Among the current suggestions are space-time elements and
time derivatives. Additional geometry mappings and finite element spaces with non-uniform cell
types are also possible extensions.
Additional operators can be added to make the language more expressive. Some operators are
easy to add because their implementation only affects a small part of the code. More compound
operators that can be expressed using elementary operations is easy to add. Additional special
functions are easy to add as well, as long as their derivatives are known. Other features may
require more thorough design considerations, such as support for complex numbers which will
affect large parts of the code.
User friendly notation and support for rapid development are core values in the design of
UFL. Having a notation close to the mathematical abstractions allows expression of particular
ideas more easily, which can reduce the probability of bugs in user code. However, the notion
of metaprogramming and code generation adds another layer of abstraction which can make
understanding the framework more difficult for end-users. Good error checking everywhere is
therefore very important, to detect user errors as close as possible to the user input. Improvements
to the error messages, documentation, and unit test suite will always be helpful, to avoid frequently
repeated errors and misunderstandings among new users.
To support the form compiler projects, algorithms and utilities for generating better code more
efficiently could be included in UFL. Such algorithms should probably be limited to algorithms
such as general transformations of expression graphs which can be useful independently of form
compiler specific approaches. In this area, more work on alternative automatic differentiation
algorithms [Forth et al., 2004, Tadjouddine, 2008] can be useful.
To summarize, UFL is a central component in the FEniCS framework, where it provides a rich
form language, automatic differentiation, and a building block for efficient form compilers. These
are useful features in rapid development of applications for efficiently solving partial differential
equations. UFL provides the user interface to Automation of Discretization that is the core feature
of FEniCS, and adds Automation of Linearization to the framework. With these features, UFL has
brought FEniCS one step closer to its overall goal Automation of Mathematical Modeling.

18.11 Acknowledgements

This work has been supported by the Norwegian Research Council (grant 162730) and Simula
Research Laboratory. I wish to thank everyone who has helped improving UFL with suggestions
and testing, in particular Anders Logg, Kristian Ølgaard, Garth Wells, and Harish Narayanan. In
addition to the two anonymous referees, both Kent-André Mardal and Marie Rognes performed
critical reviews which greatly improved this chapter.

19 Unicorn: a unified continuum mechanics solver
By Cem Degirmenci, Johan Hoffman, Johan Jansson, Niclas Jansson and Murtazo
Nazarov

This chapter provides a description of the technology in Unicorn focusing on simple, efficient
and general algorithms and software for the Unified Continuum (UC) concept and the adaptive
General Galerkin (G2) discretization as a unified approach to continuum mechanics. We describe
how Unicorn fits into the FEniCS framework, how it interfaces to other FEniCS components, what
interfaces and functionality Unicorn provides itself and how the implementation is designed. We
also present some examples in fluid–structure interaction and adaptivity computed with Unicorn.
One such example is presented in Figure 19.1 which shows the simulation of a model problem of a
3D flexible flag in turbulent flow.

19.1 Background

Unicorn is solver technology (models, methods, algorithms and software) with the goal of auto-
mated simulation of realistic continuum mechanics applications, such as drag or lift computation
for fixed or flexible objects (fluid–structure interaction) in turbulent incompressible or compressible
flow. The basis for Unicorn is Unified Continuum (UC) modeling formulated in Euler (laboratory)
coordinates, together with a G2 (General Galerkin) adaptive stabilized finite element discretization
with a moving mesh for tracking the phase interfaces. The UC model consists of canonical conser-
vation equations for mass, momentum, energy and phase over the whole domain as one continuum,
together with a Cauchy stress and phase variable as data for defining material properties and
constitutive equations. Unicorn formulates and implements the adaptive G2 method applied to
the UC model, and interfaces to other components in the FEniCS chain (FIAT, FFC, DOLFIN)
providing representation of finite element function spaces, weak forms and mesh, and algorithms
such as automated parallel assembly and linear algebra.
The Unicorn software is organized into three parts:

Library The Unicorn library provides common solver technology such as automated time-stepping,
error estimation, adaptivity, mesh smoothing and slip/friction boundary conditions.

Solver The Unicorn solver implements the G2 adaptive discretization method for the UC model by
formulating the relevant weak forms. Currently there are two primary solvers: incompressible
fluids and solids (including fluid–structure interaction) and compressible Euler (only fluid),
where the long-term goal is a unification of the incompressible and compressible formulations
as well.

Applications Associated to the solver(s) are applications such as computational experiments and
benchmarks with certain geometries, coefficients and parameters. These are represented as

347

348 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

Figure 19.1: A fluid–structure inter-
action problem consisting of a flag
mounted behind a cube in turbu-
lent flow. The plot shows the fluid–
structure interface, an isosurface of the
pressure and a cut of the mesh.

stand-alone programs built on top of the Unicorn solver/library, running in either serial or
parallel (currently restricted to adaptive incompressible flow).

19.2 Unified continuum modeling

We define, following classical continuum mechanics [Gurtin, 1981], a unified continuum model in
a fixed Euler coordinate system consisting of:

• conservation of mass,

• conservation of momentum,

• conservation of energy,

• phase convection equation,

• constitutive equations for stress as data,

where the stress is the Cauchy (laboratory) stress and the phase is an indicator function used to
determine which constitutive equation and material parameters to use. Note that in this continuum
description the coordinate system is fixed (Euler), and a phase function (indicator) is convected
according to the phase convection equation. The mesh is moved with the continuum velocity in
the case of a solid phase to eliminate diffusion of the phase interface. We elaborate on this below
in Section 19.3.2.
We define two variants of this model, incompressible and compressible, where a future aim is to
construct a unified incompressible/compressible model and solver. We focus here the presentation
on the incompressible model.
We start with a model for conservation of mass and momentum, together with a convection
equation for a phase function θ over a space-time domain Q = Ω× [0, T] with Ω an open domain

19.2. UNIFIED CONTINUUM MODELING 349

Figure 19.2: Example application of
adaptive computation of 3D compress-
ible flow around a sphere.

Figure 19.3: Example application of 3D
turbulent incompressible flow around
a cylinder with parallel adaptive com-
putation.

350 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

in R3 with boundary Γ:

∂ρ

∂t
+

∂

∂xj
(ujρ) = 0, (mass conservation) (19.1)

∂mi
∂t

+
∂

∂xj
(ujmi) =

∂

∂xj
σij + fi, (momentum conservation) (19.2)

∂θ

∂t
+

∂

∂xj
(ujθ) = 0, (phase convection equation) (19.3)

together with initial and boundary conditions, where ρ is density, mi = ρui is momentum
and ui is velocity. If we make the assumption that the continuum is incompressible, that is,
0 = Dtρ = ∂

∂t ρ + uj
∂

∂xj
ρ, it follows that we may express the incompressible UC equations as

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=

∂

∂xj
σij + fi, (19.4)

∂uj

∂xj
= 0, (19.5)

∂θ

∂t
+

∂

∂xj
(ujθ) = 0. (19.6)

The UC modeling framework is simple and compact, close to the formulation of the original
conservation equations, and does not require mappings between different coordinate systems. This
allows simple manipulation and processing for error estimation and implementation.

One key design choice of UC modeling is to define the Cauchy stress σ as data, which means the
conservation equations are fixed regardless of the choice of constitutive equation. This gives a
generality in method and software design, where a modification of constitutive equation impacts
the formulation and implementation of the constitutive equation, but not the formulation and
implementation of the conservation equations.

19.3 Space-time general Galerkin discretization

Adaptive G2 methods (also referred to as Adaptive DNS/LES) have been used in a number of
turbulent flow computations to a very low computational cost [Hoffman, 2005, Hoffman and
Johnson, 2006, Hoffman, 2006, 2009, Hoffman and Jansson, 2009, de Abreu et al., 2010], where
convergence is obtained in output quantities such as drag, lift and pressure coefficients and
Strouhal numbers, using orders of magnitude fewer mesh points than with standard LES methods
based on ad hoc refined computational meshes.

19.3.1 Standard Galerkin

We begin by formulating the standard cG(1)cG(1) FEM [Eriksson et al., 1996] with piecewise
continuous linear solution in time and space for (19.7). We let w = (u, p, θ) denote the exact
solution, W = (U, P, Θ) the discrete solution, v = (vu, vp, vθ) the test function and R(W) =

19.3. SPACE-TIME GENERAL GALERKIN DISCRETIZATION 351

(Ru(W), Rp(W), Rθ(W)) the residual. The residual is defined by

Ru(W) = ρ

(
∂Ui
∂t

+ Uj
∂Ui
∂xj

)
− ∂

∂xj
Σij − fi,

Rp(W) =
∂Uj

∂xj
,

Rθ(W) =
∂Θ
∂t

+ Uj
∂Θ
∂xj

,

(19.7)

where Σ denotes a discrete piecewise constant stress.
To compute the solution, we enforce the Galerkin orthogonality

〈R(W), v〉 = 0 (19.8)

for all functions v in the test space V̂h consisting of piecewise linear continuous functions in space
and piecewise constant discontinuous functions in time. Here 〈·, ·〉 denotes the L2-inner product
in space and time.
This standard finite element formulation is unstable for convection-dominated problems and also
suffers from instabilities as a result of equal order elements for the pressure and velocity. We
therefore add streamline–diffusion stabilization as described below.
The cG(1)cG(1) formulation with trapezoid quadrature in time is equivalent to Crank–Nicolson
time-stepping with piecewise linear elements in space. This has the advantage of being a very
simple, standard, and familiar discrete formulation.

19.3.2 Local ALE

If the phase function Θ has different values on the same cell, it would lead to an undesirable
diffusion of the phase interface. By introducing a moving space-time finite element space and
mesh, oriented along the characteristics of the convection of the phase interface [Eriksson et al.,
1996, section concerning “The characteristic Galerkin method”], we can define the phase interface
at cell facets, allowing the interface to stay discontinuous.
We thus define a local ALE coordinate map as part of the discretization on each space-time slab,
where it is used to introduce a mesh velocity. Note that we still compute with global Euler
coordinates, but with a moving mesh.
To be able to define and compensate for an arbitrary mesh velocity βh, we define a local coordinate
map φ on each space-time slab:

∂

∂t
φ(t, x̄) = βh(t, x̄),

(x, t) = φ(x̄, t).
(19.9)

Application of the chain rule gives the relation

∂

∂t
U(x, t) + U(x, t) · ∇U(x, t) =

∂

∂t
Ū(x̄, t) + (Ū(x̄, t)− βh)) · ∇Ū(x̄, t). (19.10)

Choosing βh = U in the solid part of the mesh gives a trivial solution of the phase convection
equation, and we can remove it from the system. The resulting discrete UC equations are then

352 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

defined by the residuals

Ru(W) = ρ

(
∂Ui
∂t

+ (Uj − βh
j)

∂Ui
∂xj

)
− ∂

∂xj
Σij − fi,

Rp(W) =
∂Uj

∂xj
.

(19.11)

We thus choose the mesh velocity βh to be the discrete material velocity U in the structure part of
the mesh (vertices touching structure cells) and in the rest of the mesh we use mesh smoothing to
determine βh to maximize the mesh quality. Alternatively, one may use local mesh modification
operations (refinement, coarsening, swapping) on the mesh to maintain the quality [Compère et al.,
2009].

19.3.3 Streamline–diffusion stabilization

The standard FEM formulation is unstable. We therefore consider a weighted standard streamline–
diffusion method of the form 〈R(W), v + δR(v)〉 = 0 for all v ∈ V̂h (see Eriksson et al. [1996]) with
δ > 0 a stabilization parameter. We make further simplifications by only including necessary
stabilization terms and dropping terms not contributing to stabilization. Although not fully
consistent, this avoids unnecessary smearing of shear layers. For the UC model, the stabilized
method thus looks like:

〈Ru(W), vu〉 = 〈ρ(∂Ui
∂t

+ Uj
∂Ui
∂xj

)− fi, vu
i 〉+ 〈Σij,

∂

∂xj
vu

i 〉+ SDu(W, vu) = 0, (19.12)

〈Rp(W), vp〉 = 〈∂Uj

∂xj
, vp〉+ SDp(W, vp) = 0, (19.13)

for all v ∈ V̂h, where

SDu(W, vu) = δ1〈Uj
∂Ui
∂xj

, Uj
∂vu

i
∂xj
〉+ δ2〈

∂Uj

∂xj
,

∂vu

∂xj
〉, (19.14)

SDp(W, vp) = δ1〈
∂P
∂xi

,
∂vp

∂xi
〉. (19.15)

19.4 Implementation

We here present an overview of the design of Unicorn. The Unicorn solver class UCSolver ties
together the technology in the Unicorn library with other parts of FEniCS to expose an interface
(see listing 19.5) for simulating applications in continuum mechanics. The main part of the
solver implementation is the weak forms for the G2 discretization of the UC model, together
with forms for the stress and residuals for the error estimation. Coefficients from the application
are connected to the form, and then time-stepping is carried out by the class TimeDependentPDE.
Certain coefficients, such as the δ stabilization coefficients are also computed as part of the solver
(not as forms). The solver computes one iteration of the adaptive algorithm (primal solve, dual
solve and mesh refinement), where the adaptive loop is implemented by iteratively running the
solver for a sequence of meshes.
The UCSolver implementation is parallelized for distributed memory architectures using MPI, and
we can show strong scaling for hundreds of cores on several platforms (see Figure 19.4). The

19.4. IMPLEMENTATION 353

Figure 19.4: Strong scaling results for
mesh refinement and entire solver on
several different architectures: Lind-
gren (Cray XT6m), Hebb (BlueGene/L)
and Neolith (regular Linux cluster with
InfiniBand). The dashed line refers to
ideal speedup

32 128 512 1024
0

5

10

15

20

25

30

35

S
o
lv

er
 s

p
ee

d
u
p
 (

w
rt

 3
2
 c

o
re

s)

Number of cores

Hebb

Neolith

Lindgren

32 128 512 1024
0

5

10

15

20

25

30

35

R
ef

in
em

en
t

sp
ee

d
u
p
 (

w
rt

 3
2
 c

o
re

s)

Number of cores

Hebb

Lindgren

entire adaptive algorithm is parallel (including Rivara mesh refinement and a priori predictive load
balancing). An example of a parallel adaptive simulation is shown in Figure 19.3. Fluid–structure
interaction is not yet enabled in parallel but this is work in progress.
A compressible variant of the UCSolver exists as the CNSSolver for adaptive G2 for compressible
Euler flow. The general method and algorithm is very close to that of the UCSolver, aside from
the incompressibility. The long term goal is a unification of the incompressible/compressible
formulations as well. We refer to Nazarov [2009] for implementation details of the compressible
CNSSolver. See Figure 19.2 for an example plot of compressible flow around a sphere.

19.4.1 Unicorn classes/interfaces

Key concepts are abstracted in the following classes/interfaces:

TimeDependentPDE: time-stepping
In each time-step a nonlinear algebraic system is solved by fixed-point iteration.

ErrorEstimate: adaptive error control
The adaptive algorithm is based on computing local error indicators of the form ηK =
‖hR(U)‖T‖DZ‖T , where Z is the so-called dual solution.

SpaceTimeFunction: space-time coefficient
Storage and evaluation of a space-time function/coefficient.

354 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

C++ code
class UCSolver :
public TimeDependentPDE, public MeshAdaptInterface

{
public:
/// Constructor: give boundary conditions,
/// coefficients
UCSolver(Function& U, Function& U0,

Function** bisect, Mesh& mesh,
Array <BoundaryCondition*>& bc_mom,
Array <BoundaryCondition*>& bc_con,
Function** f, real T, real nu,
real mu, real rho_f, real rho_s,
real u_bar, TimeDependent& t,
PDEData* pdedata);

/// Prescribe mesh size for MeshAdaptInterface
virtual void updateSizeField();

/// Allocate/deallocate PDE data for dynamic mesh
/// adaptivity
virtual void allocateAndComputeData();
virtual void deallocateData();

/// Compute mesh vertex coordinates and velocity
void computeX();
void computeW();

/// Compute density, pressure, stress
void computeRho();
void computeP();
void computeStress();

/// Compute initial theta
void computeTheta0();

/// From TimeDependentPDE: time-stepping control
void shift();
bool update(real t, bool end);
void preparestep();
void prepareiteration();

/// Assemble time step residual (L) right-hand
/// side of Newton
void rhs(const Vector& x, Vector& dotx, real T);

/// Compute initial value
void u0(Vector& x);

/// Save solution/output quantities
void save(Function& U, real t);

/// Compute least-squares stabilization parameters
/// (delta)
void computeStabilization(Mesh& mesh, Function& w,

real nu, real k, real t,
Vector& d1vector,
Vector& d2vector);

/// Deform/move mesh
void deform(Mesh& mesh, Function& W, Function& W0);

/// Smooth/optimize quality of all or part of the
/// mesh
void smoothMesh(bool bAdaptive);

}

Figure 19.5: C++ class interface for the
Unicorn class UCSolver.

19.4. IMPLEMENTATION 355

SlipBC: friction boundary condition
Efficient computation of turbulent flow in Unicorn is based on modeling of turbulent bound-
ary layers by a friction model, where the slip boundary condition u · n = 0 is implemented
strongly as part of the algebraic system.

ElasticSmoother: elastic mesh smoothing/optimization
Optimization of cell quality according to an elastic analogy.

MeshAdaptInterface: mesh adaptation interface
Abstraction of the interface to the MAdLib package for mesh adaptation using local mesh
operations.

19.4.2 TimeDependentPDE

We consider general time-dependent equations of the type ∂
∂t u + A(u) = 0, where A denotes a

possibly nonlinear differential operator in space. We want to define a class (data structures and
algorithms) abstracting the time-stepping of the G2 method. The equation is given as input and
the time-stepping should be generated automatically. We do this for the cG(1)cG(1) method by
applying a simplified Newton’s method. This is encapsulated in a C++ class interface in Figure 19.6
called TimeDependentPDE.
The skeleton of the time-stepping with fixed-point iteration is implemented in listing ??.
We use a block-diagonal quasi-Newton method, where we start by formulating the full Newton
method and then drop terms off the diagonal blocks. We also use the constitutive law as an
identity to express Σ in terms of U, allowing larger time steps than would be possibly otherwise
by iterating between Σ and U. See Jansson [2009] for a discussion about the efficiency of the
fixed-point iteration and its implementation.

19.4.3 ErrorEstimate

The duality-based adaptive error control algorithm requires the following components:

Residual computation We compute the mean-value in each cell of the residual R(U) by an L2-
projection into the space of piecewise constants.

Dual solution We compute the solution of the dual problem using the same technology as the
primal problem. The dual problem is solved backward in time, but using the time coordinate
transform s = T − t we can use the standard TimeDependentPDE interface.

Space-time function storage/evaluation We compute error indicators while solving the dual prob-
lem as space-time integrals over cells: ηT = 〈R(U), ∂

∂x Z〉, where we need to evaluate both the
primal solution U and the dual solution Z. In addition, U is a coefficient in the dual equation.
This requires storage and evaluation of a space-time function, which is encapsulated in the
SpaceTimeFunction class.

Mesh adaptation After the computation of the error indicators, we select the largest p% of the
indicators for refinement. The refinement is then performed by recursive Rivara cell bisection.
Alternatively, one may use MAdLib [Compère et al., 2009] for more general mesh adaptation
based on edge split, collapse and swap operations.

Using these components, we can construct an adaptive algorithm. The adaptive algorithm is
encapsulated in the C++ class interface in Figure 19.8 which we call ErrorEstimate.

356 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

Figure 19.6: C++ class interface for
TimeDependentPDE. C++ code

/// Represent and solve time dependent PDE.
class TimeDependentPDE
{
/// Public interface

public:
TimeDependentPDE(
// Computational mesh
Mesh& mesh,
// Bilinear form for Jacobian approx.
Form& a,
// Linear form for time-step residual
Form& L,
// List of boundary conditions
Array <BoundaryCondition*>& bcs,
// End time
real T);

/// Solve PDE
virtual uint solve();

protected:
/// Compute initial value
virtual void u0(Vector& u);
/// Called before each time step
virtual void preparestep();
/// Called before each fixed-point iteration
virtual void prepareiteration();
/// Return the bilinear form a
Form& a();
/// Return the linear form L
Form& L();
/// Return the mesh
Mesh& mesh();

};

19.4. IMPLEMENTATION 357

C++ code
void TimeDependentPDE::solve()
{
// Time-stepping
while (t < T)
{
U = U0;
preparestep();
step();

}
}

void TimeDependentPDE::step()
{
// Fixed-point iteration
for(int iter = 0; iter < maxiter; iter++)
{
prepareiteration();
step_residual = iter();

if (step_residual < tol)
{
// Iteration converged
break;

}
}

}

void TimeDependentPDE::iter()
{
// Compute one fixed-point iteration
assemble(J, a());
assemble(b, L());
for (uint i = 0; i < bc().size(); i++)
bc()[i]->apply(J, b, a());

solve(J, x, b);

// Compute residual for the time-step/fixed-point
// equation
J.mult(x, residual);
residual -= b;

return residual.norm(linf);
}

Figure 19.7: Skeleton implementation
in Unicorn of time-stepping with fixed-
point iteration.

358 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

C++ code
/// Estimate error as local error indicators based
/// on duality
class ErrorEstimate
{
public:

/// Constructor (give components of UC residual
/// and dual solution)
ErrorEstimate(Mesh& mesh,
Form* Lres_1,
Form* Lres_2,
Form* Lres_3,
Form* LDphi_1,
Form* LDphi_2,
Form* LDphi_3);

// Compute error (norm estimate)
void ComputeError(real& error);

// Compute error indicator
void ComputeErrorIndicator(real t, real k,

real T);

// Compute largest indicators
void ComputeLargestIndicators(
std::vector<int>& cells,
real percentage);

// Refine based on indicators
void AdaptiveRefinement(real percentage);

}

Figure 19.8: C++ class interface for
ErrorEstimate.

19.4. IMPLEMENTATION 359

C++ code
/// Representation of space-time function (storage
/// and evaluation)
class SpaceTimeFunction
{
public:

/// Create space-time function
SpaceTimeFunction(Mesh& mesh, Function& Ut);

/// Evaluate function at time t, giving result in
/// Ut
void eval(real t);

// Add a space function at time t
void addPoint(std::string Uname, real t);

/// Return mesh associated with function
Mesh& mesh();

/// Return interpolant function
Function& evaluant();

}

Figure 19.9: C++ class interface for
SpaceTimeFunction.

19.4.4 SpaceTimeFunction

The error estimation algorithm requires, as part of solving the dual problem, the evaluation of
space-time coefficients appearing in the definition of the dual problem. In particular, we must
evaluate the primal solution U at time t = T − t. This requires storage and evaluation of a
space-time function, which is encapsulated in the SpaceTimeFunction class (see listing 19.9).
The space-time functionality is implemented as a list of space functions at regular sample times,
where evaluation is piecewise linear interpolation in time of the degrees of freedom.

19.4.5 SlipBC

For high Reynolds number problems such as car aerodynamics or airplane flight, it is not possible
to resolve the turbulent boundary layer. One possibility is then to model turbulent boundary layers
by a friction model:

u · n = 0 (19.16)

βu · τk + (σn) · τk = 0, k = 1, 2. (19.17)

We implement the normal component condition (slip) boundary condition strongly. By “strongly”
we here mean an implementation of the boundary condition after assembling the left-hand side
matrix and the right-hand side vector in the algebraic system, whereas the tangential components
(friction) are implemented “weakly” by adding boundary integrals in the variational formulation.
The row of the matrix and load vector corresponding to a degree of freedom is found and replaced
by a new row according to the boundary condition.
The idea is as follows: Initially, the test function v is expressed in the Cartesian standard basis
(e1, e2, e3). Now, the test function is mapped locally to normal-tangent coordinates with the basis
(n, τ1, τ2), where n = (n1, n2, n3) is the normal, and τ1 = (τ11, τ12, τ13), τ2 = (τ21, τ22, τ23) are
tangents to each node on the boundary. This allows us to let the normal direction be constrained

360 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

Figure 19.10: Robustness test with (a)
elastic smoothing and (b) mesh adap-
tation. Note the badly shaped cells
squeezed between the cube and flag.

(a) (b)

and the tangent directions be free:

v = (v · n)n + (v · τ1)τ1 + (v · τ2)τ2. (19.18)

For the matrix and vector this means that the rows corresponding to the boundary need to be
multiplied with n, τ1, τ2, respectively, and then the normal component of the velocity should be set
to zero.
This concept is encapsulated in the class SlipBC which is a subclass of dolfin::BoundaryCondition
for representing strong boundary conditions. For more details about the implementation of slip
boundary conditions,we refer to Nazarov [2009].

19.4.6 ElasticSmoother

To maintain a discontinuous phase interface in the UC model, we define the mesh velocity βh as
the discrete velocity U in the solid phase (specifically on the interface). The mesh velocity in the
fluid can be chosen more arbitrarily, but has to satisfy mesh quality and size criteria. We construct
a cell quality optimization/smoothing method based on a pure elastic variant of the UC. We define
the following requirements for the mesh velocity βh:

1. βh = U in the solid phase part of the mesh.

2. Bounded mesh quality Q defined by

Q =
d‖F‖2

F

det(F)
2
d

,

where d is the spatial dimension, in the fluid part of the mesh. Preferably the mesh smoothing
should improve Q if possible.

3. Maintain mesh size h(x) close to a desired ĥ(x) given by a posteriori error estimation in an
adaptive algorithm.

19.4. IMPLEMENTATION 361

C++ code
/// Optimize cell quality according to elastic
/// variant of UC model
class ElasticSmoother
{
public:

ElasticSmoother(Mesh& mesh);

/// Smooth smoothed_cells giving mesh velocity W
/// over time step k with h0 the prescribed cell
/// size
void smooth(MeshFunction<bool>& smoothed_cells,

MeshFunction<bool>& masked_cells,
MeshFunction<real>& h0,
Function& W, real k);

/// Extract submesh (for smoothing only marked cells)
static void
submesh(Mesh& mesh, Mesh& sub,
MeshFunction<bool>& smoothed_cells,
MeshFunction<int>& old2new_vertex,
MeshFunction<int>& old2new_cell);

}

Figure 19.11: C++ class interface for
ElasticSmoother.

Mesh smoothing is handled in Unicorn by an elastic model using the constitutive law σ = µ(I −
(FF>)−1) where we recall F as the deformation gradient. We use the update law: ∂

∂t F−1 = −F−1∇u
where we thus need an initial condition for F. We set the initial condition F0 = F̄ where F̄ is the
deformation gradient with regard to a scaled equilateral reference cell, representing the optimal
shape with quality Q = 1.
Solving the elastic model can thus be seen as optimizing for the highest global quality Q in the
mesh. We also introduce a weight on the Young’s modulus µ for cells with low quality, penalizing
high average, but low local quality over mediocre global quality. We refer to the source code for
more details.
Unicorn provides the ElasticSmoother class (see listing 19.11, which can be used to smooth/opti-
mize for quality in all or part of the mesh.
We perform a robustness test of the elastic smoothing and the mesh adaptivity shown in 19.10

where we use the same geometry as the turbulent 3D flag problem, but define a zero inflow
velocity and instead add a gravity body force to the flag to create a very large deformation with
the flag pointing straight down. Both the elastic smoothing and the mesh adaptivity compute
solutions, but as expected, the elastic mesh smoothing eventually cannot control the cell quality;
there does not exist a mesh motion which can handle large rigid body rotations while bounding
the cell quality.

19.4.7 MeshAdaptInterface

A critical component in the adaptive algorithm as described above is mesh adaptivity, which we
define as constructing a mesh satisfying a given mesh size function h(x).
We start by presenting the Rivara recursive bisection algorithm [Rivara, 1992] as a basic choice for
mesh adaptivity (currently the only available choice for parallel mesh adaptivity), but which can
only refine and not coarsen. Then the more general MAdLib is presented, which enables full mesh

362 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

Figure 19.12: Edge swap operation:
(a) initial cavity with swap edge high-
lighted (b) possible configuration after
the swap.

adaptation to the prescribed h(x) through local mesh operations: edge split, edge collapse and
edge swap.

Rivara recursive bisection The Rivara algorithm bisects (splits) the longest edge of a cell, thus
replacing the cell with two new cells, and uses recursive bisection to eliminate non-conforming
cells with hanging nodes. The same algorithm holds in both 2D/3D (triangles/tetrahedra). In 2D,

Algorithm 8 The Rivara recursive bisection algorithm
procedure bisect(T)

Split longest edge e
while Ti(e) is non-conforming do

BISECT(Ti)
end while

end procedure

it can be shown [Rivara, 1992] that the algorithm terminates in a finite number of steps, and that
the minimum angle of the refined mesh is at least half the minimum angle of the starting mesh. In
practice, the algorithm produces excellent quality refined meshes both in 2D and 3D.

Local mesh operations: MAdLib MAdLib incorporates an algorithm and implementation of mesh
adaptation in which a small set of local mesh modification operators are defined such as edge
split, edge collapse and edge swap (see Figure 19.12 for an illustration of the edge swap operator).
A mesh adaptation algorithm is defined which uses this set of local operators in a control loop
to satisfy a prescribed size field h(x) and quality tolerance. Edge swapping is the key operator
for improving the quality of cells, for example around a vertex with a large number of connected
edges.

In the formulation of finite element methods, it is typically assumed that the cell size of a
computational mesh can be freely modified to satisfy a desired size field h(x) or to allow mesh
motion. In state-of-the-art finite element software implementations, this is seldom the case
[Bangerth et al., 2007, COMSOL, 2009].

The mesh adaptation algorithm in MAdLib gives the freedom to adapt to a specified size field
using local mesh operations. The implementation is published as free/open-source software.

Unicorn provides the MeshAdaptInterface class (see listing 19.13), where one can subclass and
implement virtual functions to control the mesh adaptation using MAdLib.

19.5. SOLVING CONTINUUM MECHANICS PROBLEMS 363

C++ code
/// Interface to MAdLib for mesh adaptation using
/// local operations Subclass and implement the
/// virtual functions
class MeshAdaptInterface
{
public:
MeshAdaptInterface(Mesh *);

protected:
/// Start mesh adaptation algorithm
void adaptMesh();

/// Give cell size field
virtual void updateSizeField() = 0;

/// Allocate and deallocate solver data
virtual void deallocateData() = 0;
virtual void allocateAndComputeData() = 0;

/// Constrain entities not to be adapted
void constrainExternalBoundaries();
void constrainInternalBoundaries();

/// Add functions to be automatically interpolated
void addFunction(string name, Function** f);
void clearFunctions();

};

Figure 19.13: C++ class interface for
MeshAdaptInterface.

19.5 Solving continuum mechanics problems

In this section, we present some examples computed using Unicorn. The first example is a
fluid–structure interaction problem without adaptivity, where we cover modeling of geometry and
subdomains, coefficients, dynamic allocation of PDE data for mesh adaptivity and specification
of the main program (interface to running the solver). Next, we present an example of solving a
turbulent pure fluid problem with adaptivity, where we cover modeling of data for the dual prob-
lem, the adaptive loop, and specifying slip/friction boundary conditions for modeling turbulent
boundary layers.

19.5.1 Fluid–structure interaction

Editor note: What’s the point of this section? There is no code and no plots?

We here present an example of solving a fluid–structure continuum mechanics problem, where the
user specifies data for modeling the problem. We divide the presentation into four parts:

Geometry and subdomains
The user specifies possible geometrical parameters and defines subdomains. We note that
for complex geometries the user may omit geometry information and specify subdomain
markers as data files.

Coefficients
Known coefficients such as a force function and boundary conditions are declared.

364 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

PDE data
The user subclasses a PDEData class and specifies how the PDE data is constructed and
destroyed. This construction/destruction may happen during the simulation if the mesh is
adapted.

main program
The user implements the main program and declares and passes data to to the solver.

19.5.2 Adaptivity

Editor note: Where is the solution?

We continue with a use case for adaptive solution of a pure fluid turbulent flow problem: flow
around a 3D cylinder. The implementation of the problem is very similar to the fluid–structure
case (just with pure fluid data), but with 3 important additions:

Dual problem
To compute the error estimate required by the adaptive algorithm, we must solve a dual
problem generated by the primal problem and an output quantity ψ. Since the dual problem
is similar in form to the primal problem, we implement both as variants of the same solver.

In this case we are interested in computing drag, which gives ψ as a boundary condition for
the dual problem:

C++ code
CylinderBoundary cb;

SubSystem xcomp(0);

Function minus_one(mesh, -1.0);

DirichletBC dual_bc0(minus_one, mesh, cb, xcomp);

Array <BoundaryCondition*> dual_bc_mom;

dual_bc_mom.push_back(&dual_bc0);

Adaptive loop
We construct the program to compute one iteration of the adaptive loop: solve primal
problem, solve dual problem, compute error estimate and check if tolerance is satisfied,
compute adapted mesh. We can then run the adaptive loop simply by a loop which runs the
program (here in Python which we also use to move data according to iteration number):

Python code
offset = 0

N = 20

for i in range(offset, N):

dirname = ‘‘iter_%2.2d’’ % i

mkdir(dirname)

system(‘‘./unicorn-cylinder > log’’)

for file in glob(‘‘./*.vtu’’):

move(file, dirname)

for file in glob(‘‘./*.pvd’’):

move(file, dirname)

19.5. SOLVING CONTINUUM MECHANICS PROBLEMS 365

Figure 19.14: Part 1 of Unicorn solver
FSI use case: geometry and subdo-
mains.

C++ code
#include <dolfin.h>
#include <unicorn/FSIPDE.h>

using namespace dolfin;
using namespace dolfin::unicorn;

real bmarg = 1.0e-3 + DOLFIN_EPS;

namespace Geo
{
// Geometry details
real box_L = 3.0;
real box_H = 2.0;
real box_W = 2.0;

real xmin = 0.0; real xmax = box_L;
real ymin = 0.0; real ymax = box_H;
real zmin = 0.0; real zmax = box_W;

}

// Sub domain for inflow
class InflowBoundary3D : public SubDomain
{
public:
bool inside(const real* p, bool on_boundary) const
{
return on_boundary && (p[0] < Geo::xmax - bmarg);

}
};

// Sub domain for outflow
class OutflowBoundary3D : public SubDomain
{
public:
bool inside(const real* p, bool on_boundary) const
{
return on_boundary && (p[0] > Geo::xmax - bmarg);

}
};

Slip boundary condition
For turbulent flow we model the boundary layer as a friction boundary condition. We specify
the normal component as a string slip boundary condition used just as a regular Dirichlet
boundary condition. The xcomp variable denotes an offset for the first velocity component in
a system (for compressible Euler the system is [density, velocity, energy], and we would thus
give component 2 as offset).

C++ code
SlipBoundary sb;

SubSystem xcomp(0);

SlipBC slip_bc(mesh, sb, xcomp);

Array <BoundaryCondition*> primal_bc_mom;

primal_bc_mom.push_back(&slip_bc);

366 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

C++ code
// Force term
class ForceFunction : public Function
{
public:
ForceFunction(Mesh& mesh, TimeDependent& td) :

Function(mesh), td(td) {}
void eval(real* values, const real* x) const
{
int d = cell().dim();

for (int i = 0; i < d; i++)
{
values[i] = 0.0;

}
}

TimeDependent& td;
};

// Boundary condition for momentum equation
class BC_Momentum_3D : public Function
{
public:
BC_Momentum_3D(Mesh& mesh, TimeDependent& td) :
Function(mesh), td(td) {}

void eval(real* values, const real* x) const
{
int d = cell().dim();

for (int i = 0; i < d; i++)
{
values[i] = 0.0;

}
if (x[0] < (Geo::xmin + bmarg))
values[0] = 100.0;

}

TimeDependent& td;
};

// Initial condition for phase variable
class BisectionFunction : public Function
{
public:
BisectionFunction(Mesh& mesh) : Function(mesh) {}
void eval(real* values, const real* p) const
{
// NB: We specify the phase variable as
// xml data so this function is not used

bool condition = true;

if (condition)
values[0] = 0.0;

else
values[0] = 1.0;

}
};

Figure 19.15: Part 2 of Unicorn solver
FSI use case: coefficients.

19.5. SOLVING CONTINUUM MECHANICS PROBLEMS 367

Figure 19.16: Part 4 of FSI use case:
main program, passing data to solver. C++ code

int main()
{
Mesh mesh("flag.xml");

real nu = 0.0;
real nus = 0.5;
real rhof = 1.0;
real rhos = 1.0;

real E = 1.0e6;

real T = 0.2;

dolfin::set("ODE number of samples", 500);

Function U, U0;

real u_bar = 100.0;

FlagData pdedata;

ICNSPDE pde(U, U0, &(pdedata.bisect), mesh,
pdedata.bc_mom, pdedata.bc_con,
&(pdedata.f), T, nu, E, nus, rhof, rhos,
u_bar, pdedata.td, &pdedata);

// Compute solution
pde.solve(U, U0);

return 0;
}

368 CHAPTER 19. UNICORN: A UNIFIED CONTINUUM MECHANICS SOLVER

19.5.3 Unicorn-HPC installation and basic test

Editor note: Where is the solution, the implementation and the problem definition?

Unicorn-HPC is the high-performance computing branch of Unicorn, showing strong linear scaling
on massively parallel hardware as described above.
To verify the correct installation and functionality of Unicorn-HPC, follow the steps in the README
file in the Unicorn-HPC distribution, under “Testing”. The test represents the turbulent flow past a
cube simulation described in Chapter 24.

19.6 Acknowledgments

We acknowledge contributions to Unicorn, both software development as well as ideas and
scientific support from: Mattias Aechtner, Peter Brune, Zilan Ciftci, Gäetan Compere, Claes
Johnson, Ashraful Kadir, Jeannette Spühler, Michael Stöckli and Rodrigo Vilela de Abreu.

20 Lessons learned in mixed language program-
ming

By Johan Hake and Kent-Andre Mardal

This chapter describes decisions made and lessons learned in the implementation of the Python
interface of DOLFIN. The chapter is quite technical, since we aim at giving the reader a thorough
understanding of the implementation of DOLFIN Python interface.

20.1 Background

Python has over the last decade become an established platform for scientific computing. Widely
used scientific software such as, e.g., PETSc, Hypre, Trilinos, VTK, VMTK, GiNaC [Bauer et al.,
2002] have all been equipped with Python interfaces. The FEniCS packages FErari, FIAT, FFC,
UFL, Viper, as well as other packages such as SymPy [Certik et al., 2009], SciPy [Jones et al., 2009]
are pure Python packages. The DOLFIN library has both a C++ and a Python user-interface.
Python makes application building on top of DOLFIN more user friendly, but the Python interface
also introduces additional complexity and new problems. We assume that the reader has basic
knowledge of both C++ and Python. A suitable textbook on Python for scientific computing is
Langtangen [2008], which cover both Python and its C interface. SWIG, which is the software we
use to wrap DOLFIN, is well documented and we refer to the user manual that can be found on
its web page [SWIG]. Finally, we refer to Langtangen and Mardal [2003] and Sala et al. [2008] for a
description of how SWIG can be used to generate Python interfaces for other packages such as
Diffpack and Trilinos.

20.2 Using SWIG

Python and C++ are two very different languages, while Python is user–friendly and flexible, C++
is very efficient. To combine the strengths of the two languages, it has become common to equip
C++ (or FORTRAN/C) libraries with Python interfaces. Such interfaces must comply with the
Python C-API. Writing such interfaces, often called wrapper code, is quite involved. Therefore, a
number of wrapper code generators have been developed in the recent years, some examples are
F2PY, SIP, SILOON, and SWIG. SWIG has been used to create the DOLFIN Python interface, and
will therefore be the focus in this chapter. SWIG is a mature wrapper code generator that supports
many languages and is extensively documented.

369

370 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

20.2.1 Basic SWIG

To get a basic understanding of SWIG, we consider an implementation of an array class. Let the
array class be defined in Array.h as follows:

C++ code
#include <iostream>

class Array {

public:

// Constructors and destructors

Array(int n_=0);

Array(int n_, double* a_);

Array(const Array& a_);

~Array();

// Operators

Array& operator=(const Array& a_);

const double& operator [] (int i) const;

double& operator [] (int i);

const Array& operator+= (const Array& b);

// Methods

int dim() const;

double norm() const;

private:

int n;

double *a;

};

std::ostream & operator<< (std::ostream& os, const Array& a);

A first attempt to make the Array accessible in Python using SWIG, is to write a SWIG interface
file Array_1.i.

SWIG code
%module Array

%{

#include "Array.h"

%}

%include "Array.h"

Here, we specify the name of the Python module: Array; the code that should be inlined in the
wrapper code directly (the declarations): #include "Array.h"; and the code SWIG should parse
to create the wrapper code: %include "Array.h" (definitions). The following command shows
how to run SWIG to produce the wrapper code:

Bash code
swig -python -c++ -I. -O Array_1.i

The command generates two files: Array.py and Array_wrap.cxx. The file Array_wrap.cxx con-
tains C code that defines the Python interface of Array. After Array_wrap.cxx is compiled into
a shared library, it can be imported into Python. The file Array.py is written in pure Python. It
imports the shared library and also adds some functionality to the wrapped module. The reader
should be able to recognize the Python class Array at the end of the Array.py file.

20.2. USING SWIG 371

The following Distutils file (setup.py) executes the SWIG command above and compiles and links
the source code and the generated wrapper code into a shared library.

Python code
import os

import numpy

from distutils.core import setup, Extension

swig_cmd =’swig -o Array_wrap.cxx -python -c++ -O -I. Array_1.i’

os.system(swig_cmd)

sources = [’Array.cpp’,’Array_wrap.cxx’]

setup(name = ’Array’,

py_modules = ["Array"],

ext_modules = [Extension(’_’ + ’Array’, sources, \

include_dirs=[’.’, numpy.get_include() + "/numpy"])])

Build and install the module in the current working directory with the command:

Bash code
python setup.py install --install-lib=.

The Python proxy class resembles the C++ class in many ways. Simple methods such as dim() and
norm() will be wrapped correctly to Python, since SWIG maps int and double arguments to the
corresponding Python types through built-in typemaps. However, a number of issues appear:

1. the operator[] does not work;

2. the operator+= returns a new Python object (with different id);

3. printing does not use the std::ostream & operator<<;

4. the Array(int n_, double* a_); constructor is not working properly.

We see that a number of different problems arise even in such a simple example. Fortunately,
these problems are fairly common, and general solutions can be implemented quite easily. In
the following, we will go through each of the above issues. The example code with the solutions
proposed in the following can be found in Array_2.i.

20.2.2 The operator[]

In C++, the subscripting operator[] is used to implement both set and get operators. It is possible
to distinguish the set operator from the get operator using const, but this is not required. In
Python, subscripting is performed with the two special methods: __setitem__ and __getitem__.
Since, the mapping between the Python operators (__setitem__ and __getitem__) and the C++
operators operator[] may be ambiguous, SWIG currently ignores these operators. To implement
the operators properly, also in future versions of SWIG, we ignore both version of the operator[]

with

SWIG code
%ignore Array::operator[];

and extend the interface of the generated C++ code with the auxiliary __setitem__ and __getitem__

methods:

SWIG code
%extend Array {

372 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

double __getitem__(int i) {

return (*self)[i];

}

void __setitem__(int i, double v) {

(*self)[i] = v;

}

...

};

Note that all SWIG directives start with ’%’. Furthermore, the access to the actual instance is
provided by the self pointer, which in this case is a C++ pointer that points to an Array instance.
The pointer is comparable to the this pointer in a C++ class, but only the public attributes are
available.

20.2.3 operator +=

The second problem is related to SWIG and garbage collection in Python. Python features garbage
collection, which means that a user should not be concerned with the destruction of objects. The
mechanism is based on reference counting; that is, when no more references are pointing to an
object, the object is destroyed. The SWIG generated Python module consists of a small Python
layer that defines the interface to the underlying C++ object. An instance of a SWIG generated
class therefore keeps a reference to the underlying C++ object. The default behavior is that the
C++ object is destroyed together with the Python object. This behavior is not consistent with the
operator += returning a new object, which is illustrated by the generated segmentation fault in
the following example (see segfault_test.py):

Python code
from Array import Array

def add(b):

print "id(b):",id(b)

b+=b

print "id(b):",id(b)

a = Array(10)

print "id(a):",id(a)

add(a)

a+=a

This script produces the following output:

Python code
id(a): 3085535980

id(b): 3085535980

id(b): 3085536492

Segmentation fault

The script causes a segmentation fault because the underlying C++ object is destroyed after the
call to add(). When the last a+=a is performed the underlying C++ object is already destroyed.
This happens because the SWIG generated __iadd__ method returns a new Python object. This is
illustrated by the different values obtained from the id() function1. The last two calls to id(b)

return different numbers, which means that a new Python object is returned by the SWIG generated
__iadd__ method. The second b object is local in the add function and is therefore deleted together
with the underlying C++ object when add has finished.

1The id function returns a unique integer identifying the object.

20.2. USING SWIG 373

The memory problem can be solved by extending the interface with an _add method and imple-
menting our own __iadd__ method in terms of _add, using the %extend directive:

SWIG code
%extend Array {

...

void _add(const Array& a){

(*self) += a;

}

%pythoncode %{

def __iadd__(self,a):

self._add(a)

return self

%}

...

};

The above script will now report the same id for all objects. No objects are created or deleted, and
segmentation fault is avoided.

20.2.4 std::ostream & operator<<

In C++, shift operators such as operator « are typically used to implement I/O, while in Python
the _str_ method is used. Therefore, SWIG ignores the shift operator, as it is likely not to perform
as intended. However, we can again use the %extend directive to make this operator available from
Python by adding a __str__ method.

SWIG code
%include <std_string.i>

%extend Array {

...

std::string __str__() {

std::ostringstream s;

s << (*self);

return s.str();

}

};

This method uses the operator<< representation of the array to a std::ostringstream and then
returns a std::string representation of the stream. Note that we need to include std_string.i

in the Array_2.i. In Python, we can then call print on an instance of Array.

20.2.5 The constructor: Array(int n_, double* a_);

The fourth problem is related to pointer handling in C/C++ and SWIG. From the constructor
signature alone, it is not clear whether double* a_ points to a single value or to the first element
of an array. Therefore, SWIG takes a conservative approach and handles pointers as pointers to
single values. In our example double* a_ points to the first element of an array of length n, and
SWIG erroneously generates code for passing an int and a double to the method.
As a remedy, SWIG provides the typemap concept to enable mappings between C/C++ and Python
types. The following code, explained in detail below, demonstrates how to map a NumPy array to
the (int n_, double* a_) arguments in the constructor.

374 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

SWIG code
%typemap(in) (int n_, double* a_){

if (!PyArray_Check($input)) {

PyErr_SetString(PyExc_TypeError, "Not a NumPy array");

return NULL; ;

}

PyArrayObject* pyarray = reinterpret_cast<PyArrayObject*>($input);

if (!(PyArray_TYPE(pyarray) == NPY_DOUBLE)) {

PyErr_SetString(PyExc_TypeError, "Not a NumPy array of doubles");

return NULL; ;

}

$1 = PyArray_DIM(pyarray,0);

$2 = static_cast<double*>(PyArray_DATA(pyarray));

}

The first line specifies that the typemap should be applied to the input (in) arguments of operators,
functions, and methods with the int n_,double* a_ arguments in the signature. The $ prefixed
variables are used to map input and output variables in the typemap; that is, the variables $1 and
$2 map to the first and second output C arguments of the typemap, n_ and a_, while $input maps
to the Python input.
In the next three lines, we check that the input Python object is a NumPy array, and raise an
exception if not. Note that any Python C-API function that returns NULL tells the Python interpreter
that an exception has occurred. Python will then raise an error, with the error message set by the
PyErr_SetString function. Next, we cast the Python object pointer to a NumPy array pointer and
check that the data type of the NumPy array is correct; that is, that it contains doubles. Then, we
acquire the data from the NumPy array and assign the two input variables.
Overloading operators, functions and methods is not possible in Python. Instead, Python dynami-
cally determines what code to call, a process which is called dynamic dispatch. To generate proper
wrapper code, SWIG relies on %typecheck directives to resolve the overloading. A suitable type
check for our example typemap is:

SWIG code
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) (int n_, double* a_) {

$1 = PyArray_Check($input) ? 1 : 0;

}

Here, SWIG_TYPECHECK_DOUBLE_ARRAY is a typedef for the priority number assigned for arrays of
doubles. The type check should return 1 if the Python object $input has the correct type, and 0

otherwise.

20.3 SWIG and the DOLFIN Python interface

To make the DOLFIN Python interface more Pythonic, we have made a number of specializations,
along the lines mentioned above, that we will now go through. But let us start with the overall
picture. The interface files resides in the dolfin/swig directory, and are organized into i) global
files, that apply to the entire DOLFIN library, and ii) kernel module files that apply to specific
DOLFIN modules. The latter files are divided into . . ._pre.i and . . ._post.i files, which are applied
before and after the inclusion of the header files of the particular kernel module, respectively. The
kernel modules, as seen in kernel_module.i, mirror the directory structure of DOLFIN: common,
parameters, la, mesh and so forth. The global interface files are all included in dolfin.i, the main
SWIG interface file. The kernel module interface files are included, together with the C++ header
files, in the automatically generated kernel_modules.i file.

20.3. SWIG AND THE DOLFIN PYTHON INTERFACE 375

The following sections deal with the main interface file of dolfin.i and address the global interface
files. Then we will address some issues in the module specific interface files.

20.3.1 dolfin.i and the cpp module

The file dolfin.i starts by defining the name of the generated Python module.

SWIG code
%module(package="dolfin", directors="1") cpp

This statement tells SWIG to create a module called cpp that resides in the package of DOLFIN. We
have also enabled the use of directors. The latter is required to be able to subclass DOLFIN classes
in Python, an issue that will be discussed below. By naming the generated extension module cpp,
and including it in the DOLFIN Python package, we hide the generated interface into a submodule
of DOLFIN; the dolfin.cpp module. The DOLFIN module then imports the needed classes and
functions from dolfin.cpp in the __init__.py file along with additional pure Python classes and
functions.
The next two blocks of dolfin.i define code that will be inserted into the SWIG generated C++
wrapper file.

SWIG code
%{

#include <dolfin/dolfin.h>

#define PY_ARRAY_UNIQUE_SYMBOL PyDOLFIN

#include <numpy/arrayobject.h>

%}

%init%{

import_array();

%}

SWIG inserts code that resides in a %{. . .}% block, verbatim at the top of the generated C++ wrapper
file. Note that %{. . .}% is short for %header%{. . .}%. Hence, the first block of code is similar to the
include statements you would put in a standard C++ program. The code in the second block,
%init%{. . .}%, is inserted in the code where the Python module is initialized. A typical example of
such a function is import_array(), which initializes the NumPy module. SWIG provides several
such statements, each inserting code verbatim into the wrapper file at different positions.

20.3.2 Reference counting using shared_ptr

In the previous example dealing with operator+=, we saw that it is important to prevent premature
destruction of underlying C++ objects. A nice feature of SWIG is that we can declare that a
wrapped class shall store the underlying C++ object using a shared pointer (shared_ptr), instead
of a raw pointer. By doing so, the underlying C++ object is not explicitly deleted when the reference
count of the Python object reach zero, instead the reference count on the shared_ptr is decreased.
Shared pointers are provided by the boost_shared_ptr.i file. This file declare the directive:
%shared_ptr. The directive must be used for each class we want shared pointers for. In DOLFIN
this is done in the shared_ptr_classes.i file. Note that the when the directive is called typemaps
for passing a shared_ptr stored object to method that expects a reference or a pointer is declared.
This means that the typemap pass a de-referenced shared_ptr to the function. This behavior can
lead to unintentional trouble because the shared_ptr mechanism is circumvented.

376 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

In DOLFIN, instances of some crucial classes are stored internally with shared_ptrs. These classes
also uses shared_ptr in the Python interface. When objects of these classes are passed as arguments
to methods or constructors in C++, two versions are needed: a shared_ptr and a reference version.
The following code snippet illustrates two constructors of Function, each taking a FunctionSpace

as an argument2:

C++ code
/// Create function on given function space

explicit Function(const FunctionSpace& V);

/// Create function on given function space (shared data)

explicit Function(boost::shared_ptr<const FunctionSpace> V);

Instances of FunctionSpace in DOLFIN are stored using shared_ptr. Hence, we want SWIG to use
the second constructor. However, SWIG generates de-reference typemaps for the first constructor.
So when a Function is instantiated with a FunctionSpace, SWIG will unfortunately pick the
first constructor and the FunctionSpace is passed without increasing the reference count of the
shared_ptr. This undermines the whole concept of shared_ptr. To prevent this faulty behavior,
we ignore the reference constructor (see function_pre.i):

SWIG code
%ignore dolfin::Function::Function(const FunctionSpace&);

20.3.3 Typemaps

Most types in the kernel_module.i file are wrapped nicely with SWIG. However, as in the Array

example above, there is need for typemaps, for instance to handle NumPy arrays. In dolfin.i

we include three different types of global typemaps: i) general-, ii) NumPy- and, iii) std::vector-
typemaps. These are implemented in the interface files: typemaps.i, numpy_typemaps.i and
std_vector_typemaps.i. Here, we present some of the typemaps defined in these files.
In typemaps.i, typemaps for four different basic types are defined. In- and out-typemaps
for dolfin::uint, and dolfin::real, an in-typemap for int, and an out-typemap macro for
std::pair<dolfin::uint,dolfin::uint>.
The simplest typemap is an out-typemap for dolfin::uint a typedef of unsigned int. This
typemap is needed since Python does not have an equivalent of an unsigned int type:

SWIG code
%typemap(out, fragment=SWIG_From_frag(unsigned int)) unsigned int

{

// Typemap unsigned int

$result = SWIG_From(unsigned int)($1);

}

This typemap specifies that a function returning a unsigned int will use the SWIG provided type
conversion macro: SWIG_From(type)(arg) to convert the unsigned int to a Python int. The macro
is not provided by default in SWIG. We therefore need to specify that SWIG includes the definition
of the macro in the wrapper file by using the fragment argument to the typemap directive.
The next typemap is an in typemap for unsigned int.

SWIG code

2Instances of FunctionSpace are internally stored using shared_ptr in the DOLFIN C++ library.

20.3. SWIG AND THE DOLFIN PYTHON INTERFACE 377

%typemap(in, fragment="PyInteger_Check") unsigned int

{

if (PyInteger_Check($input))

{

long tmp = static_cast<long>(PyInt_AsLong($input));

if (tmp>=0)

$1 = static_cast<unsigned int>(tmp);

else

SWIG_exception(SWIG_TypeError, "expected positive ’int’ for argument $argnum");

}

else

SWIG_exception(SWIG_TypeError, "expected positive ’int’ for argument $argnum");

}

The typemap has the same structure as the NumPy typemap above. We first check that the
object is of integer type, with the PyInteger_Check function. Here, we have implemented the
PyInteger_Check function ourselves instead of using the Python macro PyInt_Check. The reason
is that PyInt_Check in Python2.6 can not be combined with NumPy, which is the above mentioned
bug. Here we use the fragment argument to the typemap to tell SWIG to include code that defines
the PyInteger_Check function. Next, we convert the Python integer to a long and check whether it
is positive. Finally, we assign the input argument $1 to a dolfin::uint casted version of the value.
If either of these checks fail, we use the built in SWIG function, SWIG_exception to raise a Python
exception. These predefined SWIG exceptions are defined in the exception.i file, included in
dolfin.i. Note that SWIG expands the $argnum variable to the number of the argument using
the dolfin::uint typemap. Including this number in the string creates more understandable
error message. Finally, we present the out-typemap for std::pair<dolfin::uint,dolfin::uint>,
which returns a Python tuple of two integers:

SWIG code
%typemap(out) std::pair<dolfin::uint,dolfin::uint>

{

$result = Py_Build Value("ii",$1.first,$1.second);

}

This is an example of a short and comprehensive typemap. It uses the Python C-API function
Py_BuildValue to build a tuple of the two values in the std::pair object.
In numpy_typemaps.i, typemaps for arrays of primitive types: double, int and dolfin::uint are
defined. As in the Array example above, these typemaps are defined so a NumPy array of the
corresponding type can be passed as the argument to functions, methods, and operators. Instead
of writing one typemap for each primitive type, we defined a SWIG macro, which is called with
different types as argument. Using macros may produce a lot of code as some of these typemaps
are used frequently. To avoid code bloat, most of the typemap code is place in the function
convert_numpy_to_array_no_check(TYPE_NAME)3, which is called by the actual typemap. The
code is defined within a fragment directive, which means that a typemap can make use of that
code by adding the name of the fragment as an argument in the typemap definition. The entire
macro reads:

SWIG code
%define UNSAFE_NUMPY_TYPEMAPS(TYPE,TYPE_UPPER,NUMPY_TYPE,TYPE_NAME,DESCR)

%fragment(convert_numpy_to_array_no_check(TYPE_NAME), "header") {

// Typemap function (Reducing wrapper code size)

3 ## TYPE_NAME is a SWIG macro directive that will be expanded to the value of the TYPE_NAME macro argument.

378 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

SWIGINTERN bool convert_numpy_to_array_no_check_ ## TYPE_NAME(PyObject* input, TYPE*& ret)

{

if (PyArray_Check(input))

{

PyArrayObject *xa = reinterpret_cast<PyArrayObject*>(input);

if (PyArray_TYPE(xa) == NUMPY_TYPE)

{

ret = static_cast<TYPE*>(PyArray_DATA(xa));

return true;

}

}

PyErr_SetString(PyExc_TypeError,"numpy array of ’TYPE_NAME’ expected. Make sure that the

numpy array use dtype=’DESCR’.");

return false;

}

}

// The typecheck

% typecheck(SWIG_TYPECHECK_ ## TYPE_UPPER ## _ARRAY) TYPE * {

$1 = PyArray_Check($input) ? 1 : 0;

}

// The typemap

%typemap(in, fragment=convert_numpy_to_array_no_check(TYPE_NAME)) TYPE * {

if (!convert_numpy_to_array_no_check_ ## TYPE_NAME($input,$1))

return NULL;

}

The first line defines the signature of the macro. The macro is called using 5 arguments:

1. TYPE is the name of the primitive type. Examples are dolfin::uint and double.

2. TYPE_UPPER is the name of the type check name that SWIG uses. Examples are INT32 and
DOUBLE.

3. NUMPY_TYPE is the name of the NumPy type. Examples are NPY_UINT and NPY_DOUBLE.

4. TYPE_NAME is a short type name used in exception string. Examples are uint and double.

5. DESCR is a description character used in NumPy to describe the type. Examples are ’I’ and
’d’.

We can then call the macro to instantiate the typemaps and type checks.

SWIG code
UNSAFE_NUMPY_TYPEMAPS(dolfin::uint,INT32,NPY_UINT,uint,I)

UNSAFE_NUMPY_TYPEMAPS(double,DOUBLE,NPY_DOUBLE,double,d)

Here, we have instantiated the typemap for a dolfin::uint and a double array. The above typemap
does not check the length of the handed NumPy array and is therefore unsafe. Corresponding
safe typemaps can also be found in numpy_typemaps.i. The conversion function included in the
fragment declaration

SWIG code
SWIGINTERN bool convert_numpy_to_array_no_check_ ## TYPE_NAME(PyObject* input, TYPE*& ret)

takes a pointer to a PyObject as input. This function returns true if the conversion is successful
and false otherwise. The converted array will be returned by the TYPE*& ret argument. Finally,

20.3. SWIG AND THE DOLFIN PYTHON INTERFACE 379

the %apply TYPE* {TYPE* _array} directive means that we want the typemap to apply to any
argument of type TYPE* with argument name _array. This is another way of copying a typemap,
similar to what we did for the dolfin::uint out-typemap above.
In std_vector_typemaps.i, two typemap macros for passing std::vector<Type> between Python
and C++ are defined. One is an in-typemap macro for passing a std::vector of pointers of
DOLFIN objects to a C++ function. The other is an out-typemap macro for passing a std::vector

of primitives, using NumPy arrays, to Python. It is not strictly necessary to add these typemaps
as SWIG provides a std::vector type. However, the SWIG std::vector functionality is not very
Pythonic and we have therefore chosen to implement our own typemaps to handle std::vector

arguments.
The first typemap macro enables the use of a Python list of DOLFIN objects instead of a std:vector

of pointers to such objects. Since the handed DOLFIN objects may and may not be stored using a
shared_ptr, we provide a typemap that works for both situations. We also create typemaps for
signatures where const are used. Typically a signature can look like:

SWIG code
{const} std::vector<{const} dolfin::TYPE *>

where const is optional. To handle the optional consts we use nested macros:

SWIG code
%define IN_TYPEMAPS_STD_VECTOR_OF_POINTERS(TYPE)

// Make SWIG aware of the shared_ptr version of TYPE

%types(SWIG_SHARED_PTR_QNAMESPACE::shared_ptr<TYPE>*);

IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,const,)

IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,,const)

IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,const,const)

%enddef

%define IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,CONST,CONST_VECTOR)

%typecheck(SWIG_TYPECHECK_POINTER) CONST_VECTOR std::vector<CONST dolfin::TYPE *> &

{

$1 = PyList_Check($input) ? 1 : 0;

}

%typemap (in) CONST_VECTOR std::vector<CONST dolfin::TYPE *> & (std::vector<CONST dolfin::TYPE *
> tmp_vec)

{

if (PyList_Check($input))

{

int size = PyList_Size($input);

int res = 0;

PyObject * py_item = 0;

void * itemp = 0;

int newmem = 0;

tmp_vec.reserve(size);

for (int i = 0; i < size; i++)

{

py_item = PyList_GetItem($input,i);

res = SWIG_ConvertPtrAndOwn(py_item, &itemp, $descriptor(dolfin::TYPE *), 0, &newmem);

if (SWIG_IsOK(res)) {

tmp_vec.push_back(reinterpret_cast<dolfin::TYPE *>(itemp));

}

else {

// If failed with normal pointer conversion then

// try with shared_ptr conversion

newmem = 0;

380 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

res = SWIG_ConvertPtrAndOwn(py_item, &itemp,

$descriptor(SWIG_SHARED_PTR_QNAMESPACE::shared_ptr< dolfin::TYPE > *),

0, &newmem);

if (SWIG_IsOK(res)){

// If we need to release memory

if (newmem & SWIG_CAST_NEW_MEMORY){

tempshared = *reinterpret_cast< SWIG_SHARED_PTR_QNAMESPACE::shared_ptr<dolfin::TYPE> * >

(itemp);

delete reinterpret_cast< SWIG_SHARED_PTR_QNAMESPACE::shared_ptr< dolfin::TYPE > * >

(itemp);

arg = const_cast< dolfin::TYPE * >(tempshared.get());

}

else {

arg = const_cast< dolfin::TYPE * >(reinterpret_cast<

SWIG_SHARED_PTR_QNAMESPACE::shared_ptr< dolfin::TYPE > * >(itemp)->get());

}

tmp_vec.push_back(arg);

}

else {

SWIG_exception(SWIG_TypeError, "list of TYPE expected (Bad conversion)");

}

}

}

$1 = &tmp_vec;

}

else {

SWIG_exception(SWIG_TypeError, "list of TYPE expected");

}

}

%enddef

In the typemap, we first check that we get a Python list. We then iterate over the items and try to
acquire the specified C++ object by converting the Python object to the underlying C++ pointer.
This is accomplished by:

SWIG code
res = SWIG_ConvertPtrAndOwn(py_item, &itemp, $descriptor(dolfin::TYPE *), 0, &newmem);

If the conversion is successful we push the C++ pointer to the tmp_vec. If the conversion fails we
try to acquire a shared_ptr version of the C++ object instead. If neither of the two conversions
succeed we raise an error.
The second typemap defined for std::vector arguments, is a so called argout-typemap. This kind
of typemap is used to return values from arguments. In C++, non const references or pointers
arguments are commonly used both as input and output of functions. In Python, output should
be returned. The following call to the GenericMatrix::getrow method illustrates the difference
between C++ and Python. The C++ signature is:

SWIG code
GenericMatrix::getrow(dolfin::uint row, std::vector<uint>& columns, std::vector<double>& values)

Here, the sparsity pattern associated with row number row is filled into the columns and values

vectors. In Python, a corresponding call should look like:

Python code
columns, values = A.getrow(row)

20.3. SWIG AND THE DOLFIN PYTHON INTERFACE 381

To obtain the desired Python behavior we employ argout-typemaps. The following typemap macro
defines such typemaps:

SWIG code
%define ARGOUT_TYPEMAP_STD_VECTOR_OF_PRIMITIVES(TYPE, TYPE_UPPER, ARG_NAME, NUMPY_TYPE)

// In typemap removing the argument from the expected in list

%typemap (in,numinputs=0) std::vector<TYPE>& ARG_NAME (std::vector<TYPE> vec_temp)

{

$1 = &vec_temp;

}

%typemap(argout) std::vector<TYPE> & ARG_NAME

{

PyObject* o0 = 0;

PyObject* o1 = 0;

PyObject* o2 = 0;

npy_intp size = $1->size();

PyArrayObject *ret = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size,

NUMPY_TYPE));

TYPE* data = static_cast<TYPE*>(PyArray_DATA(ret));

for (int i = 0; i < size; ++i)

data[i] = (*$1)[i];

o0 = PyArray_Return(ret);

// If the $result is not already set

if ((!$result) || ($result == Py_None))

{

$result = o0;

}

// If the result is set by another out typemap build a tuple of arguments

else

{

// If the argument is set but is not a tuple make one and put the result in it

if (!PyTuple_Check($result))

{

o1 = $result;

$result = PyTuple_New(1);

PyTuple_SetItem($result, 0, o1);

}

o2 = PyTuple_New(1);

PyTuple_SetItem(o2, 0, o0);

o1 = $result;

$result = PySequence_Concat(o1, o2);

Py_DECREF(o1);

Py_DECREF(o2);

}

}

%enddef

The macro begins by defining an in-typemap that removes the output argument and instantiates
the std::vector that will be passed as argument to the C++ function. Then we have the code for
the argout-typemap, which is inserted after the C++ call. Here, the "returned" C++ arguments
are transformed to Python arguments, by instantiating a NumPy array ret and filling it with the
values from the std::vector. Note that here we are forced to copy the values, or else the return
argument would overwrite any previous created return argument, with memory corruption as
result.

382 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

20.3.4 DOLFIN header files and Python docstrings

As mentioned earlier, the file kernel_module.i, generated by generate.py, tells SWIG what parts
of DOLFIN that should be wrapped. The associated script generate_docstrings.py generates
the Python docstrings extracted from comments in the C++ documentation. The comments are
transformed into SWIG docstring directives like:

SWIG code
%feature("docstring") dolfin::Data::ufc_cell "

Return current UFC cell (if available)

";

and saved to a SWIG interface file docstrings.i. The docstrings.i file is included from the
main dolfin.i file. Note that the kernel_module.i and docstrings.i files are not generated
automatically during the build process. This means that when a header file is added to the
DOLFIN library, one must to manually run generate.py to update the kernel_module.i and
docstrings.i files.

20.3.5 Specializations of kernel modules

The DOLFIN SWIG interface file kernel_module.i mirrors the directory structure of DOLFIN. As
mentioned above, many directories come with specializations in . . ._pre.i and . . ._post.i files.
Below, we will highlight some of these specializations.

The mesh module. The mesh module defines the Python interfaces for Mesh, MeshFunction, MeshEntity,
and their subclasses. In Mesh the geometrical and topological information is stored in contiguous
arrays. These arrays are accessible from Python using access methods that return NumPy arrays of
the underlying data. With this functionality, a user can for example move a mesh 1 unit to the
right as follows:

Python code
mesh.coordinates()[:,0] += 1

To obtain this functionality, the Mesh class has been extended with a function coordinates that
returns a NumPy array. This is obtained by the following code in mesh_pre.i:

SWIG code
%extend dolfin::Mesh {

PyObject* coordinates() {

int m = self->num_vertices();

int n = self->geometry().dim();

MAKE_ARRAY(2, m, n, self->coordinates(), NPY_DOUBLE)

return reinterpret_cast<PyObject*>(array);

}

...

}

...

%ignore dolfin::Mesh::coordinates;

This function wraps a 2 dimensional NumPy array around the coordinates obtained from the mesh,
using the macro MAKE_ARRAY. In addition, the original coordinates function is ignored using the
%ignore directive. The MAKE_ARRAY macro looks like:

20.3. SWIG AND THE DOLFIN PYTHON INTERFACE 383

SWIG code
%define MAKE_ARRAY(dim_size, m, n, dataptr, TYPE)

npy_intp adims[dim_size];

adims[0] = m;

if (dim_size == 2)

adims[1] = n;

PyArrayObject* array = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNewFromData(dim_size,

adims, TYPE, (char *)(dataptr)));

if (array == NULL) return NULL;

PyArray_INCREF(array);

% enddef

The macro takes five arguments. The dim_size, m, and n arguments set the dimensions of
the NumPy array. The dataptr is a pointer that points to the first element of the underly-
ing contiguous array and TYPE is the type of the elements in the array. The NumPy macro
PyArray_SimpleNewFromData creates a NumPy array wrapping the underlying data. Hence, this
function does not take ownership of the underlying data and will not delete the data when the
NumPy array is deleted. This prevents corruption of data when the NumPy array is deleted.
In a similar fashion, we use the MAKE_ARRAY macro to wrap the connectivity information to Python.
This is done with the following SWIG directives in the mesh_pre.i files.

SWIG code
%extend dolfin::MeshConnectivity {

PyObject* __call__() {

int m = self->size();

int n = 0;

MAKE_ARRAY(1, m, n, (*self)(), NPY_UINT)

return reinterpret_cast<PyObject*>(array);

}

...

}

Here, we extend the C++ extension layer of the dolfin::MeshConnectivity class with a __call__

method. The method returns all connections between any two types of topological dimensions in
the mesh.
In mesh_pre.i, we also declare that it should be possible to subclass SubDomain in Python. This is
done using the %director directive.

SWIG code
%feature("director") dolfin::SubDomain;

To avoid code bloat, this feature is only included for certain classes. The following typemap enables
seamless integration of NumPy array and the Array<double>& in the inside and map methods.

SWIG code
%typemap(directorin) const dolfin::Array<double>& {

npy_intp dims[1] = {$1_name.size()};

double * data = const_cast<double*>($1_name.data().get());

$input = PyArray_SimpleNewFromData(1, dims, NPY_DOUBLE, reinterpret_cast<char *>(data));

}

384 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

Even if it by concept and name is an in-typemap, one can look at it as an out-typemap (since it is a
typemap for a callback function). SWIG needs to wrap the arguments that the implemented inside

or map method in Python are called with. The above typemaps are inserted in the inside and map

methods of the SWIG created C++ director class, which is a subclass of dolfin::SubDomain.
DOLFIN comes with a MeshEnitityIterator class. This class lets a user iterate over a given
MeshEntity: a cell, a vertex and so forth. The iterators are mapped to Python by the increment
and de-reference operators in MeshEnitityIterator. This enabling is done by renaming these
operators in mesh_pre.i:

SWIG code
%rename(_increment) dolfin::MeshEntityIterator::operator++;

%rename(_dereference) dolfin::MeshEntityIterator::operator*;

In mesh_post.i, the Python iterator protocol (__iter__ and next) is implemented for the MeshEnitityIterator
class as follows:

SWIG code
%extend dolfin::MeshEntityIterator {

%pythoncode

%{

def __iter__(self):

self.first = True

return self

def next(self):

self.first = self.first if hasattr(self,"first") else True

if not self.first:

self._increment()

if self.end():

raise StopIteration

self.first = False

return self._dereference()

%}

}

We also rename the iterators to vertices for the VertexIterator, cells for CellIterator, and so
forth. Iteration over a certain mesh entity in Python is then done by:

Python code
for cell in cells(mesh):

...

The la module. The Python interface of the vector and matrix classes in the la module is heavily
specialized, because we want the interface to be intuitive and integrate nicely with NumPy. First,
all of the implemented C++ operators are ignored, just like we did for the operator+=() in the
Array example above. This is done in the la_pre.i file:

SWIG code
%ignore dolfin::GenericVector::operator[];

%ignore dolfin::GenericVector::operator*=;

%ignore dolfin::GenericVector::operator/=;

%ignore dolfin::GenericVector::operator+=;

%ignore dolfin::GenericVector::operator-=;

%rename(_assign) dolfin::GenericVector::operator=;

20.3. SWIG AND THE DOLFIN PYTHON INTERFACE 385

Here, we only ignore the virtual operators in the base class GenericVector, because SWIG only
implements a Python version of a virtual method in the base class. Only the base class imple-
mentation is needed since a method call in a derived Python class ends up in the corresponding
Python base class. The base class in Python hands the call over to the corresponding base class call
in C++, which ends up in the corresponding derived C++ class. Hence, when we ignore the above
mentioned operators in the base class, we also ignore the same operators in the derived classes.
Finally, we rename the assignment operator to _assign. The _assign operator will be used by the
slice operator implemented in la_post.i, see below.
The following code snippet from la_post.i shows how the special method __mul__ in the Python
interface of GenericVector is implemented:

SWIG code
%extend dolfin::GenericVector {

void _scale(double a)

{(*self)*=a;}

void _vec_mul(const GenericVector& other)

{(*self)*=other;}

%pythoncode %{

...

def __mul__(self,other):

"""x.__mul__(y) <==> x*y"""

if isinstance(other,(int,float)):

ret = self.copy()

ret._scale(other)

return ret

if isinstance(other, GenericVector):

ret = self.copy()

ret._vec_mul(other)

return ret

return NotImplemented

...

%} }

We first expose operator*= to Python by implementing corresponding hidden methods, the _scale

method for scalars and the _vec_mul method for other vectors. These methods are then used in
the __mul__ special method in the Python interface.
Vectors in the DOLFIN Python interface support access and assignment using slices and NumPy
arrays of booleans or integers, and lists of integers. This is achieved using the get and set methods
in the GenericVector, but is quite technical. In short, a helper class Indices is implemented in
Indices.i. This class is used in the _get_vector and _set_vector helper functions defined in the
la_get_set_items.i file.

Python code
%extend dolfin::GenericVector {

%pythoncode %{

...

def __getslice__(self, i, j):

if i == 0 and (j >= len(self) or j == -1):

return self.copy()

return self.__getitem__(slice(i, j, 1))

def __getitem__(self, indices):

from numpy import ndarray, integer

from types import SliceType

386 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

if isinstance(indices, (int, integer)):

return _get_vector_single_item(self, indices)

elif isinstance(indices, (SliceType, ndarray, list)):

return down_cast(_get_vector_sub_vector(self, indices))

else:

raise TypeError, "expected an int, slice, list or numpy array of integers"

...

%} }

The above code demonstrates the implementation of the slice and index access in the Python layer
of GenericVector. When accessing a vector using a full slice, v[:], __getslice__ is called with
i = 0 and j = a-large-number (default in Python). In this case, we return a copy of the vector.
Otherwise, we create a slice and pass it to __getitem__. In the latter method, we check whether
the indices argument is a single item or not and calls upon the correct helper functions.

20.4 JIT compiling of UFL forms, Expressions and SubDomains

The DOLFIN Python interface makes extensive use of just in time (JIT) compilation; that is code
that is compiled, linked and imported into Python using Instant, see Chapter 15. This process is
facilitated by employing the form compilers FFC or SFC that translates UFL code into UFC code.
In a similar fashion, DOLFIN enables JIT compiling of Expressions and SubDomains.
We provide two ways of defining an Expression in DOLFIN via Python: subclassing Expression

directly in Python, and through the compile function interface. In the first alternative, the eval

method is defined in a subclass of Expression:

Python code
class MyExpression(Expression):

def eval(self, values, x):

values[0] = 10*exp(-((x[0] - 0.5)**2 + (x[1] - 0.5)** 2) / 0.02)

f = MyExpression()

Here, f will be a subclass of both ufl.Function and cpp.Expression. The second alternative is to
instantiate the Expression class directly:

Python code
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")

This example creates a scalar Expression. Vector valued and matrix valued expressions can also
be created. As in the first example, f will be a subclass of ufl.Function. But it will not inherit
from cpp.Expression. Instead, we create a subclass in C++ that inherit from dolfin::Expression

and implements the eval method. The generated code looks like:

C++ code
class Expression_700475d2d88a4982f3042522e5960bc2: public Expression{

public:

Expression_700475d2d88a4982f3042522e5960bc2():Expression(2){}

void eval(double* values, const double* x) const{

values[0] = 10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02);

}

};

The name of the subclass is generated from a hash of the passed expression string. The code is
inserted into namespace dolfin and the appropriate #include is also inserted in the code. Instant

20.5. DEBUGGING MIXED LANGUAGE APPLICATIONS 387

is used to compile and link a Python module from the generated code. The class made by Instant
is imported into Python and used to dynamically construct a class that inherits the generated class
together with ufl.Function and Expression. Dynamic creation of classes in Python is done using
so called meta-classes. In a similar fashion, DOLFIN provides functionality to construct C++ code
and JIT compile subclasses of SubDomain from Python.

20.5 Debugging mixed language applications

Debugging mixed language applications may be more challenging than debugging single language
applications. The main reason is that debuggers are written mainly for either compiled languages
or scripting languages. However, as we will show, mixed language applications can be debugged
in much of the same way as compiled languages.
Before starting the debugger, you should make sure that your library, or the relevant parts of it,
is compiled with the debugging on. With GCC this is done with the -g option. The additional
debugging information in the code slows down the performance. Therefore, DOLFIN is by default
not compiled with -g. After compiling the code with debugging information, you may start Python
in GDB, the GNU Project Debugger, as follows:

Bash code
gdb python

(gdb) run

...

The problem with GDB is that only one thread is running. This means that you will not be able to
set break points and so on once you have started the Python interpreter.
However, DDD, the Data Display Debugger, facilitates running the debugger and the Python
interpreter in two different threads. That is, you will have two interactive threads, one debugger
and the Python interpreter, during your debugging session. The DDD debugger is started as:

Bash code
ddd python

The crucial next step is to start the Python session in a separate execution window by clicking on
View->Execution Window. Then you start the Python session:

Bash code
(gdb) run

After importing for your module you may click or search (using the Lookup field) through the
source code to set breakpoints, print variables and so on.
Another useful application for analyzing memory management is Valgrind. To find memory leaks,
do as follows:

Bash code
valgrind --leak-check=full python test_script.py

Valgrind also provides various profilers for performance testing.

Acknowledgments. The authors are very thankful to Johan Jansson who initiated the work on
the DOLFIN Python interface and to Ola Skavhaug and Martin S. Alnæs who have contributed
significantly to the development. Finally, Marie Rognes has improved the language in this chapter
significantly.

Part III

Applications

389

21 Finite elements for incompressible fluids

By Andy R. Terrel, L. Ridgway Scott, Matthew Gregg Knepley, Robert C. Kirby
and Garth N. Wells

The structure of the finite element method offers a user a range of choices. This is especially true
for solving incompressible fluid problems, where theory points to a number of stable finite element
formulations. Using automation tools, we implement and examine various stable formulations for
the steady-state Stokes equations. It is demonstrated that the expressiveness of the FEniCS Project
components allows solvers for the Stokes problem that use various element formulations to be
created with ease.

21.1 Stokes equations

The Stokes equations describe steady, incompressible low Reynolds number flows. For a domain
Ω ⊂ Rd, where 1 ≤ d ≤ 3, the Stokes equations read:

−∆u−∇p = f in Ω, (21.1)

∇ · u = 0 in Ω, (21.2)

u = 0 on ∂Ω, (21.3)

where u : Ω→ Rd is the velocity field, p : Ω→ R is the pressure field and f : Ω→ Rd is a source
term. The sign of the pressure term in (21.1) is the opposite of what is commonly used in fluid
mechanics literature. We use the form in (21.1) as it will lead to a symmetric matrix operator.

In developing a variational formulation for solving the Stokes equations, a possibility is to
search for solutions to a variational formulation of (21.1) in a space of divergence-free functions,
thereby satisfying (21.2) by construction. However, this does not translate well to finite element
formulations. Alternatively, a mixed variational formulation can be considered as follows. Let
V = [H1

0(Ω)]d and Π = {q ∈ L2(Ω) :
∫

Ω q dx = 0}. Given f ∈ [L2(Ω)]d, find functions u ∈ V and
p ∈ Π such that

a(u, v) + b(v, p) = (f , v) ∀ v ∈ V, (21.4)

b(u, q) = 0 ∀ q ∈ Π, (21.5)

391

392 CHAPTER 21. FINITE ELEMENTS FOR INCOMPRESSIBLE FLUIDS

where

a(u, v) :=
∫

Ω
∇u · ∇v dx, (21.6)

b(v, q) :=
∫

Ω
(∇ · v) q dx, (21.7)

(f , v) :=
∫

Ω
f · v dx. (21.8)

21.2 Finite element formulations for the mixed Stokes problem

We will consider in this section finite element formulations for finding approximate solutions to
the mixed formulation of (21.4)–(21.5). The Stokes problem has been studied extensively in the
context of finite element methods, with some key results presented in Brezzi and Fortin [1991]
and Brenner and Scott [2008]. It is a challenging problem on a number of fronts. Firstly, finite
element subspaces of V and Π must be chosen carefully to ensure stability of the resulting finite
element problem. Secondly, the mixed variational form is a saddle point problem, which leads
to indefinite matrix equations. Such systems are particularly taxing on iterative linear solvers.
Moreover, conservation of mass requires that the velocity field is divergence-free; very few schemes
can satisfy this condition point-wise. The degree to which this condition is imposed depends on
the specific scheme.
Stable mixed finite element methods for the Stokes equations must satisfy the Ladyzhenskaya–
Babuška–Brezzi (LBB) (or inf–sup) compatibility condition (see Brezzi and Fortin [1991] for more
details). The most straightforward scheme — equal-order continuous Lagrange finite element
spaces for both pressure and velocity components — leads to an unstable problem. Additionally,
mixed element formulations can exhibit a type of “locking”, which in practice is sometimes
remedied by using inexact quadrature for the b(v, q)-type terms. This has been recognized as
equivalent to modifying the pressure space. Here we take the modern perspective and work with
velocity and pressure spaces that are known to satisfy the LBB condition.
An approach to circumventing the difficulties associated with the saddle-point nature of the
Stokes problem is to modify the discrete variational problem such that it no longer constitutes a
saddle-point problem. With appropriate modification of the discrete problem, the relevant stability
condition becomes the more easily satisfied coercivity condition. Careful modification can lead to
a discrete problem that does not violate consistency.
Few numerical studies of the Stokes problem address more than one finite element formulation.
This can be attributed to the difficultly in implementing a number of the known stable methods.
With automated code generation, solvers for a range of methods can be easily produced; it is as
simple as redefining the finite element spaces or modifying the variational formulation. In the
remainder of this section, we demonstrate the construction of a variety stable finite element solvers
for the mixed form of the Stokes equations.

21.2.1 Formulations based on compatible function spaces

We consider a number of LBB-stable formulations that are based on the selection of compatible
function spaces for the velocity and pressure fields. The generic UFL input for most of these
formulations is shown in Figure 21.1. Following the UFL convention, the bilinear and linear forms
are named a and L, respectively. Different finite element spaces are defined via the element type
for the velocity (U_element), the basis function order for the velocity (U_order), the element type
for the pressure (P_element) and the basis function order for the pressure (P_order). From the

21.2. FINITE ELEMENT FORMULATIONS FOR THE MIXED STOKES PROBLEM 393

Figure 21.1: Generic UFL input for the
mixed Stokes problem. Python code

Define function spaces
V = VectorFunctionSpace(mesh, U_element, U_order)
Q = FunctionSpace(mesh, P_element, P_order)
W = V * Q

Define trial and test functions
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)

Define the variational problems
a = inner(grad(u), grad(v))*dx + p*div(v)*dx +

div(u)*q*dx
L = inner(f, v)*dx

input in Figure 21.1, FFC generates the problem-specific code used in numerical simulations.
One of the most widely used family of finite elements for the Stokes equations is the Taylor–Hood
family [Taylor and Hood, 1973, Boffi, 1997]. It consists of a continuous Pq (q > 2) Lagrange element
for the velocity components and a continuous Pq−1 Lagrange element for the pressure field (see
Figure 21.2 for the q = 3 case). The order of the pressure convergence is lower than that for the
velocity. For the UFL extract in Figure 21.1, the Taylor-Hood element corresponds to U_element =

Lagrange, U_order = q, P_element = Lagrange and P_order = q-1.
The Crouzeix–Raviart element [Crouzeix and Raviart, 1973] is a non-conforming element that uses
integral moments over cell edges as a basis for the velocity, and a discontinuous pressure space
that is one order lower than the velocity space. For the low-order case, the velocity edge moments
are equivalent to evaluating Lagrange basis functions at the center of each edge and the pressure
uses P0 (see Figure 21.3). For the extract in Figure 21.1, the Crouzeix–Raviart element corresponds
to U_element = CR, U_order = 1, P_element = DiscontinuousLagrange and P_order = 0.
The MINI element [Arnold et al., 1984b] enriches the velocity space via bubble functions, Pq + Bq+3.
The MINI element is illustrated in Figure 21.4. The pressure space uses a continuous Pq Lagrange
element. The MINI element was proposed as a cheaper alternative to the Taylor–Hood element.
The MINI element is implemented using the “element enrichment” concept from UFL. The UFL
definition of the MINI function space is shown in Figure 21.5. At the time of writing, it is only
implemented for q = 1, 2.
Another possibility is to use a high-degree continuous Lagrange finite element basis for the velocity
components and a discontinuous element that is two orders lower for the pressure field. We loosely
call this element “CD”, for continuous velocity/discontinuous pressure. Brezzi and Fortin [1991]
discuss the P2 − P0 case, and higher order versions were analyzed in Maday et al. [1992]. For the
low-order case, the CD method does not satisfy the LBB condition and is commonly used with a
stabilization parameter or enriched with bubble functions. This case is not discussed here. For
higher orders the method is stable. For the extract in Figure 21.1, the CD element corresponds to
U_element = Lagrange, U_order = q, P_element = DiscontinuousLagrange and P_order = q-2.
Table 21.1 summarizes the specific variables that appear the in the UFL code in Figure 21.1 for the
different presented methods.

21.2.2 Pressure stabilized method

To alleviate the difficulties of finding LBB-compatible function spaces, one may use stabilization
techniques. Pressure stabilization converts the finite-dimensional formulation from a saddle point
problem to a coercive problem. It is usually desirable to modify the finite-dimensional problem

394 CHAPTER 21. FINITE ELEMENTS FOR INCOMPRESSIBLE FLUIDS

(a) P3 for V

(b) P2 for Π

Figure 21.2: A Taylor–Hood element
with (a) cubic velocity basis and (b)
quadratic pressure basis.

Figure 21.3: Crouzeix–Raviart element
used for the velocity field.

21.2. FINITE ELEMENT FORMULATIONS FOR THE MIXED STOKES PROBLEM 395

Figure 21.4: Mini element used for the
velocity field. It enriches a Pq element
with a q + 3 order bubble function.

3

Figure 21.5: UFL input for defining
the MINI element. Python code

Define function spaces
P = VectorFunctionSpace(mesh, "Lagrange", U_order)
B = VectorFunctionSpace(mesh, "Bubble", U_order + 2)
V = P + B

Crouzeix–Raviart STAB MINI
U_element "Crouzeix-Raviart" "Lagrange" "MINI"
U_order 1 q q
P_element "Discontinuous Lagrange" "Lagrange" "Lagrange"
P_order 0 q q
stabilized False True False

CD Taylor–Hood
U_element "Lagrange" "Lagrange"
U_order q q
P_element "Discontinuous Lagrange" "Lagrange"
P_order q− 2 q− 1
stabilized False False

Table 21.1: Element variables defining the different mixed methods.

396 CHAPTER 21. FINITE ELEMENTS FOR INCOMPRESSIBLE FLUIDS

Python code
Sample parameters for pressure stabilization
h = CellSize(mesh)
beta = 0.2
delta = beta*h**2

The additional pressure stabilization terms
a += delta*inner(grad(p), grad(q))*dx
L += delta*inner(f, grad(q))*dx

Figure 21.6: UFL code to add stabi-
lization to the mixed method code in
Figure 21.1.

such that consistency is not violated. For a more complete discussion see Donea and Huerta [2003].
The pressure stabilized method that we consider involves:

a(u, v) + b(v, p) = (f , v) ∀ v ∈ Vh, (21.9)

b(u, q) + (δ∇q,∇p) = (f , δ∇q) ∀ q ∈ Πh, (21.10)

where δ is a stabilization parameter, and Vh ⊂ V and Πh ⊂ Π are suitable finite element spaces.
For our tests, δ = 0.2h2

T , where hT is two times the circumference of the cell T. For the stabilized
tests, continuous Lagrange elements of the same order for both the pressure and velocity spaces
are used. This method will be referred to as “STAB”. The stabilized method that we adopt is
simple, but it does violate consistency for orders q > 1. Figure 21.6 illustrates the addition of the
stabilization terms to the standard weak form in Figure 21.1. Figure 21.1 includes the definitions
for the STAB element.

21.3 A penalty approach: the Scott–Vogelius method

Other solutions to deal with the LBB condition include the Uzawa iteration method and penalty
methods. A combination of these two approaches results in the iterated penalty method presented
in Scott and Vogelius [1985]. Let r ∈ R and ρ ∈ R+ be prescribed parameters. We wish to find
un ∈ Vh such that

a(un, v) + r(∇ · un,∇ · v) = (f , v)− (∇ · v,∇ · wn) ∀ v ∈ Vh, (21.11)

where
wn+1 = wn + ρun. (21.12)

The pressure may be recovered from the auxiliary field w via p = ∇ · w − C, where C is an
arbitrary constant (since the pressure field is only determined up to an arbitrary constant). When
computing the error in p, we subtract the average of ∇ · w to account for C. The algorithm initially
assumes w0 = 0, and then solves (21.11) and updates w via (21.12). The process is repeated until
‖un+1 − un‖ < ε, where ε is a prescribed tolerance. This method involves only one function space,
but it requires a higher-order continuous element (q ≥ 4) and it solves the divergence-free criterion
exactly. The iteration count and accuracy is dependent upon the penalty parameters ρ and r.
For our experiments we use ρ = −r = 1× 103. The implementation of this form is presented in
Figure 21.7.

21.4. NUMERICAL TESTS 397

Figure 21.7: DOLFIN code for defining
the Scott–Vogelius method. Python code

Define function space
V = VectorFunctionSpace(mesh, "Lagrange", U_order)

Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)

Define auxiliary function and parameters
w = Function(V);
rho = 1.0e3
r = -rho

Define the variational problem
a = inner(grad(u), grad(v))*dx + r*div(u)*div(v)*dx
L = inner(f, v)*dx + inner(div(w), div(v))*dx
pde = VariationalProblem(a, L, bc0)

Iterate to fix point
iters = 0; max_iters = 100; U_m_u = 1
while iters < max_iters and U_m_u > 1e-8:

U = pde.solve()
w.vector().axpy(rho, U.vector())
if iters != 0:

U_m_u = (U.vector() - u_old_vec).norm(’l2’)
u_old_vec = U.vector().copy()
iters += 1

21.4 Numerical tests

To evaluate the presented methods, we compare the computed results to a manufactured solution
for different mesh refinements and element degrees. All simulations used FEniCS tools to generate
the discrete problems (FFC v0.7.0, DOLFIN v0.9.4, UFL v0.4.0, UFC v1.2.0), with the UMFPACK
LU solver (from the SuiteSparse package v3.4). For iterative methods applied to Stokes problems,
we refer to Chapter 37 and Elman et al. [2005]. The number of the degrees of freedom as a function
of mesh size and element type for the considered cases are shown in Table 21.2.

21.4.1 Simulation set-up

For our tests, we use an n× n unit square mesh with a crossed triangle pattern, as illustrated in
Figure 21.8(a). It should be noted that the choice of mesh can affect the convergence results in
perhaps surprising ways, e.g., avoiding locking phenomena [Nagtegaal et al., 1974] or spurious
pressure-modes [Malkus, 2000]. The crossed triangle mesh was used as our test case to avoid subtle
issues related to mesh construction (see Brezzi and Fortin [1991, Proposition 6.1]). Furthermore,
since we are using stable elements to begin with, we are not concerned with locking phenomena.
For a comparison, using a mesh with a spurious pressure mode correction on a non-crossed mesh,
see Terrel et al. [2008].

398 CHAPTER 21. FINITE ELEMENTS FOR INCOMPRESSIBLE FLUIDS

(a) Unit square mesh 16× 16 with a crossed triangle
pattern.

(b) Velocity magnitude of the analytic test problem.

(c) Velocity magnitude and streamlines for the lid-
driven cavity test problem.

Figure 21.8: Test mesh and solution
plots.

21.4. NUMERICAL TESTS 399

q n Crouzeix–Raviart STAB MINI
1 8 1,056 435 947

16 4,160 1,635 3,683

32 16,512 6,339 14,531

2 8 - 1,635 3,171

16 - 6,339 12,483

32 - 24,963 49,539

3 8 - 3,603 x
16 - 14,115 x
32 - 55,875 x

4 8 - 6,339 x
16 - 24,963 x
32 - 99,075 x

5 8 - 9,843 x
16 - 38,883 x
32 - 154,563 x

q n CD Taylor–Hood Scott–Vogelius
2 8 1,346 1,235 -

16 5,250 4,771 -
32 20,738 18,755 -

3 8 3,170 2,947 -
16 12,482 11,523 -
32 49,538 45,571 -

4 8 5,762 5,427 4,226

16 22,786 21,347 16,642

32 90,626 84,675 66,050

5 8 5,762 8,675 6,562

16 36,162 34,243 25,922

32 144,002 136,067 103,042

Table 21.2: A comparison of the number of degrees of freedom organized by velocity order (q) and number
of mesh divisions per dimension (n). A ‘-’ indicates that the order for that particular element is not stable,
undefined; an ‘x’ indicates it is currently not implemented.

400 CHAPTER 21. FINITE ELEMENTS FOR INCOMPRESSIBLE FLUIDS

Python code
Define the boundary domains
class NoSlipDomain(SubDomain):

def inside(self, x, on_boundary):
return on_boundary

class PinPoint(SubDomain):
def inside(self, x, on_boundary):

return x[0] < DOLFIN_EPS and x[1] < DOLFIN_EPS

Define mesh
mesh = UnitSquare(h_num, h_num, "crossed")

Instantiate the boundary conditions, set the
velocity dof values to the exact solution, and
pinpoint the pressure.
noslip_domain = NoSlipDomain()
noslip = Expression(("sin(4*pi*x[0])*cos(4*pi*x[1])",

"-cos(4*pi*x[0])*sin(4*pi*x[1])"))
pinpoint = PinPoint()
pin_val = Expression("pi*cos(4*pi*x[0])*cos(4*pi*x[1])")
bc0 = DirichletBC(W.sub(0), noslip, noslip_domain)
bc1 = DirichletBC(W.sub(1), pin_val, pinpoint,

"pointwise")
bc = [bc0, bc1]

Define the RHS
f = Expression(("28*pi**2*sin(4*pi*x[0])"\

"cos(4*pi*x[1])",
"-36*pi**2*cos(4*pi*x[0])*sin(4*pi*x[1])"))

Figure 21.9: DOLFIN code for defining
the test domain.

As a first test case, we use the following analytical solution of the Stokes equations:

f =

[
28π2 sin(4πx) cos(4πy)
−36π2 cos(4πx) sin(4πy)

]
, (21.13)

u =

[
sin(4πx) cos(4πy)
− cos(4πx) sin(4πy)

]
, (21.14)

p = π cos(4πx) cos(4πy). (21.15)

We also consider a lid-driven cavity problem with a quadratic driving function on the top (see
Figures 21.8(b) and 21.8(c)).

Figures 21.9 and 21.10 show the DOLFIN Python input for the considered problems. To change
from the analytical test problem to the lid-driven cavity, only a change in the boundary condition
functions and the right-hand side f are required. The pressure field, which is determined only up
to an arbitrary constant, is “pinned” at zero at one pressure degree of freedom. Given one of the
above domains and one of the defined variational problems, DOLFIN will use FFC and FIAT to
generate the necessary computer code automatically, allowing for one script to test all the methods.

In computing the error for the analytical test cases in terms of function norms, the exact solution is
interpolated using 10th degree Lagrange elements. The code for computing the error is presented
in Figure ??.

21.4. NUMERICAL TESTS 401

Figure 21.10: DOLFIN code for defin-
ing the lid-driven cavity domain. Python code

Define the boundary domains
class NoSlipDomain(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and x[1] < 1.0 - DOLFIN_EPS

class Top(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and x[1] > 1.0 - DOLFIN_EPS

class PinPoint(SubDomain):
def inside(self, x, on_boundary):

return x[0] < DOLFIN_EPS and x[1] < DOLFIN_EPS

Define mesh
mesh = UnitSquare(h_num, h_num, "crossed")

Instantiate the boundary conditions
noslip_domain = NoSlipDomain()
noslip_val = Constant(mesh, (0.0, 0.0))
top_domain = Top()
top_val = Expression(("x[0]*(1.0 - x[0])", "0.0"))
pinpoint = PinPoint()
pin_val = Constant(mesh, 0.0)

Define the RHS
f = Constant(mesh, (0.0, 0.0))

Figure 21.11: DOLFIN code for com-
puting the error in the L2 norm. The
exact solution is interpolated using
10th order Lagrange polynomials on
cells.

Python code
Define a high order approximation to the exact

solution
u_ex = Expression(("sin(4*pi*x[0])*cos(4*pi*x[1])",

"-cos(4*pi*x[0])*sin(4*pi*x[1])"),
element=VectorElement("Lagrange",

triangle, 10))
p_ex = Expression("pi*cos(4*pi*x[0])*cos(4*pi*x[1])",

element=FiniteElement("Lagrange",
triangle, 10))

Define the L2 error norm
M_u = inner((u_ex - u),(u_ex - u))*dx
M_p = (p_ex - p)*(p_ex - p)*dx

Compute the integral
u_err = assemble(M_u, mesh=mesh)
p_err = assemble(M_p, mesh=mesh)

Compute L2 error of the divergence
M_div = div(u)*div(u)*dx
div_err = assemble(M_div, mesh=mesh)

402 CHAPTER 21. FINITE ELEMENTS FOR INCOMPRESSIBLE FLUIDS

p Crouzeix–Raviart STAB MINI
1 2.01± 1× 10−2 1.93± 6× 10−2 2.03± 6× 10−2

2 - 3.02± 2× 10−2 2.77± 5× 10−2

3 - 4.00± 1× 10−2 -
4 - 4.99± 4× 10−3 -
5 - 5.98± 1× 10−2 -

p CD Taylor–Hood Scott–Vogelius
2 2.15± 1× 10−1 3.02± 2× 10−2 -
3 3.11± 2× 10−2 3.98± 1× 10−2 -
4 4.07± 1× 10−2 4.99± 1× 10−3 5.00± 2× 10−3

5 5.10± 5× 10−2 5.97± 1× 10−1 5.97± 1× 10−1

Table 21.3: The computed exponential of the convergence rates of the velocity; that is, q in O(hq) where h is
the width of the mesh element. This error uses L2 for the different elements with q = p + 1 being the optimal
error rate with p as the order of the velocity field. Notice that the CD method, as theoretically expected, loses
an order of convergence and the MINI element does not do well for the second order case.

21.4.2 Results

The observed convergence orders in the L2 norm of the velocity field for the analytic case for
each method, calculated from a series of refined meshes with n in {8, 16, 32, 64}, are presented in
Table 21.3. The optimal rate is q + 1, which is observed for all formulations except the CD element.
The CD element loses one order of convergence due to poor pressure approximation and failure to
satisfy the LBB condition.
To further compare the methods, a number of error and performance measures for the case of a
fourth-order velocity space with a suitably chosen pressure space are presented. The analytic test
case is used. The Crouzeix–Raviart and MINI elements are only implemented for low-order bases.
For the sake of comparison, they are computed on a finer mesh that has a comparable number of
degrees of freedom to the fourth-order Taylor–Hood element.
Figure 21.12 compares the L2 error in the velocity for the different methods. The velocity approxi-
mation appears to converge for all elements. The L2 error in the pressure is shown in Figure 21.13.
Unpredictable behavior for the pressure is observed for the CD element, whereas convergence
for the pressure field is observed for the other methods. The L2 norm of the divergence of the
velocity field is presented in Figure 21.14. The divergence error for the Crouzeix–Raviart and
Scott–Vogelius methods are zero to within machine precision for all meshes, as predicted by theory.
The divergence error for the MINI element is considerably greater than that for the other methods.
Figure 21.15 presents the run time for the various fourth-order cases. All run times, using a 2.6
GHz Intel Xeon, measure the assembly and linear system solve time in the Python code. The time
required for the code generation is assumed to be negligible since the generated code is cached and
only affects the time for the first run of a simulation; our timings always come from the second run
of the simulation. Run times for the mixed elements scale with the number of degrees of freedom.
The Scott–Vogelius method has better properties for iterative solvers, hence it may be attractive for
large-scale problems despite the greater run time relative to other methods for the small problems
tested.
The L2 norm of the divergence of the velocity for the lid-driven cavity problem is shown in
Figure 21.16. Unlike for the already considered smooth test case, the divergence error for the
CD, MINI, stabilized and Taylor-Hood elements does not decrease with mesh refinement. A
divergence error persists around the pressure singularities at the corners of the lid, as is apparent
in Figure 21.17 for the Taylor-Hood case. To solve the lid-driven cavity problem with the Scott–

21.4. NUMERICAL TESTS 403

4 8 16 32 64
Mesh size(n)

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

V
el

oc
it

y
E

rr
or

(L
2
)

4th Order Velocity Error

CD
CR
MINI
STAB
SV
TH

Figure 21.12: Velocity error of analyti-
cal test cases.

Figure 21.13: Pressure error of analyti-
cal test cases.

4 8 16 32 64
Mesh size(n)

10−9

10−7

10−5

10−3

10−1

101

103

105

107

P
re

ss
ur

e
E

rr
or

(L
2
)

4th Order Pressure Error

CD
CR
MINI
STAB
SV
TH

404 CHAPTER 21. FINITE ELEMENTS FOR INCOMPRESSIBLE FLUIDS

Figure 21.14: Divergence error of ana-
lytical test cases.

4 8 16 32 64
Mesh size(n)

10−27

10−24

10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

D
iv

er
ge

nc
e

E
rr

or
(L

2
)

4th Order Divergence Error

CD
CR
MINI
STAB
SV
TH

4 8 16 32 64
Mesh size(n)

10−1

100

101

102

103

R
un

ti
m

e
(s

)

4th Order Runtime

CD
CR
MINI
STAB
SV
TH

Figure 21.15: Run times for the analyt-
ical test cases. All velocity spaces, ex-
cept Crouzeix–Raviart and MINI, are
fourth-order and pressure spaces are
determined by the method. Crouzeix–
Raviart and MINI are computed on a
finer mesh with a similar number of
degrees of freedom to the fourth-order
Taylor–Hood method. CR, TH, and
SV refer to Crouzeix–Raviart, Taylor–
Hood and Scott–Vogelius, respectively.

21.5. CONCLUSIONS 405

Figure 21.16: Divergence error of the
lid-driven cavity test problem.

4 8 16 32 64
Mesh size(n)

10−30

10−27

10−24

10−21

10−18

10−15

10−12

10−9

10−6

10−3

D
iv

er
ge

nc
e

E
rr

or
(L

2
)

4th Order Lid Driven Cavity Divergence

CD
CR
MINI
STAB
SV
TH

Vogelius method, the penalty parameter had to be increased to 1× 108 for the fixed point iteration
to converge.

21.5 Conclusions

Comparisons between different finite elements for the Stokes problem have been presented. The
flexibility afforded by automated code generation has been demonstrated via the ease with which
solvers for a range of methods could be produced. The observed convergence rates for all cases are
consistent with a priori estimates. Of the elements examined, the Crouzeix–Raviart element and the
Scott–Vogelius lead to the smallest divergence error and Taylor–Hood the smallest velocity errors.
If mass conservation properties are not crucial, the simplicity of elements such as the Taylor–Hood
or STAB is attractive.

406 CHAPTER 21. FINITE ELEMENTS FOR INCOMPRESSIBLE FLUIDS

Figure 21.17: Local divergence error in
lid-driven cavity using P2–P1 Taylor–
Hood elements. Note in particular the
large error at the corners with the lid.

22 A comparison of some finite element schemes
for the incompressible Navier–Stokes equations

By K. Valen-Sendstad, A. Logg, K.-A. Mardal, H. Narayanan and M. Mortensen

Editor note: Fix all figures: bad scaling and small fonts

Numerical algorithms for the computation of fluid flow have been an active area of research for
several decades and still remain an important field to study. As a result, there exists a large
literature on discretization schemes for the incompressible Navier–Stokes equations, and it can
be hard to judge which method works best for any particular problem. Furthermore, since the
development of any particular discretization scheme is often a long process and tied to a specific
implementation, comparisons of different methods are seldom made.
FEniCS is a flexible platform for the implementation of different kinds of schemes based on finite
element methods. To illustrate the simplicity by which different schemes can be implemented
in FEniCS, we have implemented a test consisting of six distinct schemes. All schemes have
been tested on six different test problems to compare their accuracy and efficiency. The schemes
we have implemented are Chorin’s projection scheme by Chorin [1968] and Temam [1969], the
incremental pressure correction scheme (IPCS) by Goda [1979], the consistent splitting scheme
(CSS) by Guermond et al. [2006], a least-squares stabilized Galerkin scheme (G2) by Hoffman and
Johnson [2007], and a saddle-point solver based on a Richardson iteration on the pressure Schur
complement (GRPC) as described in Turek [1996].
All solvers and test problems have been implemented in Python (with a few C++ extensions) using
DOLFIN. The source code for all solvers and test problems is available online1 and can be used to
reproduce all results shown in this chapter.

22.1 Preliminaries

We consider the incompressible Navier–Stokes equations with unit fluid density written in the
form

u̇ +∇u u−∇ · σ = f , (22.1)

∇ · u = 0, (22.2)

where σ is the Cauchy stress tensor which for a Newtonian fluid is defined as

σ(u, p) = 2νε(u)− pI. (22.3)

1http://launchpad.net/nsbench/

407

http://launchpad.net/nsbench/

408CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Here, u is the unknown velocity vector, p is the unknown pressure, ν is the (kinematic) viscosity, f
is the body force per unit volume, and ε(u) is the symmetric gradient:

ε(u) =
1
2
(∇u +∇u>). (22.4)

The above quantities σ and ε may be defined as follows in DOLFIN/UFL:

Python code
def epsilon(u):

return 0.5*(grad(u) + grad(u).T)

Python code
def sigma(u, p, nu):

return 2*nu*epsilon(u) - p*Identity(u.cell().d)

In all discretization schemes below, Vh and Qh refer to the discrete finite element spaces used to
discretize the velocity u and pressure p, respectively. For all schemes except the G2 scheme, Vh
is the space of vector-valued continuous piecewise quadratic polynomials, and Qh is the space
of scalar continuous piecewise linear polynomials (Taylor–Hood elements). For the G2 scheme,
continuous piecewise linears are used for both the velocity and the pressure. We will further use h
to denote the local mesh size, kn = tn − tn−1 to denote the size of the local time step, and Dn

t uh to
denote the discretized form of the time derivative (un

h − un−1
h)/kn. For all schemes except the fully

implicit schemes G2 and GRPC described below, the convective term is treated explicitly.

22.2 Implementation

We have implemented the solvers and test problems as two class-hierarchies in Python where the
base classes are SolverBase and ProblemBase, respectively. The solvers derived from SolverBase

implement the scheme; that is, they define the finite element spaces, assemble and solve linear
systems, and perform time-stepping. Code from several solvers will be shown throughout this
chapter. The problems derived from the ProblemBase class define the mesh, initial and boundary
conditions, and other parameters.
A main script ns allows a user to solve a given problem with a given solver. All available problems
and solvers may be listed by typing

Bash code
$ ns list

which results in the following output:

Bash code
Usage: ns problem solver

Available problems:

drivencavity

channel

taylorgreen

cylinder

beltrami

aneurysm

Available solvers:

22.3. SOLVERS 409

chorin

css1

css2

ipcs

g2

grpc

The ns script accepts a number of optional parameters to enable refinement in space and time,
storing the solution in VTK or DOLFIN XML format, computing stresses, or plotting the solution
directly to screen. As an example, to solve the lid-driven cavity test problem using Chorin’s
method and plot the solution, one may issue the following command:

Bash code
$ ns drivencavity chorin plot_solution=True

Another script named bench allows a user to iterate over all solvers for a given problem, over all
problems for a given solver, or over all problems and all solvers. As an example, the following
command may be used to solve the channel test problem with all solvers on a mesh refined twice:

Bash code
$ bench channel refinement_level=2

22.3 Solvers

In this section, we present an overview of the six different schemes that have been tested.

22.3.1 Chorin’s projection method

This scheme, often referred to as a non-incremental pressure correction scheme, was first proposed
by Chorin [1968] and Temam [1969]. For simplicity we will here refer to this scheme as Chorin.
To solve the system of equations (22.1)–(22.2), the idea is first to compute a tentative velocity by
neglecting the pressure in the momentum equation and then to project the velocity onto the space
of divergence free vector fields. The projection step is a Darcy problem for un

h and pn
h :

un
h − uFh

kn
+∇pn

h = 0, (22.5)

∇ · un
h = 0, (22.6)

which is in fact reducible to a Poisson problem −∆pn
h = −∇ · uFh /kn for the corrected pressure pn

h .
This is summarized in Scheme 1 and the implementation is shown in Figure 22.1. We note that
since the velocity correction step is implemented as the solution of a linear system (involving a
mass matrix that has not been lumped), the discrete incompressibility constraint is not satisfied
exactly. On the other hand, the Dirichlet boundary conditions for the velocity are applied strongly
as part of the velocity correction step and are thus satisfied exactly (at the nodal points).

22.3.2 Incremental pressure correction scheme (IPCS)

An improvement of the non-incremental pressure correction scheme is possible if the previous
value for the pressure is used to compute the tentative velocity. This idea was first introduced by
Goda [1979]. The IPCS scheme is summarized in Scheme 2 and the implementation is shown in

410CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Scheme 1: Chorin’s projection method

1. Compute a tentative velocity uFh by solving

〈Dn
t uFh , v〉+ 〈∇un−1

h un−1
h , v〉+ 〈ν∇uFh ,∇v〉 = 〈 f n, v〉 ∀ v ∈ Vh, (22.7)

including any boundary conditions for the velocity.

2. Compute the corrected pressure pn
h by solving

〈∇pn
h ,∇q〉 = −〈∇ · uFh , q〉/kn ∀ q ∈ Qh, (22.8)

including any boundary conditions for the pressure.

3. Compute the corrected velocity un
h by solving

〈un
h , v〉 = 〈uFh , v〉 − kn〈∇pn

h , v〉 ∀ v ∈ Vh, (22.9)

including any boundary conditions for the velocity.

Python code
Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx \

+ inner(grad(u0)*u0, v)*dx \
+ nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Poisson problem for the pressure
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(us)*q*dx

Velocity update
a3 = inner(u, v)*dx
L3 = inner(us, v)*dx - k*inner(grad(p1), v)*dx

Figure 22.1: Implementation of varia-
tional forms for the Chorin solver.

22.3. SOLVERS 411

Scheme 2: Incremental pressure correction (IPCS)

1. Compute the tentative velocity uFh by solving

〈Dn
t uFh , v〉+ 〈∇un−1

h un−1
h , v〉+ 〈σ(un− 1

2
h , pn−1

h), ε(v)〉+ 〈pn−1
h n, v〉∂Ω

− 〈ν(∇un− 1
2

h)>n, v〉∂Ω = 〈 f n, v〉 (22.10)

for all v ∈ Vh, including any boundary conditions for the velocity. Here, un− 1
2

h = (uFh +

un−1
h)/2.

2. Compute the corrected pressure pn
h by solving

〈∇pn
h ,∇q〉 = 〈∇pn−1

h ,∇q〉 − 〈∇ · uFh , q〉/kn, (22.11)

including any boundary conditions for the pressure.

3. Compute the corrected velocity un
h by solving

〈un
h , v〉 = 〈uFh , v〉 − kn〈∇(pn

h − pn−1
h), v〉 ∀ v ∈ Vh, (22.12)

including any boundary conditions for the velocity.

Figure 22.2. The IPCS scheme as implemented here also differs from the Chorin scheme in that the
viscous term is evaluated at (tn−1 + tn)/2 and a stress formulation is used in place of the Laplacian
formulation used for the Chorin scheme. Note the importance of the term 〈ν(∇un−1/2

h)>n, v〉∂Ω
which arises as a result of integrating the stress term by parts. Without this term an incorrect
velocity profile is obtained at inlets and outlets where the velocity will tend to “creep” around the
corners.

22.3.3 Consistent splitting scheme (CSS)

The consistent splitting scheme, as described in Guermond et al. [2006], Guermond and Shen [2003],
is derived differently from the other splitting schemes and requires a more detailed description. The
scheme is based on deriving an equation for the pressure p by testing the momentum equation (22.1)
against ∇q. In combination with the incompressibility constraint, an equation for the pressure
results. After solving for the pressure, the velocity is updated based solely on the momentum
equation by an appropriate approximation (extrapolation) of the pressure. The derivation of
the consistent splitting scheme is as follows. Multiply the momentum equation (22.1) by ∇q for
q ∈ H1(Ω) and integrate over the domain Ω to obtain 〈u̇ +∇u u − ν∆u +∇p,∇q〉 = 〈 f ,∇q〉.
Since 〈u̇,∇q〉 = 〈∇ · u̇,−q〉+ 〈u̇, qn〉∂Ω, it follows by (22.2) that

〈∇p,∇q〉 = 〈 f −∇u u + ν∆u,∇q〉, (22.13)

if we assume that u̇ = 0 on ∂Ω. Next, we use the identity ∆v ≡ ∇∇ · v−∇×∇× v together with
the incompressibility constraint (22.2) to write the diffusive term of (22.13) in rotational form:

〈∇p,∇q〉 = 〈 f −∇u u− ν∇×∇× u,∇q〉. (22.14)

412CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Python code
Tentative velocity step
U = 0.5*(u0 + u)
F1 = (1/k)*inner(u - u0, v)*dx \

+ inner(grad(u0)*u0, v)*dx \
+ inner(sigma(U, p0, nu), epsilon(v))*dx \
+ inner(p0*n, v)*ds \
- beta*nu*inner(grad(U).T*n, v)*ds \
- inner(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Pressure correction
a2 = inner(grad(p), grad(q))*dx
L2 = inner(grad(p0), grad(q))*dx \

- (1.0/k)*div(u1)*q*dx

Velocity correction
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1 - p0), v)*dx

Figure 22.2: Implementation of varia-
tional forms for the IPCS solver. The
flag beta = 1 is set to zero in the case
when periodic boundary conditions
are used.

This equation is the basis for the consistent splitting scheme. At this point, we may formulate the
CSS scheme as the solution of the following pair of variational problems:

〈Dn
t uh, v〉+ 〈∇un−1

h un−1
h , v〉+ 〈ν∇un

h ,∇v〉 − 〈pFh ,∇ · v〉 = 〈 f n, v〉, (22.15)

〈∇pn
h ,∇q〉 = 〈 f n −∇un−1

h un−1
h − ν∇×∇× un

h ,∇q〉, (22.16)

where Dn
t uh is an appropriate approximation of u̇h and pFh is an appropriate approximation of the

pressure. In the simplest case, one may chose pFh = pn−1
h but higher order approximations are also

possible. For example, one may take pFh to be the linear extrapolation of ph from pn−2
h and pn−1

h
given by pFh = pn−1

h + (pn−1
h − pn−2

h) = 2pn−1
h − pn−2

h . We will refer to the simplest approximation
as CSS1 and to the higher-order approximation as CSS2.

To avoid computation of the term ∇×∇× un
h in (22.16), we take the inner product of (22.15)

with ∇q and subtract the result from (22.16) to obtain

〈∇pn
h −∇pFh ,∇q〉 = 〈Dn

t uh − ν∇×∇× un
h − ν∆un

h ,∇q〉
= 〈Dn

t uh − ν∇∇ · un
h ,∇q〉,

(22.17)

where we have again used the identity ∆v ≡ ∇∇ · v−∇×∇× v. Finally, we define an auxiliary
field ψn

h = pn
h − pFh + ν∇ · un

h to write (22.17) in the form

〈∇ψn
h ,∇q〉 = 〈Dn

t uh,∇q〉. (22.18)

The CSS scheme is summarized in Scheme 3/4.

To solve for the auxiliary variable ψ, appropriate boundary conditions must be used. Since ψ
is a pressure correction and not the pressure itself, we use homogenized versions of the pressure
boundary conditions which are zero at the boundary in the case of Dirichlet boundary conditions.
This can be accomplished in DOLFIN using the function homogenize.

22.3. SOLVERS 413

Scheme 3/4: Consistent splitting

1. Compute the pressure approximation (extrapolation) pFh by

pFh =

{
pn−1

h , for CSS1,
2pn−1

h − pn−2
h , for CSS2.

(22.19)

2. Compute the velocity un
h by solving

〈Dn
t uh, v〉+ 〈∇un−1

h un−1
h , v〉+ 〈σ(un− 1

2
h , pFh), ε(v)〉+ 〈 p̄n, v〉∂Ω − 〈ν(∇ūn

h)
>n, v〉∂Ω = 〈 f n, v〉,

(22.20)

including any boundary conditions for the velocity. Here, un− 1
2

h = (un
h + un−1

h)/2 and p̄ is a
given boundary condition for the pressure.

3. Compute the pressure correction ψn
h by solving

〈∇ψn
h ,∇q〉 = 〈un

h − un−1
h ,∇q〉/kn − 〈un

h − un−1
h , qn〉∂Ω/kn ∀ q ∈ Qh. (22.21)

4. Compute the corrected pressure pn
h by solving

〈pn
h , q〉 = 〈pFh + ψn

h − ν∇ · un
h , q〉 ∀ q ∈ Qh, (22.22)

including any boundary conditions for the pressure.

We remark that the derivation of the consistent splitting scheme is based on the assumption
that u̇ = 0 on ∂Ω which gives 〈u̇,∇q〉 = −〈∇ · u, q〉+ 〈u̇∂Ω, qn〉 = −〈∇ · u, q〉. For non-constant
Dirichlet boundary conditions, this assumption is not valid. This issue is not addressed in
Guermond and Shen [2003], but it is easy to add the missing term as shown in Figure 22.3 where
the missing term is included in the linear form L2.

22.3.4 A least-squares stabilized Galerkin method (G2)

The G2 method is a stabilized finite element method using piecewise linear discretization in space
and time. For further reading we refer to Hoffman and Johnson [2007]. In each time step, the G2

solution is defined by

〈Dn
t uh, v〉+ 〈∇un

n · w, v〉+ 〈σ(un− 1
2

h , pn
h), ε(v)〉 − 〈ν(∇un− 1

2
h)>n, v〉∂Ω + 〈 p̄n, v〉∂Ω + SDδ = 〈 f n, v〉,

〈∇pn
h ,∇q〉 = −〈∇ · un

h /δ1, q〉,
(22.23)

for all (v, q) ∈ Vh ×Qh, where un− 1
2 = (un

h + un−1
h)/2 and

SDδ = 〈δ1∇un− 1
2

h un− 1
2

h ,∇v un− 1
2

h 〉+ 〈δ2∇ · un− 1
2

h ,∇ · v〉. (22.24)

The G2 equations may be obtained by testing the incompressible Navier–Stokes equations against
modified test functions v → v + δ1(∇v · ūn +∇q) and q → q + δ2∇ · v and dropping a number
of terms, including all stabilizing terms involving the time derivative Dn

t uh. The stabilization
parameters are set to δ1 = κ1

2 (k
−2
n + |un−1|2h−2

n)−
1
2 and δ2 = κ2hn in the convection dominated

414CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Figure 22.3: Implementation of varia-
tional forms for the CSS solver(s). The
flag beta = 1 is set to zero in the case
of periodic boundary conditions.

Python code
Tentative pressure
if self.order == 1:

ps = p1
else:

ps = 2*p1 - p0

Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx \

+ inner(grad(u0)*u0, v)*dx \
+ inner(sigma(u, ps, nu), epsilon(v))*dx \
- beta*nu*inner(grad(u).T*n, v)*ds \
+ inner(pbar*n, v)*ds \
- inner(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Pressure correction
a2 = inner(grad(p), grad(q))*dx
L2 = (1/k)*inner(u1 - u0, grad(q))*dx \

- (1/k)*inner(u1 - u0, q*n)*ds

Pressure update
a3 = p*q*dx
L3 = p1*q*dx + psi*q*dx - nu*div(u1)*q*dx

case; that is, if ν < uh. In the diffusion dominated case, the parameters are set to δ1 = κ1h2
n and

δ2 = κ2h2
n. The constants κ1 and κ2 are here set to κ1 = 4 and κ2 = 2.

The discrete system of equations is solved by a direct fixed-point iteration between the velocity
and pressure equations obtained by setting the test functions q = 0 and v = 0, respectively. Note
that as a result of the stabilization, one obtains a Poisson equation for the pressure involving the
stabilization parameter δ1. The G2 scheme is summarized in Scheme 5 and the implementation is
shown in Figure 22.4.

22.3.5 A saddle-point solver for a pure Galerkin discretization (GRPC)

Finally, we test a scheme based on a pure space-time Galerkin finite element discretization of
the incompressible Navier–Stokes equations and iterative solution of the resulting saddle-point
system. The saddle-point system is obtained by testing the momentum equation (22.1) against
a test function v ∈ Vh and the continuity equation (22.2) against a test function q ∈ Qh and
integrating over Ω× [tn−1, tn]. This corresponds to a space-time discretization using continuous
piecewise quadratic and linear polynomials in space (for Vh and Qh, respectively), and continuous
piecewise linear polynomials in time (with discontinuous piecewise constant test functions in time).
Integrating the stress term by parts, one obtains the following variational problem: find (un

h , pn
h) in

Vh ×Qh such that

1
kn
〈un

h − un−1
h , v〉+ 〈∇un− 1

2
h un− 1

2
h , v〉+ 〈σ(un− 1

2
h , pn

h), ε(v)〉 − 〈ν(∇un− 1
2

h)> · n, v〉∂Ω + 〈 p̄n, v〉 = 〈 f , v〉,

(22.27)

〈∇ · un− 1
2

h , q〉 = 0,
(22.28)

22.3. SOLVERS 415

Scheme 5: G2

1. Compute stabilization parameters δ1 and δ2.

2. Repeat until convergence:

(a) Update the pressure pn
h by solving

〈∇pn
h ,∇q〉 = −〈∇ · un

h /δ1, q〉 ∀ q ∈ Qh, (22.25)

including any boundary conditions for the pressure.

(b) Update the velocity un
h by solving

〈Dn
t uh, v〉+ 〈∇un

n · w, v〉+ 〈σ(un− 1
2

h , pn
h), ε(v)〉 − 〈ν(∇un− 1

2
h)>n, v〉∂Ω + 〈 p̄n, v〉∂Ω

+〈δ1∇un− 1
2

h · w,∇v · w〉+ 〈δ2∇ · un− 1
2

h ,∇ · v〉 = 〈 f n, v〉
(22.26)

for all v ∈ Vh, including any boundary conditions for the velocity. Here, un− 1
2

h = (un
h +

un−1
h)/2, p̄ is a given boundary condition for the pressure, and w is an approximation

of the velocity un
h from the previous iteration.

(c) Compute a piecewise constant approximation w of un
h .

(d) Compute the residuals of the momentum and continuity equations and check for
convergence.

Figure 22.4: Implementation of varia-
tional forms for the G2 solver. Python code

Velocity system
U = 0.5*(u0 + u)
P = p1
Fv = (1/k)*inner(u - u0, v)*dx \

+ inner(grad(U)*W, v)*dx \
+ inner(sigma(U, P, nu), epsilon(v))*dx \
- beta*nu*inner(grad(U).T*n, v)*ds \
+ inner(pbar*n, v)*ds \
- inner(f, v)*dx \
+ d1*inner(grad(U)*W, grad(v)*W)*dx \
+ d2*div(U)*div(v)*dx

av = lhs(Fv)
Lv = rhs(Fv)

Pressure system
ap = inner(grad(p), grad(q))*dx
Lp = -(1/d1)*div(u1)*q*dx

Projection of velocity
aw = inner(w, z)*dx
Lw = inner(u1, z)*dx

416CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Scheme 6: GRPC

1. Repeat until convergence:

(a) Assemble the residual vector RU of the momentum equation.

(b) Update the velocity vector U according to

U := U − K−1RU . (22.30)

(c) Assemble the residual vector RP of the continuity equation.

(d) Update the pressure vector P according to

P := P− τ1L−1
1 RP − τ2L−1

2 RP. (22.31)

where un− 1
2

h = (un
h + un−1

h)/2 and p̄ is a given boundary condition for the pressure. The resulting
algebraic system of equations takes the form

[
M + ∆tN(U) ∆tB

∆tBT 0

] [
U
P

]
=

[
b
0

]
, (22.29)

where U and P are the vectors of degrees of freedom for un
h and pn

h , respectively, M is the mass
matrix, N is a convection–diffusion operator (depending on Un), B is the discrete gradient, and b is
a vector depending on the solution on the previous time step, body forces and boundary conditions.
Notice that we have multiplied the incompressibility constraint by ∆t to obtain symmetry in case
when N is symmetric.
To solve this system of equations, we employ an algebraic splitting technique sometimes referred
to as generalized Richardson iteration on the pressure Schur complement (GRPC) [Turek, 1999].
The convergence of this method depends critically on the efficiency of two preconditioners, K
and L. The preconditioner K should approximate M + ∆tN, while L should approximate the
pressure Schur complement BT(M + ∆tN)−1B. It is well known that if an explicit scheme is used
for convection, then order-optimal solution algorithms for both M + ∆tN and BT(M + ∆tN)−1B
are readily available [Cahouet and Chabard, 1988, Turek, 1999, Mardal and Winther, 2004, 2011].
In fact L−1 ≈ ∆tM−1

Q + A−1
Q , where MQ and AQ are the mass and stiffness matrices associated

with the pressure discretization. Hence, we let L1 = 1
∆t MQ and L2 = AQ and approximate L−1

by τ1L−1
1 + τ2L−1

2 . For simplicity, we here let τ1 = τ2 = 2. For a further discussion on these
preconditioners, we refer to the Chapter 37. In the implementation, we have chosen to exclude
the convective term in the preconditioners K and L to avoid reassembly. The GRPC scheme is
summarized in Scheme 6 and the implementation is shown in Figure 22.5.

22.4 Test problems and results

To test the accuracy and efficiency of Schemes 1–6, we apply the schemes to a set of test problems.
For each test problem, we make an ad hoc choice for how to measure the accuracy; we either
measure the error in a certain functional of interest or a norm of the global error. The choice
of test problems and functionals clearly affects the conclusions one may draw regarding the
schemes. However, together the six test problems should give a good indication of the accuracy
and efficiency of the tested schemes. We emphasize that all schemes have been implemented in the

22.4. TEST PROBLEMS AND RESULTS 417

Python code
Velocity and pressure residuals
U = 0.5*(u0 + u1)
P = p01
Ru = inner(u1 - u0, v)*dx \

+ k*inner(grad(U)*U, v)*dx \
+ k*inner(sigma(U, P, nu), epsilon(v))*dx \
- beta*k*nu*inner(grad(U).T*n, v)*ds \
+ k*inner(pbar*n, v)*ds \
- k*inner(f, v)*dx

Rp = k*div(U)*q*dx

Figure 22.5: Implementation of varia-
tional forms for the GRPC solver.

Problems Functionals / norms
Driven cavity, 2D Minimum of stream function at t = 2.5
Channel flow, 2D Velocity ux at (x, y) = (1, 0.5) at t = 0.5
Flow past a cylinder, 2D Pressure difference across cylinder at t = 8
Taylor–Green vortex, 2D Kinetic energy at t = 0.5
Beltrami flow, 3D Relative L2 error in velocity at t = 0.5
Idealized aneurysm, 3D Velocity ux at (x, y, z) = (0.025,−0.006, 0) at t = 0.05

Table 22.1: Summary of test problems.

same framework and with minor differences in their implementation to make a fair comparison.
All test problems represent laminar flow for small to moderate size Reynolds numbers in the range
1–1000. The test problems are listed in Table ??.

22.4.1 Common parameters

For all solvers, the time step is chosen based on an approximate CFL condition k = 0.2 h/U where
U is an estimate of the maximum velocity.
Comparisons of solvers are made by plotting the CPU time / seconds and error against the number
of degrees of freedom. Since all solvers except the G2 solver use the same type of discretization
(P2–P1), this is equivalent to plotting CPU times and errors against refinement level or mesh size
for those solvers. However, since the G2 method uses a P1–P1 discretization, the graphs will
change depending on whether the x-axis is given by the number of degrees of freedom or the
mesh size. In particular, the G2 method will seem slower (but at the same time more accurate)
when plotting against the number of degrees of freedom, while seeming to be faster (but at the
same time less accurate) when plotting against mesh size.
All simulations have been performed on a Linux cluster on a single node with 8 GB of memory.
The test problems have been solved several times and the recorded CPU times have been compared
with previous runs to ensure that the results are not influenced by any “noise”.
To ensure accurate solution of linear systems, the absolute and relative tolerances for the DOLFIN
(PETSc) Krylov solvers were set to 1e-25 and 1e-12, respectively. In all cases, the velocity system
was solved using GMRES with ILU preconditioning, and the pressure system was solved using
GMRES with an algebraic multigrid preconditioner (Hypre). For the iterative methods G2 and
GRPC, the tolerance for the main iteration was set to a value between 1e-6 to 1e-12 with higher
values in cases where the convergence was slow (or non-existent).

418CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Python code
class BoundaryValue(Expression):

def eval(self, values, x):
if x[0] > DOLFIN_EPS and \

x[0] < 1.0 - DOLFIN_EPS and \
x[1] > 1.0 - DOLFIN_EPS:
values[0] = 1.0
values[1] = 0.0

else:
values[0] = 0.0
values[1] = 0.0

Figure 22.6: Implementation of veloc-
ity boundary conditions for the driven
cavity test problem.

22.4.2 Driven cavity (2D)

A classical benchmark problem for fluid flow solvers is the two-dimensional lid-driven cavity
problem. We consider a square cavity with sides of unit length and kinematic viscosity ν = 1/1000.
No-slip boundary conditions are imposed on each edge of the square, except at the upper edge
where the velocity is set to u = (1, 0). Figure 22.6 shows the implementation of these boundary
conditions in DOLFIN. The initial condition for the velocity is set to zero. The resulting flow is a
vortex developing in the upper right corner and then traveling towards the center of the square as
the flow evolves.
As a functional of interest, we consider the minimum value of the stream function at final
time T = 2.5. Reference values for this functional are available in Pandit et al. [2007], where a
reference value of min ψ = −0.0585236 is reported, and in Chudanov et al. [2007], where a value of
min ψ = −0.058048 is reported. These values differ already in the third decimal. To obtain a better
reference value, we have therefore computed the solution using the spectral element code Semtex
[Blackburn, 2011, Blackburn and Sherwin, 2004] with up to 80× 80 10th order elements heavily
refined in the area in the vicinity of the minimum of the stream function. The time-stepping
for computing the reference solution was handled by a third order implicit discretization, and
a very short time step was used to minimize temporal errors. The resulting reference value for
the minimum of the stream function was min ψ = −0.061076605. This value differs remarkably
much from the available reference values in the literature, but seems to be correct judging from the
convergence plots for the different solvers in Figure 22.8.

Computing the stream function. The stream function is defined as

ux =
∂ψ

∂y
, uy =

∂ψ

∂x
, (22.32)

and can be computed by solving the Poisson problem

−∇2ψ = ω, (22.33)

where ω is the vorticity given by

ω =
∂ux

∂y
− ∂uy

∂x
. (22.34)

For a more thorough description, see White [1999] or White [1991]. Figure 22.7 shows how to
compute the stream function in DOLFIN.

22.4. TEST PROBLEMS AND RESULTS 419

Figure 22.7: Computing the stream
function in DOLFIN. Python code

Define variational problem
V = u.function_space().sub(0)
psi = TrialFunction(V)
q = TestFunction(V)
a = dot(grad(psi), grad(q))*dx
L = dot(u[1].dx(0) - u[0].dx(1), q)*dx

Define boundary condition
g = Constant(0)
bc = DirichletBC(V, g, DomainBoundary())

Compute solution
problem = VariationalProblem(a, L, bc)
psi = problem.solve()

Results. Figure 22.8 shows the results for the driven cavity test problem. The smallest errors are
obtained with the Chorin and GRPC schemes. The GRPC solver is also the slowest solver. We
further observe a clear difference between CSS1 and CSS2.

22.4.3 Pressure-driven channel flow (2D)

As a second test problem, we seek the solution of the Navier–Stokes equations in a two-dimensional
pressure-driven channel. The geometry of the channel is the unit square [0, 1]2 and the kinematic
viscosity is ν = 1/8. No-slip boundary conditions are applied to the velocity at the upper and
lower walls, and Neumann boundary conditions are applied at the inlet and outlet. Dirichlet
boundary conditions are applied to the pressure at the inlet and outlet, with p = 1 at the inlet and
p = 0 at the outlet. The initial condition is u = (0, 0) for the velocity. As a functional of interest,
we consider the x-component of the velocity at (x, y) = (1, 0.5) at final time T = 0.5. By a Fourier
series expansion, it is easy to show that the exact value of the velocity at this point is given by

ux(1, 0.5, t) = 1−
∞

∑
n=1,3,...

32
π3n3 e−

π2n2t
8 (−1)(n−1)/2. (22.35)

At final time T = 0.5, this values is ux(1, 0.5, 0.5) ≈ 0.44321183655681595.

Results. Figure 22.9 shows the results for the pressure-driven channel test problem. Again, the
smallest error is obtained with the GRPC solver closely followed by the IPCS solver. The W-shaped
curve for the G2 solver is an effect of the P1–P1 discretization which results in a vertex located at
(x, y) = (1, 0.5) only for every other refinement level.

22.4.4 Taylor–Green vortex (2D)

As our next test problem, we consider the Taylor–Green vortex described in Canuto et al. [2007],
which is a periodic flow with exact solution given by

u(x, y, t) =(cos(πx) sin(πy)e−2tνπ2
, cos(πy) sin(πx)e−2tνπ2

),

p(x, y, t) =− 0.25(cos(2πx) + cos(2πy))e−4tνπ2
,

(22.36)

420CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Figure 22.8: Results for the driven cav-
ity test problem.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Driven cavity

0 100000 200000 300000 400000 500000 600000
0

10000

20000

30000

40000

50000

60000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
3

10
4

10
5

10
6

Degrees of freedom

10
-5

10
-4

10
-3

10
-2

Er
ro

rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

22.4. TEST PROBLEMS AND RESULTS 421

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Channel

0 100000 200000 300000 400000 500000 600000
0

5000

10000

15000

20000

25000

30000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
2

10
3

10
4

10
5

10
6

Degrees of freedom

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Er
ro

rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

Figure 22.9: Results for the pressure-
driven channel test problem.

422CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Figure 22.10: Implementation of pe-
riodic boundary conditions for the
Taylor–Green vortex test problem.

Python code
class PeriodicBoundaryX(SubDomain):

def inside(self, x, on_boundary):
return x[0] < (-1.0 + DOLFIN_EPS) and \

x[0] > (-1.0 - DOLFIN_EPS) and \
on_boundary

def map(self, x, y):
y[0] = x[0] - 2.0
y[1] = x[1]

class PeriodicBoundaryY(SubDomain):
def inside(self, x, on_boundary):

return x[1] < (-1.0 + DOLFIN_EPS) and \
x[1] > (-1.0 - DOLFIN_EPS) and \
on_boundary

def map(self, x, y):
y[0] = x[0]
y[1] = x[1] - 2.0

Figure 22.11: An illustration of the ini-
tial conditions for the Taylor–Green
vortex test problem: the velocity field
with vectors to the left and the corre-
sponding pressure field to the right.

on the domain [−1, 1]2. The kinematic viscosity is set to ν = 1/100. Periodic boundary conditions
are imposed in both the x and y directions. The implementation of these boundary conditions in
DOLFIN is shown in Figure 22.10. The initial velocity and pressure fields are shown in Figure 22.11.
As a functional of interest, we measure the kinetic energy K = 1

2‖u‖2
L2 at final time T = 0.5.

Results. Figure 22.12 shows the results for the Taylor–Green test problem. The smallest error
is obtained with the IPCS solver. For this test problem, the G2 solver is overly dissipative and
produces an error which is six orders of magnitude larger than that of the IPCS solver.

22.4.5 Flow past a cylinder (2D)

We next consider a test problem from Turek [1996], which is a two-dimensional cylinder submerged
into a fluid and surrounded by solid walls as illustrated in Figure 22.13. The cylinder is slightly
displaced from the center of the channel, and the resulting flow is a vortex street forming behind
the cylinder. No-slip boundary conditions are applied to the cylinder as well as the upper and
lower walls of the channel. A zero Dirichlet boundary condition is imposed on the pressure at the
outlet. The inflow velocity is a time-varying parabolic profile given by

u(0, y, t) = (4Umy(H − y) sin(πt/8)/H4, 0), t 6 8, (22.37)

22.4. TEST PROBLEMS AND RESULTS 423

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Periodic

0 100000 200000 300000 400000 500000 600000
0

10000

20000

30000

40000

50000

CP
U

 t
im

e

Chorin
CSS1
IPCS
G2
CSS2

10
3

10
4

10
5

10
6

Degrees of freedom

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Er
ro

rs

Chorin
CSS1
IPCS
G2
CSS2

Figure 22.12: Results for the Taylor–
Green vortex test problem.

424CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Figure 22.13: Illustration of the veloc-
ity field for the cylinder test problem
at t = 5.

where Um = 1.5 and H = 0.41. The kinematic viscosity is ν = 1/1000. As a functional of interest,
we consider the pressure difference between the front and back of the cylinder at final time T = 8;
that is,

∆p = p(0.45, 0.2, 8)− p(0.55, 0.2, 8). (22.38)

A reference value −0.11144 for this functional was obtained using the IPCS solver on a mesh that
was approximately of twice the size (in terms of the number of cells) as the finest mesh used in the
test, with a time step of approximately half the size of the finest used time step.

Results. Figure 22.14 shows the results for the cylinder test problem. The smallest error is obtained
with the GRPC solver closely followed by CSS2 and IPCS. It is interesting to note that for this test
problem, the CSS2 solver is also the fastest.

22.4.6 Beltrami flow (3D)

We next consider a problem described in Ethier and Steinmann [1994], where an exact fully three-
dimensional solution of the Navier–Stokes equations is derived. The flow is a so-called Beltrami
flow, which has the property that the velocity and vorticity vectors are aligned. The domain is a
cube with dimensions [−1, 1]3. The exact velocity is given by

u(x, y, z, t) =− a[eax sin(ay + dz) + eaz cos(ax + dy)]e−d2t,

v(x, y, z, t) =− a[eay sin(az + dx) + eax cos(ay + dz)]e−d2t,

w(x, y, z, t) =− a[eaz sin(ax + dy) + eay cos(az + dx)]e−d2t,

(22.39)

and the exact pressure is given by

p(x, y, z, t) = −a2e−2d2t
(

e2ax + e2ay + e2az
) (

sin(ax + dy) cos(az + dx)ea(y+z)

+ sin(ay + dz) cos(ax + dy)ea(x+z) + sin(az + dx) cos(ay + dz)ea(x+y)
)

. (22.40)

The solution is visualized in Figure 22.15. The constants a and d may be chosen arbitrarily and
have been set to a = π/4 and d = π/2 as in Ethier and Steinmann [1994]. The kinematic viscosity
is ν = 1. To measure the error, we compute the L2 norm of the error in the velocity field at final
time T = 0.5 divided by the L2 norm of the exact solution as in Ethier and Steinmann [1994].

Results. Figure 22.16 shows the results for the Beltrami test problem. The smallest errors are
obtained with the GRPC solver, while the largest errors are obtained with the CSS1 solver.

22.4. TEST PROBLEMS AND RESULTS 425

0 10000 20000 30000 40000 50000
0

10000

20000

30000

40000

50000

60000

70000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

CSS2
CSS1
G2
GRPC
Chorin
IPCS

0 10000 20000 30000 40000 50000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Er
ro

rs

10
4

Degrees of freedom

10
-4

10
-3

10
-2

10
-1

Er
ro

rs

Figure 22.14: Results for the cylinder
test problem.

Figure 22.15: Solution of the Beltrami
flow test problem.

426CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Figure 22.16: Results for the Beltrami
flow test problem.

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Beltrami

0 200000 400000 600000 800000

0

5000

10000

15000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
3

10
4

10
5

10
6

Degrees of freedom

10
-4

10
-3

10
-2

Er
ro

rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

22.5. SUMMARY OF RESULTS 427

Figure 22.17: Velocity magnitude for
the aneurysm test problem sliced at
the center at final time T = 0.05 ms.

22.4.7 Aneurysm (3D)

Finally, we consider an idealized model of an artery with a saccular aneurysm (see Chapter 28).
The diameter of the artery is set to 4 mm and the length is set to 50 mm. The aneurysm is of
medium size with a radius of 2.5 mm. Inserting the density and viscosity of blood and suitably
scaling to dimensionless quantities, we obtain a kinematic viscosity of size ν = 3.5/(1.025 · 103) ≈
3.4146 · 10−6. The geometry and flow at the final time T = 0.05 (ms) are shown in Figure 22.17.
We impose no-slip boundary conditions on the vessel walls. At the inlet, we set the velocity
to u(x, y, z, t) = sin(30t) (1− (y2 + x2)/r2) where r = 0.002 (mm). At the outlet, we enforce a
zero Dirichlet boundary condition for the pressure. As a functional of interest, we consider the
x-component of the velocity at the point (x, y, z) = (0.025,−0.006, 0) (mm) located inside the
aneurysm at final time T = 0.05 (ms). A reference value −0.0355 (mm/ms) for this functional was
obtained using the IPCS solver on a fine mesh.

Results. Figure 22.18 shows the results for the aneurysm test problem. Reasonable convergence
is obtained for all solvers except the G2 solver which does not seem to converge towards the
computed reference value.

22.5 Summary of results

To summarize the results for all solvers and test problems, we plot all timings and errors in a
single scatter plot. The rationale behind the plot is to get an indication of which solver(s) is the
most accurate and efficient. Each data point in the plot is the result of solving one of the above test
problems using one particular solver on one particular refinement level. To be able to compare
different test problems (which vary in simulation time and size of error), the CPU time is scaled by
the average CPU time for all solvers on each refinement level and the errors are scaled similarly. We
also scale CPU times and errors by the number of degrees of freedom (total number of unknowns
for both velocity and pressure). The resulting scatter plot is shown in Figure 22.19. An ideal solver
(which is both fast and accurate) should be located in the lower left corner of this plot.
As can be seen in Figure 22.19, the Chorin, CSS1 and CSS2 solvers have an average performance
and are mostly clustered around the center of mass of the scatter plot. The G2 solver is mainly
located in the upper right corner. The results for the IPCS solver are less clustered, but it is the
solver with most points located in the lower left corner. The GRPC solver is mostly located in the

428CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Figure 22.18: Results for the aneurysm
test problem.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Aneurysm

0 50000 100000 150000 200000 250000 300000 350000 400000
0

10000

20000

30000

40000

50000

60000

70000

CP
U

 t
im

e

CSS2
CSS1
G2
GRPC
Chorin
IPCS

10
4

10
5

10
6

Degrees of freedom

10
-4

10
-3

10
-2

Er
ro

rs

CSS2
CSS1
G2
GRPC
Chorin
IPCS

22.5. SUMMARY OF RESULTS 429

-3 -2 -1 0 1
Scaled CPU time

-10

-5

0

Sc
al

ed
 e

rr
or

Solver performance

CSS2

CSS1

G2

GRPC

Chorin

IPCS

Figure 22.19: Scatter plot summarizing
the results for all test problems and
solvers (logarithmic scale).

430CHAPTER 22. A COMPARISON OF SOME FINITE ELEMENT SCHEMES FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

lower right corner of the scatter plot. This indicates that the GRPC solver is accurate but expensive.

22.6 Discussion

22.6.1 Numerical boundary layers

As pointed out in Guermond et al. [2006], the fractional step solvers are usually plagued by
an artificial boundary layer, because the boundary condition ∇pn

h · n|∂Ω = 0 is enforced on the
pressure. This ’unphysical’ Neumann boundary condition can create a numerical boundary layer
simply because the velocity update un

h = un−1 − ∆t∇pn
h may lead to non-zero velocities in the

tangential direction on no-slip walls (this follows since there is nothing preventing the pressure
gradient from being non-zero in the tangential direction). However, in this work the velocity is
being updated through a weak form where the no-slip boundary condition is strongly enforced.
As such, the tangential velocity is set to zero and an artificial boundary layer is not observed in
our simulations using the fractional step solvers Chorin and IPCS.

22.6.2 Time discretization

For the channel test problem, the convective term is zero and the discretization of the diffusive
term is of particular importance. A formally second-order accurate in time Crank–Nicolson type
scheme for the viscous term will in general improve the accuracy over the merely first-order
explicit or fully implicit schemes. This is why the GRPC, IPCS and G2 solvers perform well on this
problem. The channel test problem is the problem where G2 performs best relative to the other
solvers, which could also be attributed to the fact that both stabilization terms in the momentum
equation of G2 are zero for this flow.

22.7 Conclusions

From the scatter plot in Figure 22.19, we conclude that the IPCS solver is overall the most efficient
and accurate method. Another advantage of the IPCS method is that it is easy to implement and
does not require the iterative solution of a nonlinear system in each time step. The GRPC method
(straightforward standard finite element Galerkin discretization) also obtains high accuracy, but
does not deliver the same speed. It is possible that better tuning of the iterative solution of the
saddle-point system would change this picture.

23 Simulation of transitional flows
By Mikael Mortensen, Kent-Andre Mardal and Hans Petter Langtangen

The purpose of this work is to validate Navier–Stokes (NS) solvers implemented in FEniCS
for unstable, transitional flows. Solvers for the NS equations have already been discussed in
Chapter 22 for laminar flows. In this chapter, focus is put more directly on flow energy and
energy conservation, features of primary importance in turbulence applications. We emphasize the
treatment of the nonlinear convection term, where various forms (standard, divergence and skew-
symmetric) are implemented and tested for both accuracy and stability. The algorithm chosen to
advance the momentum and pressure in time is a fractional step approach that is memory efficient,
but incurs a splitting error due to the uncoupling of velocity and pressure. The significance of
this splitting error is validated through comparison with a more accurate fully coupled solver
that, due to its higher memory cost, is less suited for large-scale turbulence applications. The
performance of the solvers is validated with the one-dimensional Burger’s equation, the Orr–
Sommerfeld perturbation in two dimensions and finally the full-blown three-dimensional unstable
and transitional Taylor–Green vortex.
The solvers and problems are implemented to fit into the problem solving environment described
in the benchmark Chapter 22.

23.1 Background

The Navier–Stokes (NS) equations (directly derivable from Newton’s second law utilizing the
continuum hypothesis) represent a differential form of the principle of conservation of mass and
momentum. They govern both laminar and turbulent fluid motion in three-dimensional space and
time for incompressible and compressible fluids. There are generally no closed form analytical
solutions to the NS equations and the study of fluid dynamics thus relies heavily on numerical
solutions.
For incompressible Newtonian fluids the NS equations read

∂u
∂t

+∇u u = ν∇2u− 1
ρ
∇p + f , (23.1)

∇ · u = 0. (23.2)

Here u(x, t) is the velocity vector, x is the Cartesian coordinate vector, ν the kinematic viscosity
(µ/ρ), ρ density, µ molecular viscosity, p(x, t) pressure, and the volumetric body forces is repre-
sented with f (the gravitational force or the Coriolis forces associated with the imposition of frame
rotation). In the absence of viscosity the principle of conservation of energy can also (in addition
to mass and momentum) be directly imposed on the NS equations. This particular property is

431

432 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

especially important for turbulent flows, since a fundamental feature of turbulence is that kinetic
energy is extracted from the flow system and eventually converted into internal energy (heat) by
the action of viscosity (rate of dissipation). The largest and most energetic turbulence structures are
primarily responsible for efficient mixing of momentum and other scalars. These structures are by
a series of instability processes broken down to smaller and smaller spatial scales and eventually
dissipated into heat. The conservation of kinetic energy (in the absence of viscosity) is thus an
important feature of turbulent fluid flows which is formally consistent with the NS equations.
Unfortunately, though, this feature is not necessarily retained by the numerical scheme used to
solve the discretized NS equations numerically. A numerical method can be both dissipative and
dispersive, recognized for example by the order of the derivative in the truncation error of Taylor
expansions. A numerical scheme with even order derivatives in truncated terms is dissipative,
whereas odd derivatives lead to dispersion.
The often used terminology Direct Numerical Simulations (DNS) should be understood as the
three-dimensional and time dependent numerical simulations of the NS equations that resolve
all information (all turbulence scales) and that have negligible numerical dissipation (artificial
viscosity) and dispersion. For this reason DNS are often performed with highly accurate spec-
tral (Fourier) methods [Canuto et al., 2007] in homogeneous flows or higher-order central finite
differences or spectral element methods [Blackburn, 2011] for more geometrical flexibility in inho-
mogeneous flows. The results of carefully executed DNS have in the fluid mechanics community
the same status as carefully executed experiments. Unfortunately, DNS are very demanding of
computer resources. A good part of the expense is incurred in capturing the smallest scales of
turbulence; that is, the scales that are responsible for dissipating energy. Yet another complication
in non-periodic flows is to describe inflow and outflow boundary conditions that are consistent
with the NS equations.
The computational cost of DNS can (at the expense of accuracy in computed statistics) be reduced
by capturing only the largest scales and using a dissipative model in place of the smaller eddies (to
try and make up for the loss of accuracy). This method is referred to as Large Eddy Simulations
(LES) and it too requires the three-dimensional and time dependent solution. The dissipative
model introduces into the NS equations something that is no longer physically exact. However, to
the extent that the dissipative model does not contaminate the large scales, LES can provide NS
simulations from which statistics may be obtained with satisfactory accuracy for many purposes.
However, the results depend inherently on the grid, because the grid independent solution is
nothing but the DNS solution that one in most cases cannot afford. The art of LES is simply to
find the best possible compromise between efficiency and accuracy.
It should be mentioned that some practitioners of LES use numerical dissipation to model the
unresolved physical dissipation (see the review of implicit LES given by Grinstein et al. [2007]). In
this paper, though, we will only consider central numerical schemes with little or no dissipation
applicable for DNS and regular LES.
Turbulent flows and the physical mechanisms responsible for transition to turbulence from a
laminar flow are not very well understood and has been the source of extensive research for
centuries. At the turn of the 19’th century Osbourne Reynolds discovered that for cylindrical pipes
the transition to turbulence occurred at a Reynolds number of 2300 (Re = U · h/ν, where U is the
average velocity and h half the pipe diameter). Later, with very carefully executed experiments
in highly smooth pipes, scientists have been able to increase this number considerably, revealing
that velocity is not really the triggering factor, even though there clearly is a strong correlation
(follows since as the Reynolds number increases, the stabilizing viscous damping term becomes
comparatively less than the unstable nonlinear convection term.) Another example of transition
can be found in the wakes downstream bluff bodies placed in an incoming laminar flow. Here the

23.2. NUMERICAL METHOD AND ENERGY CONSERVATION 433

transition is promoted by the strong shear layer formed by the recirculation region aft the body.
In any case, in order for transition to occur, imposed disturbances triggered by obstacles, sudden
pressure fluctuations, or even a sound waves, must grow and become unstable and finally chaotic.
By introducing systematic perturbations of the NS equations one can study these phenomena and
watch how they experience resonance and grow or gracefully die. Here, the numerical scheme
will be of utmost importance to the experiment, because a dissipative scheme will damp (kill) the
imposed perturbations.
The most famous early work aimed to study perturbations of the NS equations was conducted
more than 100 years ago by William McFadden Orr and Arnold Sommerfeld. The epitome
of their analytical work is the celebrated Orr–Sommerfeld equation, which is an eigenvalue
problem describing the linear two-dimensional modes of disturbance to a viscous parallel shear
flow. Although the Orr–Sommerfeld equation only represents one simplified class of laminar-to-
turbulence transition, it nevertheless constitutes a powerful method to assess numerical schemes
since it provides an analytical transient solution to the NS equations that remains non-trivial for
long integration times. The Orr–Sommerfeld test case will be further discussed in Sec. 23.3.2,
but first we need to turn our attention to the NS solvers, the numerical methods, and their
implementation in FEniCS.

23.2 Numerical method and energy conservation

In this section we will discuss both the spatial and temporal discretizations of the Navier–Stokes
(NS) equations, and special attention will be focused on the nonlinear convection term. Further-
more, since the NS equations represent a system of equations, we will discuss both a fully coupled
method where u and p are solved simultaneously and a fractional step method that solves for the
pressure and velocity in a segregated manner. We also outline the implementation in FEniCS, and
some optimization techniques that can speed up the code significantly.

23.2.1 Convection

Let Ω ⊂ Rd be an open and bounded region in Rd, where d is the number of spatial dimensions,
with smooth boundary Γ and points denoted by x ∈ Ω = Ω ∪ Γ. The L2(Ω) inner product of
vectors or matrix fields on Ω is then denoted as

〈a, u〉 =
∫

Ω
a · u dx, (23.3)

where a and u are arbitrary vector fields on Ω. Furthermore, let L2 be the space of square integrable
functions and denote by Z the subspace of divergence-free vector fields.
Let the convection of any vector field be written in general form as B(u, a). Here, u is the convecting
velocity, while a is the convected vector field. Then the standard convective term,

B(u, a) = ∇a u, (23.4)

can be multiplied by the vector b and integrated by parts to yield

〈B(u, a), b〉 = −〈a, B(u, b)〉 − 〈B(a, u), b〉+
∫

Γ
(b · a) (u · n) dΓ. (23.5)

If we for simplicity assume homogeneous Dirichlet boundary conditions the last term falls.
Furthermore, if the velocity is divergence free (u ∈ Z), the following result can be obtained for the

434 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

standard convection form
〈B(u, a), b〉 = −〈a, B(u, b)〉. (23.6)

This equation implies that if the standard convective form is adopted and ∇ · u, then

〈B(u, a), a〉 = 0, (23.7)

for any choice of a (follows by setting b = a in (23.6)). This is an important and necessary result
for conservation of kinetic energy. This observation is perhaps more transparent if we rewrite the
convective term to show that it in fact represents transport of kinetic energy:

(B(u, u), u) =
∫

Ω
(∇u u) · u dx =

∫

Ω
u · ∇K(u)dx = B(u, u · u), (23.8)

where K(u) is the (specific) kinetic energy of the fluid flow defined as

K(u) =
1
2

u · u. (23.9)

The result (23.8) means that the integral contribution from the convection of momentum to the
accumulation of kinetic energy will be zero.

There are several alternative representations of the convective term. The divergence form

B(u, a) = ∇ · (u⊗ a) (23.10)

follows from the standard simply by utilizing the divergence constraint. And the well-known
skew-symmetric (or just skew) form is simply a combination of the standard and divergence forms

B(u, a) =
1
2
[∇a u ·+∇ · (u⊗ a)] . (23.11)

It can easily be shown, by multiplying (23.11) with a and integrating by parts, that the skew-
symmetric form of (23.11) ensures that (23.7) holds for any velocity field u ∈ L2, and not just the
divergence free u ∈ Z. This is an important result, because in fractional step (projection) methods
for the NS equations the divergence constraint is not always fulfilled, at least not for intermediate
velocity fields. With the skew-form it is ensured that this divergence flaw does not propagate and
contaminate the (of primary importance) kinetic energy of the flow.

23.2.2 Kinetic energy

A dynamic equation for K(u) can be derived from (23.1) simply through taking the scalar product
of the momentum equation and u, and thereafter rearranging using the divergence constraint to
arrive at

∂K(u)
∂t

+∇ · [uK(u)] = ν∇2K(u)− ν∇u : ∇u− 1
ρ
∇ · (up) + f · u. (23.12)

The second term on the right hand side represents dissipation of kinetic energy and the role of the
remaining terms (neglecting body forces) is simply to transport K(u) within the computational
domain. This is made perfectly clear if (23.12) is integrated over the domain, neglecting body
forces and making use of boundary conditions (all terms that can be written as divergences will
then fall, because of the divergence theorem). The well-known identity for the rate of change of

23.2. NUMERICAL METHOD AND ENERGY CONSERVATION 435

total kinetic energy is obtained (see Simo and Armero [1994])

dK
dt

= −ν
∫

Ω
∇u : ∇u dx, K =

∫

Ω
K(u)dx. (23.13)

Evidently, since ν ≥ 0, energy should decay and not be created within the domain. For inviscid
flows (Euler equations) ν = 0, transport is merely through the convective term and dK/dt = 0.
This means that as a consequence of NS equations, energy should be conserved through convective
transport and dissipated only through the action of viscosity.

23.2.3 Nature of discretization schemes

There are numerous examples of numerical schemes that dissipates energy. The most familiar in
fluid mechanics are probably the stabilizing upwinding-schemes (favored in many commercial
software packages for their robustness) and streamline diffusion methods in finite element for-
mulations. In general, numerical schemes that are asymmetric about the grid point (like upwind
schemes) are known to be both dissipative and dispersive, whereas central (symmetric) schemes
are non-dissipative, yet dispersive. Understanding the fundamental effects of dispersion and dissi-
pation/diffusion and their relation to numerical discretizations is a key issue when performing
the investigations of the present chapter. We shall therefore devote some space to illustrate the
basic mechanisms, which can be conveniently done by studying a one-dimensional conservation
equation

Dφ

dt
=

∂φ

∂t
+ v

∂φ

∂x
= 0, (23.14)

where v is constant velocity. The initial value is

φ(x, 0) = f (x). (23.15)

Equation (23.14) expresses pure non-dissipative transport in the direction of the x axis (if v > 0),
which means that the initial shape just moves with velocity v:

φ(x, t) = f (x− vt). (23.16)

An energy measure
∫ ∞
−∞ φ(x, t)2 dx remains obviously constant in time.

We can build an arbitrary shape of φ as a Fourier series and study the behavior of one Fourier
component. A complex Fourier component φ(x, t) = A exp (ik(x− ct)) is a solution of (23.14) for
an arbitrary amplitude A and frequency k, provided c = v. All such components move with
constant velocity v and the energy of each component is constant in time.
Many finite difference schemes for (23.14) also allow Fourier components as solutions. More
precisely, we have

φn
j = A exp (i(kx− c̃t)), (23.17)

where j counts grid points along the x axis and n counts time levels. Now, the numerical wave
velocity c̃ 6= v is a function of k, 4t, and ∆x. When c̃ is real, but deviates from the exact value v,
the Fourier component moves with slightly wrong velocity. This dispersion error gives rise to a
change of shape of the solution when we sum all components. If c̃ is complex, the imaginary value
will lead to an effective amplitude that either grows or decreases in time. A growth will make the
solution arbitrarily large for some large t, which is unphysical and hence ruled out as an unstable
numerical scheme. A decrease in amplitude can be tolerated physically, but the discrete energy
∑j |φn

j |2 decreases in time and the wave is said to dissipate. For this model problem, the error in c̃

436 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

usually depends on the non-dimensional Courant number C ≡ v4t/∆x.
Using a central difference in space and time for (23.14) results in a real c̃ if C 6 1. For C < 1 the
scheme is dispersive, but the discrete energy is conserved in time. Choosing C > 1 gives a complex
c̃ and a growing discrete Fourier component, which implies C 6 1 for numerical stability.
Looking at a forward scheme in time and upward scheme in space; that is, two asymmetric
differences, the numerical wave velocity c̃ becomes complex: c̃ = c̃r + ic̃i. The value of cr deviates
from the exact velocity v, implying dispersion, while the imaginary value ci is positive, giving rise
to a decreasing amplitude A exp (−ikcin4t) in time. This is a dissipative effect of the asymmetric
difference(s). With a decreasing amplitude of the various Fourier components, the integral of the
squared numerical solution will naturally decrease, and energy is lost.

23.2.4 A generic Navier–Stokes discretization

For the reasons explained above, central differences are usually favored in the solution of the
chaotic and transient velocity fields governed by the NS equations. Upwind schemes or stream-
line diffusion, on the other hand, are often used for Reynolds Averaged Navier–Stokes (RANS)
equations, where the kinetic energy is solved for through a separate PDE and not implied by the
computed deterministic mean velocity field. A Galerkin finite element method, where the basis
functions of the test and trial spaces are the same (modulo boundary conditions), will produce
discrete equations that correspond to central differencing in space. Therefore, we employ the
standard Galerkin method for spatial discretization. For the temporal discretization we will here
follow Simo and Armero [1994] and describe a family of solvers for the transient NS equations.
Let tn ⊂ R denote a discrete point in time. The velocity uk = u(x, tk) is known for k 6 n− 1,
k ∈ N, and we are interested in advancing the solution to un = u(x, tn). To this end we use the
following general algorithm

un − un−1

4t
= −B(ũ, u) + ν∇2un−α −∇pn−1/2 + fn−α (23.18)

∇ · un−α = 0, (23.19)

where
un−α = (1− α)un + αun−1, (23.20)

for α ∈ [0, 1]. The idea is to discretize all terms at the time level n− α. The nature of the time
difference over the interval 4t = tn − tn−1 depends on α. For α = 1/2 we have a centered scheme
in time, while α = 1 and α = 0 are fully explicit and fully implicit schemes, respectively. Note
that at any time the pressure can be determined from the velocity, and as such it is not directly a
function of time. However, since it appears only on the right hand side it is common to place the
pressure using a staggered grid in time; that is, the pressure is computed at tn−1/2, tn−3/2,
The convecting and convected velocity fields ũ and u in the B formula can be approximated in
various ways. The most obvious choice is ũ = u = un−α to be consistent with the other terms.
However, alternative choices may simplify the solution process. For example, ũ = u = un yields
in combination with α = 0 a consistent nonlinear backward Euler scheme. An explicit treatment
of the convection term is obtained by ũ = u = un−1. A linear implicit scheme requires that un is
present (linearly) in either ũ or u, but not in both.
In this work we will make use of one explicit and two implicit discretizations of the convection term
B. The explicit Adams-Bashforth scheme (23.21) below is chosen primarily because of its popularity
in the fluid mechanics community. The implicit schemes use a centered “Crank-Nicholson” time
discretization with α = 1/2 for the convected velocity, in combination with forward Euler (23.22)

23.2. NUMERICAL METHOD AND ENERGY CONSERVATION 437

and Adams-Bashforth projection (23.23) for the convecting velocity:

B(ũ, u) =
3
2

B(un−1, un−1)−
1
2

B(un−2, un−2), (23.21)

B(ũ, u) = B(un−1, un−α), (23.22)

B(ũ, u) = B(
3
2

un−1 −
1
2

un−2, un−α). (23.23)

The middle scheme (23.22) is merely first order, whereas the remaining two are second order
accurate in time (see, for instance, Figure 3 in Simo and Armero [1994]).

Equations (23.18) and (23.19) contain (in three-dimensional space) four unknown fields and four
PDEs. Although the system of equations can be solved in the fully coupled way formulated in
(23.18) and (23.19), it is common to split the system into a set of simpler equations so that we
can compute the velocity and pressure separately. This class of approaches is often referred to as
fractional step methods.

The fundamental problem in (23.18) is that the pressure pn−1/2 is unknown. One approximation
is then to use the known pressure gradient ∇pn−3/2 from the previous time step as a first guess.
Then (23.18) can be solved for un. Unfortunately, this un will most likely not also fulfill (23.19).
Moreover, there is no obvious way to advance p to time tn−1/2. Still, we may correct the solution
of (23.18) found by using an old pressure. Let us denote this tentative or intermediate solution by
uI (I for intermediate). Its equation is

uI − un−1

4t
= −BI(ũ, u) + ν∇2((1− α)uI + αun−1)−∇pn−3/2 + fn−α. (23.24)

Note that in the expressions for B(ũ, u) we replace un by uI , which is why there is a superscript
placed on the B term.

We are now interested in correcting for the error un − uI . Subtracting the exact equation (23.18)
with α = 0 from (23.24) yields an estimate of the error:

un − uI
4t

= −∇Φ + B− BI + (1− α)∇2(un − uI), (23.25)

where Φ = pn−1/2 − pn−3/2 is a pressure correction. Note that for an explicit scheme with α = 1,
only the −∇Φ term remains on the right-hand side of (23.25) since in that case B = BI . Even
when α < 1 it is common to simply drop the terms B− BI + (1− α)∇2(un − uI). One therefore
considers the simplified equation

un − uI
4t

= −∇Φ, (23.26)

coupled with the requirement that the new velocity must fulfill ∇ · u = 0:

∇ · un = 0. (23.27)

We can easily eliminate un from (23.26) and (23.27) by solving for un in the former and inserting in
the latter. This procedure results in a Poisson equation for Φ:

∇2Φ = − 1
4t
∇ · uI . (23.28)

After solving this equation for Φ, we can finally update the velocity and pressure from (23.26) and

438 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

the definition of Φ:

un = uI −4t∇Φ, (23.29)

pn−1/2 = pn−3/2 + Φ. (23.30)

To summarize, the fractional step algorithm is to solve (23.24), (23.28), (23.29), and (23.30). The
latter two are trivial, the Poisson equation (23.28) is straightforward, and (23.24) is easy to step
forward if α = 1, otherwise we need to solve a potentially nonlinear convection-diffusion vector
equation. All of these equations are very much simpler than the original coupled problem
(23.18)–(23.19).
On particular advantage of the fractional step method is that it opens up for also decoupling the
vector equations (23.24) and (23.29). The latter can be updated pointwise, one velocity component
at a time. In a finite element context, however, values of ∇Φ at points where velocity degrees of
freedom are defined can be cumbersome to compute since ∇Φ is a discontinuous field. Solving
(23.29) by projection is then a viable alternative. Also in this case, we can take advantage of the
fact that (23.29) are three decoupled scalar equations, and solve each scalar equation separately.
The resulting linear system, involving a “mass matrix”, then has the size corresponding to a scalar
partial differential equation and not the triple size corresponding to the vector formulation in
(23.29).
With α = 1 in (23.24) the three component equations decouple so that we can solve one of them at
a time. In that case we get a linear system with a “mass matrix” as coefficient matrix, exactly as
when decoupling (23.29). For α < 1 the convective term may lead to coupling of the component
equations. Treating the convective term explicitly, but allowing implicitness in the viscosity term
implies decoupled component equations and a possibility to solve a scalar heat or diffusion
equation, with source terms, for each component separately. The size of coefficient matrices in the
decoupled cases is one third of the size for a coupled vector equation, leading to much less storage
and more efficient solutions.
The disadvantage of the fractional step method is that even though the resulting velocity field
should be divergence free due to the pressure correction (23.28), the corrected velocity field will
no longer satisfy the discretized momentum equation. This ’splitting error’ associated with the
fractional step method is known to be first or second order in time depending on whether the
pressure is explicitly included or not included at all in the first velocity step [Guermond et al.,
2006]. To eliminate the splitting error it is possible to iterate over the three steps, a practice that
is rarely followed for incompressible flows. Another formally superior approach, which will be
explored in this work, is to solve for the velocity and pressure simultaneously; that is, in a fully
coupled manner. Naturally, such a coupled solver incurs a much larger memory cost which makes
it less suitable for large-scale turbulence applications. However, there is no splitting error and
thus the method can in general take longer time steps and be particularly useful for validating
fractional step solvers.
The convective term contains two velocity fields ũ and u that are equivalent in the continuous NS-
formulation, but that may differ when discretized. As such, the convective term B(ũ, u) discussed
above can alternatively be implemented by switching convecting and convected velocities to
B(u, ũ), which on discretized form will differ from B(ũ, u). Nevertheless, recall that it is only the
first velocity field in B that needs to be divergence free for convection to be energy conservative.
Hence, since the velocity fields of previous time-steps are (nearly) divergence free, it is preferable
for fractional step methods to employ an explicit discretization (as in (23.21)-(23.23)) of the first,
convecting velocity. Furthermore, making the convecting velocity implicit introduces additional
coupling between the velocity components, which makes it less suitable for exploiting enhanced

23.2. NUMERICAL METHOD AND ENERGY CONSERVATION 439

computational efficiency through solving the component equations one by one.

Implementation in FEniCS The solvers and problems under investigation are implemented much
in the same way as described in the benchmark Chapter 22, but the naming convention for the
variables is somewhat different. Here we introduce u and p for the unknown velocity un and
pressure p in the variational formulation of the governing equations. The compound (u, p) field
is named up and defined on the composite space of the velocity and pressure spaces. Such a
compound field is needed in the fully coupled formulation. Both u and p are TrialFunction

objects, while up is of type TrialFunctions. An appended underscore indicates the most recently
computed approximation to u, p, and up: u_, p_, and up_, all of which are Function objects. The
velocities at previous time steps, un−1, un−2, . . ., are denoted by u_1, u_2, These are Function

objects. Similarly, p_1 represents the old (corresponding to pn−3/2) pressure (Function). The
quantities ũ and u are named u_tilde and u_bar, respectively, in the code. Below we only show
some key snippets from the FEniCS implementation.
Given a Mesh object mesh, a string mode describing the type of formulation of the convective term,
and Constant objects dt and nu for the time step and viscosity, the key steps in formulating the
variational problem for the coupled problem go as follows.

Python code
V = VectorFunctionSpace(mesh, "CG", 2) # velocity space

Q = FunctionSpace(mesh, "CG", 1) # pressure space

VQ = V * Q # composite space (Taylor-Hood element)

u, p = TrialFunctions(VQ)

v, q = TestFunctions (VQ)

up_ = Function(VQ)

up_1 = Function(VQ)

up_2 = Function(VQ)

u_, p_ = up_.split()

u_1, p_1 = up_1.split()

u_2, p_2 = up_2.split()

u_tilde = 1.5*u_1 - 0.5*u_2

u_bar = 0.5*(u + u_1)

F = inner(u - u_1, v)*dx + dt*nu*inner(grad(u_bar), grad(v))*dx + \

dt*conv(u_tilde, u_bar, v, mode)*dx - dt*inner(f, v)*dx - \

dt*inner(p, div(v))*dx + inner(div(u), q)*dx

a = lhs(F); L = rhs(F)

x_ = up_.vector() # unknown solution vector (u,p)

dx = Function(VQ) # correction vector in Newton system

Note that the unknown vector x_ in the nonlinear algebraic equations is just the vector of degrees
of freedom in the up_ finite element function so that up_ and x_ shares memory. Moreover, u_
and p_ are parts (views) of up_ and share memory with the latter and x_. That is, we can choose
between a linear algebra view x_ (vector of degrees of freedom) or a finite element function view
up_, or the velocity part u_ or pressure part p_ of up_ – in memory there is no duplication of
velocity and pressure data.
The three alternative versions of the convective term discussed in Section 23.2.1 have be imple-
mented in the method conv as

Python code
def conv(u_tilde, u_bar, v, mode=’standard’):

if (mode == ’standard’):

return inner(grad(u_bar)*u_tilde, v)

440 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

elif (mode == ’divergence’):

return inner(div(outer(u_bar,u_tilde)), v)

elif (mode == ’skew’):

return 0.5*(inner(grad(u_bar)*u_tilde, v) + \

inner(div(outer(u_bar, u_tilde)), v))

The fractional step Navier–Stokes solver is somewhat more elaborate than the fully coupled, since
there are more steps involved. The details of several fractional step solvers have already been given
in the benchmark Chapter 22, and are thus not repeated here.

23.2.5 Speed-up

The previous section presents the straightforward (or naive) implementation of a coupled vector
and scalar equation in FEniCS, using mixed finite elements. Examining the structure of the NS
equations, one realizes that many of the terms give rise to similar block matrices in the coefficient
matrix for the complete linear system. The linear system has size (nvd + np)× (nvd + np) if d is
the number of space dimensions, nv is the number of degrees of freedom for a velocity component
field, and np is the number of degrees of freedom for the pressure field. Several blocks of size
nv × nv are identical since there are three scalar time-derivative terms, giving rise to three identical
mass matrix blocks, and three scalar viscosity (or similarly convection) terms, giving rise to three
Laplacian “stiffness matrix” blocks. Moreover, these blocks are constant in time and do not have to
be reassembled every time step.
We could gain a potentially significant speed–up by exploiting the mentioned properties and
thereby avoid computing and assembling large parts of the total coefficient matrix. This is perhaps
not important for smaller 2D problems, but for larger 3D problems the naive implementation is
much slower than an algorithm exploiting the special structure of the NS equations. For CFD
practitioners using FEniCS this speed–up is significant and makes in fact the efficiency of a fairly
quickly homemade FEniCS-based NS solver compete with expensive, and much less flexible,
state-of-the-art CFD software. We shall therefore go through the relevant optimization steps here
in detail.

1. Split F into accumulation (∂u/∂t), convection (∇u u), and diffusion terms (ν∇2u), and take
advantage of the fact that for the total coefficient matrix it is only the nonlinear convection
term that needs to be reassembled at every time step. The matrices for the linear, constant-
in-time accumulation and diffusion terms can be assembled before going into the time
loop.

2. For known convecting velocity, the velocity components in the momentum equation (23.1) are
decoupled and can as such be solved for in a memory efficient segregated manner, treating
one component equation at a time with the same (small) coefficient matrix. An additional
requirement is that some old value of p is used, which makes this optimization relevant only
for velocity steps in a fractional step method.

3. In a fully coupled formulation, we can assemble small nv × nv matrices for a term in a
component equation and insert it into the relevant places in the total coefficient matrix. For
example, to assemble a convection matrix for one component, define a FunctionSpace for a
scalar velocity component from the vector space V by grabbing a component space Vc:

Python code
Vc = V.sub(0) # grab space for the 1st velocity component

uc = TrialFunction(Vc)

vc = TestFunction(Vc)

23.2. NUMERICAL METHOD AND ENERGY CONSERVATION 441

Fully coupled SegregatedConvection
Optimized Naive Optimized Naive

46/18 170/31 45/11 134/31
Explicit 23.21

(4.5/3.7) (11.3/122) (3.0/2.8) (8.3/81)

45/17 688/662 44/11 498/462
Implicit 23.23

(4.4/3.5) (10.5/628) (3.1/2.5) (8.5/434)

Table 23.1: CPU times (total/inside time loop) for the fully coupled and segregated solvers using two different
convection schemes in the Taylor Green problem. For each solver the first two numbers represent total
time and time spent in the solver loop. Numbers in parenthesis show timings for the solver and assembler
respectively.

Ac = assemble(conv(u_1, uc, vc)*dx)

Here u_1 is the Function on the space V holding the approximation of the convecting velocity
(taken as un−1 in this example). The matrix Ac is of size nv × nv (nv equals Vc.dim()). The
large matrix for the complete velocity vector field can now be obtained simply by copying
this Ac matrix to the three diagonal slots in the 3× 3 block matrix that makes up the whole
convection matrix for the velocity vector field. At the time of this writing, it is for a 3D
problem approximately 20 times faster to assemble this Ac than assembling the nvd× nvd
matrix for the complete convection term ∇u un−1 by assemble(conv(u_1, u, v)*dx)

4. The right-hand side of the linear system can be reassembled each time step using matrix-
vector products and vector additions only, a procedure that is described in Chapter 2.

5. The sparse coefficient matrix can be compressed by removing redundant zeroes. For 3D prob-
lems the assembled diffusion matrix (using a VectorFunctionSpace) contains approximately
3 times as many zeroes as non-zeros, since the sparsity pattern of the matrix is determined
by the connectivity of the degrees of freedom of the finite element fields. The abundance
of zeros slows down the Krylov solvers, which rely on efficient matrix-vector products for
speed.

In addition to these steps there are also some simple switches that can be turned on in the form
compiler that optimizes the assembly process.
Table 23.1 shows briefly the effect of the speed-up routines on the CPU-time for the Taylor–Green
problem (see Section 23.3.3) with Re = 100 on a 163 mesh using four time steps and a total
integration time of 0.5. The naive implementations referenced in Table 23.1 uses one line of
code style and lhs/rhs to extract forms for the numerical schemes. This corresponds roughly
to the code presented in the beginning of Sec. 23.2.4 for the coupled solver and similar for the
segregated solver. The optimized versions have been implemented following the steps outlined
above. The two CPU times shown are the total time and the time spent inside the time integration
loop; that is, the total time minus the time it takes to set up the problem for looping. The two
numbers in parenthesis show the time spent in the Krylov solvers and the assemblers respectively.
Evidently, with the implicit solvers we can for this problem obtain a speed-up factor of nearly
40 (662/17) for the coupled solver. Most of this speed–up follows from minimizing the amount
of code that needs to be reassembled every time step and by avoiding a direct assembly of a
large (nvd + np)× (nvd + np) matrix. As can be seen, the Krylov solvers are for the optimized
solvers approximately a factor 3 faster all over, which is attributed to the compression of the sparse

442 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

matrices, which speeds up the matrix-vector products in the Krylov solvers. It has been verified
that the naive and optimized solvers produce exactly the same results.

23.3 Numerical investigations

In this section, we will look at three popular test cases for validation of the numerical methods
outlined in Section 23.2. The simplest and most straightforward test case is the Burger’s equation,
which is widely used in numerical benchmarks because of its simplicity and resemblance to the
Navier–Stokes equations. Here the inviscid form of Burger’s equation will be used to illuminate
differences between convective terms described in Section 23.2.1. The second, more elaborate test
case is the Orr–Sommerfeld eigenvalue problem, which will here primarily be used to evaluate the
performance of NS solvers discussed in Section 23.2.4 for long integration times. The final test
case is the Taylor–Green vortex, which is a full-blown three-dimensional and transient instability
problem where an analytical, yet unstable, initial condition is evolved in a triply periodic domain
with no obstructions.

23.3.1 Burger’s equation

The nonlinear Burger’s equation is considered here as an initial-boundary value problem

∂u
∂t

+∇u u = ν∇2u, x ∈ (−1, 1), 0 < t, u(±1, t) = 0, (23.31)

u(x, 0) = −sin(πx) + κξ, (23.32)

where ξ is a random number between 0 and 1, which is used to create a discrete “white noise”
(uncorrelated) fluctuating velocity field resembling turbulence, and κ is the amplitude of the
perturbation.
The variational form of Burger’s equation transferred to FEniCS is obtained by multiplying (23.32)
with test function v and integrating over the domain, using the Dirichlet boundary conditions. The
resulting variational form is

1
4t
〈un − un−1, v〉 = −〈B(ũ, u), v〉 − ν〈∇un−α,∇v〉, (23.33)

We have used Crank-Nicolson-style time discretization (α = 0.5) in all our investigations of this case.
In one single space dimension the convection terms need some modification from Section 23.2.4 due
to the fact that in 1D the velocity is a scalar and the correlation between standard and divergence
forms reads ∇u u = 0.5∇u2. To arrive at a skew-symmetric form the following combination of
standard and divergence forms is used

B(ũ, u) =
1
3
(ũ∇u +∇ũu) . (23.34)

Initialization of the FEniCS Function u0 can be performed by subclassing class Expression as

Python code
from numpy import sin

from numpy.random import randn

class U0(Expression):

def eval(self, values, x):

if(x[0]< -1.+DOLFIN_EPS or x[0]>1.-DOLFIN_EPS):

no noise/perturbation at the boundary:

23.3. NUMERICAL INVESTIGATIONS 443

values[0] = -sin(pi*x[0])

else:

values[0] = -sin(pi*x[0])+self.kappa*randn()

u0 = U0(element=V.ufl_element()); u0.kappa = 0.2

u0 = interpolate(u0,V)

The variational problem can be implemented and solved as

Python code
bc = DirichletBC(V, Constant(0), DomainBoundary())

T = 0.25; Nt = 200; k = Constant(T/Nt); t = 0

alfa = Constant(0.5); nu = Constant(0)

u_tilde = u_1 # or u_tilde = 1.5*u_1 - 0.5*u_2 for Adams-Bashforth

u_bar = alfa*(u + u_1)

mode = ’standard’ # ’skew’ or ’divergence’ (convection term)

F = v*(u - u_1)*dx + k*conv(u_tilde, u_bar, v, mode)*dx + \

k*nu*u_bar.dx(0)*v.dx(0)*dx

a = lhs(F); L = rhs(F)

u_1 = interpolate(u_, V); u_2 = interpolate(u_, V)

while t < T:

t = t + dt

A = assemble(a)

b = assemble(L)

bc.apply(A, b)

solve(A, u_.vector(), b, ’gmres’, ’ilu’)

u_2.assign(u_1); u_1.assign(u_)

Note that the coefficient matrix A needs to be reassembled due to the implicit treatment of
convection. Figure 23.1 shows how the standard, divergence and skew forms of the convective
term perform for the two implicit solvers. As expected the errors of using the second order
accurate Adams-Bashforth projection (right) are much lower than using forward Euler (left). Most
remarkable, though, is the exact conservation of kinetic energy achieved by the skew form. As
mentioned before, this feature follows simply from the fact that the assembled matrix A is perfectly
skew-symmetric – a feature that also is retained by the skew form in two- and three-dimensional
cases. Results of using the explicit convection are not shown, since for the current problem the
three convection forms differ only when treated implicitly.

23.3.2 Orr–Sommerfeld

The Orr–Sommerfeld equation (see Orzag [1971]) is derived by assuming a wave-like disturbance
(perturbation) that is proportional to exp(i(αx− λt)) (real part understood), where λ is an eigen-
value (the complex frequency), α is a prescribed wavenumber (we use α = 1), x is the streamwise
direction and t is time. The perturbation is applied to the stream function, ψ(x, y, t) , such that
ψ = φ(y)exp(i(αx− λt)), where φ(y) is the eigenfunction of λ and the y-direction is normal to x
(we consider only 2D). Consequently the velocity perturbations are

u′(x, y, t) =
∂ψ

∂y
= iαφ exp(i(αx− λt)), (23.35)

v′(x, y, t) = −∂ψ

∂x
= −φ′ exp(i(αx− λt)). (23.36)

444 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time

�4

�2

0

2

4

6

%
 e

rr
o
r

in
 k

in
e
ti

c
e
n
e
rg

y

Skew
Standard
Divergence

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time

�0.08

�0.06

�0.04

�0.02

0.00

0.02

0.04

%
 e

rr
o
r

in
 k

in
e
ti

c
e
n
e
rg

y

Skew
Standard
Divergence

Figure 23.1: Accumulation of er-
ror in kinetic energy for the invis-
cid Burger’s equation initialized as
u(x, 0) = −sin(πx) + 0.1ξ(x). Left
and right figures represent the results
of using (23.22) and (23.23) for convec-
tion respectively.

If we insert this perturbation into the Navier–Stokes equation an eigenvalue problem, the Orr–
Sommerfeld equation, will appear. The equation reads

(
d2

dy2 − α2
)2

ψ−
(
U − λ

) iα
ν

(
d2

dy2 − α2
)

ψ−U′′ψ = 0, (23.37)

where ν is the kinematic viscosity and U(y) is the unperturbed or basic velocity.

The Orr–Sommerfeld equation can be solved numerically for any type of basic flow, but is
particularly simple for a channel or Couette flow where U is known analytically. If the channel
spans −1 6 y 6 1 then the perturbed velocity in a parallel channel flow equals

u(x, y, t) = 1− y2 + ε Real (iαφ exp(i(αx− λt))) ,

v(x, y, t) = −ε Real
(
φ′ exp(i(αx− λt))

)
,

(23.38)

where ε is the perturbation amplitude, which needs to be much smaller than unity (maximum
velocity).

The Orr–Sommerfeld disturbance evolves very slowly and for Re = 8000 it takes approximately
2π/Real(λ) ≈ 25 time-units to travel through the domain. In other words, the NS equations
typically need to be integrated for very long times and the stability of the numerical time integration
scheme thus becomes an important factor. Furthermore, the Reynolds number may be varied over
decades (both the viscous and the inviscid limits), and a wide range of different solutions may be
explored, as any mode (not just the unstable one) yields a different analytical solution. Altogether,
this makes the OS equation an ideal test case for NS solvers.

23.3. NUMERICAL INVESTIGATIONS 445

Solution of the Orr–Sommerfeld equation The Orr–Sommerfeld eigenvalue problem must, like many
eigenvalue problems, be solved with high numerical accuracy. Here the equations are solved using
spectral collocation with Chebyshev polynomials as described by Trefethen [2006]. We consider a
channel with Reynolds number Re = 1/ν = 8000, where the mean pressure gradient is a constant
equal to 2/Re. Using 80 Chebyshev points the eigenvalues for this problem is plotted in Figure
23.2 (b). Note the eigenvalue in white (λ = 0.24707506+ 0.00266441i), which is the only eigenvalue
with a positive imaginary part. Since the imaginary part is positive it is evident that this represents
an unstable mode that will grow in time. Hence one might argue that eventually this disturbance
will become unstable and lead to transition from laminar to turbulent flow.
The Orr–Sommerfeld equation is derived directly from the NS equations simply by assuming that
the perturbation is small compared to the mean flow. Hence if the mean flow in a channel is
initialized like (23.38), the instability should grow ’exactly’ like implied by the Orr–Sommerfeld
equation (23.37). This has been used to validate NS solvers by Malik et al. [1984]. The perturbation
flow energy is here used as a measure for the accuracy of the solver

E(t) =
∫ 2π

0

∫ 1

−1

([
u− (1− y2)

]2
+ v2

)
dx. (23.39)

The exact analytical perturbation energy at any time should be

E(t)
E(0)

= exp(iImag(λ)t). (23.40)

Note, however, that we are here looking at the energy of the disturbance only. In other words we
are looking at an energy transfer drained from the mean field (U = 1− y2) into the perturbation.
This is a very different situation than looking at the total energy of the field, which should be
conserved. The energy of the perturbation increases with time and as such it is no longer evident
that an energy conserving scheme like the skew form has any significant advantage over the not
necessarily conservative standard convection form.

Initialization in FEniCS The implementation of the Orr–Sommerfeld test-case in FEniCS requires
a two-dimensional (rectangular) computational mesh with associated parameters, like viscosity,
etc. The mesh and some necessary parameters are declared as

Python code
from dolfin import *
from numpy import arctan

mesh = Rectangle(0.,-1.,2*pi,1.,40, 40)

x = mesh.coordinates()

x[:,1] = arctan(2.*(x[:,1]))/arctan(2.) # stretch mesh toward wall

Re = 8000.; nu = Constant(1./Re)

f = Constant((2./Re,0.)) # Pressure gradient

where the constant pressure gradient is implemented as a body force to enable the use of periodic
boundary conditions for both velocity and pressure.
At our disposal we have an Orr–Sommerfeld eigenvalue solver that uses spectral collocation in
n + 1 Chebyshev points. The details of this solver is given by Trefethen [2006] and not repeated
here, and the source code can be found in the file OrrSommerfeld_eig.py that comes with the
chapter. For the initialization of DOLFIN Functions with the Orr–Sommerfeld solution, a subclass
called U0 of the DOLFIN class Expression is implemented such that it solves the eigenvalue
problem on creation and overloads the eval function with the equivalence of (23.38). To initialize

446 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

0.0 0.2 0.4 0.6 0.8 1.0
Imag(λ)

1.0

0.8

0.6

0.4

0.2

0.0

R
e
a
l(
λ
)

Figure 23.2: Subfigure (a) shows a
snapshot of the initial perturbed ve-
locity field. Subfigure (b) shows the
eigenvalues for the Orr Sommerfeld
equation at Re = 8000. Note the open
white square, which is the only eigen-
value with a positive imaginary part.
This represents an unstable mode.

the specified initial velocity field we need to create an instance of the U0 class and interpolate
it onto the appropriate function space: V for fractional step and VQ for the coupled solver. The
procedure for the fractional step solver is

Python code
Using 80 Chebyshev points and Reynolds number of 8000:

u = U0(element=V.ufl_element(),defaults={’Re’:8000.,’N’:80})

u_ = interpolate(u,V)

p_ = Constant(0.)

any parameter required by the expressions in the U0 class. In the end, the pressure is set to zero,
which finalizes the initialization process. For the coupled solver, VQ is used in place of V and the
pressure needs to be set in U0. The Orr–Sommerfeld perturbation leads to a non-trivial solution
that evolves in time. The initial perturbed velocity field is illustrated in Figure 23.2(a).

Results In this section we consider first the transient behavior of the Navier–Stokes solver using all
three forms of convection discretization (standard, divergence and skew). The spatial discretization
is kept well resolved with a Rectangle mesh class using N=48 and the CFL number based on the
mean velocity (U = 1 m/s) is varied from 0.5 to 0.025. Figure 23.3 shows the accumulated error in
the perturbation flow energy computed as

Error =
N

∑
k=0

|E(tk)− exp(iImag(λ)tk)|
N

. (23.41)

23.3. NUMERICAL INVESTIGATIONS 447

Figure 23.3: Accumulated error (23.41)
vs CFL number for an integration time
of 0.5 for standard, divergence and
skew forms, here represented with
solid, dashed and dotted lines respec-
tively. The fully coupled and fractional
step solvers are represented with gray
and black lines, respectively. All re-
sults for a mesh size of N=48. Note
that in (a) the black and gray curves
are practically identical (the error in
the fully coupled solver is approxi-
mately 2% less throughout).

10-2 10-1

CFL

10-6

10-5

10-4

10-3

E
rr
o
r

O(dt2)

Standard
Divergence
Skew

10-2 10-1

CFL

10-6

10-5

10-4

10-3

E
rr
o
r

O(dt2)

Standard
Divergence
Skew

Note that the integration time is kept quite low (from 0 to 0.5), in an effort to maintain stability for
all schemes. However, using explicit convection the divergence form is still unstable for the highest
CFL numbers. From Figure 23.3 we observe second order accuracy in time and register that the
accuracy of explicit and implicit methods for convection are of similar magnitude. With implicit
convection the superior accuracy of the coupled vs. the fractional step solver is evident, and the
coupled achieves the same accuracy with twice the CFL number, which is solely attributed to the
splitting error. Using explicit convection, there is hardly any difference between fractional step and
coupled solvers (the difference in the error is approximately 2% in the favor of the coupled solver
throughout), indicating that the divergence of the intermediate velocity is low. Another interesting
feature is that for explicit convection the standard form seems to be most accurate followed by the
skew and divergence forms, whereas exactly the opposite behavior is observed for the implicit
solver.
To investigate the spatial discretization with the P2/P1 elements we keep the time step constant
and small at 0.005 and vary the mesh size from 16 to 48 in the Rectangle class. The accumulated
error is shown in Figure 23.4, where we observe the third order accuracy that was expected for
Taylor-Hood elements. Again the coupled solver performs better than the fractional step solver
with implicit convection, whereas the solvers are practically identical with explicit convection.
The larger splitting errors obtained with the fractional step solver using implicit treatment of
convection (in both Figs. 23.3 and 23.4) can be understood by thinking of the fractional step solver
as an operator splitting routine where the implicit diffusion and convection terms are neglected in
the second pressure step. If the convection term is treated explicitly the treatment is exact (since
the old velocity is used in the term anyway). Hence, there is only an inconsistency for the diffusion
that is being computed in the first step with an intermediate and not the end-of-step velocity
field. With implicit convection as well, both diffusion and convection terms are computed with
the intermediate (not divergence free) velocity field and the inconsistency with the superior fully

448 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

Figure 23.4: Accumulated error (23.41)
vs mesh size for an integration time of
0.5. Standard, divergence and skew
forms of convection are here repre-
sented with solid, dashed and dotted
lines respectively. The fully coupled
and fractional step solvers are repre-
sented with gray and black lines, re-
spectively. For all results the time step
used is 0.005. Note that in (a) the
black and gray curves are practically
identical (the error in the fully cou-
pled solver is approximately 2% less
throughout).

20 30 40 50
N

10-6

10-5

10-4

E
rr
o
r

O(dx3)

Standard
Divergence
Skew

20 30 40 50
N

10-6

10-5

10-4
E
rr
o
r

O(dx3)

Standard
Divergence
Skew

coupled scheme becomes more profound.
To validate the more interesting (from a turbulence instability point of view) long term performance
of the solvers, we integrate the equations as long as it takes for the perturbation to travel through
the domain two times (end time ≈ 50). One single well resolved mesh size is used (N = 40 in
the Rectangle class) and the CFL number is set to 0.05 or 0.1 to limit the temporal discretization
errors. Figure 23.5 shows the evolution of the perturbation energy using both the fully coupled
and fractional step solvers with the second order implicit convection (23.23) and the second
order explicit scheme (23.21). Evidently, the standard form of convection is more stable than
the divergence (most unstable) and skew forms for long integration times. The divergence and
skew forms cannot capture the true evolution of the instability and the solution quickly blows
up into a chaotic 2D ’turbulence’ field. The standard form seems to capture the instability with
ease and evolves more or less exactly according to the true solution of the eigenvalue problem.
There are only minor differences between the fractional step and the fully coupled solver, which
is not unexpected since we are using a very short time step and the (second order in time) error
in fractional step splitting (the only difference between the two methods) is thus minimized. By
increasing the CFL number it can be shown that the fully coupled solver remains accurate for longer
time-steps. Note that the total kinetic energy remains more or less constant for all the simulations
shown in Figure 23.5, even for the divergence and skew forms. Hence, the ability of the skew
form to maintain total kinetic energy does not seem to be all that important when we are really
interested in solving instability problems, where the most important physical process is that energy
changes form (from the mean flow to the perturbation). Also shown in Figure 23.5 with circles is
the result of using the same number of degrees of freedom and time step with a cell-vertex based
finite volume solver. The finite volume solver is discretized in a similar manner as our FEniCS
solvers with implicit convection (23.23) using Adams-Bashforth projection and Crank-Nicholson
diffusion. The integration method is fractional step, which is here slightly dissipative due to the
collocated nature of the pressure and velocity. The implicit higher-order (P2/P1) FEniCS solvers

23.3. NUMERICAL INVESTIGATIONS 449

are evidently much better at capturing this instability than the lower-order finite volume method,
which is not surprising. The difficulties that low-order finite difference methods face when trying
to capture the Orr–Sommerfeld instability have earlier been reported also by Malik et al. [1984]
and Canuto et al. [2007].

23.3.3 Taylor–Green vortex

Finally, we consider a real transition to turbulence problem. The Taylor–Green vortex is charac-
terized by an initialization based on an asymptotic expansion in time in a triply periodic domain
spanning [−π, π] in all three directions. The deterministic initial condition that is left to evolve
and destabilize into a chaotic turbulent flow is given by

u(x, y, t) = sin(x) cos(y) cos(z), (23.42)

v(x, y, t) = − cos(x) sin(y) cos(z), (23.43)

w(x, y, t) = 0. (23.44)

The asymptotic expansion is known to diverge for t ≥ 3, as the flow turns turbulent.
Note that due to the large memory requirements of this three-dimensional problem, we consider
here only the fractional step solver. For validation we use the total kinetic energy and the total
energy dissipation rate, computed respectively as

q =
1
2

∫

Ω
u · u, (23.45)

ε = ν
∫

Ω
∇u : ∇u. (23.46)

The average rate of dissipation is, as already mentioned, the single most important measure of a
turbulent flow. It is implemented in FEniCS as

Python code
assemble(nu*inner(grad(u_),grad(u_))*dx)/(2*pi)**3.

Since the Taylor–Green vortex is (eventually) a turbulent flow there is no analytical solution that
can be used to compare our results with. Hence, for validation the Taylor–Green vortex has
also been simulated with Semtex [Blackburn, 2011], which is a well tested open-source spectral
element Navier–Stokes solver that runs in parallel. Semtex uses quadrilateral spectral elements
with standard nodal Gauss-Lobatto-Legendre basis functions and Fourier expansions in one
homogeneous direction. To validate the Taylor–Green case we use 30 times 30 homogeneous
elements of order 6 in both x and y-directions and 144 planes in the z-direction that is solved using
Fourier expansions. The time step in the second order time stepping routine is set to 0.005.
Figure 23.6 shows the error in average rate of dissipation and kinetic energy computed using
Re = 100 and a UnitCube domain with 163, 243 and 323 bricks (each being divided into 6 tetrahedra).
The CFL number used is 0.05, which practically eliminates temporal errors. With this small time
step it is nearly impossible to distinguish between the results of using explicit (23.21) or implicit
(23.23) convection and thus only the latter is shown. The conclusion that can be drawn from
Figure 23.6 is that the standard convection form performs less satisfactory than both the skew and
divergence forms. The skew form is best at capturing the average dissipation rate, whereas the
divergence form does a slightly better job at capturing the total energy. Furthermore, the additional
accuracy earned through using higher order elements is evidently superior to a low-order finite
volume solver, both for the energy and the dissipation rate.

450 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

10 20 30 40 50
Time

1.00

1.08

1.16

1.24

E
n
e
rg
y

10 20 30 40 50
Time

1.00

1.08

1.16

1.24

E
n
e
rg
y

10 20 30 40 50
Time

1.00

1.08

1.16

1.24

E
n
e
rg
y

10 20 30 40 50
Time

1.00

1.08

1.16

1.24

E
n
e
rg
y

Figure 23.5: Temporal evolution of
the perturbation energy. The gray
and black lines correspond to the fully
coupled and fractional step solvers re-
spectively and the solid, dashed and
dotted lines correspond to the stan-
dard, divergence and skew forms of
the convection respectively. The sym-
bolic dots represent the solution from
a low order finite volume solver and
the squares represent the true solution.
Note that for explicit convection and
the standard implicit form the gray
and black curves are practically identi-
cal.

23.4. CONCLUSIONS 451

Figure 23.6: Relative errors in dissipa-
tion rate (23.46) is shown in (a) and
the energy (23.45) in (b). The results
are displayed for implicit convection
(23.23), and the squares, diamonds
and pluses are used to represent stan-
dard, divergence and skew forms re-
spectively. The open circles represent
the solution obtained with a low-order
finite volume code and the reference
solution upon which the error is based
is computed with Semtex [Blackburn,
2011].

105 106

dofs

10-2

10-1

100

E
rr

o
r

in
 d

is
si

p
a
ti

o
n

Standard
Divergence
Skew
FV

105 106 107

dofs

10-3

10-2

10-1

E
rr

o
r

in
 e

n
e
rg

y

Standard
Divergence
Skew
FV

23.4 Conclusions

In this work we have validated FEniCS-based Navier–Stokes solvers aimed at applications involving
turbulence and instabilities with transition to turbulence. Such solvers are of particular relevance
to blood flow in the vicinity of aneurysms. Our focus has been on flow energy and energy
conservation, features of great importance for turbulent flows. Discretizations of the nonlinear
convection term have been considered both with standard, divergence and skew-symmetric forms -
forms familiar from the vast literature on NS solvers. The numerical discretizations and solvers have
been validated using the one-dimensional Burger’s equation, the Orr–Sommerfeld perturbation to
a plane channel flow in two dimensions and finally the three-dimensional unstable and transitional
Taylor–Green vortex. We have briefly described the details of our NS solvers and outlined some
optimization routines that in our experience have enhanced speed-up by more than an order of
magnitude compared with a straightforward (naive) FEniCS implementation.
Two fundamentally different approaches to solving the NS equation have been tested: the fractional
step method, which uncouples the velocity from the pressure, and a fully coupled solver. The
fractional step method is generally favored by most CFD practitioners due to memory efficiency,
even though it imposes a splitting error through uncoupling the velocity field from the pressure.
The coupled solver naturally requires more memory, but on the other hand there is no splitting
error as it simultaneously satisfies both the discretized momentum equation and divergence
constraint, which make up the Navier–Stokes equations. The splitting error introduced by the
fractional step solver has been found here with the Orr–Sommerfeld test case to be small when
convection is treated explicitly and enhanced when the convection term is treated semi-implicitly.
With semi-implicit convection the fractional step method requires the CFL number to be half that
of the coupled solver to achieve the same accuracy. The problem met by implicit discretizations
in correlation with the fractional step method is here attributed to the fact that implicit terms
are computed from the (not necessarily divergence-free) intermediate velocity, as opposed to the

452 CHAPTER 23. SIMULATION OF TRANSITIONAL FLOWS

divergence-free, end-of-step, velocity field. For the long integration times often associated with
turbulence applications, though, we find that the implicit form remains stable and accurate where
the explicit form cannot maintain sufficient stability.
For the Orr–Sommerfeld test case the standard form of convection seems to be the only form
that remains stable for long integration times, even though the other forms are more accurate
initially. For the Taylor–Green test-case the standard form is found to be less accurate than both the
divergence and skew forms. Further studies with higher Reynolds numbers are required, though,
to more thoroughly validate stability of NS solvers in the fully turbulent regime.

24 Turbulent flow and fluid–structure interaction
By Johan Hoffman, Johan Jansson, Niclas Jansson, Claes Johnson and Rodrigo
Vilela De Abreu

The FEniCS project aims towards the goals of generality, efficiency, and simplicity, concerning
mathematical methodology, implementation, and application, and the Unicorn project is an
implementation aimed at FSI and high Re turbulent flow guided by these principles. Unicorn is
based on the DOLFIN/FFC/FIAT suite and the linear algebra package PETSc, and we here present
some key elements of Unicorn, and a set of computational results from applications. The details of
the Unicorn implementation are described in Chapter 19.

24.1 Background

For many problems involving a fluid and a structure, decoupling the computation of the two is
not feasible for accurate modeling of the phenomenon at hand. Instead, the full fluid–structure
interaction (FSI) problem has to be solved together as a coupled problem. This includes a multitude
of important problems in biology, medicine and industry, such as the simulation of insect or bird
flight, the human cardiovascular and respiratory systems, the human speech organ, the paper
making process, acoustic noise generation in exhaust systems, airplane wing flutter, wind induced
vibrations in bridges and wave loads on offshore structures. Common for many of these problems
is that for various reasons they are very hard or impossible to investigate experimentally, and thus
reliable computational simulation would open up for detailed study and new insights, as well as
for new important design tools for construction.
Computational methods for FSI is a very active research field today. In particular, major open
challenges of computational FSI include: (i) robustness of the fluid–structure coupling, (ii) for high
Reynolds numbers (Re) the computation of turbulent fluid flow, and (iii) efficiency and reliability
of the computations in the form of adaptive methods and quantitative error estimation.

24.2 Simulation of high Re turbulent flow

The focus of Unicorn is high Re turbulent fluid flow, also including fluid–structure interaction.
Direct numerical simulation (DNS) of turbulent flow is limited to moderate Re and simple geometry,
due to the high computational cost of resolving all turbulent scales in the flow. The standard
approach in the automotive industry is simulation based on Reynolds averaged Navier–Stokes
equations (RANS), where time averages (or statistical averages) are computed to an affordable cost,
with the drawback of introducing turbulence models based on parameters that have to be tuned
for particular applications.

453

454 CHAPTER 24. TURBULENT FLOW AND FLUID–STRUCTURE INTERACTION

An alternative to DNS and RANS is Large Eddy Simulation (LES) [Sagaut, 2005], where a filter is
applied to the Navier–Stokes equations to derive a new set of equations with a smallest scale given
by the filter width, and where the effect of the filter is the introduction of so called subgrid stresses
which need to be modeled in a subgrid model. A subgrid model can be motivated by physics
theory or experiments, and the main effect of the subgrid model is to dissipate kinetic energy, for
example in the form of turbulent viscosity.
Typically, the numerical method used to approximate the LES equations also introduces dissipation,
and there are thus two sources of kinetic energy dissipation: the subgrid model and the numerical
method. One class of methods, Implicit LES (ILES), relies completely on the numerical method to
act as a subgrid model, without any additional explicit subgrid model [Sagaut, 2005]. Turbulence
simulation in Unicorn is based on ILES in the form a stabilized finite element method, referred
to as a General Galerkin (G2) simulation [Hoffman and Johnson, 2007], where a least squares
stabilization based on the residual of the Navier–Stokes equations acts as an ILES subgrid model.
In the current G2/ILES implementation of Unicorn, continuous piecewise linear approximation
is used in space and time, together with a least squares stabilization based on the residual; see
Hoffman and Johnson [2007] for details.

24.3 Turbulent boundary layers

The choice of boundary conditions at a solid wall is critical for accurate LES modeling of fluid flow,
in particular to capture flow separation phenomena. In Unicorn, laminar boundary layers are fully
resolved by the computational method by applying no slip (zero velocity) boundary conditions
at the wall. On the other hand, computational resolution of turbulent boundary layers is only
possible at limited Reynolds numbers and for simple geometries.
The standard way to model the effect of turbulent boundary layers is to divide the computational
domain into: (i) an interior part and (ii) a boundary layer region. In the boundary layer, a simplified
model of the flow is used to provide boundary conditions to the LES equations to be solved in the
interior part. Boundary conditions are typically in the form of a wall shear stress, and the coupling
between (i) and (ii) may be one-way from (ii) to (i), or more closely coupled. Wall shear stress
models are developed based on experimental data, theory or computation by a simplified model
such as, e.g., a RANS model. For an overview of boundary layer modeling, see Sagaut et al. [2006],
Piomelli and Balaras [2002].
The wall shear stress model in Unicorn takes a similar form as the simple Schumann model
[Schumann, 1975], with the tangential velocity proportional to the local wall shear stress through
a skin friction parameter (or function) β. The following boundary conditions are used for the
velocity u and stress σ:

u · n = 0, (24.1)

βu · τk + (σn) · τk = 0, k = 1, 2, (24.2)

for (x, t) ∈ Γsolid × [0, T], with n = n(x) an outward unit normal vector, and τk = τk(x) orthogonal
unit tangent vectors of Γsolid. The non-penetration boundary condition is applied strongly, whereas
a weak implementation is used for the wall shear stress boundary condition.

24.4 Adaptivity and a posteriori error estimation

A posteriori error estimation involves only computable quantities, which opens for adaptive
methods with quantitative error control. The basic idea of adaptive algorithms is to optimize the

24.5. ROBUST FLUID–STRUCTURE COUPLING 455

computational method with respect to the goal (output of interest) of the computation. Typical
parameters of an adaptive finite element method include the local mesh size (h-adaptivity), local
degree of the finite element approximation (p-adaptivity), local shape of the cells (r-adaptivity), or
combinations thereof. Other possible parameters may be the time step size and the stabilization
parameters.
In Unicorn, an approach to a posteriori error estimation is used where the error in a chosen output
quantity can be estimated in terms of the solution of an associated linearized dual problem. The
basic framework is described in the survey articles [Eriksson et al., 1995a, Becker and Rannacher,
2001, Giles and Süli, 2002].
Using standard techniques of a posteriori error analysis, an a posteriori error estimate for G2 can
be derived in the following form:

|M(u)−M(U)| 6∑
T

ηT , (24.3)

whereM(u) is the exact value of the target output quantity andM(U) is the computed approxima-
tion. Furthermore, U is a G2 solution and ηT is a local error indicator for cell T. The error indicator
ηT is constructed from the residual, measuring local errors, weighted by the solution to a dual
(adjoint) problem measuring the effect of local errors on the outputM(·). The implementation
of the dual problem in Unicorn is based on the cG(1)cG(1) method described in Hoffman and
Johnson [2007]. The computational mesh is then modified according to ηT , by mesh refinement,
coarsening or smoothing.
Adaptive G2 methods (also referred to as adaptive DNS/LES) have been used in a number of
turbulent flow computations to a very low computational cost where convergence is obtained
for output quantities such as drag, lift and pressure coefficients and Strouhal numbers, using
orders of magnitude fewer numbers of mesh points than with LES methods based on ad hoc
refined computational meshes found in the literature [Hoffman, 2005, Hoffman and Johnson, 2006,
Hoffman, 2006, 2009, Hoffman and Jansson, 2009, de Abreu et al., 2010].

24.5 Robust fluid–structure coupling

In a computational method based on so called weakly coupled FSI, separate solvers can be used
for the fluid and the structure, with the benefit of being able to reuse existing dedicated fluid and
structure solvers. To couple the fluid and the structure, boundary data such as displacements and
stresses are exchanged over the fluid–structure interface. To make the coupling more robust, the
equations for the fluid and the structure can be placed in the same algebraic system together with
all coupling conditions, corresponding to a so called strong FSI coupling.
Another approach is to formulate the fluid and the structure as one single continuum model, which
is then said to be a monolithic FSI method. The monolithic method used in Unicorn is referred to
as Unified Continuum FSI (UC-FSI) [Hoffman et al., 2011], where the fluid and the structure are
discretized by the same finite element method over the combined fluid–structure continuum. A
velocity formulation is used for the structure to make it consistent with the corresponding fluid
equations, and the FSI problem thus takes the form of a multiphase flow problem, with the two
phases, the fluid and the structure, described by different constitutive laws. In particular, coupling
conditions for displacements and stresses are directly satisfied when using a continuous finite
element discretization, which makes UC-FSI very robust.
The computational mesh is made to follow the deformation of the structure, and in the fluid part
mesh smoothing is used to optimize the mesh quality, corresponding to an ALE method for the
combined fluid–structure continuum. In Unicorn, UC-FSI is implemented based on a continuous

456 CHAPTER 24. TURBULENT FLOW AND FLUID–STRUCTURE INTERACTION

piecewise linear approximation in space and time, and a simple streamline diffusion stabilization is
used, similar to the method in Hansbo [2000]. See Hoffman et al. [2011] for details on the method.

24.6 Applications

In this section, the capability of the Unicorn solver is illustrated by a set of simulation results,
connecting to the main focus described above of high Re turbulent flow and robust fluid–structure
interaction. Quantitative results are presented for benchmark problems of turbulent flow and FSI,
and qualitative results for a turbulent flow FSI problem is presented where no reference data is
available. A sensitivity study is also presented, where the skin friction parameter of the boundary
layer model is varied to observe the effect on flow separation.

24.6.1 High Re turbulent flow

We first consider the benchmark problem to compute a time average of the drag force on a cube.
Starting from a very coarse tetrahedral mesh with 17,952 vertices, the mesh is adaptively refined
17 times, in each iteration marking 10% of the tetrahedrons in the mesh for refinement by bisection.
In Figure 24.1, the corresponding drag coefficient is shown as the mesh is refined, converging
to a value of cD ≈ 1.25± 5% over the time interval chosen in the computation. Computing the
drag coefficient over a longer time interval would give better confidence in the mean value, at
a higher computational cost. In McCormick [1995], an interval of 1.0− 1.2 is given for the drag
coefficient cD, although the detailed setup of the underlying experiments is not clear. We note that
for this case, when flow separation is given by the sharp corners of the geometry, cD is considered
independent of the specific (high) Reynolds number [McCormick, 1995]. We conclude that the
Unicorn results are consistent with experimental findings.
In Figure 24.2, snapshots of the solution are shown for the adaptively refined mesh. In Figure 24.3,
a snapshot of the gradient of the dual solution is shown which provides sensitivity information
with respect to the computation of drag force. Where this gradient is large, the local computational
error (local residual weighted by local mesh size) must be made small by refining the mesh, since
the error in drag is given by the product of the gradient of the dual solution and local errors. I
Figure 24.3, a snapshot of such a local error is shown, where we note that this local error is reduced
where the gradient of the dual solution is large but left large in other areas.
Two main features of the adaptive method are: (i) a converged approximation of the drag coefficient
cD (within 5%) is obtained using very few degrees of freedom, and (ii) the mesh is automatically
constructed from a coarse mesh, thus bypassing the cost and challenge of ad hoc mesh design. A
full discussion of these computations is available in Hoffman et al. [in press].

24.6.2 Turbulent flow separation

In Unicorn, the effect of turbulent boundary layers is modeled by a skin friction wall shear stress
model, described above. This model has one parameter β, which is related to the skin friction
stress. Higher Reynolds number is modeled by a smaller β, based on experimental observation
that the skin friction (coefficient) decreases with increasing Re.
To estimate the dependence of the computational result on β, a computational study is carried
out using Unicorn, where the drag force of a circular cylinder is computed adaptively based
on a posteriori error estimation; see Hoffman and Jansson [2009] for details. In particular, the
phenomenon of drag crisis is targeted, characterized by a sudden drop in the non-dimensional drag
coefficient for a cylinder for Re increasing beyond a critical size of about 105. By decreasing the
skin friction parameter β, modeling an increasing Re, the drag crisis scenario is reproduced using

24.6. APPLICATIONS 457

Figure 24.1: Flow around a cube: con-
vergence of the drag coefficient under
mesh refinement.

Figure 24.2: Flow around a cube: snap-
shots of velocity (upper) and pressure
(lower) for the finest mesh.

458 CHAPTER 24. TURBULENT FLOW AND FLUID–STRUCTURE INTERACTION

Figure 24.3: Flow around a cube: gra-
dient of dual velocity (upper) and lo-
cal error (lower), on a mesh after 16

adaptive mesh refinements.

Unicorn, in agreement with the high Re experimental data available in the literature [Zdravkovich,
2003]. In particular, the drag coefficient drops to a level found in experiments after drag crisis,
and 3D so called cell structures develop in the form of streamwise vorticity, also reported in the
literature [Zdravkovich, 2003]. For vanishing skin friction, the flow approaches a state independent
of the skin friction parameter, corresponding to a free slip boundary condition, see Figures 24.4-24.6.
Although controversial, this suggests a dominant inviscid separation mechanism independent of
the boundary layer, investigated further in Hoffman and Johnson [2008], Hoffman and Jansson
[2009].

24.6.3 Turbulent flow past complex geometry

With the parallel implementation of Unicorn, realistic problems of complex geometry and high
Re turbulent flow can be addressed. As an example, we present simulation results from the
NASA/AIAA workshop "Benchmark problems for Airframe Noise Computations" (BANC-1), held
in conjunction with the 16

th AIAA/CEAS Aeroacoustics Conference in Stockholm in 2010, where
Unicorn was used for adaptive simulation of flow past a rudimentary landing gear configuration
[de Abreu et al., 2010]. The landing gear configuration was designed by Boeing, and detailed
experimental results were available, as well as comparison with other participating groups [Spalart
and Mejia, 2011].
Starting from a coarse mesh of ca. 70,000 mesh points, the mesh was adaptively refined 7 times with
respect to the error in the drag force on the landing gear. The resulting final mesh had 1,000,000

mesh points, and the computation ran on the Akka computer at HPC2N using 264 cores. The
skin friction boundary layer model was used with β = 0, thus corresponding to a slip boundary
condition.
The Unicorn contribution to the workshop compared well with other participating groups, with
overall little spread in the computation of aerodynamic forces, and mean sound pressure levels.
Furthermore, mean flow patterns on the surface of the landing gear (see Figure 24.7) showed good
agreement with experimental results. Other quantities, such as frequencies, showed a wide spread
among the participating groups.
Thanks to the adaptive mesh refinement and the cheap boundary layer model, the Unicorn results

24.6. APPLICATIONS 459

Figure 24.4: Turbulent flow separation
[Hoffman and Jansson, 2009]: velocity
vectors at surface of cylinder; for β =
10−1, β = 10−2, β = 10−3 and β = 0
(from upper left to bottom right).

460 CHAPTER 24. TURBULENT FLOW AND FLUID–STRUCTURE INTERACTION

Figure 24.5: Turbulent flow separation
[Hoffman and Jansson, 2009]: pressure
isosurfaces; for β = 10−1, β = 10−2,
β = 10−3 and β = 0 (from upper left
to bottom right).

24.6. APPLICATIONS 461

Figure 24.6: Turbulent flow separation
[Hoffman and Jansson, 2009]: velocity
streamlines; for β = 10−1, β = 10−2,
β = 10−3 and β = 0 (from upper left
to bottom right).

462 CHAPTER 24. TURBULENT FLOW AND FLUID–STRUCTURE INTERACTION

Figure 24.7: Rudimentary landing
gear: plot of simulated vorticity (up-
per) and simulated oil film patterns
(lower).

were obtained with very few mesh points, less than all other participating groups in the workshop,
see Table ??.

24.6.4 Robust fluid–structure interaction

As a quantitative test of the Unicorn FSI solver, we consider the benchmark problem FLUSTRUK-A,
variant 3, which is defined in Hron and Turek [2005]. This is a 2D flow in a channel past a fixed
cylinder with a thin flexible bar attached to the downstream side of the cylinder. The Unicorn
results are compared to the reference results of two other groups: Hron and Turek [2005] and
Dunne and Rannacher [2006].
The y-displacement in the oscillation regime varies between 0.0353m and -0.0332m (see Figure 24.8),
which is within 1-2% of the Hron/Turek results, and within 11% of the Dunne/Rannacher
amplitude. The oscillation frequency is estimated to 5.3Hz from the graph. For comparison, the
Hron/Turek frequency is estimated to 5.4Hz and the Dunne/Rannacher frequency is given as
5.48 Hz. See Hoffman et al. [2011] for a full discussion of the results, where also additional basic
benchmark results are presented.
Unicorn targets large structure deformations interacting with turbulent fluid flow. In Figure 24.9,
we present qualitative results for a model problem of a flexible structure interacting with turbulent
flow in 3D, in the form of a fixed cube in turbulent flow with a thin flexible flag mounted in the
downstream wake.

24.6. APPLICATIONS 463

Team CD #Cells
NTS 1.70 10M
CDA 1.70 29M
KTH 1.78 6M
KHI 1.81 41M
EXA 1.77 36M
TUB 1.74 11M

Table 24.1: Drag coefficient and number of cells for each of the teams in participating in the BANC-1 workshop
[Spalart and Mejia, 2011]. The Unicorn results are the ones by the KTH-team.

Figure 24.8: The figure shows the dis-
placement along the y-axis of the ref-
erence point in the 2D FSI-benchmark
problem FLUSTRUK-A, phase aligned
to avoid start-up effects, for a sequence
of three uniformly refined meshes us-
ing Unicorn.

464 CHAPTER 24. TURBULENT FLOW AND FLUID–STRUCTURE INTERACTION

We choose an inflow speed of 100 m/s, a cube side length of 1 cm and a flag mounted at the top of
the back face of the cube with a length of 0.3 m and a thickness of 5 cm. The viscosity of the fluid
is 100 µ Pa s (density ρ = 1) which gives a representative Reynold’s number of size Re = 105. We
choose no-slip boundary conditions on the cube and flag with slip boundary conditions on the
surrounding channel walls, and a zero pressure outflow condition.
Violent bending and torsion motion in the direction of the long axis of the flag are observed, and
we note that the method is robust for these large structure deformations and highly fluctuating
flow.

24.6. APPLICATIONS 465

Figure 24.9: Simulation of turbu-
lent flow past a square cylinder with
an elastic flag attached downstream
[Hoffman et al., 2011]: plot of cut of
the mesh, isosurface of pressure and
fluid–structure phase interface. Going
from initial state top left to illustrating
violent bending and torsion motion
along the long axis of the flag.

25 An adaptive finite element solver for fluid–structure
interaction problems

By Kristoffer Selim

Fluid–structure interaction (FSI) occurs when a fluid interacts with a solid structure, exerting a
traction force that causes deformation of the structure and, thus, alters the flow of the fluid itself.
The FSI problem is a fully coupled multiphysics problem, whether the problem is solved in a
partitioned manner or by a monolithic approach. In many cases we are only interested in one
physical output quantity of the fully coupled system, e.g., the displacement of the structure. In
order to compute this particular physical output of interest with a high level of accuracy, a goal
oriented adaptive finite element method can be used.
This chapter gives a short introduction to goal oriented adaptive finite element approximation
for FSI problems and demonstrates how to solve them using FEniCS. We start by formulating
an FSI problem and show how it is implemented in FEniCS, and then define and explain the
corresponding adaptive algorithm for the given FSI problem. For a more comprehensive discussion
on goal oriented adaptive finite element methods for FSI problems, we refer to Selim et al. [2011],
Dunne [2007, 2006], Grätsch and Bathe [2006], Bengzon and Larson [2010], van der Zee et al. [2008],
van der Zee [2009].

25.1 Fluid–structure interaction

Fluids and solids obey the fundamental conservation laws that hold for any adiabatic continuum
body: the balance of linear momentum and the conservation of mass. These fundamental
conservation laws can be expressed in local form as

dt(ρu)− div σ = b, (25.1)

dt(ρ) = 0, (25.2)

where (25.1) is the balance of linear momentum and (25.2) is the conservation of mass. Here, dt(·)
denotes the material time derivative, ρ the density, u the velocity, σ the stress, and b represents
a given body force per unit volume. In an FSI problem, the different physical quantities of the
fluid and the structure, denoted with subscripts F and S respectively, transfer traction forces and
exchange data at a given common fluid–structure boundary. Traction forces are given by normal
stresses and at the common fluid–structure boundary, the following equilibrium equation holds:

σF · nF = −σS · nS , (25.3)

467

468CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

where nF and nS denote the outward normals on the fluid–structure boundary, viewed from the
fluid and structure domains, respectively. Hence, nF = −nS . How a continuum responds to stress
and in particular to shear stress, distinguishes a fluid continuum from a solid continuum. A
fluid cannot withstand shear forces; it will continue to deform as long as the stress is applied.
Solids, on the other hand, respond with an angular strain and the strain continues until the
displacement is sufficient to generate internal forces that balance the imposed stress. To capture
this, the constitutive laws modeling fluids and solids relate the stress tensor to different physical
measures. Moreover, these measures are from a practical point of view naturally posed in different
frameworks, the so-called Lagrangian framework and the Eulerian framework.

25.1.1 Lagrangian framework and structural mechanics

An essential kinematic measure in structural mechanics is the displacement field which is naturally
posed in the Lagrangian framework. In the Lagrangian framework, the motion of a body is related
to a fixed material point x0 and the position of such a point at time t is given by the sufficiently
smooth bijective map φ that maps the point x0 at time t to the point x(t) = φ(x0, t). The structure
displacement is defined as uS(x0, t) = φ(x0, t) − x0 with the corresponding non-singular Jacobi
matrix f = grad φ and Jacobi determinant j = det f . Thus, the material time derivative of a
function y in the Lagrangian framework is given by dt(y) = ẏ.
Constitutive laws for hyperelastic materials express the stress tensor σS (referred to as the first
Piola–Kirchhoff stress) as the Frechét derivative of a given energy functional ψ. The energy
functional can depend on different kinds of kinematic measures, and if ψ is dependent on the
so-called Green–Lagrange tensor e = 1

2 (f> f − I), the corresponding first Piola–Kirchhoff tensor is

given by σS = f · ∂ψ(e)
∂e . In this chapter, we focus on the compressible St. Venant–Kirchhoff model

where the stress is described by the energy functional ψ(e) = µS tr(e2) +
λS
2 (tr(e))2, where (µS , λS)

are given positive Lamé constants. Hence, the conservation laws for a St. Venant–Kirchhoff
material in the Lagrangian framework is given by

ρS üS − div σS(uS) = bS , (25.4)

ρ̇S = 0, (25.5)

with the corresponding stress tensor σS(uS) = f · (2µS e + λS tr(e)I). Note that we usually omit the
mass conservation equation (25.5) since it is automatically satisfied for compressible materials in
the Lagrangian framework. For a more in depth analysis of hyperelastic materials and structure
mechanics in general, see Gurtin [1981], Holzapfel [2000].

25.1.2 Eulerian framework and fluid mechanics

In fluid mechanics, the primary variables for describing the fluid motion are the fluid velocity uF

and the fluid pressure pF . These variables are naturally posed in the Eulerian framework where
the motion of a body is related to a fixed spatial point x and the motion of the body is defined
as uF (x, t) = uF (φ(x0, t), t). Thus, the material time derivative of a function y in the Eulerian
framework is given by dt(y) = ẏ + grad y · uF .
The most common constitutive law for fluids is the Newtonian fluid. For Newtonian fluids, the
stress tensor σF (referred to as the Cauchy stress) is given by σF (uF , pF) = 2µF ε(uF)− pF I, where
µF denotes the dynamic viscosity and ε(·) the symmetric gradient. In this chapter, we assume
that the fluid is an incompressible Newtonian fluid. The fluid is then described by the classical

25.2. FSI AND THE ALE COMPUTATIONAL FRAMEWORK 469

Figure 25.1: The mapping Φ(X, t)
maps a reference point X ∈ Ω to the
current point x ∈ ω(t). The deforma-
tion gradient of the reference domain
Ω is given by Grad Φ = F, and the vol-
ume change of Ω is thus J = det(F).

incompressible Navier–Stokes equations:

ρF (u̇F + grad uF · uF)− div σF (uF , pF) = bF , (25.6)

div uF = 0. (25.7)

For a more in depth analysis of constitutive laws for fluids and for fluid mechanics in general,
see Batchelor [1967], Panton [1984], Welty et al. [2001].

25.2 FSI and the ALE computational framework

To combine the Lagrangian and the Eulerian frameworks in a computational setting, the fluid
traction force from problem (25.6)-(25.7) is transferred to the structure problem (25.4)-(25.5) via the
Piola map: (j σF · f−>) · nF = −σS · nS at the common fluid–structure boundary. The deformation
of the structure, given by the structure solution in the material domain, needs to be tracked in the
spatial fluid domain and consequently, the mesh in the spatial fluid domain has to be updated. A
dynamically deforming mesh without any additional smoothing algorithm will result in a mesh
of poor quality. To treat this shortcoming, an additional mesh equation is posed in the fluid
domain to enhance the mesh quality. Combining the Lagrangian and the Eulerian frameworks with
an additional mesh smoothing algorithm is commonly referred to as the Arbitrary Lagrangian–
Eulerian (ALE) method [Donea et al., 1982, 2004]. In this method, both the Lagrangian approach, in
which the mesh moves with the structure, and the Eulerian approach, in which the mesh represents
a fixed reference frame for the fluid, are used. In order to incorporate the mesh equation in the FSI
problem, an arbitrary reference frame for the fluid domain is introduced which is independent
of the Lagrangian description and the Eulerian description. This arbitrary reference domain is
typically the initial undeformed computational domain.
Let Ω be a fixed open domain in Rd which represents the reference (undeformed) computational
domain, for d = 2, 3. Moreover, let Ω be partitioned into two disjoint open subsets ΩF and ΩS

such that Ω̄F ∪ Ω̄S = Ω and ΩF ∩ΩS = ∅. Further, let ω(t) ∈ Rd denote the current (deformed)
computational domain which is similarly partitioned into two disjoint subsets ωF (t) and ωS(t)
such that ω̄F ∪ ω̄S = ω and ωF (t) ∩ ωS(t) = ∅, for all time t ∈ [0, T]. The common boundary
between the structure and fluid domains is denoted by ΓFS and γFS(t) respectively. In general, to
distinguish between variables and operators associated with the reference and current domains,
we use upper case and lower case letters respectively. Thus, Div ΣS(US(X, t)) is the divergence of
the structure stress defined on the reference structure domain ΩS , and grad uF (x, t) is the current
gradient of the fluid velocity defined in the current fluid domain ωF (t).
In order to map between the reference domain and the current domain, we introduce the sufficiently
smooth bijective map Φ(·, t) : Ω 7→ ω(t). For any fixed time t ∈ [0, T], Φ maps a reference point
X ∈ Ω to the corresponding current point x ∈ ω(t); that is, X 7→ x = Φ(X, t), see Figure 25.1.
Since we allow the fluid and structure portions of the domain to deform independently (only

470CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

enforcing that these deformations are identical on the common boundary), the map is split up as
follows:

Φ(X, t) =
{

ΦS(X, t), ∀X ∈ ΩS , t ∈ [0, T],
ΦM (X, t), ∀X ∈ ΩF , t ∈ [0, T].

(25.8)

Here, the structure map and the (fluid) mesh map (ΦS , ΦM) are defined as

ΦS(X, t) = X + US(X, t), (25.9)

ΦM (X, t) = X + UM (X, t), (25.10)

where (US , UM) are the solutions to the structure problem and the arbitrarily chosen mesh problem.
There are several possible ways to formulate and solve the mesh problem to obtain UM [Hermansson
and Hansbo, 2003, López et al., 2008]. In the following, we have adopted a time dependent mesh
problem related to a linearly elastic description of the fluid domain in which the stress tensor
is given by ΣM (UM) ≡ µM (Grad UM + Grad U>

M
) + λM tr(Grad UM)I for some given positive

constants (µM , λM).
To summarize, we identify the three subproblems that together define the fully coupled FSI
problem:

• the fluid problem (f) solved in the current fluid domain ωF (t);

• the structure problem (S) solved in the reference structure domain ΩS ;

• the mesh problem (M) solved in the reference fluid domain ΩF .

The corresponding set of equations for the triplet (f), (S), (M) is given by:

(f) : ρF (u̇F + grad uF · uF)− div σF (uF , pF) = bF in ωF (t), (25.11)

div uF = 0 in ωF (t), (25.12)

(S) : ρS ÜS −Div ΣS(US) = BS in ΩS × (0, T], (25.13)

(M) : U̇M −Div ΣM (UM) = 0 in ΩF × (0, T], (25.14)

together with initial and boundary conditions. We note that, with the proposed notation, the stress
from the fluid is transferred to the structure and the movement of the structure is tracked in the
fluid domain at the common fluid–structure boundary such that:

(JM (σF ◦ΦM) · F−>
M

) · NF = −ΣS · NS on ΓFS , (25.15)

uF ◦ΦM = Φ̇S on ΓFS . (25.16)

Thus, (25.15) transfers data between all the equations in the FSI system (25.11) at the common FSI
interface.
In the numerical solution of the fluid problem (f), we compensate for the additional (unphysical)
mesh movement u̇M in the fluid domain ωF (t) introduced by the mesh equation (M). The
resulting discrete finite element form of the convective term of the fluid problem takes the form
ρF (u̇

hk
F
+ grad uhk

F
· (uhk

F
− u̇hk

M
)). This additional mesh movement is a pure numerical artifact and

is not a part of the continuum representation of the FSI problem.

25.3 The FSI solver

The proposed system of equations that defines the fully coupled FSI problem (25.11) is a partitioned
system, where the subproblems (f), (S), (M) are connected at the fluid–structure interface through

25.3. THE FSI SOLVER 471

Figure 25.2: A partitioned approach
to solving the FSI problem. In each
time step kn, the three subproblems
are solved iteratively using a simple
fixed point method. The fluid prob-
lem is first solved on the given cur-
rent fluid domain ωF (t) and the stress
σF is evaluated and mapped back to
the structure problem in the reference
domain. In the structure reference
domain ΩS , the fluid stress is set as
a Neumann boundary condition and
the structure problem is solved for the
given fluid stress. The structure dis-
placement field is then set as a Dirich-
let boundary condition at the common
fluid–structure boundary for the mesh
equation in the fluid reference domain
ΩF . Having obtained the mesh solu-
tion, the solution is pushed forward
to the current fluid domain and thus
defines the new deformed current do-
main.

Fluid Structure Mesh

Fluid Structure Mesh

the boundary conditions in (25.15). To solve such a system, we utilize a fixed point iteration. The
algorithm reads as follows and is illustrated in Figure 25.2.

1. Solve the fluid problem (f).

2. Transfer the fluid stress using (25.15) and solve the structure problem (S).

3. Solve the mesh problem (M) and update the fluid domain.

4. Repeat steps (1)–(3) until convergence.

5. Move on to the next time step.

We note that one may, alternatively, start each time step with an extrapolation of the motion of
the structure domain, followed by a solution of the mesh problem, then the fluid problem etc.
This might lead to fewer iterations. However, for this work, we have adopted the simple strategy
described above.
The two subproblems (f), (S) in (25.11) define a classic set of equations from fluid and structure
mechanics. To solve the coupled system, a solver framework for handling both types of physics is
needed. For this purpose, we have used the multiphysics framework CBC.Solve developed at the
Center for Biomedical Computing at Simula Research Laboratory. Currently, CBC.Solve consists
of two core components; CBC.Flow and CBC.Twist. These are frameworks explicitly developed
for solving fluid mechanics problems and structure mechanics problems, respectively. In the
subsequent sections, we will briefly explain these frameworks and the code that solves the FSI
problem (25.11).

25.3.1 Fluid subproblem

The fluid subproblem in (25.11) is solved using the CBC.Solve module CBC.Flow. The fluid
problem can be solved in an Eulerian coordinate system or in an ALE coordinate system, and the

472CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

Python code
class NavierStokesSolver(CBCSolver):

"Navier-Stokes solver"

def __init__(self, problem):
"Initialize Navier-Stokes solver"

...

Tentative velocity step (sigma formulation)
U = 0.5*(u0 + u)
F1 = rho*(1/k)*inner(u - u0, v)*dx \

+ rho*inner(grad(u0)*(u0 - w), v)*dx \
+ inner(sigma(U, p0), epsilon(v))*dx \
+ inner(p0*n, v)*ds \
- mu*inner(grad(U).T*n, v)*ds \
- inner(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Pressure correction
a2 = inner(k*grad(p), grad(q))*dx
L2 = inner(k*grad(p0), grad(q))*dx \

- div(u1)*q*dx

Velocity correction
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx \

+ inner(k*grad(p0 - p1), v)*dx

Figure 25.3: A code segment of the
fluid solver in CBC.flow. The momen-
tum equation is multiplied with a test
function v and the continuity equation
is multiplied with a test function q. In
the first step, the tentative velocity is
computed from the momentum equa-
tion using a fully implicit formulation
of the convective term and the previ-
ously computed pressure. Here, w de-
notes the mesh velocity u̇M . In the next
step, the pressure is corrected with the
continuity equation based on the com-
puted velocity u1 from the first step.
Finally, the velocity is corrected using
the corrected pressure.

solver is based on the stress formulation of the so-called Incremental Pressure Correction Scheme
(IPCS) [Goda, 1979]. The fluid velocity uF and the fluid pressure pF are discretized in space using
Taylor–Hood elements. The resulting nonlinear variational problem is solved in three steps. In
the first step, the tentative fluid velocity is computed from the momentum equation using the
previously known pressure. After this step, the pressure at the current time step is computed
and corrected using the continuity equation. Finally, in the third step, the velocity is corrected
using the corrected pressure. The implementation is illustrated with a code segment from the
class NavierStokesSolver in Figure 25.3. For a more comprehensive discussion on how to solve
and implement different solvers for the incompressible Navier–Stokes equations in FEniCS, see
Chapter 22.

25.3.2 Structure subproblem

CBC.Twist is a solver collection for structure mechanics problems. This module solves the given
structure problem in a Lagrangian coordinate system. The solver allows the user to easily pose
problems and provides many standard material models, including St. Venant–Kirchhoff, Mooney–
Rivlin, neo-Hookean, Isihara, Biderman and Gent–Thomas. New models may be added easily
since the interface allows the user to provide an energy functional as a function of a suitable
kinematic measure, such as the Green–Lagrange strain. Both a static and an energy-momentum
preserving time-dependent solver are provided. The space discretization relies upon first order
Lagrange elements and for the time discretization several different schemes are available, such as
the cG(1) method [Eriksson et al., 1996] or the “HHT” method [Hilber et al., 1977]. In the cG(1)
method, used in this chapter, the structure problem is re-written as a first order system in time
by introducing the additional equation PS − U̇S = 0 to the structure equation (S) in (25.11). The

25.3. THE FSI SOLVER 473

Figure 25.4: A code segment from the
cG(1) version of the structure solver
CBC.Twist. In the cG(1) method, the
structure problem is re-written as a
first order system in time by intro-
ducing the additional equation PS −
U̇S = 0 to the structure equation (S)
in (25.11). The two resulting equations
are multiplied with test functions v
and q respectively, and adding the two
equations yields the nonlinear vari-
ational form L. The nonlinear varia-
tional form L contains the structure
velocity p and the first Piola–Kirchhoff
stress tensor sigma (which is a func-
tion of the structure displacement US).
The nonlinear form L is linearized us-
ing the FEniCS function derivative
where U represents the mixed finite ele-
ment function containing the structure
solution (US , PS). We note that Neu-
mann conditions, such a fluid stress,
are imposed in the variational form
L while the Dirichlet conditions are
set directly in the Newton solver. We
also note that the proposed variational
form holds for a large amount of
different structure models, in which
the first Piola–Kirchhoff stress tensor
sigma is given by an appropriate ma-
terial model.

Python code
class CG1MomentumBalanceSolver(CBCSolver):

def __init__(self, problem):
...

The variational form corresponding to
hyperelasticity

L = rho0*inner(p - p0, v)*dx + k*inner(sigma,
grad(v))*dx \

- k*inner(b, v)*dx + inner(u - u0, q)*dx \
- k*inner(p_mid, q)*dx

Add contributions form the Neumann boundary
neumann_conditions =

problem.neumann_conditions()
neumann_boundaries =

problem.neumann_boundaries()

boundary = MeshFunction("uint", mesh,
mesh.topology().dim() - 1)

boundary.set_all(len(neumann_boundaries) + 1)

for (i, neumann_boundary) in
enumerate(neumann_boundaries):
compiled_boundary =

compile_subdomains(neumann_boundary)
compiled_boundary.mark(boundary, i)
L = L - k*inner(v,

neumann_conditions[i])*ds(i)

a = derivative(L, U, dU)

structure stress tensor, regardless of material model, is given as the first Piola–Kirchhoff tensor
and the nonlinear variational problem is solved using Newton’s method. The implementation
of the cG(1) version is illustrated in the code segment from the class CG1MomentumBalanceSolver

in Figure 25.4. For a more comprehensive discussion of how to solve structure problems using
CBC.Twist, and especially how to implement different material models, see Chapter 30.

25.3.3 Mesh subproblem

The linear mesh subproblem is solved using first order Lagrange elements in space along with a
standard cG(1) formulation in time. We note that although piecewise quadratic functions are used
to approximate the velocity in the fluid problem, an affine mapping is used to map the elements in
the finite element discretization. It is therefore suitable to approximate the mesh problem using
piecewise linears (not quadratics); see Formaggia and Nobile [1999].

The implementation of the variational forms describing the mesh subproblem is illustrated in
Figure 25.5. The Dirichlet boundary conditions on the mesh subproblem are imposed weakly
through the introduction of the Lagrange multiplier, PM . This choice introduces coupling between
the mesh and structure subproblems in the linearized (adjoint) dual problem which is described
below.

474CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

Python code
Define cG(1) scheme for time-stepping
a = inner(u, v)*dx + 0.5*k*inner(sigma(u),

sym(grad(v)))*dx
L = inner(u0, v)*dx-0.5*k*inner(sigma(u0),

sym(grad(v)))*dx

Figure 25.5: A code segment of the
mesh solver MeshSolver.

25.4 Duality–based error control

As mentioned in the beginning of this chapter, in many cases we are only interested in computing
one output quantity of the fully coupled FSI system. This output quantity is commonly referred to
as the goal functional. To ensure a high level of accuracy of the functional of interest, the error
in the goal functional needs to be controlled. In finite element discretizations, a posteriori error
analysis provides a general framework for controlling the approximation error of the solution. The
extension of the classical a posteriori error analysis to estimate the error in a goal functional has
been under development over the past two decades, and the technique originates form Eriksson
et al. [1995a], Becker and Rannacher [2001]. This technique is based on the solution of an auxiliary
linearized dual (adjoint) problem in order to estimate the error in a given goal functional. By
solving the dual problem, one may construct an adaptive algorithm that efficiently targets the
computation of a specific goal functionalM, such that

|M(U)−M(Uhk)| 6 TOL. (25.17)

Here, U−Uhk ≡ e is the error of the finite element solution in space (h) and time (k), and TOL > 0
is a user-defined tolerance. To define the dual problem for the FSI problem (25.11), we pull the
fluid subproblem (f) back from the current fluid domain ωF (t) to the fluid reference domain ΩF

using the map ΦM :

(F)
Φ−1

M←−−−− (f). (25.18)

With the fluid problem (F) defined in the reference domain, all the three subproblems (F, S, M) are
posed in the reference domain Ω, and we may thus formulate a monolithic counterpart to the FSI
problem (25.11). The abstract nonlinear variational form reads:1 find U ≡ {UF , PF , US , PS , UM , PM} ∈
V such that

a(U; v) = L(v), (25.19)

for all v ≡ {vF , qF , vS , qS , vM , qM} ∈ V̂, where the trial and test spaces (V, V̂) are associated with
the geometrically conforming parts of ΩF and ΩS , respectively. By introducing the linearized
variational form a′(U; δU, v) ≡ ∂a(U;v)

∂U δU, we note that by the chain rule

a′(e, v) ≡
∫ 1

0
a′(sU + (1− s)Uhk; e, v)ds

=
∫ 1

0

d
ds

a(sU + (1− s)Uhk; v)ds

= L(v)− a(Uhk; v)

≡ r(v),

(25.20)

1Note that in this paper, we have adopted a different notation for the variational problems compared to the thesis
introduction, Paper I and Paper II. This is to comply with the notation used in the book where Paper III will be published.
We thus write a(u, v) instead of a(v, u).

25.4. DUALITY–BASED ERROR CONTROL 475

where r(·) is the (weak) residual of (25.19). We now define the following dual problem: find the
dual solution Z ≡ {ZF , YF , ZS , YS , ZM , YM} ∈ V∗ such that

a′
∗
(Z, v) =M(v), (25.21)

for all v ≡ {vF , qF , vS , qS , vM , qM} ∈ V̂∗, where the dual test and trial spaces are to be defined below.
We assume that the goal functional in (25.21) can expressed in the form

M(v) ≡ 〈ψT , v(·, T)〉+
∫ T

0
〈ψt, v〉dt, (25.22)

where (ψT , ψt) are suitable Riesz representers for the goal functional. Based on the solution
of the dual problem (25.21) and by inserting v = e, we obtain the following computable error
representation:

M(e) = a′
∗
(Z, e)

= a′(e, Z)

= L(Z)− a(Uhk; Z)

= r(Z);

(25.23)

that is, the error is the (weak) residual of the dual solution. The dual problem (25.21) measures the
sensitivity of the problem with respect to the given goal functional. The dual solution Z contains
the dual variables where, for instance, (ZF , YF) represents the dual fluid velocity and dual fluid
pressure. The additional dual variable YM represents the weakly imposed dual mesh Lagrange
multiplier at the common fluid–structure interface. This term is added to account for the coupling
between the mesh and structure equations of the FSI problem. We notice that in order for the error
representation (25.23) to be consistent, the corresponding dual trial and test spaces are defined as
(V∗, V̂∗) = (V̂, V0), where V0 = {v− w : v, w ∈ V}. We interpret the Riesz representer ψT is an
initial condition in the dual problem and that the dual problem (25.21) runs backwards in time. In
the computations, the stated dual problem (25.21) is replaced by the approximated linearized form
a′
∗
(Z, v) ≡ a′∗(U; Z, v) ≈ a′∗(Uhk; Z, v) = a′(Uhk; v, Z).

We may express the dual problem on block form as

[
v̂F v̂S v̂M

]



AFF AFS AFM

ASF ASS ASM

AMF AMS AMM



> 


ẐF

ẐS

ẐM


 =



MF

MS

MM


 . (25.24)

Here, v̂F = (vF , qF) represents the fluid test functions, AFF denotes the fluid problem linearized
around the fluid variables (UF , PF), ẐF = (ZF , YF) are the dual fluid variables andMF the fluid
goal functional and so on. The interpretation of the individual blocks in (25.24) is that, for instance,
v̂F A>

SF
ẐS is interpreted as a′

∗
SF
(ẐS , v̂F) which is the (adjoint) structure form linearized around the

fluid variables. We notice that the AFS is zero since the fluid problem linearized around the
structure variables are identically zero. Thus, the grey colored entries are by definition zero and
that AMS 6= 0 by the introduction of the dual mesh Lagrange multiplier YM .

To be able to bound the errors in space and time, we add and subtract suitable interpolants
(πh, πhk) in space and space/time in the error representation (25.23) to obtain the following a

476CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

Python code
Fluid residual contributions
R_F0 = w*inner(EZ_F - Z_F, Dt_U_F - div(Sigma_F))*dx_F
R_F1 = avg(w)*inner(EZ_F(’+’) - Z_F(’+’),

jump(Sigma_F, N_F))*dS_F

R_F2 = w*inner(EZ_F - Z_F, dot(Sigma_F, N_F))*ds
R_F3 = w*inner(EY_F - Y_F, div(J(U_M)*

dot(inv(F(U_M)), U_F)))*dx_F

Structure residual contributions
R_S0 = w*inner(EZ_S - Z_S, Dt_P_S - div(Sigma_S))*dx_S
R_S1 = avg(w)*inner(EZ_S(’-’) - Z_S(’-’),

jump(Sigma_S, N_S))*dS_S

R_S2 = w(’-’)*inner(EZ_S(’-’) - Z_S(’-’),
dot(Sigma_S(’-’) - Sigma_F(’+’),
-N_F(’+’)))*d_FSI

R_S3 = w*inner(EY_S - Y_S, Dt_U_S - P_S)*dx_S

Mesh residual contributions
R_M0 = w*inner(EZ_M - Z_M, Dt_U_M - div(Sigma_M))*dx_F
R_M1 = avg(w)*inner(EZ_M(’+’) - Z_M(’+’),

jump(Sigma_M, N_F))*dS_F

R_M2 = w(’+’)*inner(EY_M - Y_M, U_M - U_S)(’+’)*d_FSI

Figure 25.6: A code segment illustrat-
ing the element-wise space error indi-
cators. The indicators consist of three
parts where each subproblem is repre-
sented. These estimates are obtained
by element wise integration by parts of
the finite element formulation which
is weighted by the dual solution. This
results in element indicators RT de-
fined on the cells and jump terms R∂T
across element edges. Here, w repre-
sents a discontinuous function of or-
der zero and jump denotes the jump
across an element edge dS. The differ-
ence Z − πhZ is approximated with
EZ - Z where EZ is the extrapolated fi-
nite element approximation on a richer
space and Z is the finite element ap-
proximation.

posteriori error estimate: |M(U)−M(Uhk)| 6 Eh + Ek + Ec, where

Eh ≡
N

∑
n=1

∫

In
∑

T∈Th

|〈RT , Z− πhZ〉T |+ |〈 1
2JR∂TK, Z− πhZ〉∂T |dt,

Ek ≡ S(T)max
[0,T]
{kn|rn

k |},

Ec ≡ |r(πhkZ)|.

(25.25)

Here, Eh estimates the space discretization error which on each space-time slab Sn = Th × In is
expressed as the sum of error indicators RT and R∂T from the cells of the mesh, weighted by the
interpolation error of the dual solution. The implementation of these indicators is illustrated in
Figure 25.6.

The time discretization error estimate Ek consists of the local time step size kn multiplied with
a local algebraic residual rn

k and the global stability factor S(T) ≈
∫ T

0 ‖Ż‖l2 dt. Finally, the
computational error estimate Ec accounts for the error introduced when the proposed Galerkin
method is solved using a non-Galerkin method, e.g. the IPCS for the fluid subproblem. Also, in
addition to the proposed mesh equation, an additional local mesh smoothing is added to the fluid
mesh. For a more comprehensive discussion and derivation of this a posteriori estimate see Selim
et al. [2011].

25.4. DUALITY–BASED ERROR CONTROL 477

25.4.1 The adaptive algorithm

With the a posteriori error estimate presented in (25.25), we construct an algorithm based on a
feedback process that provides an adaptive space-time discretization such that (25.17) holds. In
order to determine the stopping criteria for the space and time discretizations, the user defined
tolerance TOL needs to be weighted such that

TOL = TOLh + TOLk + TOLc, (25.26)

where TOLh = whTOL, TOLk = wkTOL, TOLc = wcTOL. We here take wh = wk = wc = 1/3. The
weight wc affects the tolerance used for the fixed point algorithm when solving (25.11). Based on
the spatial error estimate Eh, we refine the mesh until Eh 6 TOLh. There are various ways in which
refine the mesh and to determine which elements to refine. In the examples to come, we have
adopted the Rivara recursive bisection algorithm as the refinement algorithm and the so-called
Dörfler [Dörfler, 1996] marking strategy. The Dörfler marking strategy is based on the idea that for
a given α ∈ (0, 1], a minimum number of elements N is determined such that

N

∑
i=1

ηTi > α ∑
T∈Th

ηT , (25.27)

where {ηTi}
|Th |
i=1 is a list of error indicators sorted in decreasing order. The adaptive time step size

is based on the error estimate Ek and connects the global error to the local error over time. As a
first approximation, we may choose the local time step size such that

kn = TOLk/(|rn−1
k | S(T)). (25.28)

However, this particular choice of time step size introduces oscillations in the time step size since
a small algebraic residual gives a large time step which results in a large residual and so on. To
overcome this behavior, we use a smoothed version [Logg, 2004], where (25.28) is replaced by

kn =
2k̄nkn−1

k̄n + kn−1
, (25.29)

and k̄n = TOLk/(|rn−1
k | S(T)). Finally, the estimate for the computational error Ec is only

considered in the stopping criterion for the total error.
The main outline of the adaptive FSI algorithm is depicted in Figure 25.7. In the FSISolver, the
FSI problem (25.11) (referred to as the primal problem) is solved in the module PrimalSolver,
which solves and transfers data from the three subproblems defined in CBC.Twist, CBC.Flow and
MeshSolver. Once the entire primal problem is solved, the primal data is passed to the DualSolver.
In the dual solver, the linearized dual problem (25.21) is solved. The primal and dual solutions are
passed to the module Residuals where the error estimate (25.25) is evaluated. The code for the
FSISolver is illustrated in Figure 25.8 and Figure 25.9.
To summarize, the adaptive feedback process involves the following steps:

1. Solve the partitioned (primal) FSI problem (25.11) for t ∈ (0, T]. For each time step, determine
the local time step size kn according to (25.29).

2. Solve the dual problem (25.21) for t ∈ [0, T) using the same time step size as in the primal
problem.

3. Evaluate the error estimate (25.25) and refine the computational domain in space.

478CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

FSISolver

PrimalSolver DualSolver

CBC.Flow CBC.Twist MeshSolver

Residuals

Figure 25.7: A schematic picture of
the adaptive FSI algorithm. The pri-
mal problem (25.11) is solved itera-
tively in the PrimalSolver and the so-
lution U is passed to the FSISolver.
The dynamic time step kn is calcu-
lated for each time step in the itera-
tive solver PrimalSolver using (25.29)
in the module Residuals. After the
primal problem is solved on the en-
tire time interval, the dual problem
is solved with the same time steps as
in the primal solution in the module
DualSolver. Once the dual is solved,
the error estimates are evaluated and
a new mesh is created.

4. Repeat steps 1 – 3 untilM(e) 6 TOL.

25.5 Numerical examples

To demonstrate the above described adaptive algorithm, we solve two simple 2D problems. These
problems have different characteristics and they demonstrate how the proposed adaptive algorithm
provides both an adequate adaptive mesh refinement and time step selection.

25.5.1 Channel with flap

The first problem is a channel flow with a completely immersed structure called “the flap”.
The computational domain is given by Ω = (0, 1) × (0, 4), with the structure domain ΩS =
(1.4, 1.6)× (0, 0.5) and the fluid domain ΩF = (Ω \ΩS)

◦. For boundary conditions, we consider a
pressure driven flow and the flap is attached at the channel wall. As goal functional, we have used
the average displacement of the structure in the positive x1-direction; that is,

MS(vS) =
∫ T

0
〈ψt

S
, vS〉dt, (25.30)

where ψt
S
= (1, 0). The physical parameters related to the problem is set to (ρF , µF) = (1, 0.02),

(ρS , µS , λS) =
1
4 (15, 75, 125) and (µM , λM) = (3.8461, 5.76). The discretization parameters are set to

(TOL, wh, wk, wc) =
(0.05, 0.45, 0.45, 0.1) with an initial time step size 0.02 and final time T = 0.5. The adaptive primal
FSI solution is depicted in Figure 25.10 and the corresponding dual solutions are illustrated in
Figure 25.11 and in Figure 25.12.

25.5. NUMERICAL EXAMPLES 479

Figure 25.8: The adaptive solver class
FSISolver. Here, the problem specific
data is passed through the variable
problem. In the first adaptive loop, we
make an initial guess of the stability
factor S(T) = 1 in order to adapt the
time step in the first loop. The vari-
able name error represents the sum of
Eh + Ek + Ec in (25.25) and indicator
represents ηT in (25.27).

Python code
class FSISolver(CBCSolver):

def __init__(self, problem):
"Initialize FSI solver"

...
def solve(self):

"Solve the FSI problem (main adaptive loop)"

Create empty solution (return value when
primal is not solved)

U = 5*(None,)

Initial guess for stability factor
ST = 1.0

Adaptive loop
while True:

Solve primal problem
if self.parameters["solve_primal"]:

primal_solver =
PrimalSolver(self.problem,
self.parameters)

U = primal_solver.solve(ST)

else:
info("Not solving primal problem")

Solve dual problem
if self.parameters["solve_dual"]:

dual_solver = DualSolver(self.problem,
self.parameters)

dual_solver.solve()
else:

info("Not solving dual problem")

480CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

Python code
Estimate error and compute error

indicators
if self.parameters["estimate_error"]:

error, indicators, E_h =
estimate_error(self.problem)

else:
info("Not estimating error")
error = 0

Check if error is small enough
tolerance = self.parameters["tolerance"]
if error <= tolerance:

break
else:

Check if mesh error is small enough
mesh_tolerance = tolerance *

self.problem.space_error_weight()
if E_h <= mesh_tolerance:

info("Freezing the current mesh")
else:

Refine mesh
problem = self.problem
mesh = refine_mesh(problem,

problem.mesh(),
indicators)

problem.init_meshes(mesh)

Return solution
return U

Figure 25.9: The adaptive solver class
FSISolver, continued.

25.5. NUMERICAL EXAMPLES 481

Figure 25.10: The adaptive FSI solu-
tion to the channel with flap problem
depicted in the current domain ω(t)
at final time t = 0.5. In Figure (a), the
fluid velocity solution is illustrated us-
ing streamlines. A close view of the
adaptive mesh is given in Figure (b).
The mesh is refined in the immediate
area around the structure.

(a)

(b)

482CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

(a) ZF

(b) ZS

Figure 25.11: The dual fluid velocity
solution ZF and the dual structure so-
lution ZS at the “final time” t = 0 in
the reference domain Ω. Since the
only driving force of the fully cou-
pled dual problem is the goal func-
tional (25.30), the dual fluid ZF is con-
centrated around the top left corner of
the structure where the structure dis-
placement is large. The dual structure
displacement ZS illustrates the choice
of goal functional in (25.30).

Figure 25.12: The dual mesh displace-
ment ZM to the channel with flap prob-
lem solved in the reference domain Ω.
The dual mesh displacement is large
close to the the top right corner of the
structure. This is expected since the
mesh in the current domain ω(t) is sig-
nificantly compressed in this region.

25.5. NUMERICAL EXAMPLES 483

Figure 25.13: Figure (a) shows the
adaptive FSI solution to the driven
cavity problem with an elastic bottom
at time t = 2. The structure does
not reach a steady position; instead
the structure moves up and down at
the common fluid–structure boundary.
Figure (b) is a close up view of the
refined mesh at the FSI boundary.

(a)

(b)

25.5.2 Driven cavity with an elastic bottom

The second problem is a driven cavity with an elastic bottom. Here, the computational domain
is given by Ω = (0, 2)× (0, 2), with structure domain ΩS = (0, 2)× (0, 0.5) and the fluid domain
ΩF = (Ω \ΩS)

◦. At the top of the fluid domain, the fluid has the regularized tangential velocity
profile in x1-direction

uF =





2x, x ∈ [0, 0.25],
0.5, x ∈ (0.25, 1.75),
2(2− x), x ∈ [1.75, 2],

(25.31)

for all t ∈ [0, 5]. The structure is attached at the bottom and the goal functional is set as the average
structure displacement in the positive x2-direction; that is,

MS(vS) =
∫ T

0
〈ψt

S
, vS〉dt, (25.32)

where ψt
S
= (0, 1). The physical parameters related to the problem is set to (ρF , µF) = (1, 1),

(ρS , µS , λS) = (2, 3, 3) and (µM , λM) = (3.8461, 5.76). The discretization parameters are set to
(TOL, wh, wk, wc) = (0.5, 0.45, 0.45, 0.1) with an initial time step size 0.05. In contrast to the
previous problem, the solution, and in particular the structure displacement, varies substantially
over time. The adaptive primal FSI solution is depicted in Figure 25.13 and the dynamic time step
size is illustrated in Figure 25.14.

484CHAPTER 25. AN ADAPTIVE FINITE ELEMENT SOLVER FOR FLUID–STRUCTURE INTERACTION PROBLEMS

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

k
n
(t

)

0 1 2 3 4 5

t
2

3

4

5

6

7

8

|r
n k
|

Figure 25.14: The time step kn and
the algebraic residual rn

k as a function
of time. As seen in the picture, the
solution has a large variation in terms
of the magnitude of the residual rn

k .

25.6 Conclusions

In this chapter, an adaptive finite element method for FSI problems has been formulated and its
implementation in FEniCS has been demonstrated. By relating the fully coupled partitioned FSI
problem (25.11) in a moving domain to a dual problem (25.21) posed on a fixed reference domain,
an adapted space and time discretization is obtained.
CBC.Solve is a collaboratively developed open source project (released under the GNU GPL)
that is freely available from its source repository at https://launchpad.net/cbc.solve/. Its only
dependency is a working FEniCS installation. CBC.Solve is released with the goal that it will allow
users to easily solve fluid problems, structure and FSI problems. Everyone is encouraged to fetch
and try it. Users are also encouraged to modify the code to better suit their own purposes, and
contribute changes that they think are useful to the community.

https://launchpad.net/cbc.solve/

26 Multiphase flow through porous media
By Garth N. Wells

Awaiting final revision from authors.

485

27 Improved Boussinesq equations for surface wa-
ter waves

By Nuno D. Lopes, Pedro J. S. Pereira and Luís Trabucho

The main motivation of this work is the implementation of a general finite element solver for some
of the improved Boussinesq models. Here, we use an extension of the model proposed by Zhao
et al. [2004] to investigate the behavior of surface water waves. The equations in this model do
not contain spatial derivatives with an order higher than 2. Some effects like energy dissipation
and wave generation by natural phenomena or external physical mechanisms are also included.
As a consequence, some modified dispersion relations are derived for this extended model. A
matrix-based linear stability analysis of the proposed model is presented. It is shown that this
model is robust with respect to instabilities related to steep bottom gradients.

27.1 Overview

The FEniCS project, via DOLFIN, UFL and FFC, provides good technical and scientific support for
the implementation of large scale industrial models based on the finite element method. Specifically,
all the finite element matrices and vectors are automatically generated and assembled by DOLFIN
and FFC, directly from the variational formulation of the problem which is declared using UFL.
Moreover, DOLFIN provides a user friendly interface for the libraries needed to solve the finite
element system of equations.
Numerical implementation of Boussinesq equations goes back to the works of Peregrine [1967] and
Wu [1981], and later by the development of improved dispersion characteristics (see, e.g., Madsen
et al. [1991], Nwogu [1993], Chen and Liu [1994] as well as Beji and Nadaoka [1996]).
We implement a solver for some of the Boussinesq type systems to model the evolution of surface
water waves in a variable depth seabed. This type of model is used, for instance, in harbor
simulation (see Figure 27.1 for an example of a standard harbor), tsunami generation and wave
propagation as well as in coastal dynamics.
In Section 27.2, we begin by describing the DOLFWAVE application which is a FEniCS based
application for the simulation of surface water waves (see http://ptmat.fc.ul.pt/~ndl/).
Editor note: URL should be archival.

The governing equations for surface water waves are presented in Section 27.3. From these
equations different types of models can be derived. There are several Boussinesq models and some
of the most widely used are those based on the wave surface Elevation and horizontal Velocities
formulation (BEV) (see, e.g., Walkley and Berzins [2002], Woo and Liu [2004a] as well as Woo
and Liu [2004b] for finite element discretizations of BEV models). However, we only consider
the wave surface Elevation and velocity Potential (BEP) formulation (see, e.g., Langtangen and

487

http://ptmat.fc.ul.pt/~ndl/

488 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

Figure 27.1: Nazaré’s harbor, Portugal.

Pedersen [1998] for a finite element discretization of a BEP model). Thus, the number of unknowns
is reduced from five (the three velocity components, the pressure and the wave surface elevation)
in the BEV models to three (the velocity potential, the pressure and the wave surface elevation) in
the BEP models. Two different types of BEP models are taken into account:

1. a standard model containing sixth-order spatial derivatives;

2. the model proposed by Zhao et al. [2004] (ZTC), containing only first and second-order
spatial derivatives.

A standard technique is used in order to derive the Boussinesq-type model mentioned in 1. In
the subsequent sections, only the ZTC-type model is considered. Note that these two models are
complemented with some extra terms, due to the inclusion of effects like energy dissipation and
wave generation by moving an impermeable bottom or using a source function.
An important characteristic of the extended ZTC model, including dissipative effects, is presented
in Section 27.4, namely, the dispersion relation.
Section 27.5 is dedicated to the numerical methods used in the discretization of the variational
formulation. The discretization of the spatial variables is accomplished with Lagrange P1 or P2
finite elements (see Chapter 4) whereas the time integration is implemented using Runge–Kutta
and predictor-corrector algorithms.
In Sections 27.6 and 27.7, we describe several types of wave generation, absorption and reflection
mechanisms. Initial conditions for a solitary wave and a periodic wave induced by Dirichlet
boundary conditions are also presented. Moreover, the extended ZTC model includes a source
function to generate surface water waves, as proposed in Wei et al. [1999]. Total reflective walls
are modelled by standard zero Neumann conditions for the wave surface elevation and velocity
potential. The wave energy absorption is simulated using sponge layers.
In Section 27.8, we use a matrix-based analysis in order to study some stability properties of the
linearized ZTC model in one horizontal dimension and with a time-independent bathymetry. The
standard potential model with depth averaged velocity potential investigated by Løvholt and
Pedersen [2009] is also used here as a reference for comparison.
In Section 27.9, the extended ZTC equations are used to model four different physical problems:
the evolution of solitary waves passing through submerged bars with different geometries, the
evolution of a Gaussian hump in a square basin, the evolution of a periodic wave in a harbor
geometry like that one represented in Figure 27.1 and the generation of a wave due to an object

27.2. DOLFWAVE 489

moving on a horizontal bottom. We also use the first numerical test to illustrate the usage of the
DOLFWAVE application.
Other solvers, mostly based on finite difference methods, have been proposed in the literature,
such like FUNWAVE (see Kirby [1998]), COULWAVE (see Lynett and Liu [2004]) and the global
Boussinesq solver by Pedersen and Løvholt [2008]. FUNWAVE is based on the fully nonlinear
and BEV equations by Wei and Kirby [1995]. Wave generation by source function, wave breaking,
bottom friction, treatment of moving shorelines, subgrid turbulent mixing, totally reflective walls
and sponge layers are included in this model. The third-order spatial derivative equations in
this model are discretized using a fourth-order finite difference scheme. Specifically, for time
integration, a composite fourth-order Adams–Bashforth–Moulton scheme (third-order Adams–
Bashforth predictor step and a fourth-order Adams–Moulton corrector-step) is used. Moreover,
a fourth-order Shapiro type filter is applied to remove short length waves. The main cause of
instabilities in nonlinear shallow water computations is often due to high nonlinearity in shallow
water. The instabilities appear through fast growing short wavelengths which eventually cause the
blowup of the model.
COULWAVE possesses essentially the main features of FUNWAVE plus the inclusion of wave
generation due to a moving bottom. Moreover, COULWAVE is based on a multilayer third-
order spatial derivative BEV model. This leads to improved dispersion relations and nonlinear
properties when compared with FUNWAVE. However, the number of primary unknowns in this
two horizontal dimensional model with n-layers increases from 3 to 2n+ 1. Thus, the computational
time is also increased, accordingly.
The global Boussinesq solver by Pedersen and Løvholt [2008] is based on BEV and BEP models,
although the BEV versions are preferred by the authors. In Løvholt and Pedersen [2009] several
BEV and BEP models are studied regarding linear stability properties. It was shown that the
tested BEV formulations are less prone to instabilities due to steep depth gradients than some
BEP ones. This solver includes Coriolis effect and the modification on arc lengths by the curvature
of the Earth. The main goal of this solver is to treat, efficiently and in a robust way, large scale
ocean waves such as tsunamis. The shoreline runup, breaking waves or generation of waves by
moving bottoms are not yet included. Only standard nonlinear terms are considered and finite
differences methods are used to discretize the model, specifically C-grid is implemented for the
spatial discretization and a leap-frog scheme is used for the time stepping.

27.2 DOLFWAVE

The main goal of DOLFWAVE is to provide a framework for the analysis, development and
computation of models for surface water waves, based on finite element methods. Algorithms for
shoreline runup/rundown, numerical filters or effects like wave breaking or bottom friction are
not yet included in the application, however they are planned for future implementation.
We have already implemented solvers for the following cases:

1. Shallow water wave models for unidirectional long waves in one horizontal dimension;

2. Boussinesq-type models for moderately long waves with small amplitude in shallow water.

The shallow water wave models implemented and mentioned in 1 are the following:

• The Korteweg–de Vries (KdV) model which consists of a weakly nonlinear and dispersive
third-order partial differential equation for the wave surface elevation. The discretization of
the spatial variable is accomplished using a continuous/discontinuous finite element method
with Lagrange P2 elements;

490 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

• The Benjamin–Bona–Mahony model, also known as the regularized long-wave (RLW) model,
which is an improvement of the KdV model regarding the dispersive properties. The equation
in the RLW model contains only second-order spatial derivatives. The discretization of the
spatial variable is accomplished using continuous finite element methods with Lagrange P1
or P2 elements.

For the Boussinesq-type models we considered the following cases:

• The extended ZTC model which is based on a system of two second-order partial differential
equations for the wave surface elevation and a velocity potential. The discretization of the
spatial variables is accomplished using continuous finite element methods with Lagrange P1
or P2 elements;

• An extension of the model by Chen and Liu [1994] in order to include dissipative effects,
several forms of wave generation and improved dispersive properties. This model is based
on a system of two fourth-order partial differential equations for the wave surface elevation
and a velocity potential. The discretization of the spatial variables is accomplished using
the continuous/discontinuous finite element method with Lagrange P2 elements (see Lopes
et al.).

A predictor-corrector scheme with an initialization provided by an explicit Runge–Kutta method is
used for the time integration of the equations. These schemes are easier to implement and require
smaller computational times than the implicit ones. However, they are more prone to numerical
instabilities and in general require smaller time steps.
We use UFL for the declaration of the finite element discretization of the variational forms related to
the models mentioned above (see the UFL form files in the following directories of the DOLFWAVE
code tree: dolfwave/src/1hd1sforms, dolfwave/src/1hdforms and
dolfwave/src/2hdforms). These files are compiled using FFC to generate the C++ code of the
finite element discretization of the variational forms (see Chapter 18). DOLFWAVE is based on the
C++ interface of DOLFIN 0.9.9 to assemble and solve all the systems of equations related with the
finite element method.
All the DOLFWAVE code is available for download at https://launchpad.net/dolfwave. Some
tools for the generation of the C++ code for boundary conditions and source functions are included.
Scripts for visualization and data analysis are also part of the application. The Xd3d post-processor
is used in some cases (see http://www.cmap.polytechnique.fr/~jouve/xd3d/). DOLFWAVE has
a large number of demos covering all the implemented models (see dolfwave/demo). Different
physical effects are illustrated. All the numerical examples in this work are included in the demos.

27.3 Model derivation

We consider the following set of equations for the irrotational flow of an incompressible and
inviscid fluid:

∂u
∂t

+∇u u = −∇
(

P
ρ
+ g z

)
, (27.1a)

∇× u = 0, (27.1b)

∇ · u = 0, (27.1c)

https://launchpad.net/dolfwave
http://www.cmap.polytechnique.fr/~jouve/xd3d/

27.3. MODEL DERIVATION 491

Figure 27.2: Cross-section of the water
wave domain.

z = η(x, y, t)

z = −h(x, y, t)
z = −H

A
LD

Dt (z− η(x, y, t)) = 0

D
Dt (z + h(x, y, t)) = 0

z

xo

where u is the velocity vector field of the fluid, P the pressure, g the gravitational acceleration, ρ

the mass per unit volume, t the time and the differential operator ∇ =
(

∂
∂x , ∂

∂y , ∂
∂z

)
. A Cartesian

coordinate system is adopted with the horizontal x and y-axes on the still water plane and the
z-axis pointing vertically upwards (see Figure 27.2). The fluid domain is bounded by the bottom
seabed at z = −h(x, y, t) and the free water surface at z = η(x, y, t). In Figure 27.2, L, A and H
are the characteristic wave length, wave amplitude and depth, respectively. Note that the material
time derivative is denoted by D

Dt .
From the irrotational assumption (see (27.1b)), we can introduce a velocity potential function,
φ(x, y, z, t) to obtain Bernoulli’s equation:

∂φ

∂t
+

1
2
∇φ · ∇φ +

P
ρ
+ g z = f (t), (27.2)

where u = ∇φ(x, y, z, t) and f (t) stands for an arbitrary function of integration. Note that we can
remove f (t) from equation (27.2) if φ is redefined by φ +

∫
f (t)dt. From the incompressibility

condition (see (27.1c)) the velocity potential satisfies Laplace’s equation:

∇2φ +
∂2φ

∂z2 = 0, (27.3)

where, from now on, ∇ denotes the horizontal gradient operator given by ∇ =
(

∂
∂x , ∂

∂y

)
. To close

this problem, the following boundary conditions must be satisfied:

1. the kinematic boundary condition for the free water surface:

∂φ

∂z
=

∂η

∂t
+∇φ · ∇η, z = η; (27.4)

2. the kinematic boundary condition for the impermeable sea bottom:

∂φ

∂z
+ (∇φ · ∇h) = −∂h

∂t
, z = −h; (27.5)

3. the dynamic boundary condition for the free water surface:

∂φ

∂t
+ gη +

1
2

(
|∇φ|2 +

(
∂φ

∂z

)2
)
+ D(φ) = 0, z = η, (27.6)

where D(φ) is a dissipative term (see, e.g., the work by Dutykh and Dias [2007]). We assume that

492 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

this dissipative term is of the following form:

D(φ) = ν
∂2φ

∂z2 , (27.7)

with ν = µ̄/ρ and µ̄ an eddy-viscosity coefficient. Note that a non-dissipative model means that
there is no energy loss. This is not acceptable from a physical point of view, since any real flow is
accompanied by energy dissipation.
Using Laplace’s equation (see (27.3)) it is possible to rewrite (27.7) as D(φ) = −ν∇2φ. Throughout
the literature, analogous terms were added to the kinematic and dynamic conditions to absorb the
wave energy near the boundaries. These terms are related with the sponge or damping layers and,
as we will see later, they can be used to modify the dispersion relations.
A more detailed description of the above equations is found in the reference book on waves
by Whitham [1974], or in the more recent book by Johnson [1997].

27.3.1 Standard models

In this subsection, we present a generic Boussinesq system using the velocity potential formulation.
To transform equations (27.2)– (27.7) in a dimensionless form, the following scales are introduced
(see Figure 27.2):

(x′, y′) =
1
L
(x, y), z′ =

z
H

, t′ =
t
√

gH
L

, η′ =
η

A
, φ′ =

Hφ

AL
√

gH
, h′ =

h
H

, (27.8)

together with the small parameters

µ =
H
L

, ε =
A
H

. (27.9)

In the last equation, µ is called the long wave parameter and ε the small amplitude wave parameter.
Note that ε is related with the nonlinear terms and µ with the dispersive terms. For simplicity, in
what follows, we drop the prime notation.
The Boussinesq approach consists of reducing a 3D problem to a 2D one. This may be accomplished
by expanding the velocity potential in a Taylor power series in terms of z. Using Laplace’s equation,
in a dimensionless form, we can obtain the following expression for the velocity potential:

φ(x, y, z, t) =
+∞

∑
n=0

(
(−1)n z2n

(2n)!
µ2n∇2nφ0(x, y, t) + (−1)n z2n+1

(2n + 1)!
µ2n∇2nφ1(x, y, t)

)
, (27.10)

with

φ0 = φ |z=0, φ1 =

(
∂φ

∂z

)
|z=0 . (27.11)

From asymptotic expansions, successive approximation techniques and the kinematic boundary
condition for the sea bottom, it is possible to write φ1 in terms of φ0 (see Chen and Liu [1994]
and Zhao et al. [2004]). In this work, without loss of generality, we assume that the dispersive and
nonlinear terms are related by the following equation:

ε

µ2 = O(1) with µ < 1 and ε < 1. (27.12)

Note that the Ursell number is defined by Ur = ε/µ2 and plays a central role in deciding the

27.3. MODEL DERIVATION 493

choice of approximations which correspond to very different physics. The regime of weakly
nonlinear, small amplitude and moderately long waves in shallow water is characterized by (27.12)(
O(µ2) = O(ε) ; that is, H2

L2 ∼ A
H

)
. Boussinesq equations account for the effects of nonlinearity ε

and dispersion µ2 to the leading order. When ε� µ2 , they reduce to the Airy equations. When
ε� µ2 they reduce to the linearized approximation with weak dispersion. Finally, if we assume
that ε→ 0 and µ2 → 0, the classical linearized wave equation is obtained.

A sixth-order spatial derivative model is obtained if φ1 is expanded in terms of φ0 and all terms up
to O(µ8) are retained. Thus, the asymptotic kinematic and dynamic boundary conditions for the
free water surface are rewritten as follows 1:

∂η

∂t
+ ε∇ · (η∇φ0)−

1
µ2 φ1 +

ε2

2
∇ · (η2∇φ1) = O(µ6), (27.13a)

∂φ0

∂t
+ εη

∂φ1

∂t
+ η +

ε

2
|∇φ0|2 + ε2∇φ0 · η∇φ1

− ε2η∇2φ0φ1 +
ε

2µ2 φ2
1 + D(φ0, φ1) = O(µ6), (27.13b)

where φ1 is given by:

φ1 = −µ2∇ · (h∇φ0) +
µ4

6
∇ ·

(
h3∇3φ0

)
− µ4

2
∇ ·

(
h2∇2 · (h∇φ0)

)

− µ6

120
∇ ·

(
h5∇5φ0

)
+

µ6

24
∇ ·

(
h4∇4 · (h∇φ0)

)
+

µ6

12
∇ ·

(
h2∇2 ·

(
h3∇3φ0

))

− µ6

4
∇ ·

(
h2∇2 ·

(
h2∇2 · (h∇φ0)

))
− µ2

ε

∂h
∂t
− µ2

ε

µ2

2
∇ ·

(
h2∇∂− h

∂t

)

+
µ2

ε

µ4

24
∇ ·

(
h4∇3 ∂h

∂t

)
− µ2

ε

µ4

4
∇ ·

(
h2∇2

(
h2∇∂h

∂t

))
+ O(µ8). (27.14)

To obtain equation (27.14), we assume that
∂h
∂t

= O(ε) (see Dutykh and Dias [2007]).

27.3.2 Second-order spatial derivative model

The second-order spatial derivative equations are obtained, essentially, via the slowly varying
bottom assumption. In particular, only O(h,∇h) terms are retained. Also, only O(ε) nonlinear
terms are admitted. In fact, the extended ZTC model is written retaining only O(ε, µ4) terms.

Under these conditions, (27.13) and (27.14) lead to:

∂η

∂t
+ ε∇ · (η∇φ0)−

1
µ2 φ1 = O(µ6), (27.15a)

∂φ0

∂t
+ η +

ε

2
|∇φ0|2 − ν∗ε∇2φ0 = O(µ6), (27.15b)

1Note that D is, now, a dimensionless function.

494 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

where ν∗ = ν
√

H/(AL
√

g) and

φ1 = −µ2∇ · (h∇φ0) +
µ4

6
∇ ·

(
h3∇3φ0

)
− µ4

2
∇ ·

(
h2∇2 · (h∇φ0)

)

− 2µ6

15
h5∇6φ0 − 2µ6h4∇h · ∇5φ0 −

µ2

ε

∂h
∂t

+ O(µ8). (27.16)

Thus, these extended equations are written as follows:

∂η

∂t
+∇ · [(h + εη)∇Φ]− µ2

2
∇ · [h2∇∂η

∂t
] +

µ2

6
h2∇2 ∂η

∂t
− µ2

15
∇ · [h∇(h ∂η

∂t
)] = −1

ε

∂h
∂t

, (27.17a)

∂Φ
∂t

+
ε

2
|∇Φ|2 + η − µ2

15
h∇ · (h∇η)− ν∗ε∇2Φ = 0, (27.17b)

where Φ is the transformed velocity potential given by:

Φ = φ0 + µ2 h
15
∇ · (h∇φ0). (27.18)

In terms of the dimensional variables, equations (27.17) become:

∂η

∂t
+∇ · [(h + η)∇Φ]− 1

2
∇ · [h2∇∂η

∂t
] +

1
6

h2∇2 ∂η

∂t
− 1

15
∇ · [h∇(h ∂η

∂t
)] = −∂h

∂t
, (27.19a)

∂Φ
∂t

+
1
2
|∇Φ|2 + gη − 1

15
gh∇ · (h∇η)− ν∇2Φ = 0, (27.19b)

whereas equation (27.18) is rewritten as follows:

Φ = φ0 +
h

15
∇ · (h∇φ0). (27.20)

In this context, the use of the transformed velocity potential has two main advantages (see Zhao
et al. [2004]):

1. the spatial derivative order is reduced to 2;

2. linear dispersion characteristics, analogous to the BEP model proposed by Chen and Liu
[1994] and the BEV model developed by Nwogu [1993], are obtained. The latter models
contain fourth and third-order spatial derivatives, respectively.

27.4 Linear dispersion relation

One of the most important properties of a water wave model is described by the linear dispersion
relation. From this relation we can deduce the phase velocity, group velocity and the linear
shoaling.
The dispersion relation of a linearized water wave model should be in good agreement with the
one provided by the linear wave theory of Airy.
In this section, we follow the work by Dutykh and Dias [2007]. Moreover, we only present a
generalized version of the dispersion relation for the extended ZTC model with the dissipative
term mentioned above. We can also include other damping terms, which are usually used in the
sponge layers.

27.4. LINEAR DISPERSION RELATION 495

Figure 27.3: Positive part of

Re
(

C/
√

gh
)

as a function of kh
for several models.

0 5 10 15 20
kh

0.0

0.2

0.4

0.6

0.8

1.0

R
e(

C √
g
h

)

FL
ZTC
FL D ν1 = 0.14 m2 s−1

ZTC D ν1 = 0.14 m2 s−1

ZTC D ν2 = 0.21 m2 s−1

For simplicity, a one horizontal dimensional model is considered. To obtain the dispersion relation,
a standard test wave is assumed:

η(x, t) = a ei(kx−ωt), (27.21a)

Φ(x, t) = −b i ei(kx−ωt), (27.21b)

where a is the wave amplitude, b the potential magnitude, k = 2π/L the wave number and ω
the angular frequency. This wave, described by equations (27.21), is the solution of the linearized
extended ZTC model, with a constant depth bottom and an extra dissipative term, if the following
equation is satisfied:

ω2 − ghk2 1 + 1
15 (kh)2

1 + 2
5 (kh)2

+ iνωk2 = 0. (27.22)

The dispersion relation given by the last equation is accurate up to O((kh)4) or O(µ4) when
compared with the Padé approximant of order [2/2] of the following equation:

ω2 − ghk2 tanh(kh)
kh

+ iνωk2 = 0. (27.23)

In fact, equation (27.23) is the dispersion relation of the full linear problem.
From (27.22), the phase velocity, C = w/k, for this dissipative and extended ZTC model is given
by:

C = − iνk
2
±

√√√√−
(

νk
2

)2
+ gh

(1 + 1
15 (kh)2)

(1 + 2
5 (kh)2)

. (27.24)

In Figure 27.3, we can see the positive real part of
(

C/
√

gh
)

as a function of kh for the following
models: full linear theory (FL), Zhao et al. (ZTC), full linear theory with a dissipative model (FL_D)
and the improved ZTC model with the dissipative term (ZTC_D).
From Figure 27.3, we can also see that these two dissipative models admit critical wave numbers

496 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

k1 and k2, such that the positive part of Re
(

C/
√

gh
)

is zero for k > k1 and k > k2, respectively.
We can optimize the value of ν in the ZTC_D model in order to have k1 = k2. From (27.23),
Re
(

C/
√

gh
)

is zero for

k3
1 = 4g

tanh (k1h)
ν2 . (27.25)

Thus, we can obtain the values of k1, in the FL_D model, for which short waves no longer propagate
for fixed h and ν = ν1 values. Considering now the real part of (27.24) equal to zero, we have

ν2 = 4
gh
k2

(
1 + 1

15 (kh)2

1 + 2
5 (kh)2

)
. (27.26)

Therefore, inserting the previous value of k1 into (27.26) we obtain the corresponding value of
ν = ν2, in the ZTC_D model, for which the same type of waves do not propagate. As in Dutykh
and Dias [2007] we choose ν1 = 0.14 m2 s−1. In Figure 27.3, we can see that if ν1 = 0.14 m2 s−1 in
the FL_D model and ν2 = 0.21 m2 s−1 in the ZTC_D model, k1 = k2 = 12.6 m−1 for h = 1 m. In
this case the time decay of the solutions in the ZTC_D model is more accentuated than in the
FL_D model. Some instabilities generated by short length waves can be eliminated optimizing the
viscosity values as shown above.
In general, to improve the dispersion relation we can also use other transformations like (27.20), or
evaluate the velocity potential at z = −σh (σ ∈ [0, 1]) instead of z = 0 (see Bingham et al. [2008],
Madsen and Agnon [2003] and Madsen et al. [2003]).

27.5 Numerical methods

We start this section by noting that a detailed description of the implemented numerical methods
referred bellow can be found in the work of Lopes [2007].
For simplicity, we only consider the system described by equations (27.19) restricted to a stationary
bottom and without dissipative or extra source terms.
The model variational formulation is written as follows:

∫

Ω

∂η

∂t
ϑ1 dx dy +

1
2

∫

Ω
h2∇

(
∂η

∂t

)
· ∇ϑ1 dx dy− 1

6

∫

Ω
∇
(

∂η

∂t

)
· ∇(h2ϑ1) dx dy

+
1

15

∫

Ω
h∇

(
h

∂η

∂t

)
· ∇ϑ1 dx dy− 1

15

∫

Γ
h

∂h
∂n

∂η

∂t
ϑ1 ds

=
∫

Ω
(h + η)∇Φ · ∇ϑ1 dx dy−

∫

Γ
(h + η)

∂Φ
∂n

ϑ1 ds +
2
5

∫

Γ
h2 ∂

∂t

(
∂η

∂n

)
ϑ1 ds,

(27.27a)

∫

Ω

∂Φ
∂t

ϑ2 dx dy = −1
2

∫

Ω
|∇Φ|2ϑ2 dx dy− g

∫

Ω
η ϑ2 dx dy

− g
15

∫

Ω
h∇η · ∇(hϑ2) dx dy +

g
15

∫

Γ
h2 ∂η

∂n
ϑ2 ds,

(27.27b)

where the unknown functions η and Φ are the wave surface elevation and the transformed velocity
potential, whereas ϑ1 and ϑ2 are the test functions defined in appropriate spaces.
We use a predictor-corrector scheme with an initialization provided by an explicit Runge–Kutta
method for the time integration. In the DOLFWAVE code these routines are implemented in the
PredCorr and RungeKutta classes (see dolfwave/src/predictorcorrector and dolfwave/src/rungekutta).

27.5. NUMERICAL METHODS 497

Note that the discretization of equations (27.27) can be written in the following form:

MU̇ = F(t, U), (27.28)

where U̇ and U refer to
(

∂η

∂t
,

∂Φ
∂t

)
and (η, Φ), respectively. The coefficient matrix M is given by

the left-hand sides of (27.27), whereas the known vector F is related with the right-hand sides
of the same equations. In this way, the fourth-order Adams-Bashforth-Moulton method can be
written as follows:

MU(0)
n+1 = MUn +

∆t
24

[55F(tn, Un)− 59F(tn−1, Un−1) + 37F(tn−2, Un−2)− 9F(tn−3, Un−3)],

(27.29a)

MU(1)
n+1 = MUn +

∆t
24

[9F(tn+1, U(0)
n+1) + 19F(tn, Un)− 5F(tn−1, Un−1) + F(tn−2, Un−2)], (27.29b)

where ∆t is the time step, tn = n∆t (n ∈N) and Un is U evaluated at tn. The predicted and cor-
rected values of Un are denoted by U(0)

n and U(1)
n , respectively. The corrector-step equation (27.29b)

can be iterated as function of a predefined error between consecutive time steps. For more details
see, e.g., Hairer and Wanner [1991a] or Lambert [1991].

The UFL form file (see dolfwave/src/2hdforms/Zhao.ufl) for the declaration of the spatial dis-
cretization of (27.27) using Lagrange P1 elements (see Chapter 4) and including dissipative and
source terms is presented below.

Python code
P=FiniteElement("Lagrange",triangle,1) # Linear Lagrange element in triangles

Th=P*P # Product space for basis functions

eta_t: time derivative of the surface elevation

phi_t: time derivative of the velocity potential

(eta_t,phi_t)=TrialFunctions(Th)

p: test function for eta_t

q: test function for phi_t

(p,q)=TestFunctions(Th)

eta=Coefficient(P) # Surface elevation

phi=Coefficient(P) # Velocity potential

h=Coefficient(P) # Depth function

g=Constant(triangle) # Gravity acceleration

Several types of sponge layers are considered

sp_eta=Coefficient(P) # Viscous frequency coefficient of eta

sp_lap_eta=Coefficient(P) # Viscosity coefficient of Laplacian of eta

sp_phi=Coefficient(P) # Viscous frequency coefficient of phi

sp_lap_phi=Coefficient(P) # Viscosity coefficient of Laplacian of phi

Source function for the surface elevation equation

srceta=Coefficient(P)

Normal Vector for boundary contributions

n=P.cell().n

Bilinear form declaration for M

Contribution from the surface elevation equation

498 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

a0=eta_t*p*dx

a1=(1./2.)*inner(h*h*grad(eta_t),grad(p))*dx

a2=-(1./6.0)*inner(grad(eta_t),grad(h*h*p))*dx

a3=(1./15.0)*inner(h*grad(h*eta_t),grad(p))*dx

a4=-(1./15.)*h*inner(grad(h),n)*eta_t*p*ds # Boundary contribution

Contribution from the velocity potential equation

a5=(phi_t*q)*dx

a: bilinear form

See ’dolfwave/src/formsfactory/bilinearforminit.cpp’

a=a0+a1+a2+a3+a4+a5

Linear Variational form declaration for F(t,U)

Contribution from the surface elevation equation

l0=inner(((h+eta))*grad(phi0),grad(p))*dx

Contribution from the velocity potential equation

l1=-(1./2.)*inner(grad(phi0),grad(phi0))*q*dx

l2=-g*(eta*q)*dx

l3=-g*(1.0/15.0)*inner(h*grad(eta),grad(h*q))*dx

Sponge layers contributions

l4=-sp_eta*eta*p*dx-sp_lap_eta*inner(grad(eta),grad(p))*dx

l5=-sp_phi*phi0*q*dx-sp_lap_phi*inner(grad(phi0),grad(q))*dx

Source function for the surface elevation equation

l6=srceta*p*dx

L: linear form

See ’dolfwave/src/formsfactory/linearforminit.cpp’

L=l0+l1+l2+l3+l4+l5+l6

Some wave generation mechanisms as well as reflective walls and sponge layers are discussed in
sections 27.6 and 27.7, respectively.

27.6 Wave generation

In this section, some of the physical mechanisms responsible for inducing surface water waves
are presented. We note that the moving bottom approach is useful for wave generation due to
seismic activities. However, some physical applications are associated with other wave generation
mechanisms. For simplicity, we only consider mechanisms to generate surface water waves along
the x direction.

27.6.1 Initial conditions

The simplest way of inducing a wave into a certain domain is to consider an appropriate initial
condition. A useful and typical case is to assume a solitary wave given by:

η(x, t) = a1 sech2(kx−ωt) + a2 sech4(kx−ωt) at t = 0 s, (27.30)

u(x, t) = a3 sech2(kx−ωt) at t = 0 s, (27.31)

27.6. WAVE GENERATION 499

where the parameters a1 and a2 are the wave amplitudes and a3 is the magnitude of the velocity in
the x direction. Since we use a potential formulation, Φ is given by:

Φ(x, t) = − 2a3 e2ωt

k (e2ωt + e2kx)
+ K1(t) at t = 0 s, (27.32)

where K1(t) is a generic time dependent function of integration. In fact, in order to satisfy the
solution of equation (27.19b) K1(t) is specified as a constant.
We remark that the above solitary wave given by (27.30) and (27.31), but for all time t, was
presented as a solution of the extended Nwogu’s Boussinesq model in Walkley [1999] and Wei and
Kirby [1995].

27.6.2 Incident wave

For time dependent wave generation, it is possible to consider waves induced by a boundary
condition. This requires that the wave surface elevation and the velocity potential must satisfy
appropriate boundary conditions, e.g., Dirichlet or Neumann conditions.
The simplest case is to consider a periodic wave given by:

η(x, t) = a sin(kx−ωt) (27.33)

Φ(x, t) = − c
k

cos(kx−ωt) + K2(t), (27.34)

where c is the wave velocity magnitude and K2(t) is a time dependent function of integration. This
function K2(t) must satisfy the initial condition of the problem. Note that the parameters a, c, k
and ω are not arbitrary. Specifically, k and ω should be related by the dispersion equation (27.22)
(with no dissipative effects) while c is given by the following expression:

c
k
=

aω

hk2

(
1 +

2
5
(kh)2

)
(27.35)

We can also consider the superposition of water waves as solutions of the full linear problem with
a constant depth.

27.6.3 Source function

In the work by Wei et al. [1999], a source function for the generation of surface water waves was
derived. This source function was obtained, using Fourier transform and Green’s functions, to
solve the linearized and nonhomogeneous equations of the Peregrine [1967] and Nwogu [1993]
models. This mathematical procedure can also be adapted here to deduce the source function.
We consider a monochromatic Gaussian wave generated by the following source function:

S(x, t) = D∗ exp(−β(x− xs)
2) cos(ωt), (27.36)

with D∗ given by:

D∗ =
√

β

ω
√

π
a exp(

k2

4β
)

2
15

h3k3g. (27.37)

In the above expressions xs is the center line of the source function and β is a parameter associated
with the width of the generation band (see Wei et al. [1999]). Note that S(x, t) should be added

500 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

to the right-hand side of equation (27.19a). A DOLFWAVE demo code for an example of wave
generation using a this source function is available at dolfwave/demo/2HD/srcFunction.

27.7 Reflective walls and sponge layers

Besides the incident wave boundaries where the wave profiles are given, we must close the system
with appropriate boundary conditions. We consider two more types of boundaries:

1. full reflective boundaries;

2. sponge layers.

The first case is modelled by the following equations:

∂Φ
∂n

= 0 and
∂η

∂n
= 0 on Γ, (27.38)

where n is the outward unit vector normal to the boundary Γ of the domain Ω.
Regarding the second case, we consider equations (27.38) and an extra artificial term, often called
sponge or damping layer, given by ν∇2Φ (see equation (27.19b)), acting in a neighborhood of
the boundary Γ. In this way, the reflected energy can be controlled. Moreover, we can prevent
unwanted wave reflections and avoid complex wave interactions. It is also possible to simulate
effects like energy dissipation by wave breaking.
In fact, a sponge layer is a subset ΩS of Ω where some extra viscosity term is added. As mentioned
above, the system of equations can incorporate several extra damping terms, like that one provided
by the inclusion of a dissipative model. Thus, the viscosity coefficient ν can be described by a
function of the following form:

ν(x, y) =





0, (x, y) 6∈ ΩS,

n1

exp
(

dΩS − d(x, y)
dΩS

)n2

− 1

exp(1)− 1
, (x, y) ∈ ΩS,

(27.39)

where n1 and n2 are, in general, experimental parameters, dΩS is the sponge-layer diameter and
d(x, y) stands for a distance function between a point (x, y) and the intersection of Γ with the
boundary of ΩS (see, e.g., Walkley [1999]).

27.8 Linear stability analysis

In this section, we use a matrix-based analysis in order to study some stability properties of the
linearized ZTC model in one horizontal dimension and with a time-independent bathymetry.
We follow the procedures outlined in Løvholt and Pedersen [2009] applied to the finite element
discretization associated to the spatial variable. Only uniform meshes are considered in this
stability analysis. The standard potential model with depth averaged velocity potential investigated
by Løvholt and Pedersen [2009] is also used here as a reference for comparison. For both models,
full reflective boundary conditions are considered.
We start by assuming a separated solution of the form

η(x, t) = eiωtη̂(x), Φ(x, t) = eiωtΦ̂(x), (27.40)

27.8. LINEAR STABILITY ANALYSIS 501

where ω denotes the angular frequency which may be real or complex. In the linearized ZTC
equations this separation will simply result in the substitution of ∂η

∂t by iωη̂ and ∂Φ
∂t by iωΦ̂. For

the spatially discretized and linearized ZTC equations we replace ω by ω̂ = 2
∆t sin

(
ω∆t

2

)
where

∆t is the time-step (see Løvholt and Pedersen [2009]). Replacing η and Φ in (27.27) by their finite
element approximations we obtain an eigenvalue problem of the form

(K− iω̂M)U = 0, (27.41)

where K is the stiffness matrix related to the right-hand sides of equations (27.27) and M is the
mass matrix given by the left-hand sides of the same equations. This problem is solved using the
DOLFIN interface for the SLEPc libraries. The DOLFWAVE demo code for this eigenvalue problem
is available at dolfwave/demo/stability.
We remark that in a constant depth bathymetry (27.41) takes the simplified form:

H
∆x

Φ̂1 −
H
∆x

Φ̂2 − iω̂
[(

∆x
3

+
2
5

H2

∆x2

)
η̂1 +

(
∆x
6
− 2

5
H2

∆x2

)
η̂2

]
= 0, (27.42a)

(
−g

∆x
3
− g

H2

15∆x

)
η̂1 +

(
−g

∆x
6

+ g
H2

15∆x

)
η̂2 − iω̂

(
∆x
3

Φ̂1 +
∆x
6

Φ̂2

)
= 0, (27.42b)

− H
∆x
(
Φ̂j−1 + Φ̂j+1

)
+

2H
∆x

Φ̂j

− iω̂
[

2
(

∆x
3

+
2
5

H2

∆x2

)
η̂i +

(
∆x
6
− 2

5
H2

∆x2

) (
η̂j−1 + η̂j+1

)]
= 0, (2 6 j 6 n− 2)

(27.42c)

− 2
(

g
∆x
3

+ g
H2

15∆x

)
η̂j +

(
−g

∆x
6

+ g
H2

15∆x

) (
η̂j−1 + η̂j+1

)

− iω̂
[

2
∆x
3

Φ̂j +
∆x
6
(
Φ̂j−1 + Φ̂j+1

)]
= 0, (2 6 j 6 n− 2)

(27.42d)

H
∆x

Φ̂n −
H
∆x

Φ̂n−1 − iω̂
[(

∆x
3

+
2
5

H2

∆x2

)
η̂n +

(
∆x
6
− 2

5
H2

∆x2

)
η̂n−1

]
= 0, (27.42e)

(
−g

∆x
3
− g

H2

15∆x

)
η̂n +

(
−g

∆x
6

+ g
H2

15∆x

)
η̂n−1 − iω̂

(
∆x
3

Φ̂n +
∆x
6

Φ̂n−1

)
= 0, (27.42f)

where ∆x = xj+1 − xj (j = 1, . . . , n− 1) is the uniform mesh size and η̂j as well as Φ̂j stand for
η̂(xj) and Φ̂(xj) (j = 1, . . . , n), respectively. We can show that

ω̂ = ±
√

g
(

3H
∆x2

)(
5∆x2 + H2

5∆x2 + 6H2

)
(27.43)

are always eigenvalues of the constant depth problem. This allows us to conclude that, for this
case, the accuracy of the eigenvalue solver is 10−11 and that the spectral radius goes to infinity as
the mesh size approaches zero.
As mentioned in Løvholt and Pedersen [2009], instabilities associated with steep bottoms may
occur for some BEV and BEP models. For instance, it was shown that the standard potential model
used here for comparison is very prone to such instabilities. From equations (27.40) and (27.41),
unstable wave modes may appear when eigenvalues ω̂ are of the following types:

1. when ω̂ is a pure imaginary number the solutions grow or decay exponentially without
propagation;

502 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

z

xshelf

−5 5 m−l/2
H = 1 m

hm
o

z

x

spike

−5 5 m−l/2 l/2
H = 1 m

hm
o

Figure 27.4: Spike and shelf geome-
tries for the impermeable sea bottom.

2. when ω̂ is a complex number the solutions grow or decay exponentially and propagate;

3. when a real solution is found for ω̂ but yielding 1
2 ∆t|ω̂| > 1 and ω complex. This corresponds

to a CFL criterion but this kind of instability may anyhow be avoided for a sufficiently small
∆t.

For the stability tests, we consider the geometries in Figure 27.4 with l = 2 m, l = 1 m and l = 0.5 m.
In all the cases we test 1300 pairs of (hm, ∆x) with hm and ∆x ∈]0, 1] (m). In Figs. 27.5–27.7, we can
see the unstable wave modes (hm, ∆x) of the ZTC (red circles) and standard potential (blue points)
models for the spike (left panels) and shelf (right panels) geometries with l = 2 m, l = 1 m and
l = 0.5 m. We only present (hm, ∆x) related to the eigenvalues with imaginary part (exponential
growth/decay rate) at least of order 10−5 s−1. We remark that in the ZTC model, we observe at
most 10 unstable wave modes of type I with growth rates smaller than |Im(ω̂)| = 3× 10−5 s−1.
In Figs. 27.8–27.10, we present the eigenvalues for the standard potential (upper panels) and
ZTC (lower panels) models, for the spike (left panels) and shelf (right panels) geometries, with
l = 2 m and ∆x = 0.02 m, l = 1 m and ∆x = 0.1 m as well as l = 0.5 m and ∆x = 0.25 m. The
spectrum depends on hm and the eigenvalues are plotted with different colors (from red to blue)
to accentuate that dependence (hm ≈ 1 m, hm ≈ 0.5 m and hm ≈ 0.02 m denoted by red, green and
blue circles, respectively).
As in Løvholt and Pedersen [2009], we find instabilities of type I and II for the standard potential
model, specially for steep bottom gradients and finer meshes. We also observe that as l increases
so does the number of unstable wave modes. Moreover, a steep gradient increases the growth rate
of the unstable solutions for the standard potential model. In contrast, for the ZTC model all the
growth rates are limited to |Im(ω̂)| = 3× 10−5 s−1. It was shown in Løvholt and Pedersen [2009]
that a lower bound growth rate of |Im(ω̂)| = 10−5 s−1 does not influence the numerical results in
most real problems, even when steep bottom gradients occur as in tsunami simulations.
From Figures 27.5–27.10, we can conclude that the ZTC model is very robust in terms of the
instabilities depending on l, depth gradients and mesh discretizations.
In the next section, we also test the weakly nonlinear ZTC model in order to verify its robustness
with respect to instabilities.

27.9 Model validation and numerical applications

To validate the model we consider two benchmark tests. Additionally, the wave propagation in
a harbor as well as the generation of a wave due to a time dependent moving bottom are also
investigated.

27.9.1 Solitary wave over submerged bars

In this subsection, we simulate the propagation of a solitary wave passing through trapezoidal
and triangular submerged bars. Moreover, the solutions obtained by the DOLFWAVE (ZTC/BEP)
solver are compared with those provided by a FEniCS independent numerical code to solve the

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 503

Figure 27.5: Unstable wave modes
of the ZTC (red circles) and stan-
dard potential (blue points) models for
the spike (left panel) and shelf (right
panel) geometries with l = 2 m.

Figure 27.6: Unstable wave modes
of the ZTC (red circles) and stan-
dard potential (blue points) models for
the spike (left panel) and shelf (right
panel) geometries with l = 1 m.

504 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

Figure 27.7: Unstable wave modes
of the ZTC (red circles) and stan-
dard potential (blue points) models for
the spike (left panel) and shelf (right
panel) geometries with l = 0.5 m.

Nwogu’s BEV equations (see dolfwave/tools/Nwogu). Specifically, a finite element discretization
of these Nwogu’s equations is considered (see Walkley [1999]) together with an implicit Radau
IIA-type Runge–Kutta scheme for the time integration (see Hairer and Wanner [1991b]).
We start now the description of the problem along with the DOLFWAVE code used to solve it.
This C++ code should start with the inclusion of the DOLFWAVE library.

C++ code
#include <dolfwave.h>

using namespace dolfin::dolfwave;

The initial condition for the wave surface elevation is given by (27.30) and implemented as follows:

C++ code
class ElevationInit : public Expression

{

void eval(Array<double> & values,const Array<double> & x) const

{ // Wave parameters (see Walkley [1999])

double c=sqrt(1.025), H=0.4;

double ca=-0.4, cb=ca+1.0/3.0;

double center=-5.0;

double a1=(H/3.0)*(sqr(c)-1)/(cb-ca*sqr(c));

double a2=-(H/2.0)*sqr((sqr(c)-1)/c)*(cb+2.0*ca*sqr(c))/(cb-ca*sqr(c));

double k=(1.0/(2.0*H))*sqrt((sqr(c)-1)/(cb-ca*sqr(c)));

values[0]=a1/sqr(cosh(k*(x[0]-center)))+a2/sqr(sqr(cosh(k*(x[0]-center))));

}

};

Moreover, the initial condition for the velocity potential is defined by (27.32) and implemented
using the following code:

C++ code
class PotentialInit : public Expression

{

void eval(Array<double> & values,const Array<double> & x) const

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 505

Figure 27.8: Eigenvalue spectrum for
the standard potential (upper panels)
and ZTC (lower panels) models for
the spike (left panels) and shelf (right
panels) geometries, with l = 2 m,
∆x = 0.02 m and hm from 1 m (red
circles) to 0.02 m (blue circles).

506 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

Figure 27.9: Eigenvalue spectrum for
the standard potential (upper panels)
and ZTC (lower panels) models for
the spike (left panels) and shelf (right
panels) geometries, with l = 1 m,
∆x = 0.1 m and hm from 1 m (red
circles) to 0.02 m (blue circles).

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 507

Figure 27.10: Eigenvalue spectrum for
the standard potential (upper panels)
and ZTC (lower panels) models for
the spike (left panels) and shelf (right
panels) geometries, with l = 0.5 m,
∆x = 0.25 m and hm from 1 m (red
circles) to 0.02 m (blue circles).

508 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

{ //Wave parameters

double c=sqrt(1.025), H=0.4;

double ca=-0.4, cb=ca+1.0/3.0;

double center=-5.0;

double a3=sqrt(H*g_e)*(sqr(c)-1)/c;

double k=(1.0/(2.0*H))*sqrt((sqr(c)-1)/(cb-ca*sqr(c)));

double cnst=4.0*a3/(2.0*k*(1+exp(2.0*k*(-25.)))); //Constant of integration

values[0]=-4.0*a3/(2.0*k*(1+exp(2.0*k*(x[0]-center))))+cnst;

}

};

Te trapezoidal sea bottom h (m) is described by the following continuous and piecewise differentiable
function:

h(x) =





0.4 if − 25 6 x 6 6
−0.05x + 0.7 if 6 < x 6 12
0.1 if 12 < x 6 14
0.1x− 1.3 if 14 < x 6 17
0.4 if 17 < x 6 25

(m) (27.44)

which is implemented by:

C++ code
class Depth : public Expression

{

void eval(Array<double> & values,const Array<double> & x) const

{

double retrn=0.0;

if(x[0]<=6.0)

retrn=0.4;

else if(x[0]<=12.0)

retrn=-0.05*x[0]+0.7;

else if(x[0]<=14.0)

retrn=0.1;

else if(x[0]<=17.0)

retrn=0.1*x[0]-1.3;

else retrn=0.4;

values[0]=retrn;

}

};

The main code starts with the creation of an object of the Dolfwave class by calling its constructor.
Here, we simulate the wave propagation during 25 s using a time step of 0.001 s. The UFL form
file used in this problem, which is identified by “Zhao_1D”, corresponds to the one horizontal
dimensional version of (27.27). We use a LU solver provided by the PETSc algebra backend (see
Chapter 2). Here we use Viper for previewing the numerical solutions, which are saved in the
“output” directory using a simple ASCII format denoted by “xyz”.

C++ code
int main()

{

Dolfwave dw(25000 /*Number of steps*/,

0.001 /*Time step*/,

100 /*Gap for saving the solutions*/,

"Zhao_1D" /*Variational form identifier*/,

"LU_P" /*Linear solver type*/,

"viper" /*Preview program*/,

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 509

"output" /*Output directory*/,

"xyz" /*File output format*/);

The spatial domain used in the case of the trapezoidal submerged bar is the interval [−25, 25] (m)
which is discretized using 201 nodes.

C++ code
Interval mesh(201,-25,25);

Now all the known functions are initialized. Sponge layers or source functions are not used here.

C++ code
Depth depth; // Depth function

ElevationInit eta_init; // Initial condition for the surface elevation

PotentialInit phi_init; // Initial condition for the velocity potential

Constant zero(0.0); // Sponge layers and source function are 0

From the bilinear and linear forms of the variational formulation, all the finite element matrices
and vectors are created.

C++ code
dw.FunctionSpaceInit(mesh); // Initialization of the function spaces

dw.BilinearFormInit(mesh,depth); // Initialization of the bilinear form ’a’

dw.MatricesAssemble(); // Initialization of the system matrices

dw.FunctionsInit(); // Initialization of the surface elevation and velocity potential

dw.LinearFormsInit(depth, zero, zero, zero, zero, zero); // Initialization of the linear form

’L’

dw.InitialCondition(eta_init,phi_init); // Setting the initial conditions

dw.VectorInit(); // Initialization of the auxiliary vectors for the time integration schemes

We only need to make an initial factorization for the LU solver, since the system matrix does not
depend on time.

C++ code
dw.LUFactorization(true); // Reuse the LU factorization throughout the time integration routines

The output of the symmetric of the depth function is given by:

C++ code
dw.DepthPlot(mesh,depth,true); // Plot the symmetric of the depth function h

Now, the time integration routines are used. The Adams–Bashforth–Moulton method described by
equations (27.29) is initialized by a fourth-order explicit Runge–Kutta scheme.

C++ code
dw.RKInit("exp4"); // Choose the explicit 4th-order Runge-Kutta for initialization

dw.RKSolve(); // Use the Runge-Kutta for the 3 initial steps

dw.PCInit(mesh,true); // Initialization of the predictor-corrector with multi-step corrector

// Advance in time with the predictor-corrector scheme

for(dolfin::uint i=4; i<dw.MaxSteps+1;i++)

{

dw.PCSolve(); // Adams-Bashforth-Moulton method

if (!(i%dw.WriteGap)) // Save and preview the surf. elevation with a gap of 100 iterations

dw.Plot(mesh, true /*eta preview*/, false /*phi preview*/,

true /*eta save*/, false /*phi save*/);

}

510 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

−10 −5 0 5 10 15 20 25

x (m)

−0.5

0.0

0.5

t
∈

[0
,2

5]
(s

)

−h(x)

Figure 27.11: Detailed view of a wave
passing through a trapezoidal sub-
merged bar using the ZTC/BEP model
implemented in DOLFWAVE

return (EXIT_SUCCESS); // Finish the process

}

In this case only the wave surface elevation is saved and previewed using the Plot function. The
solution provided by this code, for the trapezoidal submerged bar with x ∈ [−10, 25] (m), is given
in Figure 27.11. We remark that the shoaling effect over the trapezoidal submerged bar is clearly
observed, both for the incident and reflected waves.
From Figure 27.12, we can compare the solutions provided by the two independent models. We
remark that (27.30) and (27.31) are used for the correspondent initial conditions of Nwogu’s
equations. In spite of the fact that the solutions come from different models and discretizations, a
good agreement is achieved. These solutions also compare well with those provided by another
model in the DOLFWAVE application (see also dolfwave/demo/1HD/submergedbar).
In the numerical simulation of a solitary wave passing through the triangular submerged bar, we
investigate the nonlinear effects and the influence of hm (see Figure 27.13) for the weakly nonlinear
ZTC/BEP and Nwogu’s BEV models. From Figure 27.14 we can conclude that these two models
compare well in the case of the triangular submerged bar with hm = 0.1 m. Even though both
models compare well for the triangular submerged bar with a smaller value of hm = 0.04 m, the
Nwogu’s BEV model presents small amplitude and high frequency oscillations after the interaction
with the bar (see Figure 27.15). As the value of hm is decreased the Nwogu’s model becomes
unstable (see Figure 27.16). In Figure 27.16 the blowup of the solution provided by the Nwogu’s
model is observed for hm = 0.02 m. We remark that the reference values of ε at the point (15,−hm)
(m) are ε = 0.1, ε = 0.25 and ε = 0.5 for hm = 0.1 m, hm = 0.04 m and hm = 0.02 m, respectively.
Although, ε = 0.5 is clearly out of the range of validity of both ZTC/BEP and Nwogu’s BEV
models, the first one seems more robust when dealing with the nonlinear effects. These stability
properties of the ZTC/BEP model are also observed in numerical tests involving grid refinements.

27.9.2 A Gaussian hump in a square basin

Here, we simulate the evolution of a Gaussian hump in a square basin. Analogous tests are
available in the literature (see, e.g., Wei and Kirby [1995] and Woo and Liu [2004a]). The

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 511

Figure 27.12: Detailed comparison of
a wave passing through the trape-
zoidal submerged bar, simulated by
DOLFWAVE using the ZTC/BEP (red
dashed line) and Nwogu’s BEV (blue
solid line) models, for x ∈ [−10, 25] (m)
and t ∈ [0, 14] (s).

−10 −5 0 5 10 15 20 25

x (m)

0.00

0.05

0.10

0.15

0.20

0.25

t
∈

[0
,1

4]
(s

)

Figure 27.13: Sketch of the three
sea bottoms with triangular configura-
tions of height hm = 0.1 m and ε = 0.1
(blue solid line), hm = 0.04 m and
ε = 0.25 (green line with plus markers)
as well as hm = 0.02 m and ε = 0.5 (red
dashed line).

10 12 14 16 18 20

x (m)

−0.4

−0.3

−0.2

−0.1

0.0

−
h

(m
)

−hm hm = 0.1 m

hm = 0.04 m

hm = 0.02 m

512 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

−20 −10 0 10 20 30 40 50

x (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t
∈

[0
,2

5]
(s

)

Figure 27.14: The detailed compari-
son of a wave passing through the
triangular submerged bar with hm =
0.1 m, ε = 0.1, x ∈ [−25, 50] (m)
and t ∈ [0, 25] (s). These solutions
are provided by DOLFWAVE using
the ZTC/BEP (red dashed line) and
Nwogu’s BEV (blue solid line) mod-
els.

−20 −10 0 10 20 30 40 50

x (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t
∈

[0
,2

5]
(s

)

Figure 27.15: The detailed compari-
son of a wave passing through the
triangular submerged bar with hm =
0.04 m, ε = 0.25, x ∈ [−25, 50] (m)
and t ∈ [0, 25] (s). These solutions
are provided by DOLFWAVE using
the ZTC/BEP (red dashed line) and
Nwogu’s BEV (blue solid line) mod-
els. Small amplitude and high fre-
quency oscillations are observed in the
Nwogu’s BEV model solutions.

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 513

Figure 27.16: The detailed compari-
son of a wave passing through the
triangular submerged bar with hm =
0.02 m, ε = 0.5, x ∈ [−25, 50] (m)
and t ∈ [0, 25] (s). These solutions
are provided by DOLFWAVE using
the ZTC/BEP (red dashed line) and
Nwogu’s BEV (blue solid line) mod-
els. The blowup of the solution pro-
vided by the Nwogu’s BEV model is
observed.

−20 −10 0 10 20 30 40 50

x (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t
∈

[0
,2

5]
(s

)

computational domain is a square of 10× 10 m2 which is discretized using triangular unstructured
meshes. Moreover, we provide grid refinement tests to ensure convergence and accuracy. Reflective
wall boundary conditions are applied (see (27.38)) and no sponge layers are considered. As initial
conditions, we have {

η(x, y, 0) = 0.1 e−0.4((x−5)2+(y−5)2) (m),
Φ(x, y, 0) = 0 (m2 s−1).

(27.45)

A constant depth h = 0.5 m is considered. These initial conditions and see bottom are considered
in the FUNWAVE manual (see Kirby [1998]). Even though we do not know the exact solutions of
the nonlinear equations, the symmetric characteristics of the problem should result in symmetric
surface elevation profiles. These symmetric properties are conserved in the numerical solutions
provided by DOLFWAVE even for nonsymmetric unstructured meshes. As an example, we show
in Figure ?? the isovalues of the wave surface elevation for a mesh with 1873 nodes and t = 0 s,
t = 10 s, t = 20 s, t = 30 s, t ≈ 40 s as well as t ≈ 50 s. Moreover, the volume conservation
condition is satisfied with a neglectable error.

In Figure ??, we show the time history of the wave surface elevation for the central point P0 =
(5, 5) (m) and for the corner point P1 = (0, 0) (m), using meshes with 2815, 1364 and 706 nodes.
These results are in agreement with those presented in the FUNWAVE manual. A slight phase shift
is only observed for t > 40 (s). A detailed view of the time history of the wave surface elevation
for the central point P0 = (5, 5) (m) using meshes with 5049, 3964, 2815, 1873, 1364 and 706 nodes
is shown in Figure ??. A slight discrepancy is only observed among the coarser mesh with 706
nodes and all the finer ones.

In the following table we compare the relative l2-error (%) among the coarser meshes and the finer
one with 5094 nodes, for t ∈ [0, 30] (s) at the points P0 = (5, 5) (m) and P1 = (0, 0) (m), using
unstructured meshes with 706, 1324, 1873, 2815 and 3964 nodes.

514 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

Figure 27.17: The isovalues of the wave
surface elevation η (m) at the time t =
0 s, t = 10 s, t = 20 s, t = 30 s, t ≈
40 s and t ≈ 50 s.

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 515

Figure 27.18: The time history of
the wave surface elevation η (m) at
P0 = (5, 5) (m) (upper panel) and
P1 = (0, 0) (m) (lower panel), using un-
structured meshes with 2815, 1364 and
706 nodes.

0 5 10 15 20 25 30 35 40

t (s)
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

η
(m

)
2815 N.
1364 N.
706 N.

0 5 10 15 20 25 30 35 40

t (s)
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

η
(m

)

2815 N.
1364 N.
706 N.

516 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

20 21 22 23 24 25

t (s)
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

η
(m

)
5049 N.
3964 N.
2815 N.
1873 N.
1364 N.
706 N.

Figure 27.19: A detailed view of the
wave surface elevation η (m) for t ∈
[20, 25] (s) at P0 = (5, 5) (m) using
several unstructured meshes.

Mesh P0 = (5, 5) (m) P1 = (0, 0) (m)

706 6.6% 5.7%

1324 1.2% 1.1%

1873 0.5% 0.5%

2815 0.2% 0.1%

3964 0.1% 0.02%

As the number of mesh nodes is increased this error approaches zero, which gives a good indication
of convergence for a certain time range.

27.9.3 Harbor

In this subsection, we present some numerical results about the propagation of surface water waves
in a harbor with a geometry similar to that one of Figure 27.1. The finite element discretization of
equations (27.27) is declared in the UFL form file given in section 27.5. The DOLFWAVE demo
code for this example is available at dolfwave/demo/2HD/harbor.
The color scale used in Figs. 27.21–27.24 is presented in Figure 27.20. A schematic description
of the fluid domain, namely the bottom profile and the sponge layer can be seen in Figs. 27.21

and 27.22, respectively. Note that a piecewise linear bathymetry is considered. Sponge layers of
the type ν∇2Φ with the viscosity coefficients given by equation (27.39) are used to absorb the
wave energy at the outflow region and to avoid strong interaction between incident and reflected
waves in the harbor entrance. A monochromatic periodic wave is introduced at the indicated
boundary (Dirichlet BC) in Figure 27.22. This is achieved by considering waves induced by a
periodic Dirichlet boundary condition, described by the equations (27.33) and (27.34), with the
following characteristics:

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 517

Figure 27.20: Color scale.
min Max

Figure 27.21: Impermeable bottom
[Max = −5.316 m, min = −13.716 m].

a wave amplitude 0.25 m

ω wave angular frequency 0.64715 s−1

p wave period 4.06614 s

k wave number 0.06185 m−1

L wave length 101.59474 m

b wave potential magnitude 3.97151 m2s−1

c wave velocity magnitude 0.24562 m s−1

ε small amplitude parameter 0.01823

µ long wave parameter 0.13501

Full reflective walls are assumed as boundary conditions in all domain boundary except in the
harbor entrance. In Figure 27.23 a snapshot of the wave surface elevation is shown at the time
ts = 137 s.
A zoom of the image, which describes the physical potential φ0(x, y) and velocity vector field
in the still water plane, is given in the neighborhood of the point P3 = (255,−75) (m) at ts (see
Figure 27.24). The Figs. 27.25 and 27.26 represent the wave surface elevation and water speed as a
function of the time, at the points P1 = (−350, 150) (m), P2 = (−125, 60) (m) and P3.
From these numerical results, we can conclude that the interaction between incident and reflected
waves, near the harbor entrance, can generate waves with amplitudes that almost take the triple
value of the incident wave amplitude. We can also observe an analogous behavior for velocities.
Note that no mechanism for releasing energy of the reflected waves throughout the incident wave
boundary is considered.

27.9.4 Object moving on a horizontal bottom

A wave generated by an object moving on a horizontal bottom with a constant speed is simulated
here. The declaration of the finite element discretization of (27.27) is that one described in
Section 27.5.

518 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

Figure 27.22: Sponge layer (viscos-
ity ν(x, y)) [Max ≈ 0.1 m2s−1, min =
0 m2s−1]. Dirichlet BC

5000−450
−360

0

300y (m)

x (m)

P1

P2

P3

Figure 27.23: Wave surface elevation
[Max ≈ 0.63 m, min ≈ −0.73 m].

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 519

Figure 27.24: Velocity vector field at
z = 0 and potential φ0(x, y, ts) near
P3. Potential values in Ω: [Max ≈
14.2 m2s−1, min ≈ −12.8 m2s−1].

Figure 27.25: Wave surface elevation
at P1, P2 and P3 [Max ≈ 0.4 m, min ≈
−0.31 m].

0 20 40 60 80 100 120 140

t (s)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

η
(m

)

P1

P2

P3

520 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

Figure 27.26: Water speed at P1, P2 and
P3 [Max ≈ 0.53 m s−1, min = 0 m s−1].

0 20 40 60 80 100 120 140

t (s)

0.0

0.1

0.2

0.3

0.4

0.5

|∇
φ

0
|(

m
s
−

1
)

P1

P2

P3

The spatial numerical domain is a rectangular basin of 12.5× 6 m2 discretized with a symmetric
uniform mesh with 2100 elements. Full reflective boundary conditions are only considered here.
The moving bottom h (m) with a constant speed S0 = 1 m s−1 is defined by

h(x, y, t) = 0.45− ∆h
(1 + tanh(1))4 X̄(x, t)Ȳ(y) (27.46)

with
X̄(x, t) = (1 + tanh(2(x− xl(t))))(1− tanh(2(x− xr(t)))), (27.47)

Ȳ(y) = (1 + tanh(2y + 1)))(1− tanh(2y− 1)), (27.48)

xl(t) = xc(t)−
1
2

, xr(t) = xc(t) +
1
2

, xc(t) = x0 + S0t, (27.49)

where x0 = 0 m and ∆h = 0.045 m is the maximum thickness of the slide (see Figs. 27.27–27.28).

A time step of ∆t = 0.0005 s is considered. In Figs. 27.29–27.32, we show four snapshots of
the wave surface elevation provided by the extended ZTC model at the time t0 = 1 s, t1 = 3 s,
t2 = 4.5 s and t3 = 6 s. Note that we also use here the color scale presented in Figure 27.20.

We refer that the bottom function given by (27.46)–(27.49) is not piecewise linear. In fact, the
spatial derivative functions of any order obtained from h are nonzero. Although the extended
ZTC model is based on a slowly varying bottom assumption (only O(h,∇h) terms are admitted),
a good agreement among the solutions presented here with those provided by other models is
achieved (see dolfwave/demo/2HD/hLandslide). These other models include O(h,∇h,∇2h) terms
(see Lopes et al.).

27.9. MODEL VALIDATION AND NUMERICAL APPLICATIONS 521

-3

-2

-1

0

1

2

3

0

10

5

Figure 27.27: The impermeable bottom
−h(x, y, t) (m) at the time t0 = 0 s.
[Max = −0.405 m, min = −0.45 m]

Figure 27.28: The impermeable bottom
−h(x, y, t) (m) at the time t2 = 6 s.
[Max = −0.405 m, min = −0.45 m]

-3

-2

-1

0

1

2

3

0

10

5

522 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

Figure 27.29: The wave surface ele-
vation η (m) at the time t0 = 1 s.
[Max ≈ 0.007 m, min ≈ −0.010 m]

-3

-2

-1

0

1

2

3

0

10

5

Figure 27.30: The wave surface ele-
vation η (m) at the time t1 = 3 s.
[Max ≈ 0.004 m, min ≈ −0.006 m]

-3

-2

-1

0

1

2

3

0

10

5

-3

-2

-1

0

1

2

3

0

10

5

Figure 27.31: The wave surface ele-
vation η (m) at the time t2 = 4.5 s.
[Max ≈ 0.004 m, min ≈ −0.011 m]

27.10. CONCLUSIONS 523

-3

-2

-1

0

1

2

3

0

10

5

Figure 27.32: The wave surface ele-
vation η (m) at the time t3 = 6 s.
[Max ≈ 0.004 m, min ≈ −0.006 m]

27.10 Conclusions

As far as we know, the finite element method is not often applied in surface water wave models
based on the BEP formulation. In general, finite difference methods are preferred, since they could
be easily applied to equations containing spatial derivatives with order higher than 2. On the other
hand, they are not appropriate for the treatment of complex geometries, like those of harbors, for
instance.
In this work, we extend the BEP model of Zhao et al. [2004] in order to include dissipative effects,
as well as, several types of wave generation mechanisms, namely, by moving an impermeable
bottom or by the inclusion of a source function. Moreover, we study the influence of a dissipative
term in the linear dispersive properties, specifically, in the phase velocity. We show the existence
of some cutoff values for the wave number such that the short length waves do not propagate.
From a matrix-based linear stability analysis, we can also conclude that the ZTC/BEP model is not
prone to instabilities of the type I and II when steep bottom gradients occur or small spatial grid
increments are required. On the other hand, the standard potential model with depth averaged
velocity potential displays instabilities for certain combinations of the parameters l, hm and ∆x.
The eigenvalue spectra of this model exhibit interesting structures putting in evidence high growth
rates leading to unstable solutions. Thus, this model should only be applied when gentle bottom
variations occur. Since we use the same finite element discretization for both ZTC and standard
potential models, some of the unstable wave modes inherent to the latter one may be intrinsic to
the partial differential equations and not to the numerical schemes.
The extended ZTC equations are used to model four different physical problems: the evolution of
a solitary wave passing through a submerged bar; the evolution of a Gaussian hump in a square
basin; the evolution of a periodic wave in a harbor and the generation of a wave due to an object
moving on a horizontal bottom. These equations are discretized using Lagrange P1 elements and a
predictor-corrector scheme with an initialization provided by an explicit Runge–Kutta method for
the time integration.
In the first physical problem, we can conclude that the numerical model is also stable when
there is an interaction between the incident and reflected waves over the submerged bar as well
as in one of the domain walls. The shoaling effect over the submerged bar is clearly observed,
both for the incident and reflected waves. We compare the solutions of the weakly nonlinear
ZTC/BEP and Nwogu/BEV models, for a spike type submerged bar. For the employed finite

524 CHAPTER 27. IMPROVED BOUSSINESQ EQUATIONS FOR SURFACE WATER WAVES

element discretizations, we observe that the ZTC model is less prone to instabilities than Nwogu’s
model.
In the second test, the evolution of a Gaussian hump in a square basin is simulated. We obtain
a good agreement among the solutions of the ZTC numerical model and those provided in the
FUNWAVE manual. Moreover, we perform grid refinement tests to ensure convergence and
accuracy.
In the harbor problem, we remark that the interaction between incident and reflected waves, near
the harbor entrance, can generate waves with amplitudes and velocities that almost take the triple
values of those observed in the incident waves.
In the last numerical example, we refer that the front wave generated by the moving object travels
faster than the object. In this way, a subcritical velocity regime associated with the moving object is
observed. A good agreement among the numerical solutions presented here with those provided
by other models is achieved (see dolfwave/demo). From these numerical tests we can conclude
that the FEniCS packages, namely DOLFIN, UFL and FFC, are appropriate to model surface water
waves, leading to efficient and robust algorithms.
Note that strong nonlinear effects, e.g., negative amplitudes extending below the sea floor, may
cause instabilities in a nonlinear wave model. These effects will almost certainly be encountered
for instance for a tsunami inundating a shallow sloping beach. Drying and wetting schemes for
the treatment of these problems are not yet implemented in DOLFWAVE. Consequently, this type
of instabilities will most likely show up when running the proposed model with high amplitude
waves and small depth bottoms.
Surface water wave problems are associated with Boussinesq-type governing equations, which
require high order spatial derivatives. A first approach to a fourth-order spatial derivative model,
using a continuous/discontinuous Galerkin finite element method, can be found in Lopes et al..
We have been developing DOLFWAVE which is FEniCS based application for surface water wave
models. This package already includes some models with equations containing spatial derivatives
of order 4. The current state of the work, along with several numerical simulations, can be found
at http://ptmat.fc.ul.pt/~ndl and https://launchpad.net/dolfwave.

http://ptmat.fc.ul.pt/~ndl
https://launchpad.net/dolfwave

28 Computational hemodynamics
By Kristian Valen-Sendstad, Kent-Andre Mardal and Anders Logg

Computational fluid dynamics (CFD) is a tool with great potential in medicine. Using traditional
engineering techniques, one may compute, e.g., the blood flow in arteries and the resulting stress
on the vessel wall to understand, treat and prevent various cardiovascular diseases. This chapter is
devoted to the computation of blood flow in large cerebral arteries and how the blood flow affects
the development and rupture of aneurysms. We discuss the process, from generating geometries
from medical imaging data to performing patient-specific simulations of hemodynamics in FEniCS.
Specifically, we present three different applications: simulations related to a recently published
study by Lindekleiv et al. [2010] concerning gender differences in cerebral arteries, a study of the
carotid arteries of a canine with an induced aneurysm described in Jiang et al. [2010], and a study
of the blood flow in a healthy Circle of Willis, where patient-specific velocity measurements are
compared with a model for the peripheral resistance.

28.1 Medical background

Stroke is a leading cause of death in the developed part of the world [Feigin, 2005], and mortality
rates could increase dramatically in the years to come [Murray and Lopez, 1997]. Stroke is caused
by an insufficient supply of blood to parts of the brain. There are mainly two different types
of strokes: ischemia caused by obstructions in the blood vessels, and subarachnoid hemorrhage
caused by the rupture of one or more aneurysms. Aneurysms typically develop in or near the
so-called Circle of Willis (CoW), which is an arterial network of vessels at the base of the brain.
The function of this circle is believed to be to ensure a robust and redundant system in the sense
that the brain receives a sufficient amount of blood even if one of the vessels is occluded or under-
developed. This network connects the internal carotid arteries (ICA) and the vertebral arteries (VA)
in a circle-like structure. This network is the main supplier of blood to the brain. Figure 28.1 shows
the circle as typically depicted in textbooks. Blood enters the circle through the ICAs, which are
located at the front of the neck, and the VAs located in the back of the neck. The VAs join in the
Basilar Artery (BA), and blood leaves the circle in the front through the Anterior Cerebral Arteries
(ACA), in the back through the Posterior Cerebral Arteries (PCA), and at the sides through the
Middle Cerebral Arteries (MCA). A patient-specific circle, the one used in Section 28.5, is shown in
Figure 28.2.
Aneurysms are relatively common. As many as 1–6% of the population develop aneurysms during
their lifetime [Weir, 2002]. Unfortunately, aneurysms often rupture at a relatively early age. The
average age of rupture is 52 years [Humphrey, 2001]. An intracranial aneurysm is a dilatation
of the blood vessel wall, and the reasons for initialization, growth and rupture of aneurysms
are largely unknown. What is known is that increased wall shear stress (WSS) affects vascular

525

526 CHAPTER 28. COMPUTATIONAL HEMODYNAMICS

Figure 28.1: Illustration of the Circle
of Willis and the base of the brain seen
from beneath. The illustration is taken
from Gray’s anatomy [Gray, 1897].

Figure 28.2: An image of a patient-
specific Circle of Willis (of the second
author) obtained with magnetic reso-
nance angiography.

28.2. PRELIMINARIES 527

Figure 28.3: Computing normal and
shear stresses from computed velocity
and pressure fields u and p.

Python code
Compute stress tensor
sigma = 2*nu*epsilon(u) - p*Identity(len(u))

Compute surface traction
n = FacetNormal(mesh)
T = -sigma*n

Compute normal and tangential components
Tn = inner(T, n) # scalar-valued
Tt = T - Tn*n # vector-valued

Piecewise constant test functions
scalar = FunctionSpace(mesh, "DG", 0)
vector = VectorFunctionSpace(mesh, "DG", 0)
v = TestFunction(scalar)
w = TestFunction(vector)

Assemble piecewise constant functions for stress
normal_stress = Function(scalar)
shear_stress = Function(vector)
Ln = (1 / FacetArea(mesh))*v*Tn*ds
Lt = (1 / FacetArea(mesh))*inner(w, Tt)*ds
assemble(Ln, tensor=normal_stress.vector())
assemble(Lt, tensor=shear_stress.vector())

endothelial cell turnover [Davies et al., 1986], that aneurysms may grow in the direction of low
wall shear stress [Boussel et al., 2008], and that flow pattern and impingement zones affect the
possibility of rupture [Cebral et al., 2005]. The vessel wall clearly responds to mechanical stimuli
and this is the reason why wall shear stress is believed to be of special importance when trying to
understand the pathogenesis of intracranial aneurysms. It is also known that the cerebral arteries
lack perivascular support and the walls are relatively thin relative to the rest of the intracranial
vasculature [Humphrey, 2001, Stehbens, 1975]. Furthermore, the anatomy of cerebral vessels varies
greatly. Only around 50% of the general population have a complete and well-balanced circle;
the rest either have under-developed vessels or the vessels are missing completely [Fung, 1984].
Gender, ethnicity, and lifestyle have shown to be of importance [Mhurchu et al., 2001, Longstreth
et al., 1994, Kongable et al., 1996].

28.2 Preliminaries

28.2.1 Stress calculation

We noted above that wall shear stress is of importance in computational hemodynamics. In
Figure ??, we demonstrate how to compute stresses in FEniCS from a computed velocity field u
and pressure field p. We start from the definition of the stress tensor σ(u, p) = 2νε(u) − pI,
where the ε(u) = 1

2 (∇u + ∇uT) is the symmetric velocity gradient. Then, the normal and
tangential components of the stress are computed, where the tangential component is computed
by subtracting the normal component from the traction T = σ · n. Here, n is the inward-pointing
unit normal from the vessel wall. In the code, n is the outward-pointing unit normal. To compute
the shear and normal stresses as fields over the mesh, we test the stresses against piecewise
constant test functions scaled by the inverse area of each facet. We thus obtain a piecewise constant
representation of the stresses which on each cell is equal to the average stress on that cell.

528 CHAPTER 28. COMPUTATIONAL HEMODYNAMICS

Figure 28.4: Nondimensionalized ICA
inlet velocity profile.

28.2.2 Boundary conditions

For transient inlet boundary conditions, one option is to apply velocity waveform data in the ICA
from Ford et al. [2005], where the average velocity was measured for seventeen young patients at
rest. The nondimensionalized velocity is illustrated in Figure 28.4. The inlet velocity profile is easy
to measure through the ICA or the VA using transcranial Doppler. This enables patient-specific
velocity measurements such as in the CoW study in Section 28.5.
Further into the brain, the flow is divided into branches several times, which makes the outflow
difficult to measure, both because of the thickness of the cranium and the decreasing size of the
vessels. The effect of outflow boundary conditions in a complex network of blood vessels, such as
in the Circle of Willis, is important to the flow division and wall shear stress.
The simplest way to describe the outflow is by applying a zero traction boundary condition at the
outflow. However, the flow division in a bifurcation is dependent on the downstream vasculature,
and the zero traction boundary condition does not capture this very well. Therefore, to model
the peripheral resistance, a resistance model may be used for the pressure, while a Neumann
condition (∂u/∂n = 0) is applied to the velocity. The value of the resistance boundary condition is
proportional to the flow, that is, the pressure at the outlet Γ is modeled as,

p = p0 + R = p0 + C
∫

Γ
u · n ds, (28.1)

where the resistance coefficient C was set according to Table 28.1, p0 is the mean intracranial
arterial pressure (85 mmHg) which is applied to the inlet and u is the velocity. The coefficients in
Table 28.1 are from Alastruey et al. [2007] and show a clear relation between the diameter of the
vessel and the resistance coefficient. The implementation of the resistance boundary condition is
shown in Figure 28.5.
The effect of the resistance boundary condition may bee seen in Figure 28.6 where the mass flux
over two outlets in the canine geometry in Section 28.4 is calculated using both zero traction and
a resistance boundary condition. The resulting flow division is clearly more evenly distributed
(colored in red) between the daughter vessels, which intuitively also makes sense since the vessels
reconnect further downstream. The method requires an iteration over a few cardiac cycles in order

28.2. PRELIMINARIES 529

Artery C [109Pa · s ·m−3] Radius [mm]
Thoracic Aorta 0.18 9.99

External Carotid Artery 5.43 1.50

Middle Cerebral Artery 5.97 1.43

Anterior Communicating Artery 8.48 1.20

Posterior Communicating Artery 11.08 1.05

Table 28.1: Resistance boundary condition coefficient, C, for selected arteries of varying size; see (28.1).

Figure 28.5: Calculation of outflow
boundary value for pressure. The
numbers have been multiplied with
10−3 and 10−6 to convert from SI
units to millimeters, milliseconds and
grams.

Python code
Outflow boundary value for pressure
def OutflowBoundaryValue(self, i):

u = self.problem.u
n = FacetNormal(self.problem.mesh)
flux = dot(u, n)*ds(i)
Q = assemble(flux,

exterior_facet_domains=\
self.problem.sub_domains)

C = 5.97*10**(-3)
p0 = 11332.0*10**(-6) # 85 mmHg to Pascal
R = (C*Q + p0)*(rhoinv)
return R

to converge.

28.2.3 Anatomical modeling

Patient-specific geometries are obtained from Computed Tomography Angiography (CTA) or
Magnetic Resonance Angiography (MRA) images as follows. A stack of 2D images is used as input
to the Vascular Modeling Toolkit, where a 3D surface model is generated based upon the light
intensity in the pictures using level set techniques. A volume is then created from the surface,
from which a mesh can be generated. This process is illustrated in Figure ??, where the mesh of a
blood vessel extracted from the geometry is shown to the right. This mesh is used as input to the
flow solver.

Figure 28.6: Figure showing the differ-
ence of outflow flux when a resistance
boundary condition (as described in
section 28.2.2) is applied versus zero
traction. When a resistance boundary
condition is used, the flow is more
evenly distributed between the two
vessel outlets (red curves), compared
to the case when a zero traction condi-
tion is used (blue and green curves).

530 CHAPTER 28. COMPUTATIONAL HEMODYNAMICS

Figure 28.7: Image segmentation pro-
cess; from MRI to mesh.

28.3. GENDER DIFFERENCES IN THE INTRACRANIAL VASCULATURE 531

28.3 Gender differences in the intracranial vasculature

In this section, we present an overview of a recent study by Lindekleiv et al. [2010] where it is
shown that on average, women have larger shear stresses than men in two intracranial bifurcations.

28.3.1 Background

Females are more likely to harbor intracranial aneurysms than men and, consequentially, more fre-
quently develop subarachnoid hemorrhage (SAH) [Eden et al., 2008]. The reason is not known, but
studies suggest an increased risk of aneurysm rupture after the age of fifty, in the postmenopausal
years. This might indicate the influence of hormonal factors on the vessel wall. This hypothesis is
supported by the reduced risk of SAH with increased parity. However, studies have failed to prove
a decisive correlation between hormonal factors and the risk of SAH. Another hypothesis is that
high values of wall shear stress may influence the initialization of aneurysms. With measurements
of radii and angles of intracranial bifurcations available from a previous study in our group, see
Ingebrigtsen et al. [2004], we therefore wished to reanalyze the data and calculate the gender
specific hemodynamic forces by numerical simulations.

28.3.2 Method

Measurements of 49 patients were performed to obtain the geometric quantities of the MCA
and ICA bifurcations. The averaged values for the diameters were used to create one idealized
bifurcation of the MCA and ICA for both females and males. The model basically consists of
three cylinders connected with a smoothing at the interface to give a physiologically plausible
appearance.
Average gender specific blood flow velocity measurements from the ICA and MCA from Krejza
et al. [2005] were used as inflow boundary conditions in the simulations. Table 28.2 summarizes
the input values to the simulations, see Lindekleiv et al. [2010]. At the outflows, we have applied a
resistance boundary condition as described in Section 28.2.2.

28.3.3 Results

Table 28.2 shows that there is a significant gender difference in the diameters for the MCA. For the
ICA, there are only statistically significant sex differences in the vessel size of the parent vessel and
the smallest branch. CFD simulations show both increased wall shear stress and a larger affected
area in the female MCA (Figure 28.9) and ICA (Figure 28.10) bifurcations. The maximum wall
shear stress in the MCA bifurcations was 33.17 Pa for females and 27.82 Pa for males. Similar
results for ICA were 15.20 Pa for females and 10.10 Pa for males. The values are reflected by a
higher pressure drop in the female than the male bifurcations (664 vs 502 Pa for MCA and 344 vs
202 Pa for ICA). For further discussion, see Lindekleiv et al. [2010].

28.3.4 Discussion

The above results are as expected from fluid mechanical reasoning, except for the peak values in
the vicinity of the bifurcations. Even though the model is simple, the aim was to demonstrate a
principle with a potentially important application, that is, that WSS may be of importance in the
initialization and rupture of intracranial aneurysms. Furthermore, the results correlate well with
the fact that women develop more aneurysms than men.

532 CHAPTER 28. COMPUTATIONAL HEMODYNAMICS

Figure 28.8: Idealized model of a bi-
furcation.

Male MCA Female MCA Male ICA Female ICA
α 49.7◦ 50.5◦ 62.8◦ 57.2◦

β 68.8◦ 72.5◦ 49.7◦ 50.5◦

A [mm] 2.63 2.42 3.86 3.45

B [mm] 2.44 2.04 2.71 2.49

C [mm] 1.74 1.56 2.13 1.85

V [m/s] 0.68 0.74 0.34 0.42

Table 28.2: Summary of angles, diameters, and velocities used for the simulations. The parameters α and β
are the angles between the prolongation of the parent artery and the vessels C and B respectively.

Figure 28.9: Resulting wall shear stress
in the male and female MCA bifurca-
tions. Female bifurcation in front.

28.4. CFD VERSUS 4D PC MRA IN AN EXPERIMENTAL CANINE ANEURYSM 533

Figure 28.10: Resulting wall shear
stress in the male and female ICA bi-
furcations. Female bifurcation in front.

28.4 CFD versus 4D PC MRA in an experimental canine aneurysm

In another study, see Jiang et al. [2010], we quantitatively compared CFD, assuming Newtonian
flow with rigid walls, with four-dimensional Phase Contrast Magnetic Resonance Angiography
(PC MRA) techniques. The intention was both to verify the computational techniques for creating
patient-specific models and corresponding CFD results and to understand and quantify the
accuracy of the simplest possible flow model against state-of-the-art measurements.
Four-dimensional PC MRA is a noninvasive technique to measure flow in the vascular system.
The image acquisition consists of a scan time of roughly 8 minutes. The canine had an average
heart rate of 101 beats per minute, so the obtained images are an average over 808 heart cycles.
There is naturally no guarantee for a constant heart beat in the canine, which is a source for errors.
However, in humans with larger diameters in the vasculatory system, errors have been shown to
be of order 3-10% in the pulmonary arteries; see Lotz et al. [2002], Evans et al. [1993].
The resolution is coarse in both space and time, and computation of forces such as WSS might
be difficult. In addition to this, there might be locations in the vascular system where stenosis or
plaque is present and the quality of the 4D PC MRA might be poor. These are also often the spots
of most interest. In many cases, there are also problems with the Velocity Encoding Sensitivity
(VENC) which may produce noise and useless data. The VENC may be adjusted to capture a
velocity within a specific range. However, less accurate data is obtained for a wide VENC and vice
versa.

28.4.1 Phase contrast magnetic resonance angiography

To test the above mentioned techniques in a complex case, our collaborators at the Wisconsin
Institutes for Medical Research1 created an artificial saccular aneurysm in a carotid bifurcation of a
canine according to German and Black [1965]. The inlet diameter was 3.2 mm, the height 9.4 mm,
the width 4.3 mm, the volume 254.3 mm3, the ostium area 17.10 mm2, and the aspect ratio 2.18,
where the aspect ratio is defined as the ratio between the aneurysm height and the neck width.
Three weeks after the artificial aneurysm was created, the canine was anesthetized and subjected
to 4D PC MRA imaging studies; that is, the velocity measurements were performed. The raw
data from the 4D PC MRA scan measurements are shown in Figure 28.11 where each solid line
represents the sum of fluxes at different cross sections of the inlet and outlet arteries. The picture

1http://www.med.wisc.edu/wimr/

http://www.med.wisc.edu/wimr/

534 CHAPTER 28. COMPUTATIONAL HEMODYNAMICS

Figure 28.11: The figure shows the raw
data obtained from the 4D PC MRA
scan, which is phase averaged from
808 heart cycles. Each line corresponds
to the sum of fluxes obtained from a
cut plane in the vertical direction. Mea-
surements of mass flow differ by up to
ca. 20% between inlet (left) and outlet
(right) in a canine. The x-axis shows
the time step number.

Figure 28.12: Figure showing reso-
lution of data points where velocity
measurements are made (left), veloc-
ity measurements from 4D PC MRA
(middle), and CFD simulations (right).

to the left in Figure 28.11 shows the sum of velocities at the inlet, which is one artery, while the
picture to the right shows the output flux; that is, the sum of the outflow in both outflow arteries.
For a more thorough description, we refer to Jiang et al. [2010]. The coarse data obtained from 4D
PC MRA is shown in the left and middle images of Figure 28.12, while the corresponding CFD
simulation is shown to the right.

28.4.2 Computational fluid dynamics

The geometry was generated according to the procedure described in Section 28.2.3. We solved the
incompressible Navier–Stokes equations using an Incremental Pressure Correction Scheme (IPCS)
as described in Chapter 22. We used first order elements for both velocity and pressure, simulated
over four heart beats, and obtained the results from the last cycle. With a CFL number of roughly
ten, the number of time steps was 696 per cardiac cycle. As inflow boundary conditions, we used
an average value from the five lowermost voxels (3D pixels / samples from the measurements)
in the z-direction. For the outflow, we applied a resistance boundary condition as described in
section 28.2.2. The inflow was calculated according to Figure 28.13 and Figure 28.14.
Figure 28.13 shows how the values in Figure 28.11 are returned as a spline function. The factor
(133.0/256)**-2 scales the voxel size to the matrix size, so that the focus of the image corresponds
to the actual size in millimeters. The t variable is the end time, and the scalar 0.037 is the equally
spaced times of where measurements for v were made.
In Figure 28.14, a call is made to generate a spline representation of the velocity in time by calling
makeIC(). Then, in eval_data, n is the outward facing facet normal and t is the time. The variable
val is a spline evaluation such that the pulse goes in a continued cycle as time exceeds one heart
beat. Finally, each component of the velocity vector, e.g., values[0], is given the component-wise
negative value of n (to create a flow going into the domain) times the velocity value corresponding
to the current time.

28.4. CFD VERSUS 4D PC MRA IN AN EXPERIMENTAL CANINE ANEURYSM 535

Figure 28.13: Measured values used
for spline representation of the inflow. Python code

def makeIC():
Area = 8.04
v= array([10939.45, 10714.00, 15406.95,

25181.50, 27844.85, 24344.80,
19578.05, 16479.55, 15168.80,
16878.40, 16700.55, 15118.90,
13032.50, 12121.65, 11885.90,
11943.60, 10939.45]) \

/ (Area*(133.0/256)**-2)

t = 0.037*arange(len(v))
t_period = 0.037*16
return splrep(t, v), t_period

Figure 28.14: Calculation of inflow
boundary value for the velocity. Python code

class InflowBoundaryValue(Expression):

def init(self, problem=None, side=None):
self.problem = problem
self.side = side
self.bc_func, self.t_period = makeIC()

def eval_data(self, values, data):
n = data.cell().normal(data.facet())
t = self.problem.t
val = splev(t -

int(t/self.t_period)*self.t_period,
self.bc_func)

values[0] = -n.x()*val
values[1] = -n.y()*val
values[2] = -n.z()*val

def value_shape(self):
return (3,)

536 CHAPTER 28. COMPUTATIONAL HEMODYNAMICS

28.4.3 Results

The resulting velocity field from 4D PC MRA and CFD calculations during peak systole are shown
in Figure 28.12, and illustrates an overall good agreement between CFD and 4D PC MRA. For
both canines (only one shown here), we obtained a similarity of more than 70% with respect to the
velocity but only 22-31% similarity with respect to the WSS. For further details, we refer to Jiang
et al. [2010].

28.4.4 Discussion

The reason for using the average values of the five lowermost cross sections as inflow is that given
the resolution of the 4D PC MRA, each level of voxels is not necessarily mass conserving. As seen
in Figure 28.11, the sum of mass in a plane may vary by as much as 20% between sections (the
solid lines). It is also clearly visible in this figure that peak systole appears at time step four in
both left (inflow) and right (outflow) image of the figure, but the “bump” at mid deceleration has
shifted from time step seven at the inflow to eight at the outflow. This may be because of the
so-called Windkessel effect, which may only be captured using a fluid structure interaction model,
but it is difficult to conclude due to the coarseness of the measurements.
A limitation of the current study is that the results should not be interpreted as physiologically
correct since the technique consists of cutting off one of the ICAs and creating an artificial
bifurcation (and aneurysm) by moving the rest of the vessel over to the other ICA. This means that
one of the ICAs supply both left and right sides of the canine brain.
In the 4D PC MRA measurements at the left side of the parent artery in Figure 28.12, there are no
boundary layers due to isotropic voxels, and the colors appear brighter since high velocities are
possible close to the wall. The CFD simulations have short arrows at the same location indicating
that the boundary layer has been resolved and we get lower velocity magnitudes. This is an obvious
drawback with the 4D PC MRA. Thus, we get a good agreement with the velocity measurements,
but poor agreement for computed wall shear stresses. The reason for this is believed to be the poor
spatial resolution of the 4D PC MRA data. For a more thorough description, we refer to Jiang et al.
[2010].
Each of the two methods has its strengths and weaknesses. While 4D PC MRA is fast, cheap,
and harmless, it uses average values over a voxel volume and fails to correctly compute WSS,
recirculation zones, and possible turbulent structures. It also fails to provide values where the
VENC is out of focus or in the presence of a stenosis. In contrast, CFD is expensive but may
provide accurate computations of WSS over the entire domain.
Combined, the two methods may give a better understanding of the importance of boundary
conditions, whether or not fluid structure interaction is of importance, and possible pitfalls using
the different methods. A first natural extension of this study may be to describe blood as a
non-Newtonian fluid to determine whether or not non-Newtonian effects are of importance.

28.5 Patient-specific Circle of Willis

28.5.1 Background

In a study performed in collaboration with clinicians from the Neuroradiology department at
Rikshospitalet University Hospital in Oslo, we wanted to investigate whether we are able to
reproduce velocities in a full Circle of Willis with measurements at the inflow and compare with
measurements at the outflow using resistance boundary conditions from the literature [Alastruey
et al., 2007, Vignon-Clementel et al., 2006]. Such an evaluation or verification of boundary

28.5. PATIENT-SPECIFIC CIRCLE OF WILLIS 537

Figure 28.15: Inflow velocities used
for the simulation of blood flow in a
patient-specific Circle of Willis. Screen-
shot from TCD machine (top) with the
artery on top and waveform below and
implemented values (bottom). See text
for details.

conditions is essential before proceeding with more sophisticated models for the entire intracranial
vasculature.

28.5.2 Method

Transcranial Doppler (TCD) was performed on a healthy volunteer at rest. During the velocity
recording, the average pulse was about 73 beats per minute. The velocity measurements were used
as boundary conditions for the vessels that are the main suppliers of blood to the brain, that is,
the ICAs and VAs. Figure 28.15 shows the resulting waveform (right) that was applied from the
measurements (left). The figure shows the ICA velocities from the top with equal value at peak
systole (120 cm/s) and differing at end diastole (minimum 50cm/s in right ICA and 20 cm/s in left
ICA). The lowermost line has a different waveform and shows values for two superimposed VAs
since they are equal. The vasculature (based on an MRA scan) for this patient was already available
from a previous study performed nine months earlier. The major vessels (ICA, MCA, PCA, ACA,
VA, BA) were segmented as described in Section 28.2.3. The simulations were performed on meshes
with three boundary layers where the number of tetrahedron cells were approximately 400, 000,
900, 000 and 2, 600, 000. We used continuous linear elements for both velocities and pressure,
and an incremental pressure correction scheme with Adams–Bashford implicit convection and
Crank–Nicolson diffusion to solve the incompressible Navier–Stokes equations. The resolution in
time was 3532 time steps per heart beat on the coarsest mesh.

28.5.3 Results

Based upon images obtained from TCD, we compare only one point in time: peak systole. Since
there is a large difference in the sum of inflow areas and outflow areas, we consider only the flow

538 CHAPTER 28. COMPUTATIONAL HEMODYNAMICS

Artery Measured, L Computed, L Measured, R Computed, R
MCA 70, 120 87 140, 150 55

ACA 200 100 90, 100 65

PCA 70, 80 62 80 100

Table 28.3: Measured versus computed values for flow velocities [cm/s] at left (L) and right (R) outflow
arteries in a patient-specific Circle of Willis at peak systole. The cells with two values refer to different
measurements made with a 5 weeks difference in time.

Python code
def area(self, i):

f = Constant(1)
A = f*ds(i)
a = assemble(A,

exterior_facet_domains=\
self.sub_domains,
mesh=self.mesh)

return a

Figure 28.16: Calculation of the areas
of the Circle of Willis geometry.

division between the arteries compared to measurements. Table 28.3 shows the measured and
calculated velocities for the major arteries.

28.5.4 Discussion

The results of the current study do not match very well with measured values. This may indicate
that the type of boundary conditions applied here may not describe the peripheral resistance
properly. However, there are many sources of error that must be considered. First, TCD is difficult
to perform and subject to errors. Personal communication with the neuroradiologist suggests
errors at the scale of 20%. Second, we have no information on when peak systole appears in the
different arteries. It seams reasonable that there is a small shift in time since the blood flows from
the heart and through different arteries before it meets in CoW. At present, we have not been able
to quantify this shift. Third, the velocity itself may differ at different times for various reasons.
This is illustrated by the cells containing two values in Table 28.3, which refer to two measurements
of the same vessel in the same person only 5 weeks apart.
It is also a great challenge to segment the complete CoW due to great variations in diameters. This
is clearly visible when performing an automatic segmentation where many of the smaller vessels
disappear. It is known that the BA has approximately 50 tiny vessels that are clearly not present
in Figure 28.17. The reason for this is that MRA measurements are based upon velocities, and
hence the velocities in these vessels are too small to be captured. By calculating and summing
up the in- and outflow areas using the code in Figure 28.16, we actually get an area difference of
37.18 mm2 − 25.33 mm2 = 11.85 mm2. It is not known what the correct area should be.
The simulations also show that it might be problematic to not include a large fraction of the parent
artery when performing simulations on a smaller fraction of the vasculature. It is common to
apply either a flat velocity profile or a Womersley profile upstream of the location of interest. This
is clearly not the case as shown in Figure 28.18 where the flow is highly non-uniform.

28.5. PATIENT-SPECIFIC CIRCLE OF WILLIS 539

Figure 28.17: Patient-specific Circle of
Willis (of the second author).

Figure 28.18: The image on the left
shows the plane where the image on
the right has been cut. The right fig-
ure shows highly non-uniform flow in
ICA.

29 Cerebrospinal fluid flow
By Susanne Støle-Hentschel, Svein Linge, Alf Emil Løvgren and Kent-Andre
Mardal

This chapter concerns the flow of cerebrospinal fluid (CSF) in the subarachnoid space that sur-
rounds the spinal cord. Particular attention is given to abnormal flow and pressure resulting from
the Chiari I malformation and its often associated condition syringomyelia. The chapter builds
on the software tools described in Chapter 22, and we will compare the Chorin, IPCS, and G2

methods. In this chapter, we will also describe how to create meshes with Gmsh.

29.1 Medical background

CSF is a clear water-like fluid that occupies the subarachnoid space (SAS). It surrounds the brain
and the spinal cord, and also fills the ventricular system within the brain. The SAS is bounded by
strong tissue layers, the dura mater as the outer boundary and the pia mater as the inner boundary.
A hole in the skull basis, foramen magnum, connects the cranial and spinal parts of the SAS. This
hole is essential for CSF flow dynamics, since pulsating blood vessels in the brain cause the brain
to expand and contract, a volume change that is made possible only by a simultaneous pulsating
flow of CSF through the foramen magnum. Hence, the pulse that travels through the blood vessel
network is transformed to a pulse in the CSF system, a pulse that is dampened on its way along
the spinal canal. The CSF also plays an important role in cushioning the brain and the spinal cord.

The left picture in Figure 29.1 shows the CSF and the main structures in the brain of a healthy
individual. In about 0.6% of the population the lower part of the cerebellum occupies parts
of the CSF space in the upper spinal SAS and obstructs the CSF flow. This so-called Chiari I
malformation (or Arnold-Chiari malformation) is shown in the right picture in Figure 29.1. A
variety of symptoms are related to this malformation, including headache, abnormal eye-movement,
motor or sensor-dysfunctions, etc. If the malformation is not treated surgically, the condition may
become more severe and cause serious neurological deterioration, and may even lead to death.
Many people with the Chiari I malformation develop fluid filled cavities, often called syrinxes
or cysts, within the spinal cord, a condition called syringomyelia. The exact relation between
the Chiari I malformation and syringomyelia is not known. It is believed that flow and pressure
disturbances caused by abnormal obstructions initiate the development of syringomyelia [Oldfield
et al., 1994]. Several authors have analyzed the relations between abnormal flow and syringomyelia
development based on measurements in patients and healthy volunteers [Heiss et al., 1999, Pinna
et al., 2000, Hofmann et al., 2000, Haughton et al., 2003]. These studies also compare flow dynamics
before and after decompressive surgery. The latter is an operation, where the SAS lumen around
the obstructed area is increased by removing parts of the surrounding tissue and bone [Milhorat

541

542 CHAPTER 29. CEREBROSPINAL FLUID FLOW

Figure 29.1: The picture shows an MR
image of a patient with a Chiari I mal-
formation. Chiari I patients are char-
acterized by a very narrow passage at
the foramen magnum; that is, the sub-
arachnoid space, shown as white on
the image, is small compared to nor-
mals. Chiari patients often develop
cysts within the spinal cord, visible
as white spots in the dark grey cord.
Notice the relatively large distance be-
tween the narrow foramen magnum
and the cyst.

29.2. MATHEMATICAL DESCRIPTION 543

and Bolognese, 2003]. Control images taken some weeks or months after the intervention often
show a reduction of the size of the cyst in the spinal canal and patients usually report improvement
of their condition. In some cases, the syrinx disappeared completely after some months [Oldfield
et al., 1994, Pinna et al., 2000, Heiss et al., 1999].
Several studies [Quigley et al., 2004, Haughton et al., 2003] report that the measured CSF flow
at foramen magnum is abnormal in the sense that the flow contains high speed jets and also
synchronous bidirectional flow. Computational fluid dynamics (CFD) simulations have related
the abnormal flow to abnormal pressure [Roldan et al., 2009, Hentschel et al., 2010, Linge et al.,
2010, 2011]. Many theories have been proposed to describe the relation between the Chiari I
malformation and syringomyelia. However, it is hard to explain the relatively large distance
between the Chiari I malformation and the cyst.
It is the purpose of this chapter to show how relevant CFD solvers in FEniCS may be used to
investigate unresolved issues in CSF flow dynamics. Specifically, we investigate different boundary
conditions, different geometries, and also how far velocity and pressure disturbances travel under
realistic conditions. We also compare the different solvers Chorin, IPCS, and G2, cf. Chapter 22.

29.2 Mathematical description

We model the CSF flow in the upper spinal canal as a Newtonian fluid with viscosity and density
similar to water at body temperature. The upper spinal canal is represented as a tube with an inner
elliptic or circular cylinder removed. In the presented experiments, we focus on the dynamics
around the spinal cord. The tissue surrounding the fluid is modeled as impermeable and rigid
throughout the cardiac cycle.
To simulate CSF flow, we apply the Navier–Stokes equa-
tions for an incompressible Newtonian fluid,

ρ

(
∂v
∂t

+∇v · v
)
= −∇p + µ∆v + g,

∇ · v = 0,
(29.1)

with the variables as indicated in Table ??, and g, the body
force; that is, gravity. We can eliminate gravity from the
equation by assuming that the body force is balanced by
the hydrostatic pressure. As a result, pressure describes
only the dynamic pressure. To calculate the correct phys-
ical pressure, static pressure resulting from body forces
has to be added. This simplification is not true, however,
during sudden movements such as standing up.

29.3 Numerical experiments

29.3.1 Implementation

We refer to Chapter 22 for a complete description of the solvers and schemes implemented. In this
chapter we concentrate on the use of these solvers in a few examples. Notice, however, that we use
first order velocity elements, since the results with first order elements was virtually identical to
the results with second order elements in this case. The code can be found in csf_flow.py.

544 CHAPTER 29. CEREBROSPINAL FLUID FLOW

Symbol Meaning Unit Value Used Reference
v velocity variable cm

s — −1.3± 0.6 . . . 2.4± 1.4
p pressure variable dyne

cm2 — . . .
ρ density g

cm3 — 0.993

µ dynamic viscosity gs
cm — 0.0007

ν kinematic viscosity cm2

s 0.710−2 0.710−2

SV stroke volume ml
s 0.27 0.27

HR heart rate beats
s 1.17 1.17

A0 tube boundary cm2 32 —
A1,A2 area of inlet/outlet cm2 0.93 0.8 . . . 1.1

Re Reynolds Number – – 70–200

We Womersley Number – – 14–17

Table 29.1: Characteristic values and parameters for CSF flow modeling. The velocities are maximum absolute
anterior CSF flow velocities taken from controls and Chiari I malformation patients [Hofmann et al., 2000]. By
stroke volume we mean the volume that moves up and down through cross section in the SAS during one
cardiac cycle and the value is taken from [Gupta et al., 2009]. Cross section areas 20–40 cm from the foramen
magnum are taken from [Loth et al., 2001].

Boundary conditions. The mesh boundaries at the inlet cross section, the outlet cross section, and
the SAS boundaries are defined by the respective classes Top, Bottom, and Contour. They are
implemented as subclasses of SubDomain, similarly to the given example of Top.

Python code
class Top(SubDomain):

def __init__(self, z_index, z_max, z_min):

SubDomain.__init__(self)

self.z_index = z_index

self.z_max = z_max

self.z_min = z_min

def inside(self, x, on_boundary):

return bool(on_boundary and x[self.z_index] == self.z_max)

To define the domain correctly, we override the base class function inside. It returns a boolean
evaluating if the inserted point x is part of the subdomain. The boolean on_boundary is very useful
to easily partition the whole mesh boundary to subdomains.
It would be physically more correct to require that the no slip condition also is valid on the
outermost/innermost nodes of the inflow and outflow sections as implemented below:

Python code
def on_ellipse(x, a, b, x_index, y_index, x_move=0, y_move=0):

x1 = x[x_index] - x_move

x2 = x[y_index] - y_move

return bool(abs((x1/a)**2 + (x2/b)**2 - 1.0) < 10**-6)

The vectors describing the ellipses of the cord and the dura in a cross section with the corresponding
axes are required. The global function on_ellipse checks if x is on the ellipse defined by the
x-vector a and the y-vector b. The variables x_move and y_move allow the definition of an eccentric

29.3. NUMERICAL EXPERIMENTS 545

ellipse.
Defining the inflow area at the top, with mantle nodes excluded, is done as shown in the following
code. The outflow area at the bottom is defined analogously.

Python code
class Top(SubDomain): # bc for top

def __init__(self, a2_o, a2_i, b2_o, b2_i, x_index, y_index, z_index, z_max, \

x2_o_move=0, y2_o_move=0, x2_i_move=0, y2_i_move=0):

SubDomain.__init__(self)

self.x_index = x_index

self.y_index = y_index

self.a2_o = a2_o

self.a2_i = a2_i

self.b2_o = b2_o

self.b2_i = b2_i

self.z_index = z_index

self.z_max = z_max

self.x2_o_move = x2_o_move

self.x2_i_move = x2_i_move

self.y2_o_move = y2_o_move

self.y2_i_move = y2_i_move

def inside(self, x, on_boundary):

return bool(on_boundary and abs(x[self.z_index] - self.z_max) < 10**-6 \

and not on_ellipse(x, self.a2_o, self.b2_o, self.x_index, \

self.y_index, self.x2_o_move, self.y2_o_move) \

and not on_ellipse(x, self.a2_i, self.b2_i, self.x_index, \

self.y_index, self.x2_i_move, self.y2_i_move))

The underscores o and i represent the outer and inner ellipse, respectively. The numbering with 2

distinguishes the subdomain at the top from that at the bottom, which may be defined differently.
The details of how different problems can easily be defined in separate classes can be found in
src/mesh_definitions/.
According to Gupta et al. [2009], a volume of 0.27 ml is transported back and forth through the
spinal SAS cross sections during each cardiac cycle. For the average human, we assume a heart
rate of 70 beats per minute. Furthermore, we define the cross sectional area to be 0.93 cm2, which
matches a segment from 20 to 40 cm down from the foramen magnum [Loth et al., 2001]. In this
region of the spinal canal, the cross sectional area varies little. In addition, the dura and the cord
shape resembles a simple tube more than in other regions. According to Oldfield et al. [1994],
syrinxes start at around 5 cm below the foramen magnum and extend up to 28 cm below the
foramen magnum.
Moreover, we define a velocity pulse on the inflow and outflow boundaries, and since we are
modeling incompressible flow between rigid impermeable boundaries, we must have equal inflow
and outflow volumes at all times. The pulse values in these boundary cross sections were set equal
in every grid point, and scaled to match the volume transport of 0.27 ml.
A function describing the varying blood pressure in a heart chamber is given in Smith et al. [2006].
With some adjustment and additional parameters, the function was adapted to approximate the
CSF flow pulse, see Figure 29.2. The systole of the pulse function is characterized by a high
amplitude with a short duration while the negative counter movement has a reduced amplitude
and lasts considerably longer. The global function for defining the pulse is:

Python code
def get_pulse_input_function(V, z_index, factor, A, HR_inv, HR, b, f1):

C0 = 3.4 * pi

rad = C0 /HR_inv

546 CHAPTER 29. CEREBROSPINAL FLUID FLOW

.

Figure 29.2: Two different CSF flow
pulses. The blue line is a sine pulse,
whereas the green is derived from the
pressure pulse in a heart chamber.

v_z = "factor*(-A*(exp(-fmod(t,T)*rad) * Ees * (sin(- f1*fmod(t,T)*rad) - vd)

- (1-exp(- factor*fmod(t,T)*rad)) * p0 * (exp(sin(- fmod(t,T)*rad) - vd) -1))

-b)"

vel = ["0.0", "0.0", "0.0"]

vel[z_index] = v_z

defaults = {"factor":factor, "A":A, "p0":1, "vd":0.03, "Ees":50,

"T": HR_inv, "HR":HR, "rad":rad, "b":b, ’f1’:f1}

pulse = Expression(vel, defaults)

return pulse

The following parameters have been used with this function.

Python code
A = 2.9/16

factor = self.flow_per_unit_area/0.324

v_max = 2.5 * self.factor

b = 0.465

f1 = 0.8

Initialization of the problem. The Problem class in csf_flow, derived from ProblemBase in nsbench

described in Chapter 22, defines the mesh with its boundaries and provides the necessary informa-
tion for the Navier–Stokes solvers. The mesh is ordered for all entities and initiated to compute its
faces.
The values z_min and z_max mark the inflow and outflow coordinates along the tube’s length axis.
As mentioned above, the axis along the tube is indicated by z_index. If one of the coordinates, or
the z-index, is not known, it may help to call the mesh in viper unix>viper meshname.xml. Typing
o prints the length in x, y and z direction in the terminal window. Defining z_min, z_max and
z_index correctly is important for the classes that define the boundary domains of the mesh Top,
Bottom and Contour. As we have seen before, z_index is necessary to set the correct component to
the non-zero boundary velocity.

29.3. NUMERICAL EXPERIMENTS 547

Exterior forces on the Navier–Stokes flow are defined in the object variable f. Since gravity is
neglected in the current problem formulation, the force function f is defined by a constant function
Constant with value zero on the complete mesh.
After initializing the subdomains, Top, Bottom and Contour, they are marked with reference
numbers attributed to the collection of all subdomains sub_domains.
To see the most important effects, the simulation was run slightly longer than one full period. A
longer simulation time was not found necessary, since undesirable effects of the physiologically
incorrect starting value (zero velocity) was dampened sufficiently already very early in the first
period. Besides maximum and minimum velocities, the simulation includes the transition from
diastole to systole, and vice versa. With the given physiological time scales of the problem, the
chosen time step length (0.001 s) represents a high temporal resolution.

Python code
def __init__(self, options):

ProblemBase.__init__(self, options)

filename = "../../data/meshes/chiari/csf_extrude_2d_bd1.xml.gz"

self.mesh = Mesh(filename)

self.mesh.order()

self.mesh.init(2)

self.z_max = 5.0 # in cm

self.z_min = 0.0 # in cm

self.z_index = 2

self.D = 0.5 # characteristic diameter in cm

self.contour = Contour(self.z_index, self.z_max, self.z_min)

self.bottom = Bottom(self.z_index, self.z_max, self.z_min)

self.top = Top(self.z_index, self.z_max, self.z_min)

Load subdomain markers

self.sub_domains = MeshFunction("uint", self.mesh, self.mesh.topology().dim() - 1)

Mark all facets as subdomain 3

for i in range(self.sub_domains.size()):

self.sub_domains.set(i, 3)

self.contour.mark(self.sub_domains, 0)

self.top.mark(self.sub_domains, 1)

self.bottom.mark(self.sub_domains, 2)

Set viscosity

self.nu = 0.7 * 10**-2 # cm^2/s

Create right-hand side function

self.f = Constant(self.mesh, (0.0, 0.0, 0.0))

n = FacetNormal(self.mesh)

Set end-time

self.T = 1.2 * 1.0/self.HR

self.dt = 0.001

Increasing the time step length usually speeds up the calculation of the solution. As long as
the CFL number with the maximum velocity vmax, time step length dt and minimal edge length
hmin is smaller than one (CFL = vmaxdt

hmin
< 1), the solvers should converge. Too small time steps,

however, can lead to an increasing number of iterations for the solver on each time step. As
a characterization of the fluid flow, the Reynolds number (Re = vc l

ν) was calculated with the

548 CHAPTER 29. CEREBROSPINAL FLUID FLOW

maximum velocity vc at the inflow boundary and the characteristic length l of the largest gap
between outer and inner boundary. A listing of Reynolds and Womersley numbers under different
scenarios is given in the end of the chapter.
The area of the mesh surfaces and the mesh size can be found as follows.

Python code
self.h = MeshSize(self.mesh)

self.A0 = self.area(0)

self.A1 = self.area(1)

self.A2 = self.area(2)

def area(self, i):

f = Constant(self.mesh, 1)

A = f*ds(i)

a = assemble(A, exterior_facet_domains=self.sub_domains)

return a

Function objects. Being a subclass of ProblemBase, Problem overrides the object functions update

and functional. The first ensures that all time-dependent variables are updated for the current
time step. The latter prints the maximum values for pressure and velocity. The normal flux through
the boundaries is defined in the separate function flux.

Python code
def update(self, t, u, p):

self.g1.t = t

self.g2.t = t

def functional(self, t, u, p):

v_max = u.vector().norm(linf)

f0 = self.flux(0,u)

f1 = self.flux(1,u)

f2 = self.flux(2,u)

pressure_at_peak_v = p.vector()[0]

if current velocity is peak

if v_max > self.peak_v:

self.peak_v = v_max

self.pressure_at_peak_v = pressure_at_peak_v

return pressure_at_peak_v

def flux(self, i, u):

n = FacetNormal(self.mesh)

A = dot(u,n)*ds(i)

a = assemble(A, exterior_facet_domains=self.sub_domains)

return a

The boundary conditions are all given as Dirichlet conditions, associated with their velocity
function space and the belonging subdomain. The additional functions boundary_conditions and
initial_conditions define the respective conditions for the problem that are called by the solver.
Boundary conditions for velocity and pressure are collected in the lists bcv, bcp and bcpsi.

Python code
def boundary_conditions(self, V, Q):

Create no-slip boundary condition for velocity

self.g0 = Constant(self.mesh, (0.0, 0.0, 0.0))

29.3. NUMERICAL EXPERIMENTS 549

bc0 = DirichletBC(V, self.g0, self.contour)

create function for inlet and outlet BC

self.g1 = get_sine_input_function(V, self.z_index, self.HR, self.HR_inv, self.v_max)

self.g2 = self.g1

Create inflow boundary condition for velocity on side 1 and 2

bc1 = DirichletBC(V, self.g1, self.top)

bc2 = DirichletBC(V, self.g2, self.bottom)

Collect boundary conditions

bcv = [bc1, bc0, bc2]

bcp = []

bcpsi = []

return bcv, bcp, bcpsi

def initial_conditions(self, V, Q):

u0 = Constant(self.mesh, (0.0, 0.0, 0.0))

p0 = Constant(self.mesh, 0.0)

return u0, p0

Running. Applying the "Chorin" solver, the Problem is started by typing :

Bash code
./ns csf_flow chorin

It approximates the Navier–Stokes equation with Chorin’s method. The progress of different
simulation steps and results, including maximum calculated pressure and velocity per time step,
are printed out on the terminal. In addition, the solution for pressure and velocity are dumped to
a file for each time step. Before investigating the results, we introduce how the mesh is generated.

29.3.2 Mesh generation with Gmsh

In this section we go briefly through the basic usage of Gmsh [Geuzaine and Remacle]. The
following code example shows the construction of a circular cylinder (representing the pia on the
spinal cord) within an elliptic cylinder (representing the dura). We define a characteristic length
scale lc, which is used in the definition of each point Point, which takes three coordinates and the
characteristic length scale. The dura is defined by the ellipse vectors a=0.65 mm and b=0.7 mm in
x and y direction, respectively. The cord has a radius of 4 mm with its center moved 0.8 mm in
positive x-direction Since Gmsh only allows circular or elliptic arcs to be drawn for angles smaller
than π, the basic ellipses were constructed from four arcs each. Every arc is defined by the starting
point, the center, another point on the arc and the end point. The value lc defines the maximal
edge length in vicinity to the point.

Code
lc = 0.04; //characteristic length for the cell

Point(1) = {0,0,0,lc}; // center point (x,y,z,lc)

//outer ellipses

a = 0.65;

b = 0.7;

Point(2) = {a,0,0,lc};

Point(3) = {0,b,0,lc};

550 CHAPTER 29. CEREBROSPINAL FLUID FLOW

Point(4) = {-a,0,0,lc};

Point(5) = {0,-b,0,lc};

Ellipse(10) = {2,1,3,3};

Ellipse(11) = {3,1,4,4};

Ellipse(12) = {4,1,5,5};

Ellipse(13) = {5,1,2,2};

// inner ellipses

move = 0.08; //"move" center

Point(101) = {move,0,0,lc};

c = 0.4;

d = 0.4;

Point(6) = {c+move,0,0,lc*0.2};

Point(7) = {move,d,0,lc};

Point(8) = {-c+move,0,0,lc};

Point(9) = {move,-d,0,lc};

Ellipse(14) = {6,101,7,7};

Ellipse(15) = {7,101,8,8};

Ellipse(16) = {8,101,9,9};

Ellipse(17) = {9,101,6,6};

The constructed ellipses are composed of separate arcs. To define them as single lines, the ellipse
arcs are connected in line loops as follows:

Code
// connect lines of outer and inner ellipses to one

Line Loop(20) = {10,11,12,13}; // only outer

Line Loop(21) = {-14,-15,-16,-17}; // only inner

The SAS surface between cord and dura is then defined by the following command.

Code
Plane Surface(32) = {20,21};

Finally, to construct volumes, Gmsh contains the command Extrude, which will extrude the surface
over a given length.

Code
length = 5.0

csf[] = Extrude(0,0,length){Surface{32};};

We store the above Gmsh commands in a .geo file that is read by Gmsh as:

Bash code
> gmsh filename.geo

A screen shot of an interactive session is shown in Figure 29.3. We may then change to "Mesh
modus" in the interactive panel and press 3d to construct the mesh. Pressing Save will save the
mesh under the name "filename", with extension msh. For use in DOLFIN, we apply the DOLFIN
converter.

Bash code
> dolfin-convert filename.msh filename.xml

To capture possible sharp gradients close to the boundary we introduce a few boundary layers.
This is obtained by adding mesh layers; that is, copies of the elliptic arcs that are gradually scaled
to increase the maximum edge length. The code example below shows the creation of the layers
close to the outer ellipse. The inner layers are created similarly.

29.3. NUMERICAL EXPERIMENTS 551

Figure 29.3: The figure shows the user-
interface of Gmsh during the making
of a mesh.

.

Code
outer_b1[] = Dilate {{0, 0, 0}, 1.0 - 0.1*lc } {

Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };

outer_b2[] = Dilate {{0, 0, 0}, 1.0 - 0.3*lc } {

Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };

outer_b3[] = Dilate {{0, 0, 0}, 1.0 - 0.8*lc } {

Duplicata{ Line{10}; Line{11}; Line{12}; Line{13}; } };

Here the command Duplicata copies the expressions, while Dilate scales them. The single arcs
are dilated separately since the arc points are necessary for further treatment. Remember that no
arcs with angles smaller than π are allowed. Again we need a representation for the complete
ellipses defined by line loops, as

Code
Line Loop(22) = {outer_b1[]};

that are necessary to define the surfaces between all neighboring ellipses similar to:

Code
Plane Surface(32) = {20,22};

Finally, all surfaces are listed in the Extrude command.
The test meshes of 1.75 cm seemed to have a fully developed region around the mid-cross sections,
right where we want to observe the flow profile. Testing different numbers of tubular layers
for the length of 1.75, 2.5 and 5 cm showed that the above mentioned observations of wave-like
structures occurred less for longer pipes, even though the number of layers was low compared
to the pipe length. The presented results were simulated on meshes of length 5 cm with 30

layers in z-direction and three layers on the side boundaries. The complete code can be found in
csf/mesh_generation/gmsh.

29.3.3 Example 1: simulation of a pulse in the SAS

In the first example we represent the spinal cord and the surrounding dura mater as two straight
non-concentric cylinders, created using Gmsh. The simulation results for an appropriate mesh
can be found in Figure 29.4. The plots show the velocity component in tubular direction at the

552 CHAPTER 29. CEREBROSPINAL FLUID FLOW

.

Figure 29.4: The case with a circu-
lar cord and the boundary condition
based on the pressure pulse in the
heart [Smith et al., 2006]. The pictures
show the velocity in z-direction for the
non-symmetric pulse at the time steps
t = 0.07s, 0.18s, 0.25s. Notice that we
use different color scales for the differ-
ent time steps. The same color scales
will be used in all subsequent figures.

mid-cross section of the model. The flow profiles are taken at the time steps of maximum flow
in both directions and during the transition from systole to diastole. For maximal systole, the
velocities have two peak rings, one close to the outer, the other close to the inner boundary. We
can see sharp profiles at the maxima and bidirectional flow at the local minimum during diastole.

The cysts usually develop several centimeters below the Chiari I malformation. It is therefore of
interest to quantify how far pressure and velocity instabilities can travel under realistic conditions.
To create pressure and velocity instabilities, we assign time-dependent but flat inlet and outlet
velocity conditions on the previously described geometry and investigate how far these instabilities
travel with the flow. We also compare three different solvers, namely the Chorin, IPCS, and G2

schemes. All schemes do, however, use first order elements for both velocity and pressure. In
Table ??, we list the pressure differences at various places along the spinal cord computed with the
three different solvers, slightly after systole. Strangely, it appears that the G2 solver requires a 30%
bigger pressure gradient between the top and the bottom in this case. However, the G2 solver has
also produced some peculiar results in Chapter 22. We also remark that G2 was about 15 times
slower than Chorin and IPCS. Our main interest here, however, is how far the pressure instabilities
travel. All the solvers are consistent on this point, the pressure instabilities do not travel very far.
After 1 cm, the pressure instabilities is lessened by a factor 5-10.

29.3. NUMERICAL EXPERIMENTS 553

Pressure (Pa) Solver Chorin IPCS G2

∆z p 5.0cm 99.6 101.3 130

∆xy p 0.1cm 2.1 2.6 0.9
∆xy p 0.5cm 0.8 1.1 0.4
∆xy p 1.0cm 0.3 0.3 0.2
∆xy p 2.0cm 0.03 0.03 0.01

Table 29.2: Pressure differences between various places in the spinal canal. The first row, ∆z5.0cm list the
pressure difference between the top and bottom. The next rows list pressure differences, ∆xy p in the cross
sections 0.1 cm, 0.5 cm, 1.0 cm, and 2.0 cm down from the top.

29.3.4 Example 2: simplified boundary conditions

Many researchers apply the sine function as inlet and outlet boundary conditions, since its integral
is zero over one period. However, its shape is not in agreement with measurements of the cardiac
flow pulse. To see the influence of the applied boundary condition for the defined mesh, we
replaced the more realistic pulse function with a sine, scaled to the same amount of volume
transport per cardiac cycle. The code example below implements the alternative pulse function
in the object function boundary_conditions. The variable sin_integration_factor describes the
integral of the first half of a sine.

Python code
self.HR = 1.16 # heart rate in beats per second; from 70 bpm

self.HR_inv = 1.0/self.HR

self.SV = 0.27

self.A1 = self.area(1)

self.flow_per_unit_area = self.volume_flow/self.A1

sin_integration_factor = 0.315

self.v_max = self.flow_per_unit_area/sin_integration_factor

As before, we have a global function returning the sine as a Function - object,

Python code
def get_sine_input_function(V, z_index, HR, HR_inv, v_max):

v_z = "sin(2*pi*HR*fmod(t,T))*(v_max)"

vel = ["0.0", "0.0", "0.0"]

vel[z_index] = v_z

defaults = {’HR’:HR, ’v_max’:v_max, ’T’:HR_inv}

sine = Expression(vel, defaults)

that is called instead of get_pulse_input_function in the function boundary_conditions:

Python code
self.g1 = get_sine_input_function(V, self.z_index, self.factor, self.A, self.HR_inv, self.HR,

self.b, self.f1)

The pulse and the sine are sketched in Figure 29.2. Both functions are marked at the points of
interest: maximum systolic flow, around the transition from systole to diastole and the (first, local)
minimum. Results for sinusoidal boundary conditions are shown in Figure 29.5 The shape of the
flow profile is similar at every time step, only the magnitudes change. No bidirectional flow was
discovered in the transition from positive to negative flow. Compared to the results received by the
more realistic pulse function, the velocity profile generated from sinusoidal boundaries is more
homogeneous over the cross section.

554 CHAPTER 29. CEREBROSPINAL FLUID FLOW

.

Figure 29.5: The case with circu-
lar cord and the boundary condition
based on a sine function. The pictures
show the velocity in z-direction as re-
sponse to a sine boundary condition
for the time steps t = 0.2, 0.4, 0.6.

29.3. NUMERICAL EXPERIMENTS 555

29.3.5 Example 3: cord shape and position

According to Loth et al. [2001], Alperin et al. [2006], the present flow is inertia dominated, meaning
that the shape of the cross section should not influence the pressure gradient. Changing the length
of vectors describing the ellipse from

Code
c = 0.4;

d = 0.4;

to

Code
c = 0.32;

d = 0.5;

transforms the cross section of the inner cylinder to an elliptic shape with preserved area. The
simulation results are collected in Figure 29.6. The geometry differences between the two cases
gave different flow profiles but no differences in the pressure gradient.
A further perturbation of the SAS cross sections was achieved by changing the displacement of the
elliptic cord center from

Code
move = 0.08;

to

Code
move = 0.16;

Also for this case the pressure field was identical, with some variations in the flow profiles, see
Figure 29.7.

29.3.6 Example 4: cord with syrinx

Syrinxes expand the cord so that it occupies more space of the spinal SAS. Increasing the cord
radius from 4 mm to 5 mm 1 decreases the cross sectional area by almost one third to 0.64 cm2.
The resulting flow is shown in Figure 29.8. Apart from the increased velocities, we see bidirectional
flow already at t = 0.18 s and at t = 0.25 s as before. The fact that diastolic back-flow is visible at t
= 0.18 s, shows that the pulse with its increased amplitude travels faster.
Comparing Reynolds and Womersley numbers shows a clear difference for the above described
examples 1, 2 and 3. Example 2 is marked by a clearly lower maximum velocity at inflow and
outflow boundary that leads to a rather low Reynolds number. Due to the different inflow and
outflow area, example 4 has a lower Womersley number, leading to an elevated maximum velocity
at the boundary and clearly increased Reynolds number. These numbers help to quantify the
changes introduced by variations in the model. For the chosen model, the shape of the pulse
function at the boundary as well as the cross sectional area have great influence on the simulation
results. Comparison of Reynolds numbers for different scenarios can be found in Table ??.

1Similar to setting the variables c and d in the geo-file to 0.5.

556 CHAPTER 29. CEREBROSPINAL FLUID FLOW

.

Figure 29.6: The case with an el-
liptic cord and the boundary condi-
tion based on the pressure pulse in
the heart. The pictures show the
velocity in z-direction for the non-
symmetric pulse at the time steps t =
0.07s, 0.18s, 0.25s.

Problem D , in cm vmax in cm/s Re We
Example 1 0.54 2.3 177 17

Example 2 0.54 0.92 70 17

Example 4 0.45 3.2 205 14

Table 29.3: Characteristic values for the examples 1, 2 and 3. Here, the characteristic length is D =
√
(A/π),

where A is the inflow and outflow area. Furthermore, vmax is defined as the maximal velocity at inflow and
outflow boundary.

29.3. NUMERICAL EXPERIMENTS 557

Figure 29.7: The case with a trans-
lated elliptic cord. The pictures show
the velocity in z-direction for the non-
symmetric pulse at the time steps t =
0.07s, 0.18s, 0.25s.

.

558 CHAPTER 29. CEREBROSPINAL FLUID FLOW

Figure 29.8: The case with an enlarged
cord diameter and the boundary con-
ditions based on the pressure pulse.
The pictures show the velocity in z-
direction for the non-symmetric pulse
at the time steps t = 0.07s, 0.18s, 0.25s.

29.4. CONCLUSION 559

29.4 Conclusion

In this chapter, we have presented the use of FEniCS to simulate CSF flow in various idealized
geometries representing the spinal cord and the surrounding subarachnoid space. We have further
quantified the effect of abnormal geometries and boundary conditions in terms of pressure and
flow deviations. From our simulations, it seems that pressure instabilities are quickly damped out
under realistic Reynolds and Womersley numbers. These instabilities travel less than 1 cm and it
seems unlikely that Chiari induced pressure instabilities will produce cysts several centimeters
further down in the spinal canal. We have observed that the velocity changes quite a bit with
varying shape and position of the cord. The pressure does, however, not change much. The size of
the cross section area does have an impact on the pressure, as expected. Finally, we observed that
the pressure computed using the G2 method differed significantly from the pressure computed by
Chorin and IPCS.

30 A computational framework for nonlinear elas-
ticity

By Harish Narayanan

Nonlinear elasticity theory plays a fundamental role in modeling the mechanical response of many
polymeric and biological materials. Such materials are capable of undergoing finite deformation,
and their material response is often characterized by complex, nonlinear constitutive relationships.
(See, for example, Holzapfel [2000] and Truesdell and Noll [1965] and the references within for
several examples.) Because of these difficulties, predicting the response of arbitrary structures
composed of such materials to arbitrary loads requires numerical computation, usually based on
the finite element method. The steps involved in the construction of the required finite element
algorithms are classical and straightforward in principle, but their application to non-trivial material
models are typically tedious and error-prone. Our recent work on an automated computational
framework for nonlinear elasticity, CBC.Twist, is an attempt to alleviate this problem.
The focus of this chapter will be to describe the design and implementation of CBC.Twist, as well as
providing examples of its use. The goal is to allow researchers to easily pose and solve problems in
nonlinear elasticity in a straightforward manner, so that they may focus on higher-level modeling
questions without being hindered by specific implementation issues.
What follows is the proposed outline for the chapter.
The chapter begins with a summary of some key results from classical nonlinear elasticity theory.
This discussion is used to motivate the design of CBC.Twist, which is a DOLFIN [Logg and Wells,
2010] module written in UFL syntax [Alnæs and Logg, 2009] that closely resembles how the theory
is written down on paper. In particular, we will see how one can easily pose sophisticated material
models purely at the level of specifying a strain energy function. The discourse will then turn to
the primary equation of interest: the balance of linear momentum of a body posed in the reference
configuration. A finite element scheme for this equation will then be presented, pointing out how
CBC.Twist leverages the automatic linearization capabilities of UFL to implement this scheme in
a manner that is independent of the specific material model. The time-stepping schemes that
CBC.Twist implements will also be discussed. With this in place, we turn to increasingly complex
examples to see how initial- boundary-value problems in nonlinear elasticity can be posed and
solved in CBC.Twist using only a few lines of high-level code. The chapter concludes with some
remarks on how one can obtain CBC.Twist, along with ideas for its extension.

30.1 Brief overview of nonlinear elasticity theory as it relates to CBC.Twist

The goal of this section is to present an overview of the mathematical theory of nonlinear elasticity,
which plays an important role in the design of CBC.Twist. Readers interested in a more compre-

561

562 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

hensive treatment of the subject are referred to, for example, the classical treatises of Truesdell and
Toupin [1960] and Truesdell and Noll [1965], or more modern works such as Gurtin [1981], Ogden
[1997] and Holzapfel [2000].

30.1.1 Posing the question we aim to answer

The theory begins by idealizing the elastic body of interest as an open subset of R2,3 with a
piecewise smooth boundary. At a reference placement of the body, Ω, points in the body are
identified by their reference positions, X ∈ Ω. The treatment presented in this chapter is posed
in terms of fields which are parametrized by reference positions. This is commonly termed the
material or Lagrangian description.
In its most basic terms, the deformation of the body over time t ∈ [0, T] is a sufficiently smooth
bijective map ϕ : Ω × [0, T] → R2,3, where Ω := Ω ∪ ∂Ω and ∂Ω is the boundary of Ω. The
restrictions on the map ensure that the motion it describes is physical and within the range of
applicability of the theory (e.g., disallowing the interpenetration of matter or the formation of
cracks). From this map, we can construct the displacement field,

u(X, t) = ϕ(X, t)− X, (30.1)

which represents the displacement of a point in time relative to its reference position.
With this brief background, we are ready to pose the fundamental question that CBC.Twist

is designed to answer: Given a body comprised of a specified elastic material, what is the
displacement of the body when it is subjected to prescribed:

• Body forces: These include forces such as the self-weight of a body, forces on ferromagnetic
materials in magnetic fields, etc., which act everywhere in the volume of the body. They are
denoted by the vector field B(X, t).

• Traction forces: This is the force measured per unit surface area acting on the Neumann
boundary of the body, ∂ΩN, and denoted by the vector field T(X, t).

• Displacement boundary conditions: These are displacement fields prescribed on the Dirichlet
boundary of the body, ∂ΩD.

It is assumed that ∂ΩN ∩ ∂ΩD = ∅ and ∂ΩN ∪ ∂ΩD = ∂Ω. These details are depicted in Figure ??.

30.1.2 The basic equation we need to solve

In order to determine the displacement of an elastic body subjected to these specified loads and
boundary conditions, we turn to a fundamental law called the balance of linear momentum. This is a
law which is valid for all materials and must hold for all time. CBC.Twist solves the Lagrangian
form of this equation, which is presented below in local form that is pertinent to numerical
implementation by the finite element method:

ρ
∂2u
∂t2 = Div(P) + B in Ω, (30.2)

where ρ is the reference density of the body, P is the first Piola–Kirchhoff stress tensor, Div(·) is the
divergence operator and B is the body force per unit volume. Along with (30.2), we have initial
conditions u(X, 0) = u0(X) and ∂u

∂t (X, 0) = v0(X) in Ω, and boundary conditions u(X, t) = g(X, t)
on ∂ΩD and P(X, t)N(X) = T(X, t) on ∂ΩN. Here, N(X) is the outward normal on the boundary
at the point X.

30.1. BRIEF OVERVIEW OF NONLINEAR ELASTICITY THEORY AS IT RELATES TO CBC.TWIST563

Figure 30.1: An elastic body ideal-
ized as a continuum, subjected to body
forces, B, surface tractions, T, and pre-
scribed displacement boundary condi-
tions.

][

][

We focus on the balance of linear momentum because, in a continuous sense, the other fundamental
balance principles that materials must obey—the balance of mass (continuity equation), balance
of angular momentum and balance of energy—are each trivially satisfied1 in the Lagrangian
description by elastic materials with suitably chosen stress responses.

30.1.3 Accounting for different materials

It is important to reiterate that (30.2) is valid for all materials. In order to differentiate between
different materials and to characterize their specific mechanical responses, the theory turns to
constitutive relationships, which are models for describing the real mechanical behavior of matter.
In the case of nonlinear elastic (or hyperelastic) materials, this description is usually posed in the
form of a stress-strain relationship through an objective and frame-indifferent Helmholtz free
energy function called the strain energy function, ψ. This is an energy defined per unit reference
volume and is solely a function of the local strain measure. Comprehensive texts on the subject
(e.g. Holzapfel [2000]) cover the motivations for defining different forms of strain measures, but
in this chapter we just provide the definitions of some of the most common forms. In what
follows, Grad(·) is the gradient operator, and Tr(·) and Det(·) are the trace and determinant of ·,
respectively.
In CBC.Twist, each of the forms listed in Table 30.1 have been implemented in the file kinematics.py
in UFL notation that closely resemble their definitions above. Figure 30.2 presents a section of this
file. Notice that it is straightforward to introduce other custom measures as required.

1It should be noted that the story is not so simple in the context of numerical approximations. For instance, when
modeling (nearly) incompressible materials, it is well known that the ill-conditioned stiffness matrix resulting from the
conventional Galerkin approximation (discretizing only the displacement field) can result in volumetric locking. One can
work around this difficulty by resorting to a mixed formulation of the Hu–Washizu type [Simo and Hughes, 1998], but
such a formulation is beyond the scope of the current chapter. CBC.Twist can be extended to such a formulation, but for
now, we circumvent the problem by restricting our attention to compressible materials.

564 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

Infinitesimal strain tensor ε = 1
2
(
Grad(u) + Grad(u)T)

Deformation gradient F = 1 + Grad(u)
Right Cauchy–Green tensor C = FTF

Green–Lagrange strain tensor E = 1
2 (C− 1)

Left Cauchy–Green tensor b = FFT

Euler–Almansi strain tensor e = 1
2

(
1− b−1

)

Volumetric and isochoric
decomposition of C C̄ = J−

2
3 C, J = Det(F)

Principal invariants of C I1 = Tr(C), I2 = 1
2

(
I2
1 − Tr(C2)

)
, I3 = Det(C)

Principal stretches and directions C = ∑3
A=1 λ2

ANA ⊗ NA, ||NA|| = 1

Table 30.1: Definitions of some common strain measures.

Python code
Deformation gradient
def DeformationGradient(u):

I = SecondOrderIdentity(u)
return variable(I + Grad(u))

Determinant of the deformation gradient
def Jacobian(u):

F = DeformationGradient(u)
return variable(det(F))

Right Cauchy-Green tensor
def RightCauchyGreen(u):

F = DeformationGradient(u)
return variable(F.T*F)

Green-Lagrange strain tensor
def GreenLagrangeStrain(u):

I = SecondOrderIdentity(u)
C = RightCauchyGreen(u)
return variable(0.5*(C - I))

Invariants of an arbitrary tensor, A
def Invariants(A):

I1 = tr(A)
I2 = 0.5*(tr(A)**2 - tr(A*A))
I3 = det(A)
return [I1, I2, I3]

Isochoric part of the deformation gradient
def IsochoricDeformationGradient(u):

F = DeformationGradient(u)
J = Jacobian(u)
return variable(J**(-1.0/3.0)*F)

Isochoric part of the right Cauchy-Green tensor
def IsochoricRightCauchyGreen(u):

C = RightCauchyGreen(u)
J = Jacobian(u)
return variable(J**(-2.0/3.0)*C)

Figure 30.2: Samples of how strain
measures are implemented in
CBC.Twist. Notice that the definitions
in the implementation closely resem-
ble the classical forms introduced in
Table 30.1.

30.1. BRIEF OVERVIEW OF NONLINEAR ELASTICITY THEORY AS IT RELATES TO CBC.TWIST565

Figure 30.3: Partial listing of the
method that suitably computes the
second Piola–Kirchhoff stress tensor
based on the chosen strain measure.

Python code
def SecondPiolaKirchhoffStress(self, u):

...

if kinematic_measure == "InfinitesimalStrain":
epsilon = self.epsilon
S = diff(psi, epsilon)

elif kinematic_measure == "RightCauchyGreen":
C = self.C
S = 2*diff(psi, C)

elif kinematic_measure == "GreenLagrangeStrain":
E = self.E
S = diff(psi, E)

elif kinematic_measure == "CauchyGreenInvariants":
I = self.I; C = self.C
I1 = self.I1; I2 = self.I2; I3 = self.I3
gamma1 = diff(psi, I1) + I1*diff(psi, I2)
gamma2 = -diff(psi, I2)
gamma3 = I3*diff(psi, I3)
S = 2*(gamma1*I + gamma2*C + gamma3*inv(C))

...
return S

The stress response of isotropic hyperelastic materials (the class of materials CBC.Twist restricts
its attention to) can be derived from the scalar-valued strain energy function. In particular, the
tensor known as the second Piola–Kirchhoff stress tensor is defined using the following constitutive
relationship:

S = F−1 ∂ψ(F)
∂F

. (30.3)

The second Piola–Kirchhoff stress tensor is related to the first Piola–Kirchhoff stress tensor intro-
duced earlier through the relation, P = FS.
As already mentioned, the strain energy function can be posed in equivalent forms in terms of
different strain measures. (Again, the interested reader is directed to classical texts to motivate
this.) In order to then arrive at the second Piola–Kirchhoff stress tensor, we turn to the chain rule
of differentiation. For example,

S = 2
∂ψ(C)

∂C
=

∂ψ(E)
∂E

= 2
[(

∂ψ(I1, I2, I3)

∂I1
+ I1

∂ψ(I1, I2, I3)

∂I2

)
1− ∂ψ(I1, I2, I3)

∂I2
C + I3

∂ψ(I1, I2, I3)

∂I3
C−1

]

=
3

∑
A=1

1
λA

∂ψ(λ1, λ2, λ3)

∂λA
NA ⊗ NA = . . .

(30.4)

Using definitions such as the ones explicitly provided in (30.4), CBC.Twist computes the second
Piola–Kirchhoff stress tensor from the strain energy function by suitably differentiating it with
respect to the appropriate strain measure. This allows the user to easily specify material models in
terms of each of the strain measures introduced in Table 30.1. The base class for all material models,
MaterialModel, encapsulates this functionality. The relevant method of this class is provided in
Figure ??. The implementation relies heavily on the UFL diff operator.
The generality of the material model base class allows for the (almost trivial) specification of a

566 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

Python code
class StVenantKirchhoff(MaterialModel)

def model_info(self):
self.num_parameters = 2
self.kinematic_measure = "GreenLagrangeStrain"

def strain_energy(self, parameters):
E = self.E
[mu, lmbda] = parameters
return lmbda/2*(tr(E)**2) + mu*tr(E*E)

Figure 30.4: Definition the strain
energy function for a St. Venant–
Kirchhoff material.

Python code
class MooneyRivlin(MaterialModel)

def model_info(self):
self.num_parameters = 2
self.kinematic_measure = "CauchyGreenInvariants"

def strain_energy(self, parameters):
I1 = self.I1
I2 = self.I2
[C1, C2] = parameters
return C1*(I1 - 3) + C2*(I2 - 3)

Figure 30.5: Definition the strain en-
ergy function for a two term Mooney–
Rivlin material.

large set of models. To see this in practice, let us consider two popular material models,

• the St. Venant–Kirchhoff model: ψSVK = λ
2 Tr(E)2 + µTr(E2), and

• the two term Mooney–Rivlin model: ψMR = c1(I1 − 3) + c2(I2 − 3),

and see how they can be specified in CBC.Twist. The relevant blocks of code are shown in Fig-
ures 30.4 and 30.5. Clearly, the code simply contains the strain energy function in classical notation,
along with some metadata clarifying the number of material parameters and the strain measure the
model relies on. The file material_models.py contains several other material models, including
linear elasticity, neo Hookean, Isihara, Biderman, and Gent–Thomas that come pre-implemented in
CBC.Twist. (Refer to the article by Marckmann and Verron [2006] comparing several hyperelastic
models for rubber-like materials for their definitions.) But the salient point to note here is that it is
straightforward to introduce other additional models, and this is a significant feature of CBC.Twist.

30.2 Numerical methods and further implementation details

In the preceding section, we saw the functionality that CBC.Twist provided to easily specify
material models to suitably characterize different materials of interest. In this section, we return
to the general form of the balance of linear momentum and look at details of a finite element
formulation and implementation for this equation. For further details on the treatment that follows,
the interested reader is directed to Simo and Hughes [1998].

30.2. NUMERICAL METHODS AND FURTHER IMPLEMENTATION DETAILS 567

30.2.1 The finite element formulation of the balance of linear momentum

By taking the dot product of (30.2) with a test function v ∈ V̂ and integrating over the reference
domain and time, we have

∫ T

0

∫

Ω
ρ

∂2u
∂t2 · v dx dt =

∫ T

0

∫

Ω
Div(P) · v dx dt +

∫ T

0

∫

Ω
B · v dx dt. (30.5)

Noting that the traction vector T = PN on ∂ΩN (N being the outward normal on the boundary)
and that by definition v|∂ΩD = 0, we apply the divergence theorem to arrive at the following weak
form of the balance of linear momentum:
Find u ∈ V, such that ∀ v ∈ V̂:

∫ T

0

∫

Ω
ρ

∂2u
∂t2 · v dx dt +

∫ T

0

∫

Ω
P : Grad(v)dx dt =

∫ T

0

∫

Ω
B · v dx dt +

∫ T

0

∫

∂ΩN

T · v ds dt, (30.6)

with initial conditions u(X, 0) = u0(X) and ∂u
∂t (X, 0) = v0(X) in Ω, and boundary conditions

u(X, t) = g(X, t) on ∂ΩD.
The finite element formulation implemented in CBC.Twist follows the Galerkin approximation of
the above weak form (30.6), by looking for solutions in a finite solution space Vh ⊂ V and allowing
for test functions in a finite approximation of the test space V̂h ⊂ V̂.2

30.2.2 Implementation of the static form

We consider first the static weak form (dropping the time derivative term) of the balance of linear
momentum which reads

∫

Ω
P : Grad(v)dx−

∫

Ω
B · v dx−

∫

∂ΩN

T · v ds = 0. (30.7)

Since CBC.Twist provides the necessary functionality to easily compute the first Piola–Kirchhoff
stress tensor, P, given a displacement field, u, for arbitrary material models, (30.7) is just a nonlinear
functional in terms of u. The automatic differentiation capabilities of UFL3 make this nonlinear
form straightforward to implement, as evidenced by the code listing in Figure 30.6.
This listing provides the relevant section of the static balance of linear momentum solver class,
StaticMomentumBalanceSolver. The class draws information about the problem (mesh, loading,

2We now note an inherent advantage in choosing the Lagrangian description in formulating the theory. The fact that the
integrals in (30.6), along with the various fields and differential operators, are defined over the fixed domain Ω means that
one need not be concerned with the complexity associated with calculations on a moving computational domain when
implementing this formulation.

3An earlier chapter on UFL (18) provides a detailed look at the capabilities of UFL, as well as insights into how it achieves
its functionality. Even so, we note the following differentiation capabilities of UFL because of their pivotal relevance to this
work:

• Computing spatial derivatives of fields, which allows for the construction of differential operators such as such as
Grad(·) or Div(·):
df_i = Dx(f, i)

• Differentiating arbitrary expressions with respect to variables they are functions of:
g = variable(cos(cell.x[0]))
f = exp(g**2)
h = diff(f, g)

• Differentiating forms with respect to coefficients of a discrete function, allowing for automatic linearizations of
nonlinear variational forms:
a = derivative(L, w, u)

568 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

Python code
Get the problem mesh
mesh = problem.mesh()

Define the function space
vector = VectorFunctionSpace(mesh, "CG", 1)

Test and trial functions
v = TestFunction(vector)
u = Function(vector)
du = TrialFunction(vector)

Get forces and boundary conditions
B = problem.body_force()
PN = problem.surface_traction()
bcu = problem.boundary_conditions()

First Piola-Kirchhoff stress tensor based on
the material model
P = problem.first_pk_stress(u)

The variational form corresponding to static
hyperelasticity
L = inner(P, Grad(v))*dx - inner(B, v)*dx - inner(PN,

v)*ds
a = derivative(L, u, du)

Setup and solve problem
equation = VariationalProblem(a, L, bcu,

nonlinear = True)
equation.solve(u)

Figure 30.6: The relevant section of the
class StaticMomentumBalanceSolver,
the solver for the static balance of lin-
ear momentum.

boundary conditions and form of the stress equation derived from the material model) from
the user-specified problem class,4 and solves the nonlinear momentum balance equation using a
Newton solver.

30.2.3 Time-stepping algorithms

CBC.Twist implements two time integration algorithms to solve the weak form of the fully dynamic
balance of linear momentum (30.6). The first of these is the so-called CG1 method [Eriksson et al.,
1996]. In order to derive this method, (30.6), which is a second order differential equation in time,
is rewritten as a system of first order equations. We do this by introducing an additional velocity
variable, w = ∂u

∂t . Thus, the weak form now reads:
Find (u, w) ∈ V, such that ∀ (v, r) ∈ V̂:

∫ T

0

∫

Ω
ρ

∂w
∂t
· v dx dt +

∫ T

0

∫

Ω
P : Grad(v)dx dt =

∫ T

0

∫

Ω
B · v dx dt +

∫ T

0

∫

∂ΩN

T · v ds dt, and

∫ T

0

∫

Ω

∂u
∂t
· r dx dt =

∫ T

0

∫

Ω
w · r dx dt.

(30.8)

4Details of how the user can specify problem details are covered in the following section containing examples of
CBC.Twist usage.

30.2. NUMERICAL METHODS AND FURTHER IMPLEMENTATION DETAILS 569

with initial conditions u(X, 0) = u0(X) and w(X, 0) = v0(X) in Ω, and boundary conditions
u(X, t) = g(X, t) on ∂ΩD.
We now assume that the finite element approximation space Vh is CG1 (continuous and piecewise
linear in time), and V̂h is DG0 (discontinuous and piecewise constant in time). With these
assumptions, we arrive at the following scheme:

∫

Ω
ρ
(wn+1 − wn)

∆t
· v dx +

∫

Ω
P(umid) : Grad(v)dx =

∫

Ω
B · v dx +

∫

∂ΩN

T · v ds, and

∫

Ω

(un+1 − un)

∆t
· r dx =

∫

Ω
wmid · r dx,

(30.9)

where (·)n and (·)n+1 are the values of a quantity at the current and subsequent time-step,
respectively, and (·)mid = (·)n+(·)n+1

2 . A section of the CG1 linear momentum balance solver class
is presented in Figure 30.7. The code closely mirrors the scheme defined in (30.9), and results in a
mixed system that is solved for using a Newton scheme.
The CG1 scheme defined in (30.9) is straightforward to derive and implement, and it is second
order accurate and energy conserving.5 But it should also be noted that the mixed system that
results from the formulation is computationally expensive and memory intensive as the number of
variables being solved for have doubled due to the introduction of the velocity variable.
CBC.Twist also provides a standard implementation of a finite difference time-stepping algorithm
that is commonly used in the computational mechanics community: the Hilber–Hughes–Taylor
(HHT) method [Hilber et al., 1977]. The stability and dissipative properties of this method in
the case of linear problems have been thoroughly discussed in Hughes [1987]. In particular, the
method contains three parameters α, β and γ which control the accuracy, stability and numerical
dissipation of the scheme. The default values for these parameters chosen in CBC.Twist (α = 1,
β = 1

4 and γ = 1
2) ensure that the method is second order accurate, stable for linear problems and

introduces no numerical dissipation.
The method is briefly sketched below. For further details about the scheme itself, or its implemen-
tation in CBC.Twist, the interested reader is directed to the previously mentioned papers, and the
MomentumBalanceSolver class in the file solution_algorithms.py.
Given initial conditions u(X, 0) = u0(X) and ∂u

∂t (X, 0) = v0(X), we can compute the initial
acceleration, a0, from the weak form:

∫

Ω
ρa0 · v dx +

∫

Ω
P(u0) : Grad(v)dx −

∫

Ω
B(X, 0) · v dx −

∫

∂ΩN

T(X, 0) · v ds = 0. (30.10)

This provides the complete initial state (u0, v0, a0) of the body. Now, given the solution at time step
n, the HHT formulae advance the solution to step n + 1 as follows. First, we note the following
definitions:

un+1 = un + ∆tvn + ∆t2
[(

1
2
− β

)
an + βan+1

]

vn+1 = vn + ∆t [(1− γ)an + γan+1]

un+α = (1− α)un + αun+1

vn+α = (1− α)vn + αvn+1

tn+α = (1− α)tn + αtn+1

(30.11)

5This is demonstrated in Figure 30.14 as part of the second example calculation.

570 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

Python code
class CG1MomentumBalanceSolver(CBCSolver):

Define function spaces
vector = VectorFunctionSpace(mesh, "CG", 1)
mixed_element = MixedFunctionSpace([vector,

vector])
V = TestFunction(mixed_element)
dU = TrialFunction(mixed_element)
U = Function(mixed_element)
U0 = Function(mixed_element)

Get initial conditions, boundary conditions
and body forces
...

Functions
v, r = split(V)
u, w = split(U)
u0, w0 = split(U0)

Evaluate displacements and velocities at
mid points
u_mid = 0.5*(u0 + u)
w_mid = 0.5*(w0 + w)

Get reference density
rho = problem.reference_density()

Piola-Kirchhoff stress tensor based on the
material model
P = problem.first_pk_stress(u_mid)

The variational form corresponding to
dynamic hyperelasticity
L = rho*inner(w - w0, v)*dx \

+ dt*inner(P, grad(v))*dx \
- dt*inner(B, v)*dx\
+ inner(u - u0, r)*dx \
- dt*inner(w_mid, r)*dx

Add contributions to the form from the
Neumann boundary conditions
...

a = derivative(L, U, dU)

Figure 30.7: Relevant portion of the
dynamic balance of linear momentum
solver using the CG1 time-stepping
scheme.

30.3. EXAMPLES OF CBC.TWIST USAGE 571

Inserting the definitions in (30.11) into the following form of the balance of linear momentum,
∫

Ω
ρan+1 · v dx +

∫

Ω
P(un+α) : Grad(v)dx −

∫

Ω
B(X, tn+α) · v dx −

∫

∂ΩN

T(X, tn+α) · v ds = 0,

(30.12)
we can solve for the for the only unknown variable, the acceleration at the next step, an+1. The
acceleration solution to (30.12) is then used in the definitions (30.11) to update to new displacement
and velocity values, and the problem is stepped through time.
We close this subsection on time-stepping algorithms with one usage detail pertaining to CBC.Twist.
By default, when solving a dynamics problem, CBC.Twist assumes that the user wants to use the
HHT method. In case one wants to override this behavior, they can do so by returning "CG(1)" in
the time_stepping method while specifying the problem. Figure 30.12 is an example showing this.

30.3 Examples of CBC.Twist usage

The algorithms discussed thus far serve primarily to explain the computational framework’s inner
working, and are not at the level at which the user usually interacts with CBC.Twist (unless they
are interested in extending it). In practice, the functionality of CBC.Twist is exposed to the user
through two primary problem definition classes: StaticHyperelasticity and Hyperelasticity.
These classes reside in problem_definitions.py, and contain numerous methods for defining
aspects of the nonlinear elasticity problem. As their names suggest, these are respectively used to
describe static or dynamic problems in nonlinear elasticity.
Over the course of the following examples, we will see how various problems can be defined in
CBC.Twist by suitably deriving from these problem classes and overloading relevant methods.6

We will also see some results from these calculations. The information defined in the problem
classes are internally transferred to the solvers described earlier to actually solve the problem.

30.3.1 The static twisting of a hyperelastic cube

The first problem we are interested in is the twisting of a unit hyperelastic cube (1 m3). The
cube is assumed to be made out of a St. Venant–Kirchhoff material with Lamé’s parameters
µ = 3.8461 N/m2 and a spatially varying λ = 5.8x1 + 5.7(1− x1) N/m2. Here, x1 is the first
coordinate of the reference position, X.7 In order to twist the cube, the face x1 = 0 is held fixed and
the opposite face x1 = 1 is rotated 60 degrees using the Dirichlet condition defined in Figure 30.10.
Before getting to the actual specification of the problem in code, we need to import CBC.Twist’s
functionality. The problem is completely specified by defining relevant methods in the user-
created class Twist (see Figure 30.10), which derives from the base class StaticHyperelasticity.
CBC.Twist only requires relevant methods to be provided, and for the current problem, this includes
those that define the computational domain, Dirichlet boundary conditions and material model.
The methods are fairly self-explanatory, but the following points are to be noted. Firstly, CBC.Twist
supports spatially-varying material parameters. Secondly, Dirichlet boundary conditions are posed
in two parts: the conditions themselves, and the corresponding boundaries along which they act.
In order to solve this problem, an instance of the Twist class is created and its solve method is
called (see Figure 30.11). This triggers a Newton solve which exhibits quadratic convergence (see
Table 30.2) and results in the displacement field shown in Figure 30.8.

6The examples presented in this chapter, along with a few others, reside in the demos/twist/ folder in CBC.Twist’s
source repository. They can be run by navigating to this folder and typing python demo_name.py on the command-line.

7The numerical parameters in this chapter have been arbitrarily chosen for illustration of the framework’s use. They do
not necessarily correspond to a real material.

572 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

Figure 30.8: A hyperelastic cube
twisted by 60 degrees.

Python code
from cbc.twist import *

Figure 30.9: CBC.Twist first needs to
be imported to access the functionality
that it offers.

Python code
class Twist(StaticHyperelasticity):

def mesh(self):
n = 8
return UnitCube(n, n, n)

def dirichlet_conditions(self):
clamp = Expression(("0.0", "0.0", "0.0"))
twist = Expression(("0.0",
"y0 + (x[1]-y0)*cos(theta) -

(x[2]-z0)*sin(theta) - x[1]",
"z0 + (x[1]-y0)*sin(theta) +

(x[2]-z0)*cos(theta) - x[2]"))
twist.y0 = 0.5
twist.z0 = 0.5
twist.theta = pi/3
return [clamp, twist]

def dirichlet_boundaries(self):
return ["x[0] == 0.0", "x[0] == 1.0"]

def material_model(self):
mu = 3.8461
lmbda = Expression("x[0]*5.8+(1-x[0])*5.7")

material = StVenantKirchhoff([mu, lmbda])
return material

def __str__(self):
return "A cube twisted by 60 degrees"

Figure 30.10: Problem definition: The
static twisting of a hyperelastic cube.

30.3. EXAMPLES OF CBC.TWIST USAGE 573

Figure 30.11: Solving the posed prob-
lem. Python code

twist = Twist()
u = twist.solve()

Iteration Relative Residual Norm
1 5.835e-01

2 1.535e-01

3 3.640e-02

4 1.004e-02

5 1.117e-03

6 1.996e-05

7 9.935e-09

8 3.844e-15

Table 30.2: Quadratic convergence of the Newton method used to solve the hyperelasticity problem. It is
interesting to note that this convergence is obtained even though the 60 degree twist condition was imposed
in a single step.

30.3.2 The dynamic release of a twisted cube

In this problem, we release a unit cube (1 m3) that has previously been twisted. The initial twist
was precomputed in a separate calculation involving a traction force on the top surface and the
resulting displacement field was stored in the file twisty.txt. The release calculation loads this
solution as the initial displacement. It fixes the cube (made of a St. Venant–Kirchhoff material with
Lamé’s parameters µ = 3.8461 N/m2 and λ = 5.76 N/m2) on the bottom surface, and tracks the
motion of the cube over 2 s.
The problem is specified in the user-created class Release, which derives from Hyperelasticity.
This example is similar to the previous one, except that since it is a dynamic calculation, it also
provides initial conditions, a reference density and information about time-stepping. Again, the
methods listed in Figure 30.12 are straightforward, and the only additional point to note is that
CBC.Twist provides some convenience utilities to simplify the specification of the problem. For
example, one can load initial conditions directly from files, and it allows for the specification of
boundaries purely as conditional strings.
When Release is instantiated and its solve method is called, we see the relaxation of the pre-
twisted cube. After initial unwinding of the twist, the body proceeds to twist in the opposite
direction due to inertia. This process repeats itself, and snapshots of the displacement over the first
0.5 s are shown in Figure ??. Figure 30.14 highlights the energy conservation of the CG1 numerical
scheme used to time-step this problem by totaling the kinetic energy and potential energy of
the body over the course of the calculation. CBC.Twist provides this information through the
methods kinetic_energy(v) and potential_energy(u), where v and u are the discrete velocity
and displacement fields respectively.

30.3.3 A hyperelastic dolphin tumbling through a “flow”

In this final example, we aim to crudely simulate the motion of a dolphin under a flow field.
The dolphin is assumed to be made out of a Mooney–Rivlin material (c1 = 6.169 N/m2, c2 =
10.15 N/m2), and the flow field is simply modeled by a uniform traction force T = (0.05, 0) N
acting everywhere on the surface of the dolphin, pushing it to the right.
This example is constructed to exhibit some additional features of CBC.Twist. For one, CBC.Twist

574 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

Python code
class Release(Hyperelasticity):

def mesh(self):
n = 8
return UnitCube(n, n, n)

def end_time(self):
return 2.0

def time_step(self):
return 2.e-3

def time_stepping(self):
return "CG(1)"

def reference_density(self):
return 1.0

def initial_conditions(self):
u0 = "twisty.txt"
v0 = Expression(("0.0", "0.0", "0.0"))
return u0, v0

def dirichlet_values(self):
return [(0, 0, 0)]

def dirichlet_boundaries(self):
return ["x[0] == 0.0"]

def material_model(self):
mu = 3.8461
lmbda = 5.76
material = StVenantKirchhoff([mu, lmbda])
return material

def __str__(self):
return "A pretwisted cube being released"

Figure 30.12: Problem definition: The
dynamic release of a twisted cube.

30.3. EXAMPLES OF CBC.TWIST USAGE 575

Figure 30.13: Relaxation and subse-
quent re-twisting of a released cube
over the first 0.5 s of the calculation.

(a) t = 0.0 s (b) t = 0.1 s (c) t = 0.2 s

(d) t = 0.3 s (e) t = 0.4 s (f) t = 0.5 s

Figure 30.14: Over the course of the
computation, the energy in the body
is converted between potential and ki-
netic energy, but the total remains con-
stant.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

En
er

gy
 (J

)

Time (s)

Kinetic Energy
Potential Energy

Total Energy

576 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

Python code
class FishyFlow(Hyperelasticity):

def mesh(self):
mesh = Mesh("dolphin.xml.gz")
return mesh

def end_time(self):
return 10.0

def time_step(self):
return 0.1

def neumann_conditions(self):
flow_push = Expression(("force", "0.0"))
flow_push.force = 0.05
return [flow_push]

def neumann_boundaries(self):
everywhere = "on_boundary"
return [everywhere]

def material_model(self):

material = MooneyRivlin([6.169, 10.15])
return material

Figure 30.15: Problem definition: A
hyperelastic dolphin being pushed to
the right.

Python code
problem = FishyFlow()

dt = problem.time_step()
T = problem.end_time()

t = dt
while t <= T:

problem.step(dt)
problem.update()
t = t + dt

Figure 30.16: Stepping through time
in an external time loop. step steps
the problem forward by one time step,
and update updates the values of all
time-dependent variables to the cur-
rent time.

is capable of performing dynamic calculations under entirely Neumann boundary conditions. In
addition, this calculation points out that the framework can seamlessly handle problems in two
dimensions as well.
The problem is specified in the user-created class FishyFlow derived from Hyperelasticity. There
is nothing new to note in the code listing for this problem (Figure 30.15), other than the fact that
we now specify Neumann boundary conditions. The specification listing is not very long because
CBC.Twist assumes meaningful default values for unspecified information.
To demonstrate one final piece of functionality of CBC.Twist, we don’t solve the problem in the
same manner as we did the first two examples; that is, we do not instantiate an object of class
FishyFlow and call its solve method. Instead, we set up our own time loop and manually step
through time using the step method. This is shown in Figure 30.16.
The advantage of solving the problem in this manner is that, now, one has more control over
calculations in CBC.Twist. For example, rather than just fixing a traction force on the surface of
the dolphin to mimic the effect of flow field, one can instead solve at each time step an actual
flow field and use it to correctly drive the solid mechanics. This functionality of CBC.Twist is

30.4. CONCLUSION 577

Figure 30.17: The motion of a hyper-
elastic dolphin being forced to the
right. Careful observation of the tail
fin shows deformation of the dolphin
in addition to its overall motion to-
ward the right.

(a) t = 0.0 s (b) t = 0.125 s (c) t = 0.250 s

(d) t = 0.375 s (e) t = 0.500 s (f) t = 0.625 s

(g) t = 0.750 s (h) t = 0.875 s (i) t = 1.000 s

used in a following chapter on adaptive methods for fluid–structure interaction (25). In that
work, the fluid–structure problem is solved using a staggered approach with the solid mechanics
equation being solved by CBC.Twist. An external time loop similar to the one in Figure 30.16 is
set up to individually step through the fluid problem, the solid problem and a mesh equation; a
process which is iterated until convergence is reached at each time step. This process involves
the systematic transfer of relevant information (such as fluid loading) from other problems to
CBC.Twist.
But returning to our current example, Figure ?? shows time snapshots of the motion of the dolphin
over the course of the computation. Notice that the fish deforms elastically as it tumbles toward
the right.

30.4 Conclusion

This chapter presented an overview of CBC.Twist, an automated computational framework for
nonlinear elasticity. Beginning with elements of classical nonlinear elasticity theory to motivate
its design, the discourse took a closer look at the algorithms underlying CBC.Twist’s implementa-

578 CHAPTER 30. A COMPUTATIONAL FRAMEWORK FOR NONLINEAR ELASTICITY

tion. The chapter concluded with some examples, offering a tutorial-like description of how the
framework can be used in practice to solve problems.
The discussion aimed to highlight a central feature of CBC.Twist: the ease with which different
material models can be defined and used. This feature makes CBC.Twist immediately applicable
to a number of real-world problems in engineering, especially those pertaining to polymer and
biological tissue mechanics.
CBC.Twist is a collaboratively developed open source project (released under the GNU GPL)
that is freely available from its source repository at https://launchpad.net/cbc.solve/. Its only
dependency is a working FEniCS installation. CBC.Twist is released with the goal that it will
allow users to easily solve problems in nonlinear elasticity as part of answering specific questions
through computational modeling. Everyone is encouraged to fetch and try it. Users are also
encouraged to modify the code to better suit their own purposes, and contribute changes that
they think are useful to the community. Along these lines, some possible ideas for extending the
framework include:

• Implementing other specific material models

• Allowing for bodies composed of multiple materials

• Support for (nearly) incompressible materials

• Support for anisotropic materials

• Support for viscoelastic materials

• Goal-oriented adaptivity

Contributions toward these (or other useful) extensions are welcome.

https://launchpad.net/cbc.solve/

31 Applications in solid mechanics
By Kristian B. Ølgaard and Garth N. Wells

Problems in solid mechanics constitute perhaps the largest field of application of finite element
methods. The vast majority of solid mechanics problems involve the standard momentum balance
equation, posed in a Lagrangian setting, with different models distinguished by the choice of
nonlinear or linearized kinematics, and the constitutive model for determining the stress. For
some common models, the constitutive relationships are rather complex. This chapter addresses a
number of canonical solid mechanics models in the context of automated modeling, and focuses
on some pertinent issues that arise due to the nature of the constitutive models. The solution
of equations with second-order time derivatives, which characterizes dynamic problems, is also
considered.

31.1 Background

We present in this chapter the solution of a collection of common solid mechanics problems
using automated code generation techniques. For users familiar with traditional development
techniques for solid mechanics problems, it is often not evident how the automation techniques
established with the FEniCS Project should be applied to solid mechanics problems. The traditional
development approach to solid mechanics problems, and traditional finite element codes, places
a strong emphasis on the implementation of constitutive models at the quadrature point level.
Automated methods, on the other hand, tend to stress more heavily the governing balance
equations. Widely used finite element codes for solid mechanics applications provide application
programming interfaces (APIs) for users to implement their own constitutive models. The interface
supplies kinematic and history data, and the user code computes the stress tensor, and when
required also the linearization of the stress. Users of such libraries will typically not be exposed to
code development other than via the constitutive model API.
The purpose of this chapter is to illustrate how problems of relevance in solid mechanics can be
solved using automation tools. We consider the common problems of linearized elasticity, plasticity,
hyperelasticity and elastic wave propagation. Topics that we address via these problems include
‘off-line’ computation of stress updates, linearization of problems with off-line stress updates,
automatic differentiation and time stepping for problems with second-order time derivatives. The
presentation starts with the relevant governing equations and some constitutive models, followed
by a summary of a commonly used time stepping method. We then address the important issue
of solution and linearization of problems in which the governing equation is expressed in terms
of the stress tensor (rather than explicitly in terms of the displacement field, or derivatives of the
displacement field), and the stress tensor is computed via a separate algorithm. These topics are
then followed by a number of examples that demonstrate implementation approaches. Finally, two

579

580 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

future extensions of the FEniCS framework that are particular interesting with respect to solid
mechanics problems are summarized.

This chapter does not set out to provide a comprehensive treatment of solid mechanics problems.
It addresses a number of the most frequently encountered issues when applying automated
techniques to solid mechanics problems. It should be clear from the considered examples how a
wider range of common solid mechanics problems can be tackled using automated modeling.

31.2 Governing equations

31.2.1 Preliminaries

We will consider problems posed on a polygonal domain Ω ⊂ Rd, where 1 ≤ d ≤ 3. The boundary
of Ω, denoted by ∂Ω, is decomposed into regions ΓD and ΓN such that ΓD ∪ ΓN = ∂Ω and
ΓD ∩ ΓN = ∅. The outward unit normal vector on ∂Ω is will be denoted by n. For time-dependent
problems, we will consider a time interval of interest I = (0, T] and let superimposed dots denote
time derivatives. We will use Ω to denote the current configuration of a solid body; that is, the
domain Ω depends on the displacement field. It is sometimes convenient to also define a reference
domain Ω0 ⊂ Rd that remains fixed. For convenience, we will consider cases in which Ω and Ω0
coincide at time t = 0. To indicate boundaries, outward unit normal vectors, and other quantities
relative to Ω0, the subscript ‘0’ will be used. When considering linearized kinematics, the domains
Ω and Ω0 are both fixed and coincide at all times t. A triangulation of the domain Ω will be
denoted by T , and a triangulation of the domain Ω0 will be denoted by T0. A finite element cell
will be denoted by T ∈ T .

The governing equations for the different models will be formulated in the common framework of:
find u ∈ V such that

F(u; w) = 0 ∀w ∈ V, (31.1)

where F : V ×V → R is linear in w and V is a suitable function space. If F is also linear in u, then
F can be expressed as

F(u; w) := a(u, w)− L(w), (31.2)

where a : V × V → R is linear in u and in w, and L : V → R is linear in w. For this case, the
problem can be cast in the canonical setting of: find u ∈ V such that

a(u, w) = L(w) ∀w ∈ V. (31.3)

For nonlinear problems, a Newton method is typically employed to solve (31.1). Linearizing F
about u = u0 leads to a bilinear form,

a(du, w) := DFdu (u0; w) =
dF (u0 + εdu; w)

dε

∣∣∣∣
ε=0

, (31.4)

and a linear form is given by:
L(w) := F(u0, w). (31.5)

Using the definitions of a and L in (31.4) and (31.5), respectively, a Newton step involves solving a
problem of the type in (31.3), followed by the correction u0 ← u0 − du. The process is repeated
until (31.1) is satisfied to within a specified tolerance.

31.2. GOVERNING EQUATIONS 581

31.2.2 Balance of momentum

The standard balance of linear momentum problem for the body Ω reads:

ρü−∇ · σ = b in Ω× I, (31.6)

u = g on ΓD × I, (31.7)

σn = h on ΓN × I, (31.8)

u (x, 0) = u0 in Ω, (31.9)

u̇(x, 0) = v0 in Ω, (31.10)

where ρ : Ω× I → R is the mass density, u : Ω× I → Rd is the displacement field, σ : Ω× I →
Rd ×Rd is the symmetric Cauchy stress tensor, b : Ω× I → Rd is a body force, g : Ω× I → Rd is a
prescribed boundary displacement, h : Ω× I → Rd is a prescribed boundary traction, u0 : Ω→ Rd

is the initial displacement and v0 : Ω→ Rd is the initial velocity. To complete the boundary value
problem, a constitutive model that relates σ to u is required.
To develop finite element models, it is necessary to cast the momentum balance equation in a
weak form by multiplying the balance equation (31.6) by a weight function w and integrating. It is
possible to formulate a space-time method by considering a weight function that depends on space
and time, and then integrating over Ω× I. However, it is far more common in solid mechanics
applications to consider a weight function that depends on spatial position only and to apply finite
difference methods to deal with time derivatives. Following this approach, at a time t ∈ I we
multiply (31.6) by a function w (w is assumed to satisfy w = 0 on ΓD) and integrate over Ω:

∫

Ω
ρü · w dx−

∫

Ω
(∇ · σ) · w dx−

∫

Ω
b · w dx = 0. (31.11)

Applying integration by parts, using the divergence theorem and inserting the boundary condition
(31.8), we obtain:

F :=
∫

Ω
ρü · w dx +

∫

Ω
σ : ∇w dx−

∫

ΓN

h · w ds−
∫

Ω
b · w dx = 0. (31.12)

In this section, the momentum balance equation has been presented on the current configuration Ω.
It can also be posed on the fixed reference domain Ω0 via a pull-back operation. For the particular
presentation that we will use in this chapter for geometrically nonlinear models details of the
pull-back will not be needed.

31.2.3 Potential energy minimization

An alternative approach to solving static problems (problems without an inertia term) is to consider
the minimization of potential energy. This approach leads to the same governing equation when
applied to a standard problem, but may be a preferable framework for problems that are naturally
posed in terms of stored energy densities and for which external forcing terms are conservative
(see Holzapfel [2000, p. 159] for an explanation of conservative loading), and for problems that
involve coupled physical phenomena that are best described energetically.
Consider a system for which the total potential energy Π associated with a body can be expressed
as

Π = Πint + Πext. (31.13)

582 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

We will consider an internal potential energy functional of the form

Πint =
∫

Ω0

Ψ0 (u) dx, (31.14)

where Ψ0 is the stored strain energy density, and an external potential energy functional of the
form

Πext = −
∫

Ω0

b0 · u dx−
∫

Γ0,N

h0 · u ds. (31.15)

It is the form of the stored energy density function Ψ0 that defines a particular constitutive model.
For later convenience, the potential energy terms have been presented on the reference domain Ω0.
A stable solution u to (31.13) minimizes the potential energy:

min
u∈V

Π, (31.16)

where V is a suitably defined function space. Minimization of Π corresponds to the directional
derivative of Π being zero for all possible variations of u. Therefore, minimization of Π corresponds
to solving (31.1) with

F(u; w) := DwΠ (u) =
dΠ (u + εw)

dε

∣∣∣∣
ε=0

. (31.17)

For suitable definitions of the stress tensor, it is straightforward to show that minimizing Π is
equivalent to solving the balance of momentum problem, for the static case.

31.3 Constitutive models

A constitutive model describes the relationship between stress and deformation. The stress can
be defined explicitly in terms of primal functions, it can be implicitly defined via stored energy
density functions, or it can be defined as the solution to a secondary problem. The constitutive
model can be either linear or nonlinear. In the following sections we present examples of these
cases in the form of linearized elasticity, plasticity and hyperelasticity. The expressions for the
stress or stored energy density presented in this section can be inserted into the balance equations
or the minimization framework in the preceding section to yield a governing equation.

31.3.1 Linearized elasticity

For linearized elasticity the stress tensor as a function of the strain tensor for an isotropic, homoge-
neous material is given by

σ = 2µε + λtr(ε)I, (31.18)

where ε =
(
∇u + (∇u)T

)
/2 is the strain tensor, µ and λ are the Lamé parameters, and I is

the second-order identity tensor. The relationship between the stress and the strain can also be
expressed as

σ = C : ε, (31.19)

where
Cijkl = µ

(
δikδjl + δilδjk

)
+ λδijδkl , (31.20)

and δij is the Kronecker-Delta.

31.3. CONSTITUTIVE MODELS 583

31.3.2 Flow theory of plasticity

We consider the standard flow theory model of plasticity, and present only the background
necessary to support the examples that we will present. In depth coverage can be found in many
textbooks, such as Lubliner [2008].

For a geometrically linear plasticity problem, the stress tensor is computed by

σ = C : εe, (31.21)

where εe is the elastic part of the strain tensor. It is assumed that the strain tensor can be
decomposed additively into elastic and plastic parts:

ε = εe + εp. (31.22)

If εe can be determined, then the stress can be computed.

The stress tensor in classical plasticity models must satisfy the yield criterion:

f (σ, εp, κ) := φ (σ, qkin (ε
p))− qiso (κ)− σy ≤ 0, (31.23)

where φ (σ, qkin (ε
p)) is a scalar effective stress measure, qkin is a stress-like internal variable used

to model kinematic hardening, qiso is a scalar stress-like term used to model isotropic hardening, κ
is a scalar internal variable and σy is the initial scalar yield stress. For the commonly adopted von
Mises model (also known as J2-flow) with linear isotropic hardening, φ and qiso read:

φ (σ) =

√
3
2

sijsij, (31.24)

qiso (κ) = Hκ, (31.25)

where sij = σij − σkkδij/3 is the deviatoric stress and the constant scalar H > 0 is a hardening
parameter.

In the flow theory of plasticity, the plastic strain rate is given by:

ε̇p = λ̇
∂g
∂σ

, (31.26)

where λ̇ is the rate of the plastic multiplier and the scalar g is known as the plastic potential. In
the case of associative plastic flow, g = f . The term λ̇ determines the magnitude of the plastic
strain rate, and the direction is given by ∂g/∂σ. For isotropic strain-hardening, it is usual to set

κ̇ =

√
2
3

ε̇
p
ij ε̇

p
ij, (31.27)

which for associative von Mises plasticity implies that κ̇ = λ̇.

A feature of the flow theory of plasticity is that the constitutive model is postulated in a rate form.
This requires the application algorithms to compute the stress from increments of the total strain.
A discussion of algorithmic aspects on how the stress tensor can be computed from the equations
presented in this section is postponed to Section 31.6.2.

584 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

31.3.3 Hyperelasticity

Hyperelastic models are characterized by the existence of a stored strain energy density function
Ψ0. The linearized model presented at the start of this section falls with the class of hyperelastic
models. Assuming linearized kinematics, the stored energy function

Ψ0 =
λ

2
(tr ε)2 + µε : ε, (31.28)

corresponds to the linearized model in (31.18). It is straightforward to show that using this
stored energy function in the potential energy minimization approach in (31.17) leads to the same
equation as inserting the stress from (31.18) into the weak momentum balance equation (31.12).

More generally, stored energy functions that correspond to nonlinear models can be defined. A
wide range of stored energy functions for hyperelastic models have been presented and analyzed
in the literature (see, for example, Bonet and Wood [1997] for a selection). In order to present
concrete examples, it is necessary to introduce some kinematics, and in particular strain measures.
The Green–Lagrange strain tensor E is defined in terms of the deformation gradient F : Ω0 × I →
Rd ×Rd, and right Cauchy–Green tensor C : Ω0 × I → Rd ×Rd:

F = I +∇u, (31.29)

C = FTF, (31.30)

E =
1
2
(C− I) , (31.31)

where I is the second-order identity tensor. Using E in (31.28) in place of the infinitesimal strain
tensor ε, we obtain the following expression for the strain energy density function:

Ψ0 =
λ

2
(tr E)2 + µE : E, (31.32)

which is known as the St. Venant–Kirchhoff model. Unlike the linearized case, this energy density
function is not linear in u (or spatial derivatives of u), which means that when minimizing the
total potential energy Π, the resulting equations are nonlinear. Another example of a hyperelastic
model is the compressible neo-Hookean model:

Ψ0 =
µ

2
(IC − 3)− µ ln J +

λ

2
(ln J)2, (31.33)

where IC = tr C and J = det F.

In most presentations of hyperelastic models, one would proceed from the definition of the stored
energy function to the derivation of a stress tensor, and then often to a linearization of the stress
for use in a Newton method. This process can be lengthy and tedious. For a range of models,
features of the Unified Form Language (UFL, Chapter 18) will permit problems to be posed as
energy minimization problems, and it will not be necessary to compute expression for a stress
tensor, or its linearization, explicitly. A particular model can then be posed in terms of a particular
expression for Ψ0. It is also possible to follow the momentum balance route, in which case UFL can
be used to compute the stress tensor and its linearization automatically from an expression for Ψ0.

31.4. TIME INTEGRATION 585

31.4 Time integration

In this chapter we focus on the Newmark family of methods, which are widely used in structural
dynamics. It is a direct integration method, in which the equations are evaluated at discrete points
in time separated by a time increment ∆t. Thus, the time step tn+1 is equal to tn + ∆t. While
this chapter addresses the Newmark scheme, it is straightforward to extend the approach (and
implementation) to generalized-α methods.
The Newmark relations between displacements, velocities and accelerations at tn and tn+1 read:

un+1 = un + ∆tu̇n +
1
2

∆t2 (2βün+1 + (1− 2β) ün+1) , (31.34)

u̇n+1 = u̇n + ∆t (γün+1 + (1− γ) ün) , (31.35)

where β and γ are parameters. Various well-known schemes are recovered for particular combina-
tions of β and γ. Setting β = 1/4 and γ = 1/2 leads to the trapezoidal scheme, and setting β = 0
and γ = 1/2 leads to a central difference scheme. For β > 0, re-arranging (31.34) and using (31.35)
leads to:

ün+1 =
1

β∆t2 (un+1 − un − ∆tu̇n)−
(

1
2β
− 1
)

ün, (31.36)

u̇n+1 =
γ

β∆t
(un+1 − un)−

(
γ

β
− 1
)

u̇n − ∆t
(

γ

2β
− 1
)

ün, (31.37)

in which un+1 is the only unknown term on the right-hand side.
To solve a time dependent problem, the governing equation can be posed at time tn+1,

F (un+1; w) = 0 ∀w ∈ V, (31.38)

with the expressions in (31.36) and (31.37) used for first and second time derivatives of u at
time tn+1.

31.5 Linearization issues for complex constitutive models

Solving problems with nonlinear constitutive models, such as plasticity, using Newton’s method
requires linearization of (31.12). There are two particular issues that deserve attention. The first
is that if the stress σ is computed via some algorithm, then proper linearization of F requires
linearization of the algorithm for computing the stress, and not linearization of the continuous
problem. This point is well known in computational plasticity, and has been extensively studied
[Simo and Taylor, 1985]. The second issue is that the stress field, and its linearization, will not
in general come from a finite element space. Hence, if all functions are assumed to be in a finite
element space, or are interpolated in a finite element space, sub-optimal convergence of a Newton
method will be observed.

31.5.1 Consistency of linearization

To illustrate the second issue raised in the preceding paragraph, we consider the representation
that the FEniCS Form Compiler (FFC, Chapter 12) would generate for a simple model problem,
and linearize this representation. We then consider how FFC would represent a linearization
of the original problem, which turns out not to be consistent with the linearization of the FFC
representation of the original problem.

586 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

Consider the following one-dimensional problem:

F (u; w) :=
∫

Ω
σw,x dx, (31.39)

where the scalar stress σ is a nonlinear function of the strain field u,x, and will be computed via
a separate algorithm outside of the main forms. We consider a continuous, piecewise quadratic
displacement field (and likewise for w), and a strain field that is computed via an L2-projection onto
the space of discontinuous, piecewise linear elements (for the considered spaces, this is equivalent
to a direct evaluation of the strain). We also represent the stress σ on the discontinuous, piecewise
linear basis. Since the polynomial degree of the integrand is two, (31.39) can be integrated using
two Gauss quadrature points on an element T ∈ T :

fT,i1 :=
2

∑
q=1

2

∑
α=1

ψT
α

(
xq
)

σαφT
i1,x
(
xq
)

Wq, (31.40)

where q is the integration point index, α is the degree of freedom index for the local basis of σ, ψT

and φT denotes the linear and quadratic basis functions on the element T, respectively, and Wq is
the quadrature weight at integration point xq. Note that σα is the stress at the element node α.

To apply a Newton method, the Jacobian (linearization) of (31.40) is required. This will be denoted
by A?

T,i. To achieve quadratic convergence of a Newton method, the linearization must be exact.
The Jacobian of (31.40) is:

A?
T,i :=

d fT,i1
dui2

, (31.41)

where ui2 are the displacement degrees of freedom. In (31.41), only σα depends on dui2 , and the
linearization of this terms reads:

dσα

dui2
=

dσα

dεα

dεα

dui2
= Dα

dεα

dui2
, (31.42)

where Dα is the tangent. To compute the values of the strain at nodes, εα, from the displacement
field, the derivative of the displacement field is evaluated at xα:

εα =
3

∑
i2=1

φT
i2,x (xα) ui2 . (31.43)

Inserting (31.42) and (31.43) into (31.41) yields:

A?
T,i =

2

∑
q=1

2

∑
α=1

ψT
α (xq)DαφT

i2,x(xα)φ
T
i1,x(xq)Wq. (31.44)

This is the exact linearization of (31.40).

We now consider linearization of (31.39), which leads to the bilinear form:

a(u, w) =
∫

Ω
Du,x w,x dx, (31.45)

where D = dσ/dε. If D is represented using a discontinuous, piecewise linear basis, and two
quadrature points are used to integrate the form (which is exact for this form), the resulting

31.5. LINEARIZATION ISSUES FOR COMPLEX CONSTITUTIVE MODELS 587

element matrix is:

AT,i =
2

∑
q=1

2

∑
α=1

ψT
α (xq)DαφT

i2,x(xq)φ
T
i1,x(xq)Wq. (31.46)

The above representation is what would be produced by FFC.
Equations (31.44) and (31.46) are not identical since xq 6= xα. As a consequence, the bilinear form
in (31.46) is not an exact linearization of (31.39), and a Newton method will therefore exhibit
sub-optimal convergence. In general, the illustrated problem arises when some coefficients in a
form are computed by a nonlinear operation elsewhere, and then interpolated and evaluated at a
point that differs from where the coefficients were computed. This situation is different from the
use of nonlinear operators in UFL, and compiled by FFC. An example of such an operator is the
ln J term in the neo-Hookean model (31.33) where J will be computed at quadrature points during
assembly after which the operator ln is applied to compute ln J.
The linearization issue highlighted in this section is further illustrated in the following section, as
too is a solution that involves the dentition of ‘quadrature elements’.

31.5.2 Quadrature elements

To introduce the concept of quadrature elements, we first present a model problem that will be
used in numerical examples. Given the finite element space

V =
{

w ∈ H1
0(Ω), w ∈ Pq(T) ∀ T ∈ T

}
, (31.47)

where Ω ⊂ R and q ≥ 1, the model problem of interest involves: given f ∈ V, find u ∈ V such
that

F :=
∫

Ω

(
1 + u2

)
u,xw,x dx−

∫

Ω
f w dx = 0 ∀w ∈ V. (31.48)

Solving this problem via Newton’s method involves solving a series of linear problems with

L (w) :=
∫

Ω

(
1 + u2

n

)
un,xwn,x dx−

∫

Ω
f w dx, (31.49)

a (dun+1, w) :=
∫

Ω

(
1 + u2

n

)
dun+1,xw,x dx +

∫

Ω
2unun,xdun+1w,x dx, (31.50)

with the update un ← un − dun+1. To draw an analogy with complex constitutive models, we
rephrase the above as:

L (w) :=
∫

Ω
σnw,x dx−

∫

Ω
f w dx, (31.51)

a (dun+1, w) :=
∫

Ω
Cndun+1,xw,x dx +

∫

Ω
2unun,xdun+1w,x dx, (31.52)

where σn =
(
1 + u2

n
)

un,x and Cn =
(
1 + u2

n
)
. The forms now resemble those for a plasticity

problem where, σ is the ‘stress’, C is the ‘tangent’ and u,x is the ‘strain’.
Similar to a plasticity problem, we wish to compute σ and C ‘off-line’, and to supply σ and C as
functions in a space Q to the forms used in the Newton solution process. To access un,x for use
off-line, an approach is to perform an L2-projection of the derivative of u onto a space Q. For the
example in question, we will also project 1 + u2 onto Q. A natural choice would be to make Q
one polynomial order less that V and discontinuous across cell facets. However, following this
approach leads to a convergence rate for a Newton solver that is less than the expected quadratic
rate. The reason for this is that the linearization that follows from this process is not consistent

588 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

with the problem being solved as explained in the previous section.
To resolve this issue within the context of UFL and FFC, the concept of quadrature elements has
been developed. This special type of element is used to represent ‘functions’ that can only be
evaluated at particular points (quadrature points), and cannot be differentiated. In the remainder
of this section we present some key features of the quadrature element and a demonstration of its
use for the model problem considered above. A quadrature element is declared in UFL by:

Python code
element = FiniteElement("Quadrature", tetrahedron, q)

where q is the polynomial degree that the underlying quadrature rule will be able to integrate
exactly. The declaration of a quadrature element is similar to the declaration of any other element
in UFL and it can be used as such, with some limitations. Note, however, the subtle difference that
the element order does not refer to the polynomial degree of the finite element shape functions,
but instead relates to the quadrature scheme. FFC uses a Gauss–Legendre–Jacobi quadrature
scheme mapped onto simplices for the numerical integration of variational forms. So for ‘sufficient’
integration of a second-order polynomial in three dimensions, FFC will use two quadrature points
in each spatial direction that is, 23 = 8 points per cell. FFC interprets the quadrature points of
the quadrature element as degrees of freedom where the value of a shape function for a degree
of freedom is equal to one at the quadrature point and zero otherwise. This has the implication
that a function that is defined on a quadrature element can only be evaluated at quadrature points.
Furthermore, it is not possible to take derivatives of functions defined on a quadrature element.
Before demonstrating the importance of quadrature elements when computing terms off-line, we
illustrate a simple usage of a quadrature element. Consider the bilinear form for a mass matrix
weighted by a coefficient f that is defined on a quadrature element:

a (u, w) =
∫

Ω
f uw dx. (31.53)

If the test and trial functions w and u come from a space of linear Lagrange functions, the
polynomial degree of their product is two. This means that the coefficient f should be defined as:

Python code
ElementQ = FiniteElement("Quadrature", tetrahedron, 2)

f = Coefficient(ElementQ)

to ensure appropriate integration of the form in (31.53). The reason for this is that the quadrature
element in the form dictates the quadrature scheme that FFC will use for the numerical integration
since the quadrature element, as described above, only have non-zero values at points that coincide
with the underlying quadrature scheme of the quadrature element. Thus, if the degree of ElementQ
is set to one, the form will be integrated using only one integration point, since one point is enough
to integrate a linear polynomial exactly, and as a result the form is under integrated. If quadratic
Lagrange elements are used for w and u, the polynomial degree of the integrand is four, therefore
the declaration for the coefficient f should be changed to:

Python code
ElementQ = FiniteElement("Quadrature", tetrahedron, 4)

f = Coefficient(ElementQ)

The DOLFIN code for solving the nonlinear model problem with a source term f = x2 − 4,
and Dirichlet boundary conditions u = 1 at x = 0, continuous quadratic elements for V, and
quadrature elements of degree two for Q is shown in Figure 31.1. The relative residual norm after

31.6. IMPLEMENTATION AND EXAMPLES 589

Iteration CG1/DG0 CG1/Q1 CG2/DG1 CG2/Q2
1 1.114e+00 1.101e+00 1.398e+00 1.388e+00

2 2.161e-01 2.319e-01 2.979e-01 2.691e-01

3 3.206e-03 3.908e-03 2.300e-02 6.119e-03

4 7.918e-07 7.843e-07 1.187e-03 1.490e-06

5 9.696e-14 3.662e-14 2.656e-05 1.242e-13

6 5.888e-07

7 1.317e-08

8 2.963e-10

Table 31.1: Computed relative residual norms after each iteration of the Newton solver for the nonlinear model
problem using different elements for V and Q. Quadratic convergence is observed when using quadrature
elements, and when using piecewise constant functions for Q, which coincides with a one-point quadrature
element. The presented results are computed using the code in Figure 31.1.

each iteration of the Newton solver for four different combinations of spaces V and Q is shown in
Table 31.1. Continuous, discontinuous and quadrature elements are denoted by CGq, DGq and
Qq respectively where q refers to the polynomial degree as discussed previously. It is clear from
the table that using quadratic elements for V requires the use of quadrature elements in order to
ensure quadratic convergence of the Newton solver.

31.6 Implementation and examples

We present in this section implementation examples that correspond to the afore presented models.
Where feasible, complete solvers are presented. When this is not feasible, relevant code extracts
are presented. Python examples are preferred due the compactness of the code extracts, however,
in the case of plasticity efficiency demands a C++ implementation. It is possible in the future
that an efficient Python interface for plasticity problems will be made available via just-in-time
compilation.
The examples are chosen to highlight some implementation aspects that are typical for solid
mechanics applications. In the code extracts, we do not provide commentary on generic aspects,
such as the creation of meshes, application of boundary conditions and the solution of linear
systems. For an explanation of such aspects in the code examples, we refer to Chapters 11 and 2.

31.6.1 Linearized elasticity

This example is particularly simple since the stress can be expressed as a straightforward function
of the displacement field, and the expression for the stress in (31.18) can be inserted directly
into (31.12). For the steady case (inertia terms are ignored), a complete solver for a linearized
elasticity problem is presented in Figure 31.2. The solver in Figure 31.2 is for a simulation on a
unit cube with a source term b = (1, 0, 0) and u = 0 on ∂Ω. A continuous, piecewise quadratic
finite element space is used. The expressiveness of the UFL input means that the expressions for
sigma and F in Figure 31.2 resemble closely the mathematical expressions used in the text for σ
and F. We have presented this problem in Figure 31.2 in terms of F to unify our presentation of
linear and nonlinear equations, and used the UFL functions lhs and rhs to automatically extract
the bilinear and linear forms, respectively, from F.

590 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

Python code
from dolfin import *

Sub domain for Dirichlet boundary condition
class DirichletBoundary(SubDomain):

def inside(self, x, on_boundary):
return abs(x[0] - 0.0) < DOLFIN_EPS and

on_boundary

Class for interfacing with the Newton solver
class NonlinearModelProblem(NonlinearProblem):

def __init__(self, a, L, u, C, S, Q, bc):
NonlinearProblem.__init__(self)
self.a, self.L = a, L
self.u, self.C, self.S, self.Q, self.bc = u, C,

S, Q, bc

def F(self, b, x):
assemble(self.L, tensor=b)
self.bc.apply(b, x)

def J(self, A, x):
assemble(self.a, tensor=A)
self.bc.apply(A)

def form(self, A, b, x):
C = project((1.0 + self.u**2), self.Q)
self.C.vector()[:] = C.vector()

S = project(Dx(self.u, 0), self.Q)
self.S.vector()[:] = S.vector()
self.S.vector()[:] =

self.S.vector()*self.C.vector()

Create mesh and define function spaces
mesh = UnitInterval(8)
V = FunctionSpace(mesh, "Lagrange", 2)
Q = FunctionSpace(mesh, "Q", 2)

Define boundary condition
bc = DirichletBC(V, Constant(1.0), DirichletBoundary())

Define source and functions
f = Expression("x[0]*x[0] - 4")
u, C, S = Function(V), Function(Q), Function(Q)

Define variational problems
w = TestFunction(V)
du = TrialFunction(V)
L = S*Dx(w, 0)*dx - f*w*dx
a = C*Dx(du, 0)*Dx(w, 0)*dx + 2*u*Dx(u, 0)*du*Dx(w,

0)*dx

Create nonlinear problem, solver and solve
problem = NonlinearModelProblem(a, L, u, C, S, Q, bc)
solver = NewtonSolver()
solver.solve(problem, u.vector())

Figure 31.1: DOLFIN implementa-
tion for the nonlinear model problem
in (31.48) with ‘off-line’ computation
of terms used in the variational forms.

31.6. IMPLEMENTATION AND EXAMPLES 591

Figure 31.2: DOLFIN Python solver for
a simple linearized elasticity problem
on a unit cube.

Python code
from dolfin import *

Create mesh
mesh = UnitCube(8, 8, 8)

Create function space
V = VectorFunctionSpace(mesh, "CG", 2)

Create test and trial functions, and source term
u, w = TrialFunction(V), TestFunction(V)
b = Constant((1.0, 0.0, 0.0))

Elasticity parameters
E, nu = 10.0, 0.3
mu, lmbda = E/(2.0*(1.0 + nu)), E*nu/((1.0 + nu)*(1.0 -

2.0*nu))

Stress
sigma = 2*mu*sym(grad(u)) +

lmbda*tr(grad(u))*Identity(w.cell().d)

Governing balance equation
F = inner(sigma, grad(w))*dx - dot(b, w)*dx

Extract bilinear and linear forms from F
a, L = lhs(F), rhs(F)

Dirichlet boundary condition on entire boundary
c = Constant((0.0, 0.0, 0.0))
bc = DirichletBC(V, c, DomainBoundary())

Set up PDE and solve
problem = VariationalProblem(a, L, bc)
problem.parameters["symmetric"] = True
u = problem.solve()

592 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

31.6.2 Plasticity

The computation of the stress tensor, and its linearization, for the model outlined in Section 31.3.2
in a displacement-driven finite element model is rather involved. A method of computing point-
wise a stress tensor that satisfies (31.23) from the strain, strain increment and history variables
is known as a ‘return mapping algorithm’. Return mapping strategies are discussed in detail in
Simo and Hughes [1998]. A widely used return mapping approach, the ‘closest-point projection’,
is summarized below for a plasticity model with linear isotropic hardening.

From (31.21) and (31.22) the stress at the end of a strain increment reads:

σn+1 = C : (εn+1 − ε
p
n+1). (31.54)

Therefore, given εn+1, it is necessary to determine the plastic strain ε
p
n+1 in order to compute the

stress. In a closest-point projection method the increment in plastic strain is computed from:

ε
p
n+1 − ε

p
n = ∆λ

∂g (σn+1)

∂σ
, (31.55)

where g is the plastic potential function and ∆λ = λn+1 − λn. Since ∂σg is evaluated at σn+1,
(31.54) and (31.55) constitute as system of coupled equations with unknowns ∆λ and σn+1. In
general, the system is nonlinear. To obtain a solution, Newton’s method is employed as follows,
with k denoting the iteration number. First, a ‘trial stress’ is computed:

σtrial = C : (εn+1 − ε
p
n). (31.56)

Subtracting (31.56) from (31.54) and inserting (31.55), the following equation is obtained:

Rn+1 := σn+1 − σtrial + ∆λC :
∂g (σn+1)

∂σ
= 0, (31.57)

where Rn+1 is the ‘stress residual’. During the Newton iterations this residual is driven towards
zero. If the trial stress in (31.56) leads to satisfaction of the yield criterion in (31.23), then σtrial is
the new stress and the Newton procedure is terminated. Otherwise, the Newton increment of ∆λ
is computed from:

dλk =
fk − Rk : Qk : ∂σ fk

∂σ fk : Ξk : ∂σgk + h
, (31.58)

where Q =
[
I + ∆λC : ∂2

σσg
]−1, Ξ = Q : C and h is a hardening parameter, which for the von

Mises model with linear hardening is equal to H (the constant hardening parameter). The stress
increment is computed from:

∆σk = [−dλkC : ∂σgk − Rk] : Qk, (31.59)

after which the increment of the plastic multiplier and the stresses for the next iteration can be
computed:

∆λk+1 = ∆λk + dλk, (31.60)

σk+1 = σk + ∆σk. (31.61)

The yield criterion is then evaluated again using the updated values, and the procedure continues
until the yield criterion is satisfied to within a prescribed tolerance. Note that to start the procedure

31.6. IMPLEMENTATION AND EXAMPLES 593

Figure 31.3: PlasticityModel public
interface defined by the plasticity li-
brary. Users are required to supply
implementations for at least the pure
virtual functions. These functions de-
scribe the plasticity model.

C++ code
class PlasticityModel
{
public:

/// Constructor
PlasticityModel(double E, double nu);

/// Return hardening parameter
virtual double hardening_parameter(double eps_eq)

const;

/// Equivalent plastic strain
virtual double kappa(double eps_eq, const arma::vec&

stress,
double lambda_dot) const;

/// Value of yield function f
virtual double f(const arma::vec& stress,

double equivalent_plastic_strain)
const = 0;

/// First derivative of f with respect to sigma
virtual void df(arma::vec& df_dsigma,

const arma::vec& stress) const = 0;

/// First derivative of g with respect to sigma
virtual void dg(arma::vec& dg_dsigma,

const arma::vec& stress) const;

/// Second derivative of g with respect to sigma
virtual void ddg(arma::mat& ddg_ddsigma,

const arma::vec& stress) const = 0;

};

∆λ0 = 0 and σ0 = σtrial. After convergence is achieved, the consistent tangent can be computed:

Ctan = Ξ− Ξ : ∂σg⊗ ∂σ f : Ξ
∂σ f : Ξ : ∂σg + h

, (31.62)

which is used when assembling the global Jacobian (stiffness matrix). The return mapping
algorithm is applied at all quadrature points.
The closest-point return mapping algorithm described above is common to a range of plasticity
models that are defined by the form of the functions f and g. The process can be generalized
for models with more complicated hardening behavior. To aid the implementation of different
models, a return mapping algorithm and support for quadrature point level history parameters
is provided by the FEniCS Plasticity library (https://launchpad.net/fenics-plasticity/). The
library adopts a polymorphic design, with the base class PlasticityModel providing an interface
for users to implement, and thereby supply functions for f , ∂σ f , ∂σg, and ∂σσg. Figure 31.3 shows
the PlasticityModel class public interface. Supplied with details of f (and possibly g), the library
can compute stress updates and linearizations using the closest-point projection method.
Computational efficiency is important in the return mapping algorithm as the stress and its
linearization are computed at all quadrature points at each global Newton iteration. Therefore,
it is necessary to execute the algorithm in C++ rather than in Python. For this reason, the

https://launchpad.net/fenics-plasticity/

594 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

Python code
element = VectorElement("Lagrange", tetrahedron, 2)
elementT = VectorElement("Quadrature", tetrahedron, 2,

36)
elementS = VectorElement("Quadrature", tetrahedron, 2,

6)

u, w = TrialFunction(element), TestFunction(element)
b, h = Coefficient(element), Coefficient(element)
t, s = Coefficient(elementT), Coefficient(elementS)

def eps(u):
return as_vector([u[i].dx(i) for i in range(3)] \

+ [u[i].dx(j) + u[j].dx(i) for i, j in [(0, 1), (0, 2),
(1, 2)]])

def sigma(s):
return as_matrix([[s[0], s[3], s[4]],

[s[3], s[1], s[5]],
[s[4], s[5], s[2]]])

def tangent(t):
return as_matrix([[t[i*6 + j] for j in range(6)] for

i in range(6)])

a = inner(dot(tangent(t), eps(u)), eps(w))*dx
L = inner(sigma(s), grad(w))*dx - dot(b, w)*dx - dot(h,

w)*ds

Figure 31.4: Definition of the linear
and bilinear variational forms for plas-
ticity expressed using UFL syntax.

FEniCS Plasticity library provides a C++ interface only at this stage. To reconcile ease and
efficiency, it would be possible to use just-in-time compilation for a Python implementation
of the PlasticityModel interface, just as DOLFIN presently does for the Expression class (see
Chapter 11).
We now outline a solver based on the FEniCS Plasticity library. Firstly, the UFL input for a
formulation in three dimensions using a continuous, piecewise quadratic basis is shown in
Figure 31.4. Note that the stress and the linearized tangent are supplied as coefficients to the form
as they are computed inside the plasticity library. Symmetry has been exploited to flatten the
stress and the tangent terms. Note also in Figure 31.4 that quadrature elements are used for the
coefficients s and t. Recall from Section 31.5 that when constitutive updates are computed outside
of the form file care must be taken to ensure quadratic convergence of a Newton method. By
using quadrature elements in Figure 31.4, it is possible to achieve quadratic convergence during a
Newton solve for plasticity problems.
The solver is implemented in C++, and Figure 31.5 shows an extract of the most relevant parts of
the solver in the context of plasticity. First, the necessary function spaces are created. V is used to
define the bilinear and linear forms and the displacement field u, while Vt and Vs are used for the
two coefficient spaces: the consistent tangent and the stress, which enter the bilinear and linear
forms of the plasticity problem. The forms defining the plasticity problem are then created and
the relevant functions are attached to the forms. Then the object defining the plasticity model
is created. The class VonMises is a sub-class of the PlasticityModel class shown in Figure 31.3
and it implements functions for f , ∂σ f and ∂σσg. It is constructed with values for the Young’s
modulus, Poisson’s ratio, yield stress and linear hardening parameter. This object can then be
passed to the constructor of the PlasticityProblem class along with the forms, displacement
field u, coefficient functions and boundary conditions. PlasticityProblem is a sub-class of the

31.6. IMPLEMENTATION AND EXAMPLES 595

DOLFIN class NonlinearProblem, which is described in Chapter 11. The PlasticityProblem class
handles the assembly over cells, loops over cell quadrature points, and variable updates. The
PlasticityProblem is solved by the NewtonSolver like any other NonlinearProblem object. After
each Newton solver the history variables are updated by calling the update_variables, function
before proceeding with the next solution increment.

31.6.3 Hyperelasticity

We present the construction of a solver for a hyperelastic problem that is phrased as a minimiza-
tion problem, following the minimization framework that was presented in Section 31.2.3. The
compressible neo-Hookean model in (31.33) is adopted. The automatic functional differentiation
features of UFL permit the solver code to resemble closely the abstract mathematical presentation.
Noteworthy in this approach is that it is not necessary to provide an explicit expression for the
stress tensor. Changing model is therefore as simple as redefining the stored energy density
function Ψ0.
A complete hyperelastic solver is presented in Figure 31.6. It corresponds to a problem posed on
a unit cube, and loaded by a body force b0 = (0,−0.5, 0), and restrained such that u = (0, 0, 0)
where x = 0. Elsewhere on the boundary the traction h0 = (0.1, 0, 0) is applied. Continuous,
piecewise linear functions for the displacement field are used. The code in Figure 31.6 adopts the
same notation used in Sections 31.2.3 and 31.3.3. The problem is posed on the reference domain,
and for convenience the subscripts ‘0’ have been dropped in the code.
The solver in Figure 31.6 solves the problem using one Newton step. For problems with stronger
nonlinearities, perhaps as a result of greater volumetric or surface forcing terms, it may be necessary
to apply a pseudo time-stepping approach and solve the problem in number of Newton increments,
or it may be necessary to apply a path following solution method.

31.6.4 Elastodynamics

We present now a linearized elastodynamics problem to illustrate the solution of time-dependent
problems. The example is based on the Newmark family of methods presented in Section 31.4. For
this example, we consider a viscoelastic model that is a minor extension of the elasticity model
in (31.18). For this model, the stress tensor is given by:

σ = 2µε + (λtr(ε) + ηtr(ε̇)) I, (31.63)

where the constant scalar η ≥ 0 is a viscosity parameter.
A simple, but complete, elastodynamics solver is presented in Figures 31.7 and 31.8. The solver
mirrors the notation used in Section 31.4, with expressions for the acceleration, velocity and
displacement at time tn (a0, v0, u0), and expressions for the acceleration and velocity at time tn+1
(a1, v1) in terms of the displacement at tn+1 (u1) and other fields at time tn. For simplicity, the
source term b = (0, 0, 0). The body is fixed such that u = (0, 0, 0) at x = 0 and the initial conditions
are u0 = v0 = (0, 0, 0). A traction h is applied at x = 1 and is increased linearly from zero to one
over the first five time steps. Therefore, no forces are acting on the body at t = 0 and the initial
acceleration is zero. Again, the UFL functions lhs and rhs have been used to extract the bilinear
and linear terms from the form. This is particularly convenient for time-dependent problems
since it allows the code implementation to be posed in the same format as is usually adopted
in the mathematical presentation, with the equation of interest posed in terms of fields at some
point between times tn and tn+1. The presented solver could be made more efficient by exploiting
linearity of the governing equation and thereby re-using the factorization of the system matrix.

596 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

C++ code
// Create mesh and define function spaces
UnitCube mesh(4, 4, 4);
Plasticity::FunctionSpace V(mesh);
Plasticity::BilinearForm::CoefficientSpace_t Vt(mesh);
Plasticity::LinearForm::CoefficientSpace_s Vs(mesh);

// Create forms and attach functions
Function tangent(Vt);
Plasticity::BilinearForm a(V, V);
a.t = tangent;

Function stress(Vs);
Plasticity::LinearForm L(V);
L.s = stress;

// Displacements
Function u(V);

// Young’s modulus and Poisson’s ratio
double E = 20000.0; double nu = 0.3;

// Slope of hardening (linear) and hardening parameter
double E_t(0.1*E);
double hardening_parameter = E_t/(1.0 - E_t/E);

// Yield stress
double yield_stress = 200.0;

// Object of class von Mises
fenicsplas::VonMises J2(E, nu, yield_stress,

hardening_parameter);

// Create PlasticityProblem
fenicsplas::PlasticityProblem nonlinear_problem(a, L,

u, tangent, stress, bcs, J2);

// Create nonlinear solver
NewtonSolver nonlinear_solver;

// Pseudo time stepping parameters
double t = 0.0; double dt = 0.005; double T = 0.02;

// Apply load in steps
while (t < T)
{
// Increment time and solve non-linear problem
t += dt;
nonlinear_solver.solve(nonlinear_problem, u.vector());

// Update variables for next load step
nonlinear_problem.update_variables();

}

Figure 31.5: Code extract for solving a
plasticity problem.

31.6. IMPLEMENTATION AND EXAMPLES 597

Figure 31.6: Complete DOLFIN solver
for the compressible neo-Hookean
model, formulated as a minimization
problem.

Python code
from dolfin import *

Optimization options for the form compiler
parameters["form_compiler"]["cpp_optimize"] = True

Create mesh and define function space
mesh = UnitCube(16, 16, 16)
V = VectorFunctionSpace(mesh, "Lagrange", 1)

def left(x):
return x[0] < DOLFIN_EPS

Define Dirichlet boundary (x = 0 or x = 1)
zero = Constant((0.0, 0.0, 0.0))
bc = DirichletBC(V, zero, left)

Define test and trial functions
du, w = TrialFunction(V), TestFunction(V)

Displacement from previous iteration
u = Function(V)
b = Constant((0.0, -0.5, 0.0)) # Body force per unit

mass
h = Constant((0.1, 0.0, 0.0)) # Traction force on

the boundary

Kinematics
I = Identity(V.cell().d) # Identity tensor
F = I + grad(u) # Deformation gradient
C = F.T*F # Right Cauchy-Green tensor

Invariants of deformation tensors
Ic, J = tr(C), det(F)

Elasticity parameters
E, nu = 10.0, 0.3
mu, lmbda = E/(2*(1 + nu)), E*nu/((1 + nu)*(1 - 2*nu))

Stored strain energy density (compressible
neo-Hookean model)

Psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2

Total potential energy
Pi = Psi*dx - dot(b, u)*dx - dot(h, u)*ds

Compute first variation of Pi (directional derivative
about u in the direction of v)

F = derivative(Pi, u, w)

Compute Jacobian of F
dF = derivative(F, u, du)

Create nonlinear variational problem and solve
problem = VariationalProblem(F, dF, bc)
problem.solve(u)

Save solution in VTK format
file = File("displacement.pvd");
file << u;

598 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

Python code
from dolfin import *

Form compiler options
parameters["form_compiler"]["cpp_optimize"] = True
parameters["form_compiler"]["optimize"] = True

External load
class Traction(Expression):

def __init__(self, end):
Expression.__init__(self)
self.t = 0.0
self.end = end

def eval(self, values, x):
values[0] = 0.0
values[1] = 0.0
if x[0] > 1.0 - DOLFIN_EPS:

values[0] = self.t/self.end if self.t <
self.end else 1.0

def value_shape(self):
return (2,)

def update(u, u0, v0, a0, beta, gamma, dt):
Get vectors (references)
u_vec, u0_vec = u.vector(), u0.vector()
v0_vec, a0_vec = v0.vector(), a0.vector()

Update acceleration and velocity
a_vec = (1.0/(2.0*beta))*((u_vec - u0_vec -

v0_vec*dt)/(0.5*dt*dt) - (1.0-2.0*beta)*a0_vec
)

v = dt * ((1-gamma)*a0 + gamma*a) + v0
v_vec = dt*((1.0-gamma)*a0_vec + gamma*a_vec) +

v0_vec

Update (t(n) <-- t(n+1))
v0.vector()[:], a0.vector()[:] = v_vec, a_vec
u0.vector()[:] = u.vector()

Load mesh and define function space
mesh = UnitSquare(32, 32)

Define function space
V = VectorFunctionSpace(mesh, "Lagrange", 1)

Test and trial functions
u1, w = TrialFunction(V), TestFunction(V)

E, nu = 10.0, 0.3
mu, lmbda = E/(2.0*(1.0 + nu)), E*nu/((1.0 + nu)*(1.0 -

2.0*nu))

Mass density and viscous damping coefficient
rho, eta = 1.0, 0.2

Time stepping parameters
beta, gamma = 0.25, 0.5
dt = 0.1
t, T = 0.0, 20*dt

Fields from previous time step (displacement,
velocity, acceleration)

u0, v0, a0 = Function(V), Function(V), Function(V)
h = Traction(T/4.0)

Figure 31.7: Python code for solving
for a dynamic problem using an im-
plicit Newmark scheme. Program con-
tinues in Figure 31.8.

31.6. IMPLEMENTATION AND EXAMPLES 599

Figure 31.8: Continuation of Python
code extract for solving for a dynamic
problem in Figure 31.8.

Python code
Velocity and acceleration at t_(n+1)
v1 = (gamma/(beta*dt))*(u1 - u0) - (gamma/beta -

1.0)*v0 - dt*(gamma/(2.0*beta) - 1.0)*a0
a1 = (1.0/(beta*dt**2))*(u1 - u0 - dt*v0) -

(1.0/(2.0*beta) - 1.0)*a0

Stress tensor
def sigma(u, v):

return 2.0*mu*sym(grad(u)) + (lmbda*tr(grad(u)) +
eta*tr(grad(v)))*Identity(u.cell().d)

Governing equation
F = (rho*dot(a1, w) + inner(sigma(u1, v1),

sym(grad(w))))*dx - dot(h, w)*ds

Extract bilinear and linear forms
a, L = lhs(F), rhs(F)

Set up boundary condition at left end
zero = Constant((0.0, 0.0))
def left(x):

return x[0] < DOLFIN_EPS
bc = DirichletBC(V, zero, left)

Set up PDE, advance in time and solve
problem = VariationalProblem(a, L, bcs=bc)
Save solution in VTK format
file = File("displacement.pvd")
while t <= T:

t += dt
h.t = t
u = problem.solve()
update(u, u0, v0, a0, beta, gamma, dt)
file << u

600 CHAPTER 31. APPLICATIONS IN SOLID MECHANICS

31.7 Future developments

In this chapter we have presented a range of solid mechanics problems in the context of automated
modeling. The implementation of the models was shown to be relatively straightforward due to
the high level of abstraction provided in the FEniCS framework. The presented cases cover a range
of typical solid mechanics problems that can currently be solved using FEniCS tools. To broaden
the range of problems that can be handled in the FEniCS framework the following two extensions
are of particular interest from a solid mechanics viewpoint:

Assembly of forms on manifolds Currently, it is assumed that two-dimensional elements, like
triangles, are embedded in R2 and three-dimensional elements, like tetrahedra, are embedded
in R3. An improvement would be to support two-dimensional elements embedded in R3 and
one-dimensional elements embedded in R2 or R3. This would, among other things, provide
support for shell and truss problems within the automated framework.

Isoparametric elements This issue relates to quadrilateral and hexahedral elements, which are
currently not supported, and to elements with higher order mappings that allow curved
mesh boundaries to be represented.

32 Modeling evolving discontinuities
By Mehdi Nikbakht and Garth N. Wells

We present a framework for solving partial differential equations with discontinuities in the
solution across evolving surfaces. The partition-of-unity/extended finite element approach is
adopted, and it is demonstrated that such methods can be used in combination with a form
compiler to generate equation-specific parts of a program. The automated generation of code
makes it straightforward to incorporate discontinuities in formulations involving multiple fields,
using both Lagrange and non-Lagrange basis functions. The approach is illustrated through some
salient code extracts.

32.1 Background

The numerical solution of differential equations with discontinuities is important in a range of
fields. A notable example is the propagation of cracks. Accounting for evolving discontinuities
across a priori unknown surfaces in simulations using the finite element method poses significant
challenges. Early attempts focused on mesh adaption to construct meshes that conformed to
the discontinuity surface. More recently, techniques have been developed that make it possible
to include discontinuous functions in a finite element basis, with the surface across which the
functions are discontinuous being independent of topology of the underlying mesh. These
techniques exploit the partition-of-unity property of a standard finite element basis, and are known
by a variety of names, including the extended finite element method, the partition of unity method
and the generalized finite element method. Discontinuous solutions can evolve during the solution
of an equation, without the finite element mesh being adapted to account for the discontinuity
explicitly.
We present in this chapter an automated framework for modeling evolving discontinuities which
is based on the extended finite element method. The extended finite element method is new
approach to model discontinuities independent of underlying mesh [Belytschko and Black, 1999,
Moës et al., 1999, Wells and Sluys, 2001]. An overview on the extended finite element method
and similar methods can be found in Babuška et al. [2003]. The Unified Form Language (UFL)
is used to express variational forms for problems with discontinuous solutions, and extensions
to the FEniCS Form Compiler (FFC) are developed for generating problem-dependent parts of
the computer code from UFL input. To assemble and solve complete problems, various tools are
built upon the library DOLFIN. With the developed framework, it is possible to use arbitrary
combinations of different finite element bases, and combinations of bases that may or may not be
discontinuous across a given surface. Our earlier effort in this direction demonstrated the viability
of the approach, but was limited in scope [Nikbakht and Wells, 2009]. Only continuous Lagrange
basis function functions were available, and only integration on cells was supported. Moreover, the

601

602 CHAPTER 32. MODELING EVOLVING DISCONTINUITIES

Γd

Ω

Hd = 0 Hd = 1

n

Figure 32.1: Domain Ω intersected by
a discontinuity surface Γd.

consistent abstractions and algorithms provided by UFL, such as automatic differentiation, were
not yet available. Less visible, the entire library has been re-written to permit far greater flexibility.
In the remainder of this chapter, we review briefly the extended finite element for modeling
discontinuities and formulate it in such a way that the computer input will resemble closely the
mathematical description. The software components used in the automated framework are then
discussed, as are aspects of the design, including interfaces. The approach is then illustrated
using code extracts for a range of examples. The complete computer codes for partition of unity
compiler and solver are available at https://launchpad.net/ffc-pum and https://launchpad.

net/dolfin-pum, respectively.

32.2 Partition-of-unity/extended finite element method

Consider a domain Ω ⊂ Rd, where 1 6 d 6 3, that contains the surface Γd across which the
function u : Ω\Γd → R is discontinuous (see Figure 32.1). To denote functions that are evaluated
at a surface, but by approaching the surface from opposite sides of the surface, the subscripts ‘+’
and ‘−’ will be used. The outward normal to ∂Ω and Γd will be denoted by n. The vector n is in
the direction of the ‘+’ side. If we wish to find a function u that satisfies the Poisson equation:

−∆u = f in Ω\Γd, (32.1)

u = 0 on ∂Ω, (32.2)

∇u+ · n = q on Γd, (32.3)

J∇uK · n = 0 on Γd, (32.4)

where f : Ω → R is a source term, q : Γd → R is the flux across discontinuity surface Γd and
JaK = a+ − a−. Assuming that the flux on the discontinuity surface is given by q = q(JuK), the
corresponding variational problem reads: find u ∈ H1

0 (Ω\Γd) such that
∫

Ω\Γd

∇u · ∇v dx +
∫

Γd

q(JuK) JvK ds =
∫

Ω
f v dx ∀ v ∈ H1

0 (Ω\Γd) . (32.5)

To compute approximate solutions to this problem, the task is to formulate a suitable Galerkin
finite element method that can accommodate the discontinuous nature of the solution.
Consider a decomposition of the function u according to

u = ū +Hû, (32.6)

https://launchpad.net/ffc-pum
https://launchpad.net/dolfin-pum
https://launchpad.net/dolfin-pum

32.2. PARTITION-OF-UNITY/EXTENDED FINITE ELEMENT METHOD 603

where ū : Ω → R and û : Ω → R are continuous functions, and H is the Heaviside function
centered at the surface across which u exhibits a jump. We use the terminology ‘continuous’ loosely
for now, and for simplicity we consider û to be defined everywhere in Ω. If Th is a triangulation of
the domain Ω, consider the finite element function spaces

V̄h =
{

v̄h ∈ H1
0(Ω) : v̄h ∈ Pk(T) ∀ T ∈ Th

}
, (32.7)

V̂h =
{

v̂h ∈ H1
0(Ω̂) : v̂h ∈ Pk(T) ∀ T ∈ T̂h

}
, (32.8)

where Ω̂ is the union of the supports of all finite element functions whose support is intersected by
the surface Γd, T̂h in the restriction of Th to Ω̂ and T is a finite element cell. A finite dimensional
analogue of the decomposition in (32.6) reads

uh = ūh +Hûh, (32.9)

where ūh ∈ V̄h and ûh ∈ V̂h (ûh = 0 for x /∈ Ω̂). Decomposing a test function vh in the same
manner, a Galerkin version of the variational problem in (32.5) reads: find (ūh, ûh) ∈ V̄h × V̂h such
that
∫

Ω
∇ūh · ∇v̄h dx +

∫

Ω̂+

∇ûh · ∇v̄h dx +
∫

Ω̂+

∇ (ūh + ûh) · ∇v̂h dx +
∫

Γd

q(ûh)v̂h ds

=
∫

Ω
f v̄h dx +

∫

Ω̂+

f v̂h dx ∀ (v̄h, v̂h) ∈ V̄h × V̂h, (32.10)

where Ω̂+ ⊂ Ω̂ is the portion of Ω̂ on which H = 1. When presenting finite element function
spaces with discontinuities in Section 32.5, the more compact notation of the form

V =
{

vh ∈ H1
0 (Ω\Γd) , vh|T ∈ Pk (T\Γd) ∀ T

}
(32.11)

will be used. The implementation of the discontinuous spaces expressed using the above notation
follows the approach described in this section.
In terms of finite element basis functions, equation (32.9) is expressed as follows:

uh =
n

∑
i

φ̄iūi +
m

∑
j
Hφ̂jûj, (32.12)

where φ̄i and φ̂j are the finite element basis functions associated with V̄h and V̂h, respectively, and
ūi and ûj are the regular and ‘enriched’ degrees of freedom, respectively. Note that the usual
interpolation property of finite element functions does not hold in the region of a discontinuity
surface. In practice m� n.
There are a number of issues that make the generation of computer code for the extended finite
element method more complex than for the conventional finite element method. A key point is that
integration schemes must be evaluated at runtime since it is necessary to perform quadrature on
both sides of discontinuity surface for intersected cells. Moreover, for problems in which flux-like
quantities are prescribed on discontinuity surfaces, it is necessary to integrate terms on the surface
Γd. Another issue is that the number of degrees of freedom associated with each element is not
constant and it depends on the location of the discontinuity surface, and in the case of an evolving
discontinuity, this changes during a simulation. The variable number of cell degrees of freedom
can make it difficult to generalize existing finite element solvers to support partition-of-unity

604 CHAPTER 32. MODELING EVOLVING DISCONTINUITIES

methods.
This section has demonstrated the use of a Heaviside enrichment via the extended finite element
method. It is possible to use other enrichment functions in combination with the extended finite
element method. Commonly, functions that span the near-tip solution in linear elastic fracture
mechanics are used. The scope of our work is limited to the Heaviside function.

32.3 Software components

In automating the generation of extended finite element models, we build upon three key com-
ponents from the FEniCS project. Firstly, the Unified Form Language (UFL, Chapter 18) is used
to express variational statements. Particular use is made of the concept of ‘enriched’ spaces and
the UFL concept of a ‘restriction’. The latter is the restriction of functions to a particular entity
sub-domain. To generate code for a finite element assembler (and additional helper functions), we
develop extensions of the FEniCS Form Compiler (FFC, Chapter 12) for generating UFC-compliant
code. Finally, re-usable tools for the implementation of extended finite element methods, including
an interface layer to transfer enriched degree of freedom data to the generated code, function
spaces and surface abstractions, are constructed upon DOLFIN (Chapter 11).

32.3.1 Form language

For the extended finite element method, it is necessary to define function spaces that are restricted
to subdomains, to define functions which are restricted on discontinuity surfaces, and to define
a measure for surfaces to facilitate integration on surfaces. UFL does not address these three
issues explicitly, but it does provide the necessary abstractions that can be used to communicate
representations of forms that involve discontinuous function spaces to a form compiler. We use
features of UFL, but rely also on a form compiler to interpret the UFL representation appropriately.
The UFL definition of a problem is therefore an incomplete definition, with the form compiler being
relied upon to interpret various abstractions correctly. Therefore, form compilers that support UFL
will not necessarily generate the required code.
We define a discontinuous function space by restricting (informally) a continuous function space by
a measure dc. Motivated by equation (32.6), we wish to locally enrich a continuous function space
with a space that contains a discontinuity. We do this by adding continuous and discontinuous
function spaces to create an ‘enriched’ space:

Python code
Ec = FiniteElement("Lagrange", "tetrahedron", 2)

Ed = RestrictedElement(Ec, dc)

E = Ec + Ed

In the above, Ec is a regular scalar Lagrange finite element on a tetrahedron of order two. Ed is the
restriction of the space Ec to the subdomain Ω̂, and it will contain a discontinuity. The geometry of
the surface across which functions are discontinuous will only be known at runtime, hence details
of the restriction can only be determined then. The expression E = Ec + Ed creates an enriched
finite element. A more classical context in which the enriched space concept in UFL is used is for
element-wise bubble functions. We note that construction of discontinuous UFL function spaces in
this manner is not unequivocal, but it is simple for the user. The exact details of how the spaces
are constructed does have a dependency on the implementation. We feel that this is a limited price
to pay in return for ease of use.
Once an enriched finite element is defined, functions can be defined on the enriched space. For
example, enriched trial and test functions and an enriched coefficient function are defined by:

32.3. SOFTWARE COMPONENTS 605

Python code
u = TrialFunction(E)

v = TestFunction(E)

f = Coefficient(E)

We can also restrict coefficients, test and trial functions defined on discontinuous space to the
positive or negative side of a discontinuity. The jump and average of the function value of v across
the surface is defined by:

Python code
jump(v) = v(’+’) - v(’-’)

avg(v) = [v(’+’) + v(’-’)]/2

respectively.
For the rest, variational forms can be expressed just as they are for conventional problems using
UFL. In addition to the usual UFL syntax, dc can be used to indicate integration of terms on a
discontinuity surface. A number of complete examples of UFL input are presented in Section 32.5.

32.3.2 FFC extensions

To generate low-level code for an assembly library, extensions to FFC have been developed for
performing tasks that are specific to the extended finite element method. Tasks that are specific to
the extended finite element method are:

• Evaluation of element tensors for cells on which enriched functions are active;

• Evaluation of enriched finite element functions that do not satisfy the interpolation property;
and

• Generation of DOLFIN wrapper classes to aid in the initialization of enriched function spaces
and data corresponding to the enriched degrees of freedom using discontinuity surfaces.

32.3.3 Assembler and solver

The component for the assembly and solution of the finite element equations is developed in C++
and builds on DOLFIN. It is the most complex of the necessary extensions. The main tasks of the
solver are:

• Management of data and tools related to the partition-of-unity method;

• Interaction with the code generated by the form compiler;

• Representation of surfaces;

• Extension of surfaces for evolving surface geometry; and

• Visualization of functions with discontinuities.

Some generic details of how these features are implemented are provided in the next section.

606 CHAPTER 32. MODELING EVOLVING DISCONTINUITIES

32.4 Design and implementation

32.4.1 Form compiler

A small number of Python modules have been developed that extend FFC for problems with
discontinuities. Features that a specific to the extensions are:

• Generation of intermediate representations for forms with discontinuous function spaces;

• ‘Expansion transformer’ to separate standard and enriched terms appearing in integrals if
any coefficient defined on a discontinuous space exists; and

• Functions to to handle enriched entries in element tensors.

The extended form compiler simply imports FFC modules for the bulk of the functionality.

32.4.2 Interface between the generated code and the solver

The code generated by the extended form compiler conforms to the UFC specification, hence an
assembly function that supports UFC can be used without modification. However, to evaluate
various objects, such as element tensors, the generated code must be aware of the discontinuity
surface. To support this within the framework of a UFC-compliant finite element assembler, the
necessary UFC objects are constructed with a GenericPUM object, and they store a reference to this
object. GenericPUM defines an abstract interface through which the generated code can retrieve
necessary data from the solver library. GenericPUM, together with the UFC specification, therefore
define the interface for interactions between generated code and the solver environment.
The member functions of GenericPUM provide four basic types of functionality. The first is degree of
freedom manipulation, and specifically management of the enriched degrees of freedom associated
with the partition-of-unity method. This includes the tabulation of enriched degrees of freedom
and the local dimension of a cell tensor, which can change during a simulation (such as as when a
discontinuity surface is extended). The second group includes member functions of GenericPUM
interface that tabulate enrichment functions at points (such as the Heaviside function for problems
that involve a discontinuity), which are needed when computing element tensors and when
interpolating functions at cell vertices. The GenericPUM interface also provides functions for
modified quadrature rules. This is essential when using non-polynomial enrichment functions, and
in particular discontinuous functions. For discontinuous functions, it is important that a sufficient
number of quadrature points are used on either side of a discontinuity surface. GenericPUM

provides a function that indicates when modified quadrature is required on a given cell or facet,
and it provides an interface for returning tailored quadrature schemes. Finally, the GenericPUM

interface introduces some member functions to update data related to the enriched degrees of
freedom when the discontinuity surfaces evolve.
The GenericPUM interface is abstract, hence the generated code is independent of various implemen-
tation details, such as the method by which a discontinuity surface is represented and quadrature
method on intersected cells.

32.4.3 Assembler and solver

The key classes that are developed upon DOLFIN are a concrete implementation of the GenericPUM

interface and the representation of surfaces. To decouple the representation of surfaces from other
implementation details, an abstract base class GenericSurface is defined. The GenericSurface

interface provides various functions for querying a surface object, such as whether a surface

32.5. EXAMPLES 607

intersects a cell. It also provides an interface for returning quadrature schemes on a surface,
as this is intimately related to details of the surface representation. The use of the base class
GenericSurface permits different surface representations to be used interchangeably with the
generated code. Surface representation is an active area of research in the context of the extended
finite element method (See [Jäger et al., 2008] for example), and the GenericSurface interface
permits a high degree of flexibility in this respect.
In addition to concrete implementations of GenericPUM and GenericSurface, a variety other
low-level functionality is implemented for performing various geometry operations, such as
sub-triangulation of finite element cells that are intersected by a surface.

32.5 Examples

Examples are presented in this section to demonstrate usage of framework. These examples
aim to illustrate the generality in terms modeling discontinuities in different equations using
different basis functions. Low-level code is generated from the compiler input by running from the
command-line:

Bash code
ffcpum -l dolfin foo.ufl

For each presented example the bilinear form a, the linear form L and a function space V are
defined. The complete finite element problem then involves: find uh ∈ V such that

a(uh, vh) = L(vh) ∀ vh ∈ V. (32.13)

For a nonlinear equation, the above is interpreted as the linearized problem that is solved within a
Newton iteration.

32.5.1 H1-conforming primal approach to the Poisson equation

As a canonical example, we present the Poisson equation in which the solution u is discontinuous
across the surface Γd and the flux across the surface q = k (u+ − u−), where k is a parameter. For a
conforming approach, the relevant function space is

V =
{

vh ∈ H1
0 (Ω\Γd) , vh|T ∈ Pk (T\Γd) ∀ T

}
(32.14)

and the bilinear and linear forms read

a (uh, vh) =
∫

Ω\Γd

∇uh · ∇vh dx +
∫

Γd

k JuhK JvhK ds, (32.15)

L (vh) =
∫

Ω
f vh dx, (32.16)

where f is a source term.
The form compiler input for this problem, in two dimensions, using linear Lagrange elements is
presented in Figure 32.2. The code generated by the form compiler is used as input for a C++ solver.
Discontinuity surfaces are defined in the solver environment. An extract of the C++ solver is shown
in Figure 32.3. The C++ code is designed to following the DOLFIN style of mirroring mathematical
abstractions and keeping the code compact. The code for the objects Poisson::FunctionSpace,
Poisson::BilinearForm and Poisson::LinearForm is problem specific and has been generated by

608 CHAPTER 32. MODELING EVOLVING DISCONTINUITIES

Python code
Define continuous and discontinuous spaces
elem_cont = FiniteElement("CG", triangle, 1)
elem_discont = RestrictedElement(elem_cont, dc)

Create enriched space
element = elem_cont + elem_discont

Create test and trail functions
v, u = TestFunction(element), TrialFunction(element)

Interface flux parameter and source term
k = Constant(triangle)
f = Coefficient(elem_cont)

Create linear and bilinear forms
a = inner(grad(u), grad(v))*dx + k*jump(u)*jump(v)*dc
L = f*v*dx

Figure 32.2: UFL input for the Pois-
son equation using a H1-conforming
method with a discontinuous solution
across a surface.

the form compiler, whereas the other elements appearing in Figure 32.3 are standard DOLFIN
objects, unless prefaced with the pum namespace. Note that the function space in the code extract
is initialized with surfaces, which is a container of GenericSurface objects. This is a convenience
wrapper for a UFC function space, with GenericPUM being created internally from the surfaces, and
then used to initialize the UFC objects. Note also the use of pum::Function, which is a subclass of
dolfin::Function and implements primarily restrictions of discontinuous coefficient functions for
use in forms, and interpolation of functions to cell vertices for use in post-processing.
A mesh with superimposed discontinuity surfaces and the computed solution contours for this
problem on a unit square domain containing two disjoint discontinuity surfaces are shown in
Figure 32.4. For this case, f = 1 and k = 1. Homogeneous Dirichlet boundary conditions are
applied along the bottom edge (y = 0). The remaining boundaries are flux-free. The impact of the
discontinuities on the computed solution contours can be seen clearly in Figure 32.4(b).

32.5.2 H(div)-conforming mixed approach to Poisson’s equation

FFC supports a range of H(div) and H(curl) elements that can be used in combination with other
finite element types [Rognes et al., 2009]. These elements can also be used within the context of the
extended finite element method. To demonstrate this, UFL input for solving the Poisson equation
with a discontinuity using the H(div)-conforming BDM element (see Brezzi et al. [1985a] and
Chapter 4) for the flux and L2-conforming Lagrange functions for the scalar field is presented. The
relevant function spaces for this problem read

Vh =
{

τh ∈ H (div, Ω\Γd) , τh|T ∈ (Pk (T\Γd))
d ∀ T

}
, (32.17)

Wh =
{

ωh ∈ L2 (Ω) , ωh|T ∈ Pk−1 (T\Γd) ∀ T
}

. (32.18)

For homogeneous Dirichlet boundary conditions, the bilinear and linear forms read:

a(σh; uh, τh; ωh) =
∫

Ω\Γd

σh · τh − uh(∇ · τh) + (∇ · σh)ωh dx, (32.19)

L(τh; ωh) =
∫

Ω
f ωh dx. (32.20)

32.5. EXAMPLES 609

Figure 32.3: C++ code extract for
solver of the Poisson problem with dis-
continuities in the solution. The nota-
tion resembles closely DOLFIN code
for conventional problems.

C++ code
#include <dolfin.h>
#include <PartitionOfUnity.h>
#include "Poisson.h"

. . .

int main()
{
// Create mesh
dolfin::UnitSquare mesh("mesh.xml.gz");
. . .

// Surface 0: A straight line (define by end points)
std::pair<Point, Point> end_points0(p0_0, p0_1);
pum::Surface d0(mesh, end_points0);

// Surface 1: A curved line (define by end points and
a level set function)

std::pair<Point, Point> end_points1(p1_0, p1_1);
const Shape1 shape1;
pum::Surface d1(mesh, end_points1, shape1);

// Add surfaces to an STL container
std::vector<const pum::GenericSurface*>

surfaces = boost::assign::list_of(d0)(d1);

// Create function space with discontinuities across
surfaces

Poisson::FunctionSpace V(mesh, surfaces);

// Create bilinear and linear Forms
Poisson::BilinearForm a(V, V);
a.k = k;
Poisson::LinearForm L(V);
L.f = f;

// Create a linear variational problem and solve
dolfin::VariationalProblem pde(a, L, bcs);
pum::Function u(V);
pde.solve(u);

// Save solution to file for visualisation
dolfin::File file("poisson.pvd");
file << u;

// Save surfaces to file
pum::VTKFile file_surface("surface.pvd");
std::pair<std::vector<const GenericSurface*>,

const dolfin::Mesh*> out_surfaces(surfaces,
&mesh);

file_surface << out_surfaces;
}

610 CHAPTER 32. MODELING EVOLVING DISCONTINUITIES

(a) (b)

Figure 32.4: Poisson problem in two
dimensions: (a) mesh and discontinu-
ity surfaces and (b) solution contours.

Unlike the H1-conforming Poisson example, this example implies that uh = 0 (weakly) on Γd since
the terms

∫
Γd

uh±τh± · n± ds, which arise from integration by parts, have been discarded. This
example therefore demonstrates how the extended finite element method can be used to apply
Dirichlet-type conditions that do not conform to the mesh for a mixed-method.
The form compiler input for this problem is presented in Figure 32.5. Note the distinction between
enriched and mixed elements. The usual BDM and piecewise-constant elements are ‘enriched’ to
incorporate a potential discontinuity (using the summation sign), and the enriched spaces are then
combined to create a mixed finite element (using the multiplication sign).

32.5.3 L2-conforming discontinuous Galerkin approach to linearized elasticity

FFC supports integration on interior facets, which makes it possible to generate code for discon-
tinuous Galerkin methods [Ølgaard et al., 2008]. For a discontinuous Galerkin interior penalty
formulation of linearized elasticity with a discontinuity in the solution across Γd, the relevant
function space reads

V =

{
vh ∈

(
L2 (Ω)

)d
, vh|T ∈ (Pk(T\Γd))

d ∀ T
}

. (32.21)

For homogeneous Dirichlet boundary conditions and traction-free discontinuity surfaces (q = 0),
the bilinear form reads:

a(uh, vh) =
∫

Ω\Γd

σ(uh) : ∇vh dx−
∫

Γ0

JuhK · 〈σ(vh)〉n+ ds−
∫

Γ0

〈σ(uh)〉n+ · JvhK ds

+
∫

Γ0

Eα

h
JuhK · JvhK ds−

∫

∂Ω
uh · σ(vh)n ds

−
∫

∂Ω
〈σ(uh)〉n · vh ds +

∫

∂Ω

Eα

h
uh · vh ds, (32.22)

and the linear form reads:
L(vh) =

∫

Ω
f · vh dx, (32.23)

32.5. EXAMPLES 611

Figure 32.5: Form compiler input for
the mixed Poisson problem with dis-
continuous u and σ.

Python code
Define continuous (cell-wise) spaces
BDM_c = FiniteElement("Brezzi-Douglas-Marini",

"triangle", 1)
DG_c = FiniteElement("Discontinuous Lagrange",

"triangle", 0)

Define discontinuous spaces
BDM_d, DG_d = RestrictedElement(BDM_c, dc),

RestrictedElement(DG_c, dc)

Create enriched spaces
BDM, DG = BDM_c + BDM_d, DG_c + DG_d

Create mixed element
mixed_element = BDM * DG

Trial and test functions
sigma, u = TrialFunctions(mixed_element)
tau, w = TestFunctions(mixed_element)

Source term
f = Coefficient(DG_c)

Bilinear form and linear forms
a = dot(sigma, tau)*dx - u*div(tau)*dx + div(sigma)*w*dx
L = f*w*dx

where σ(u) = µ(∇u + (∇u)T) + λtr(∇u)I is the stress tensor and µ and λ are Lamé parameters,
n+ is the unit outward normal to a cell facet from the ‘+’ side, Γ0 is the union of all interior cell
facets, 〈a〉 = (a+ + a−)/2 is the average operator on cell facets, JbK = b+ − b− is the jump operator
on cell facets, E is Young’s modulus, h is a measure of the cell size and α > 0 is a dimensionless
penalty parameter that is required for stability. The form compiler input for this problem is
presented in Figure 32.6. The necessary operators at cell facets are implemented as part of UFL.
Integration over interior and exterior facets is indicated by *dS and *ds, respectively.

32.5.4 Nonlinear Poisson-like equation

We now consider a nonlinear problem that is solved using Newton’s method. This example
demonstrates the application of the automatic differentiation feature of UFL for a problem involving
discontinuities. The Poisson-like equation

−∇ ·
(

1 + u2
)
∇u = f (32.24)

on the domain Ω, with u = 0 on ∂Ω and a flux-free discontinuity surfaces (q =
(
1 + u2)∇u · n = 0),

can be phrased in a variational format as: find uh ∈ V such that

F (uh; vh) ≡
∫

Ω

(
1 + u2

h

)
∇uh · ∇vh − f vh dx = 0 ∀ vh ∈ V, (32.25)

where V is the space defined in equation (32.14). The functional F is linear in vh but nonlinear
in uh. A nonlinear problem posed in this format can be solved using Newton’s method, in which
F is driven to zero by solving a series of linear systems until a prescribed tolerance is reached. The
functional F, evaluated at the most recent approximation of uh, serves as the ‘linear form’ (linear in

612 CHAPTER 32. MODELING EVOLVING DISCONTINUITIES

Python code
Define continuous and discontinuous spaces
elem_cont = VectorElement("DG", triangle, 2)
elem_discont = RestrictedElement(elem_cont, dc)
element = elem_cont + elem_discont

Create test and trial functions
v, u = TestFunction(element), TrialFunction(element)

Compute material properties
E, nu = 200000.0, 0.3
mu, lmbda = E / (2*(1 + nu)), E*nu / ((1 + nu) * (1 -

2*nu))

Facet normal component, cell size and source term
n, h = element.cell().n, element.cell().circumradius
f = Coefficient(elem_cont)

Penalty parameters
alpha = 4.0

Stress
def sigma(v):

return 2.0*mu*sym(grad(v)) \
+ lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

Bilinear form and linear forms
a = inner(sigma(u), grad(v))*dx \
- inner(jump(u), avg(sigma(v))*n(’+’))*dS \
- inner(avg(sigma(u))*n(’+’), jump(v))*dS \
+ (E*alpha/avg(h))*inner(jump(u), jump(v))*dS \
- inner(u, sigma(v)*n)*ds \
-inner(sigma(u)*n, v)*ds \
+ (E*alpha/h)*inner(u, v)*ds

L = inner(f, v)*dx

Figure 32.6: UFL representation of the
discontinuous Galerkin formulation of
linear elasticity equation with discon-
tinuous u across Γd.

32.6. SUMMARY 613

Figure 32.7: Form compiler input
for the nonlinear Poisson-like equa-
tion. The bilinear form (Jacobian) fol-
lows from differentiation of the linear
form L.

Python code
Define continuous and discontinuous spaces
elem_cont = FiniteElement("Lagrange", "triangle", 2)
elem_discont = RestrictedElement(elem_cont, dc)
element = elem_cont + elem_discont

Create test and trial functions
v, du = TestFunction(element), TrialFunction(element)

Latest solution and source term
u, f = Coefficient(element), Coefficient(elem_cont)

Bilinear form and Linear form
L = (1.0 + u**2)*inner(grad(u), grad(v))*dx - f*v*dx
a = derivative(L, u, du)

vh) and the Jacobian of F, evaluated at the most recent approximation of uh, serves as the bilinear
form (it is linear in vh and duh, where duh is the correction to the solution which is computed by
the Newton solver). Formally, the Jacobian is given by

a (uh; duh, vh) =
dF (uh + εduh; vh)

dε

∣∣∣∣
ε=0

. (32.26)

Input to the form compiler will mirror this notation.
This example is relatively simple and the computation of the Jacobian by hand is not onerous.
However, for complicated nonlinear equations, the derivation of an analytical expression for the
Jacobian can be lengthy and error prone (which is compounded by the extra complexity of the
extended finite element method). For this task, exact automatic differentiation is particularly
attractive. Firstly, it eliminates a source of errors. Secondly, it means that if details of the equation
of interest are changed, then there is not need to re-evaluate the Jacobian by hand. UFL provides
functionality for automatic differentiation, and the directional derivative feature can be used to
compute Jacobian from a functional, with the Jacobian filling the role of the bilinear form in the
linearized system.
The UFL input for the problem in equation (32.25) is shown in Figure 32.7, where we have chosen
to use quadratic Lagrange functions.
The trial function in this case is the iterative correction duh, and the most recent approximation
of uh is provided as a coefficient function to the forms. Following from equation (32.26), the UFL
input the bilinear form (Jacobian) reads:

Python code
a = derivative(L, u, du)

As with the other problems that we have presented, the generated code for the linear and bilinear
forms can be used in a DOLFIN-based solver. An extract of the DOLFIN/C++ code for solving
this nonlinear problem is presented in Figure 32.8.

32.6 Summary

It has been demonstrated that code for the extended finite element method can be generated
through a form compiler. UFL provides the necessary functionality to describe abstractly variational
problems, and when paired with a suitable form compiler computer code can be generated with

614 CHAPTER 32. MODELING EVOLVING DISCONTINUITIES

C++ code
// Create function space
NonlinearPoisson::FunctionSpace V(mesh, surfaces);

// Solution function
pum::Function u(V);

// Create linear form
NonlinearPoisson::LinearForm F(V);
F.u = u; F.f = f;

// Create jacobian dF = F’ (for use in nonlinear
solver).

NonlinearPoisson::BilinearForm dF(V, V);
dF.u = u;

// Create and solve nonlinear variational problem
dolfin::VariationalProblem problem(F, dF, bc);
problem.solve(u);

// Save solution in VTK format
dolfin::File file("nonlinear_poisson.pvd");
file << u;

Figure 32.8: C++ code extract for the
nonlinear Poisson-like equation.

the same ease as for conventional finite element problems. Automating aspects of the extended
finite element method poses a number of challenges that do not feature in the conventional finite
element method, such as adaptive quadrature on cells intersected by a discontinuity surface and a
variable numbers of degrees of freedom at cells that are under the influence of a discontinuity. By
automating the generation of large parts of the computer code, models that employ a variety of
different finite element basis functions, some with and others without discontinuous enrichment,
can be easily and rapidly developed. Moreover, the generated code and details of the adopted
approach, such as the surface representation and modified quadrature on intersected cells, can be
decoupled via suitably abstract class interfaces. This permits different implementation details to
be used without impacting on other aspects of the solver.

33 Automatic calibration of depositional models
By Hans Joachim Schroll

A novel concept for calibrating depositional models is presented. In this approach transport
coefficients are determined from well output measurements. Finite element implementation of
the multi-lithology models and their duals is automated by the FEniCS project DOLFIN using a
Python interface.

33.1 Issues in sedimentary deposition

Evidence indicates that millions of years of pressure cooking transforms the remains of living
organisms into crude oil and natural gas. This process takes place in sealed reservoirs, so-called
structural and/or stratigraphic traps in the reservoir rock. To identify potential new reservoirs, it is
of great interest to understand the geological evolution of depositional basins in the Earth’s crust.
Different types of forward computer models are used by sedimentologists and geomorphologists
to simulate the process of sedimentary deposition over geological time periods. The models can be
used to predict the presence of reservoir rocks and stratigraphic traps at a variety of scales. State-
of-the-art advanced numerical software, like for example DIONISOS by Beicip-Franlab, provides
accurate approximations to the mathematical model, which commonly is expressed in terms of
a nonlinear diffusion dominated PDE system. The potential of today’s simulation software in
industrial applications is limited however, due to major uncertainties in crucial material parameters
that combine a number of physical phenomena and therefore are difficult to quantify. Examples of
such parameters are diffusive transport coefficients.
The idea in this contribution is to calibrate uncertain transport coefficients to direct observable
data, like well measurements from a specific basin. In this approach the forward evolution process,
mapping data to observations, is reversed to determine the data; that is, transport coefficients.
Mathematical tools and numerical algorithms are applied to automatically calibrate geological
models to actual observations — a critical but so far missing link in forward depositional modeling.
Automatic calibration, in combination with stochastic modeling, will boost the applicability and
impact of modern numerical simulations in industrial applications.

33.2 A multidimensional sedimentation model

Submarine sedimentation is an evolution process. By flow into the basin, sediments build up and
evolve in time. In dual lithology models, two types of sediments are considered: sand and mud.
The evolution follows geophysical laws, expressed as diffusive PDE models. The following system

615

616 CHAPTER 33. AUTOMATIC CALIBRATION OF DEPOSITIONAL MODELS

is a multidimensional version of the model by Rivenæs [1992, 1993]:

(
A s
−A 1− s

)(
s
h

)

t
= ∇ ·

(
αs∇h
β(1− s)∇h

)
in [0, T]× B. (33.1)

Here h denotes the thickness of a layer of deposit and s models the volume fraction for the
sand lithology. Consequently, 1− s is the fraction for mud. The system is driven by fluxes anti
proportional to the flow rates s∇h and (1− s)∇h resulting in a diffusive, but incomplete parabolic,
PDE system. The domain of the basin is denoted by B. Parameters in the model are: The transport
layer thickness A and the diffusive transport coefficients α, β.
For a forward in time simulation, the system requires initial and boundary data. At initial time,
the volume fraction s and the layer thickness h need to be specified. According to geologists, such
data can be reconstructed by some kind of “back stripping”. Along the boundary of the basin, the
flow rates s∇h and (1− s)∇h are given.

33.3 An inverse approach

The parameter-to-observation mapping R : (α, β) 7→ (s, h) is commonly referred to as the forward
problem. In a basin, direct observations are only available at wells. Moreover, from the age of the
sediments, their history can be reconstructed. Finally, well-data is available in certain well areas
W ⊂ B and backward in time.
The objective of the present investigation is to determine transport coefficients from observed
well-data and in that way, to calibrate the model to the data. This essentially means to invert the
parameter-to-observation mapping. Denoting observed well-data by (s̃, h̃), the goal is to minimize
the output functional

J(α, β) =
1
|W|

∫ T

0

∫

W
(s̃− s)2 + (h̃− h)2 dx dt (33.2)

with respect to the transport coefficients α and β.
In contrast to the “direct inversion” as described by Imhof and Sharma [2007], which is considered
impractical, we do not propose to invert the time evolution of the diffusive depositional process.
We actually use the forward-in-time evolution of sediment layers in a number of wells to calibrate
transport coefficients. Via the calibrated model we can simulate the basin and reconstruct its
historic evolution. By computational mathematical modeling, the local data observed in wells
determines the evolution throughout the entire basin.

33.4 The Landweber algorithm

In a slightly more abstract setting, the task is to minimize an objective functional J which implicitly
depends on the parameters p via u subject to the constraint that u satisfies some PDE model; a PDE
constrained minimization problem: Find p such that J(p) = J(u(p)) = min and PDE(u, p) = 0.
Landweber’s steepest decent algorithm [Landweber, 1951] iterates the following sequence until
convergence:
While ‖∇p J(pk)‖ > TOL:

1. Solve PDE(uk, pk) = 0 for uk.

2. Evaluate dk = −∇p J(pk)/‖∇p J(pk)‖.

33.5. EVALUATION OF GRADIENTS BY DUALITY ARGUMENTS 617

3. Update pk+1 = pk + ∆pkdk.

Note that the search direction dk, the negative gradient, is the direction of steepest decent. To avoid
scale dependence, the search direction is normed.
The increment ∆pk is determined by a one dimensional line search algorithm. As J(p) is only
implicitly defined via the solution of the PDE, a locally quadratic approximation to J is minimized
along the line pk + γdk. We use the Ansatz

J(pk + γdk) = aγ2 + bγ + c, γ ∈ R. (33.3)

The extreme value of this parabola is located at

γe = − b
2a

. (33.4)

To determine γe, the parabola is fitted to the local data. For example, b is given by the gradient

Jγ(pk) = b = ∇p J(pk) · dk = −‖∇p J(pk)‖. (33.5)

To find a, another γ-derivative of J along the line pk + γdk is needed. To avoid an extra evaluation
of the gradient, we project pk−1 − pk = −∆pk−1dk−1 onto dk. The scalar projection is

γ̄ = −∆pk−1dk−1 · dk. (33.6)

Next, we approximate Jγ in the projected point pk − γ̄dk by the directional derivative evaluated in
the previous iterate

Jγ(pk − γ̄dk) ≈ ∇p J(pk−1) · dk. (33.7)

Note that this approximation is exact if two successive directions dk−1 and dk are in line. From the
Ansatz (33.3) and the approximation (33.7), it follows that

−2aγ̄ + b = ∇p J(pk−1) · dk. (33.8)

Using (33.5) and (33.6), we find

−2a =
(∇p J(pk−1)−∇p J(pk)) · dk

−∆pk−1dk−1 · dk . (33.9)

Thus, the increment (33.4) evaluates as

∆pk = γe =
∇p J(pk) · ∇p J(pk−1)

∇p J(pk) · ∇p J(pk−1)− ‖∇p J(pk)‖2

‖∇p J(pk)‖
‖∇p J(pk−1)‖ · ∆pk−1. (33.10)

33.5 Evaluation of gradients by duality arguments

Every single step of Landweber’s algorithm requires the simulation of a time dependent, nonlinear
PDE system and the evaluation of the gradient of the objective functional. The most common
approach to numerical derivatives, via finite differences, is impractical for complex problems: Finite
difference approximation would require to perform n + 1 forward simulations in n parameter
dimensions. Using duality arguments however, n nonlinear PDE systems can be replaced by one
linear, dual problem. After all, J is evaluated by one forward simulation of the nonlinear PDE

618 CHAPTER 33. AUTOMATIC CALIBRATION OF DEPOSITIONAL MODELS

model and the complete gradient ∇J is obtained by one (backward) simulation of the linear, dual
problem. Apparently, one of the first references to this kind of duality arguments is Chavent and
Lemmonier [1974].
The concept is conveniently explained for a scalar diffusion equation

ut = ∇ · (α∇u). (33.11)

As transport coefficients may vary throughout the basin, we allow for a piecewise constant
coefficient

α =

{
α1 x ∈ B1

α2 x ∈ B2
, B = B1 ∪ B2. (33.12)

Assuming no flow along the boundary and selecting a suitable function space, the equation in
variational form reads

a(u, φ) :=
∫ T

0

∫

B
utφ + α∇u · ∇φ dx dt = 0, (33.13)

where φ is a test function. Taking a derivative ∂/∂αi, i = 1, 2 under the integral sign, we find

a(uαi , φ) =
∫ T

0

∫

B
uαi ,tφ + α∇uαi · ∇φ dx dt = −

∫ T

0

∫

Bi

∇u · ∇φ dx dt. (33.14)

The corresponding derivative of the output functional J = 1
|W|
∫ T

0

∫
W(u− d)2 dx dt reads

Jαi =
2
|W|

∫ T

0

∫

W
(u− d)uαi dx dt, i = 1, 2. (33.15)

The trick is to define a dual problem

a(φ, ω) =
2
|W|

∫ T

0

∫

W
(u− d)φ dx dt (33.16)

such that a(uαi , ω) = Jαi and by using the dual solution ω in (33.14)

a(uαi , ω) = Jαi = −
∫ T

0

∫

Bi

∇u · ∇ω dx dt, i = 1, 2. (33.17)

In effect, the desired gradient ∇J is expressed in terms of primal and dual solutions. In this case
the dual problem reads

∫ T

0

∫

B
φtω + α∇φ · ∇ω dx dt =

2
|W|

∫ T

0

∫

W
(u− d)φ dx dt, (33.18)

which in strong form appears as a backward in time heat equation with zero terminal condition

−ωt = ∇ · (α∇ω) +
2
|W| (u− d)|W . (33.19)

Note that this dual equation is linear and entirely driven by the data mismatch in the well. With
perfectly matching data d = u|W , the dual solution is zero.
Along the same lines of argumentation one derives the multilinear operator to the depositional

33.6. ASPECTS OF THE IMPLEMENTATION 619

model (33.1)

a(u, v)(φ, ψ) =
∫ T

0

∫

B
(Aut + uht + svt) φ + αu∇h · ∇φ + αs∇v · ∇φ dx dt

+
∫ T

0

∫

B
(−Aut − uht(1− s)vt)ψ− βu∇h · ∇ψ + β(1− s)∇v · ∇ψ dx dt. (33.20)

The dual system related to the well output functional (33.2) reads

a(φ, ψ)(ω, ν) =
2
|W|

∫ T

0

∫

W
(s− s̃)φ + (h− h̃)ψ dx dt. (33.21)

By construction it follows a(sp, hp)(ω, ν) = Jp(α, β). Given both primal and dual solutions, the
gradient of the well output functional evaluates as

Jαi (α, β) = −
∫ T

0

∫

Bi

s∇h · ∇ω dx dt, (33.22)

Jβi (α, β) = −
∫ T

0

∫

Bi

(1− s)∇h · ∇ν dx dt. (33.23)

A detailed derivation including non zero flow conditions is given in Schroll [2008]. For complete-
ness, not for computation(!), we state the dual system in strong form

− A(ω− ν)t + ht(ω− ν) + α∇h · ∇ω = β∇h · ∇ν +
2
|W| (s− s̃)

∣∣∣∣
W

, (33.24)

− (sω + (1− s)ν)t = ∇ · (αs∇ω + β(1− s)∇ν) +
2
|W| (h− h̃)

∣∣∣∣
W

. (33.25)

Obviously the system is linear and driven by the data mismatch at the well. It always comes with
zero terminal condition and no flow conditions along the boundary of the basin. Thus, perfectly
matching data results in a trivial dual solution.

33.6 Aspects of the implementation

The FEniCS project DOLFIN [Logg and Wells, 2010] automates the solution of PDEs in variational
formulation and is therefore especially attractive for implementing dual problems, which are
derived in variational form. In this section the coding of the dual diffusion equation (33.18) is
illustrated. Choosing a test function φ supported in [tn, tn+1]× B, the weak form reads

−
∫ tn+1

tn

∫

B
ωtφ + α∇ω · ∇φ dx dt =

2
|W|

∫ tn+1

tn

∫

W
(u− d)φ dx dt. (33.26)

Using dG(0) time integration with a trapezoidal quadrature rule applied to the right hand side
gives

−
∫

B
(ωn+1 −ωn)φ dx +

∆t
2

∫

B
α∇(ωn+1 + ωn) · ∇φ dx

=
∆t
|W|

∫

W
(un+1 − dn+1 + un − dn)φ dx, n = N, N − 1, . . . , 0. (33.27)

620 CHAPTER 33. AUTOMATIC CALIBRATION OF DEPOSITIONAL MODELS

To evaluate the right hand side, the area of the well is defined as a subdomain:

Python code
class WellDomain(SubDomain):

def inside(self, x, on_boundary):

return bool((0.2 <= x[0] and x[0] <= 0.3 and \

0.2 <= x[1] and x[1] <= 0.3))

Next, it gets marked:

Python code
well = WellDomain()

subdomains = MeshFunction("uint", mesh, mesh.topology().dim())

well.mark(subdomains, 1)

An integral over the well area is defined:

Python code
dxWell = dx(1)

The area of the well is computed:

Python code
wellarea = assemble(Constant(1.0)*dx1, cell_domains=subdomains, mesh=mesh)

The driving source in (33.27) is written as:

Python code
f = dt*(u1-d1+u0-d0)*phi*dxWell/wellarea

The first line in (33.27) is stated in variational formulation:

Python code
F = (u_trial-u)*phi*dx \

+ 0.5*dt*(d*dot(grad(u_trial+u), grad(phi)))*dx

Let DOLFIN sort out left- and right-hand sides:

Python code
a = lhs(F); L = rhs(F)

Construct the variational problem:

Python code
problem = VariationalProblem(a, L+f)

And solve it:

Python code
u = problem.solve()

33.7 Numerical experiments

With these preparations, we are now ready to inspect the well output functional (33.2) for possible
calibration of the dual lithology model (33.1) to “observed”, actually generated synthetic, data. We

33.7. NUMERICAL EXPERIMENTS 621

Figure 33.1: Evolution of h, initial left,
t = 0.04 right.

consider the PDE system (33.1) with discontinuous coefficients

α =

{
α1 x ≥ 1/2

α2 x < 1/2
, β =

{
β1 x ≥ 1/2

β2 x < 1/2
(33.28)

in the unit square B = [0, 1]2. Four wells W = W1 ∪W2 ∪W3 ∪W4 are placed one in each quarter

W4 = [0.2, 0.3]× [0.7, 0.8], W3 = [0.7, 0.8]× [0.7, 0.8], (33.29)

W1 = [0.2, 0.3]× [0.2, 0.3], W2 = [0.7, 0.8]× [0.2, 0.3]. (33.30)

Initially, s is constant s(0, ·) = 0.5 and h is piecewise linear

h(0, x, y) = 0.5 max(max(0.2, (x− 0.1)/2), y− 0.55). (33.31)

The diffusive character of the process is evident from the evolution of h as shown in Figure 33.1.
No flow boundary conditions are implemented in all simulations throughout this section.
To inspect the output functional, we generate synthetic data by computing a reference solution.
In the first experiment, the reference parameters are (α1, α2) = (β1, β2) = (0.8, 0.8). We fix β to
the reference values and scan the well output over the α-range [0.0, 1.5]2. The upper left plot in
Figure 33.2 depicts contours of the apparently convex functional, with the reference parameters as
the global minimum. Independent Landweber iterations, started in each corner of the domain,
identify the optimal parameters in typically five steps. The iteration is stopped if ‖∇J(pk)‖ ≤ 10−7,
an indication that the minimum is reached. In all figures below, a green dot marks the optimal,
calibrated parameters. The lower left plot shows the corresponding scan over β where α = (0.8, 0.8)
is fixed. Obviously the search directions follow the steepest decent, confirming that the gradients
are correctly evaluated via the dual solution. In the right column of Figure 33.2 we see results for

622 CHAPTER 33. AUTOMATIC CALIBRATION OF DEPOSITIONAL MODELS

the same experiments, but with 5% random noise added to the synthetic well data. In this case the
optimal parameters are of course not the reference parameters, but still close. The global picture
appears stable with respect to noise, suggesting that the concept allows to calibrate diffusive,
depositional models to data observed in wells.
Ultimately, the goal is to calibrate all four parameters α = (α1, α2) and β = (β1, β2) to available
data. Figure 33.3 depicts Landweber iterations in four dimensional parameter space, started at
α = (1.4, 0.2) and β = (0.2, 1.4). Actually, projections onto the α and β coordinate plane are shown.
Obviously, both iterations converge and, without noise added, the reference parameters, α = β =
(0.8, 0.8), are detected as optimal parameters. Adding 5% random noise to the recorded data, we
simulate data observed in wells. In this situation, see the right column, the algorithm identifies
optimal parameters, which are clearly off the reference. Figure 33.5 depicts fifty realizations of this
experiments. The distribution of the optimal parameters is shown together with their average in red.
The left graph in Figure 33.5 corresponds to the reference parameters (α1, α2) = (β1, β2) = (0.8, 0.8)
as in Figure 33.3. On average, the calibrated, optimal parameters are ᾱ = (0.860606, 0.800396) and
β̄ = (0.729657, 0.827728) with standard deviations (0.184708, 0.127719) and (0.176439, 0.12411).
In the next experiments, non-uniform reference parameters are set for α = (0.6, 1.0) and β =
(1.0, 0.6). Figure ?? shows iterations with the noise-free reference solution used as data on the
left-hand side. Within the precision of the stopping criterion, the reference parameters are detected.
Adding 5% noise to the well data leads to different optimal parameters, just as expected. On
average however, the optimal parameters obtained in repeated calibrations ᾱ = (0.676051, 1.03604)
and β̄ = (0.902532, 0.602344) match the reference parameters quite well, see Figure 33.5, right-
hand side. The standard deviations in this case are (0.18374, 0.0886383) and (0.166801, 0.0750035),
respectively.
In the last experiment, α is discontinuous along x = 1/2, while β is discontinuous along y = 1/2:

α =

{
1.0 x ≥ 1/2

0.6 x < 1/2
, β =

{
0.6 y ≥ 1/2

1.0 y < 1/2
(33.32)

In this way the evolution is governed by different diffusion parameters in each quarter of the basin.
Having placed one well in each quarter, one can effectively calibrate the model to synthetic data
with and without random noise, as shown in Figure 33.6.

33.8 Results and conclusion

The calibration of piecewise constant diffusion coefficients using local data in a small number
of wells is a well behaved inverse problem. The convexity of the output functional, which is the
basis for a successful minimization, remains stable with random noise added to the well data. The
Landweber algorithm, with duality based gradients, automatically detects optimal parameters. As
the dual problems are derived in variational form, the FEniCS project DOLFIN is the ideal tool for
efficient implementation.

Acknowledgements

The author wants to thank Are Magnus Bruaset for initiating this work. Many thanks to Bjørn
Fredrik Nielsen for thoughtful suggestions regarding inverse problems as well as Anders Logg
and Ola Skavhaug for their support regarding the DOLFIN software.
The presented work was funded by a research grant from Statoil. The work has been conducted at
Simula Research Laboratory as part of CBC, a Center of Excellence awarded by the Norwegian
Research Council.

33.8. RESULTS AND CONCLUSION 623

Figure 33.2: Contours of J and
Landweber iterations. Optimal pa-
rameters (green), reference parameters
(red). Clean data left column, noisy
data right. α-iterations upper row, β-
iterations lower row.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
a1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

a
2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
a1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

a
2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b
2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b
2

624 CHAPTER 33. AUTOMATIC CALIBRATION OF DEPOSITIONAL MODELS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a1, b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
2
,
b
2

alpha
beta

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a1, b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
2
,
b
2

alpha
beta

Figure 33.3: Landweber iterations. Op-
timal parameters (green), reference pa-
rameters (red). Clean (left) and noisy
data (right).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a1, b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
2
,
b
2

alpha
beta

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a1, b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
2
,
b
2

alpha
beta

Figure 33.4: Landweber iterations. Op-
timal parameters (green), reference pa-
rameters (red). Clean (left) and noisy
data (right).

33.8. RESULTS AND CONCLUSION 625

Figure 33.5: Sets of optimal parame-
ters calibrated to noisy data, α blue, β
yellow, average red.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a1, b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
2
,
b
2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a1, b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
2
,
b
2

Figure 33.6: Landweber iterations. Op-
timal parameters (green), reference pa-
rameters (red). Clean (left) and noisy
data (right).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a1, b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
2
,
b
2

alpha
beta

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a1, b1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a
2
,
b
2

alpha
beta

34 Dynamic simulations of convection in the Earth’s
mantle

By Lyudmyla Vynnytska, Stuart R. Clark and Marie E. Rognes

In this chapter, we model dynamic convection processes in the Earth’s mantle; linking the geody-
namical equations, numerical implementation and Python code tightly together. The convection
of material is generated by heating from below with a compositionally distinct and denser layer
at the bottom. The time-dependent nonlinear partial differential equations to be solved are the
quasi-static Stokes equations with depth- and temperature-dependent viscosity and advection-
diffusion equations for the composition and temperature. We present a numerical algorithm for
the simulation of these equations as well as an implementation of this algorithm using the DOLFIN
Python interface. The results show that the compositional heterogeneities persist, but interact
strongly with the convecting system, generating upwellings and movement as material from the
surface displaces them. This chapter will be of interest to those seeking to model compositional
discontinuities using field methods, as well as those interested in mantle convection simulations.

34.1 Convection in the Earth’s mantle

In contrast to the hydrosphere and atmosphere, the Earth’s crust and mantle are primarily solid
in nature, allowing the rapid progression of seismic waves. However, one of the most important
discoveries of geodynamics is that materials can behave elastically on certain timescales and
viscously on other timescales. Glaciers work on this principle: solid ice slowly deforms and flows
under the effect of gravity. While glaciers move on the order of meters per day, the mantle moves
at the speed of a few centimeters per year [van der Meer et al., 2010]. At this rate, a piece of the
Earth’s lithosphere, or slab, would take at least one hundred million years to sink from the Earth’s
surface to the outer core [Jarvis and Lowman, 2007].
Blanketing the outer core, seismologists detect a layer through which seismic waves are anomalously
slow: the D” (dee double prime) layer. In some regions, this layer is very thin, overlain by fast zones
that may indicate slabs buried deep within the mantle [McNamara and Zhong, 2005]. Underneath
southern Africa and the Pacific, two prominent seismically anomalous slow regions exist, seemingly
pointing to a hotter or compositionally denser material [McNutt, 1998]. Such heterogeneities have
led geoscientists to speculate on the existence of large chemically isolated reservoirs in the mantle,
perhaps a remnant from the early Earth’s mantle [Burke et al., 2008]. But how can these chemically
isolated reservoirs survive in a vigorously convecting mantle? Geodynamicists have tried to answer
this question with computer simulations of thermomechanical convection of a compositionally
heterogeneous mantle; such simulations are more simply termed thermochemical [McNamara
et al., 2010]. The challenge for geodynamicists is: can the assumptions made in matching the

627

628 CHAPTER 34. DYNAMIC SIMULATIONS OF CONVECTION IN THE EARTH’S MANTLE

Figure 34.1: Initial configuration of the
model in the h by λ rectangular box Ω.
Color shows dimensionless tempera-
ture (for dimensional values, see Sec-
tion 34.5). The shaded layer on the bot-
tom with height d is the denser layer
corresponding to the D” layer.

longevity of these reservoirs be consistent with seismic observations and the physics we know of
the Earth’s interior and plate tectonics?
Primarily, the observations we need to match are simply the transfer of matter between the Earth’s
interior and surface. At the surface of the Earth, tectonic plates are bent and pushed into the
interior. In other places, we see large volcanic terranes created by material sourced from the Earth’s
mantle. To model the motion of the mantle over long timescales, the Stokes equations are well
established in their ability to replicate this behavior, given the right assumptions, coupled with a
conservation equation for the thermal energy in the mantle.

34.2 Mathematical statement of the problem

We model the problem in a rectangular box Ω in the Cartesian coordinate system with coordinates
(x1, x2), neglecting the sphericity of the Earth, representing the mantle from the surface to the
core-mantle boundary (see Figure 34.1). The base of the box is covered by a relatively thin layer of
denser material, while the initial temperature field is set to represent the colder lithosphere along
the top and slab descending on the right hand-side; a hotter layer is imposed along the bottom and
left to represent the hotter D” layer and a plume ascending respectively following the boundary
layer arguments of van Keken et al. [1997]. The idea is simply to create an initial configuration that
drives the convection of the problem.
The viscosity of the mantle, on the order of 1022Pa s, is so high that inertial forces and compressibil-
ity are negligible [Ricard, 2009]. If the assumption of compressibility is relaxed, the lower mantle
can support piles of geochemically isolated material with sharp edges [Tan and Gurnis, 2005].
However, for our purposes, we assume an incompressible thermal flow driven by temperature and
compositional density variations modeled by the following system of equations:

−div σ′ − grad p = (Rb φ− Ra T) e, (34.1)

div u = 0, (34.2)
∂T
∂t

+ u · grad T = ∆T. (34.3)

Here, σ′ is the deviatoric stress tensor, p is the pressure, Ra and Rb are the thermal and compo-
sitional Rayleigh numbers, respectively, T is the temperature, φ is a composition field, u is the
velocity, and e is a unit vector in the direction of gravity (−x2). Equations given in this section are
nondimensional; scaling and physical constants are presented in Section 34.5.
The Rayleigh numbers measure the relative importance of buoyancy to thermal and viscous
dissipation [Kennett and Bunge, 2008] given by thermal diffusivity (kth) and the reference viscosity
(η0), respectively. The change in density due to heat is a product of the thermal contrast (∆T),
thermal expansivity (α) and the reference density (ρ0), while for the composition it is simply the
density contrast (∆ρ) between the two materials; the gravitational acceleration (g) turns these

34.2. MATHEMATICAL STATEMENT OF THE PROBLEM 629

densities into buoyancies in the following way:

Ra =
αgρ0∆Th3

kthη0
, Rb =

∆ρgh3

kthη0
. (34.4)

The Rayleigh numbers, Ra and Rb, are defined as equal and as 106 within the ranges for the Earth
[Montague et al., 1998] and such that fluid convection dominates.

The mantle flow induces transport of the composition φ. This transport is governed by the equation

∂φ

∂t
+ u · grad φ = 0. (34.5)

However, some chemical diffusivity kch is also present in the physical system [van Keken et al.,
1997, Hansen and Yuen, 1988]. Therefore, we substitute the pure advection equation (34.5) by an
advection-diffusion equation of the form

∂φ

∂t
+ u · grad φ = kc∆φ. (34.6)

Here, kc = kch/kth.

It remains to specify the constitutive relationship relating the deviatoric stress tensor σ′ to the other
variables. Here, we consider the case of a Newtonian rheology with a depth- and temperature-
dependent viscosity η [Blankenbach et al., 1989]. The stress-strain relationship is then described by
the equations

σ′ = 2ηε̇(u), (34.7)

ε̇(u) =
1
2

(
grad u + grad uT

)
, (34.8)

η = η(T, x2) = η0 exp (−bT/∆T + c(h− x2)/h) . (34.9)

Here, ε̇ is the strain rate tensor, η0 is (still) the reference viscosity, and b and c are given additional
parameters.

For the current scenario, we will consider the following boundary conditions. For the Stokes
equations (34.1), we apply no slip conditions on the bottom boundary (x2 = 0), and free slip and
reflective symmetry on the remaining boundary Γ = ∂Ω\{x : x2 = 0}:

u|x2=0 = 0, un|Γ = σ′nτ |Γ = 0, (34.10)

where n is the outward normal and τ is the tangent vector on the boundary ∂Ω. For the temperature,
we fix its value on the top and bottom boundary and apply symmetry conditions (or no heat
exchange) on the left- and right-hand boundaries:

T|x2=0 = ∆T, T|x2=h = 0, ∂x1 T|x1=0 = ∂x1 T|x1=λ = 0. (34.11)

For the composition φ, we set
φ|x2=0 = 1, ∂nφ|Γ = 0. (34.12)

That is, we fix the composition on the bottom of the box Ω and apply zero flux conditions on the
remainder of the boundary. This condition can be viewed as a consequence of the no outflow
conditions for the velocity.

The initial temperature field is given by T0 (see Figure 34.1). In the below equations, we give an

630 CHAPTER 34. DYNAMIC SIMULATIONS OF CONVECTION IN THE EARTH’S MANTLE

analytical expression for T0 based on boundary layer theory [van Keken et al., 1997], taking the
value of Ra with input from the upper Tu, lower Tl , right Tr and left Ts parts of the domain into
account:

T0 = Tu + Tl + Tr + Ts − 1.5, (34.13)

q =
λ7/3

(1 + λ4)
2/3

(
Ra

2
√

π

)2/3
, (34.14)

Q = 2

√
λ

πq
, (34.15)

Tu = 0.5erf
(

1− x2

2

√
q
x1

)
, (34.16)

Tl = 1− 0.5erf
(

x2

2

√
q

λ− x1

)
, (34.17)

Tr = 0.5 +
Q

2
√

π

√
q

x2 + 1
expc

(
− x2

1q
4x2 + 4

)
, (34.18)

Ts = 0.5− Q
2
√

π

√
q

2− x2
expc

(
− (λ− x1)

2 q
8− 4x2

)
. (34.19)

In order to keep the initial temperature distribution in the range between zero and one, we perform
an additional correction. According to the above equations there are two peaks: positive in the top
right and negative in the bottom left corners. We mapped all values below zero to zero and above
one to one. The initial composition φ is a step function equal to one on the bottom layer and to
zero on the top layer.

34.3 Numerical method

In this section, we present a numerical solution method for the thermochemical convection
model established in the previous. Instead of solving the fully coupled system of nonlinear
time-dependent partial differential equations, we consider a predictor-corrector based splitting
scheme [van den Berg et al., 1993, Hansen and Ebel, 1988]. In view of this, we present numerical
methods for the solution of each separate equation before formulating the complete algorithm. Spe-
cial attention must be paid to the discretization of the energy (34.3) and transport equations (34.6)
due to the temperature gradient and the interface between the compositionally distinct layers. For
the Stokes equations (34.1) – (34.2), we use a mixed finite element formulation, thus obtaining
solutions for the velocity and pressure simultaneously.

34.3.1 Mixed finite element formulation of the Stokes equations

Let Th = {T} be a mesh1 of the domain Ω. Let Vh and Qh be finite dimensional spaces, defined
relative to the mesh Th, for the velocity and pressure fields, respectively. The standard discrete
mixed finite element formulation with independent approximation of the (continuous) velocity
field u and the pressure field p for the incompressible Stokes equations (34.1) – (34.2) with the
boundary conditions given by (34.10) reads as follows: for a given temperature Th and composition

1Note that T is used to denote an element (cell) in a mesh in this section, in addition to being used to denote the
continuous temperature field T.

34.3. NUMERICAL METHOD 631

φh, find uh ∈ Vh and ph ∈ Qh such that

aIS((uh, ph), (vh, qh)) = LIS((vh, qh)) (34.20)

for all vh ∈ Vh and all qh ∈ Qh, where

aIS((uh, ph), (vh, qh)) =
∫

Ω
2ηε̇(uh) · ε̇(vh) + ph div vh + qh div uh dx, (34.21)

LIS((vh, qh)) =
∫

Ω
(RaTh − Rbφh)e · vh dx. (34.22)

In the subsequent simulations, we use the lowest order Taylor–Hood elements for the velocity and
the pressure; that is, the combination of continuous piecewise quadratic vector fields for Vh and
continuous piecewise linears for Qh [Taylor and Hood, 1973].

34.3.2 Discontinuous Galerkin formulation of advection–diffusion equations

The energy and transport equations (34.3) and (34.6) have the same structure from the mathematical
point of view. The equations both model the time evolution of advection-diffusion processes,
allowing the numerical analysis to be performed by the same numerical scheme. However, the
numerical treatment of advection dominated advection–diffusion equations is nontrivial. There
exists a large body of research on the development of efficient computational schemes for such
kinds of problems [Lin, 2006, Zienkiewicz and Taylor, 2000]. Within the finite element setting, there
are two main approaches: Petrov-Galerkin approximation and discontinuous Galerkin methods.
Here, we prefer a discontinuous Galerkin method because it deals effectively with discontinuous
property fields. In the following, we describe an upwinded discontinuous Galerkin formulation
for the equation (34.6) for the compositional field φ. This formulation also applies for the energy
equation (34.3) with kc = 1. For the sake of clarity, we consider the discretization of (34.5) separately
first.
Using full upwind numerical flux and taking into consideration that the normal component of
velocity is equal to zero on the boundary, the spatial, discontinuous finite element discretization
of (34.5) with a given uh reads as [di Pietro et al., 2006]: find φh ∈ Ph such that

∑
T∈Th

∫

T

∂φh
∂t

ψh dx + aA(uh; φh, ψh) = 0, (34.23)

for all ψh ∈ Ph, where

aA(uh; φh, ψh) = − ∑
T∈Th

∫

T
φhuh · grad ψh dx + ∑

e∈Γi

∫

e

(
uh · JψhK〈φh〉+

1
2
|uh · n|JψhKJφhK

)
ds,

(34.24)
wherein Γi denotes the interior edges of Th. The jump J·K and average 〈·〉 operators on an internal
edge shared by elements T+ and T− with outward normals n+ and n− respectively, are defined
for generic scalar fields α and vector fields β as

JαK = α+n+ + α−n−, JβK = β+ · n+ + β− · n−, (34.25)

〈α〉 = 1
2
(
α+ + α−

)
, 〈β〉 = 1

2
(

β+ + β−
)

, (34.26)

α± = α|T± , β± = β|T± . (34.27)

632 CHAPTER 34. DYNAMIC SIMULATIONS OF CONVECTION IN THE EARTH’S MANTLE

We now turn to consider the diffusive term of (34.6) separately. Its standard variational form
for a symmetric discontinuous Galerkin discretization with a stabilization penalty term is given
by [Arnold, 1982]

aD(φh, ψh) = ∑
T∈Th

∫

T
kc grad φh · grad ψh dx + ∑

e∈Γi

∫

e
−〈kc grad φh〉 · JψhK ds

+ ∑
e∈Γi

∫

e

(
−{kc grad ψh} · JφhK+

αhkc

hT
JφhK · JψhK

)
ds, (34.28)

where αh is a sufficiently large constant to ensure stability, and hT is the size of element T.
Combining (34.24) and (34.28), we obtain the following spatially discrete variational formulation
of the transport equation (34.6): find φh ∈ Ph such that

∑
T∈Th

∫

T

∂φh
∂t

ψh dx + aA(uh; φh, ψh) + aD(φh, ψh) = 0 (34.29)

for all ψh ∈ Ph, where Ph is a finite element space of discontinuous piecewise polynomial fields,
and correspondingly for the temperature Th. In the subsequent simulations, we will let Ph be the
space of (discontinuous) piecewise linears defined relative to the mesh Th.

34.3.3 A decoupling predictor-corrector scheme

Instead of solving the fully coupled nonlinear system of equations defined by (34.1) – (34.2),
(34.3), and (34.6), we use a splitting scheme. In particular, we consider a predictor–corrector
scheme [van den Berg et al., 1993, Hansen and Ebel, 1988] for the temperature T in combination
with a filtering algorithm for the composition φ. The filtering algorithm is aimed at correcting
the compositional field from numerical diffusion and dispersion errors, and is motivated and
described in detail by Lenardic and Kaula [1993].
Before outlining the algorithm, we make some comments on the temporal discretization of (34.29)
and the corresponding equation for the temperature. Rewriting (34.29) as

∂r
∂t

= W, (34.30)

the common θ-scheme for the evolution of r from rk−1 to rk with time step ∆tk reads:

rk − rk−1

∆tk
= θWk + (1− θ)Wk−1. (34.31)

The choice θ = 1 corresponds to the backward Euler scheme while θ = 0.5 corresponds to the
Crank–Nicolson scheme. The predictor–corrector scheme draws on the Crank–Nicolson scheme
in using a two-step procedure. Taking the energy equation for the temperature as an example,
assuming that the temperature at the previous time Tk−1

h and the previous velocity uk−1
h are known,

the predictor step computes a predicted temperature Tpr
h ∈ Ph solving the implicit Euler equations

for all ψh ∈ Ph:

∑
T∈Th

∫

T

Tpr
h − Tk−1

h
∆tk

ψh dx + aA(uk−1
h ; Tpr

h , ψh) + aD(T
pr
h , ψh) = 0, (34.32)

34.3. NUMERICAL METHOD 633

where aA and aD are defined by (34.24) and (34.28), respectively. Later, the corrector step computes
the corrected temperature Tk

h by a Crank–Nicolson scheme

∑
T∈Th

∫

T

Tk
h − Tk−1

h
∆tk

ψh dx + 0.5
(

aA(u
pr
h ; Tk

h , ψh) + aD(Tk
h , ψh)

)

+ 0.5
(

aA(uk−1
h ; Tk−1

h , ψh) + aD(Tk−1
h , ψh)

)
= 0, (34.33)

but using a predicted velocity upr
h , which will be further specified in Algorithm 9 below.

Algorithm 9 A predictor–corrector algorithm

Initialize temperature T0 and composition φ0.
Compute initial velocity u0 by solving (34.20) with T0 and φ0.
Compute time step ∆t1 from u0 according to (34.34).
for k = 1, . . . , n.

(1) Solve (34.32) to obtain Tpr
h .

(2) Solve (the composition equivalent of) (34.32) to obtain φ
pr
h .

(3) Filter predicted composition φ
pr
h to obtain φk

h.
(4) Solve (34.20) with Tpr

h and φk
h as input to obtain upr

h .
(5) Solve (34.33) to obtain Tk

h .
(4) Solve (34.20) with Tk

h and φk
h as input to obtain uk

h.
(6) Compute new time step ∆tk+1 according to (34.34).

end for

In order to satisfy a CFL-type stability condition, a variable time step will be used. In particular,
we define each time step ∆tk by the formula

∆tk = CCFLhmin/ max |uk−1
h |, (34.34)

where hmin is the minimum cell size of the mesh and CCFL is a chosen positive number.
The basic idea of the filtering algorithm is to ensure that φ remains within the bounds 0 6 φ 6 1,
and to minimize dispersion error. We refer the reader to Lenardic and Kaula [1993] for the detailed
explanation and here give the outline of the algorithm for a discrete property field φ = {φi}.

Algorithm 10 A property filtering algorithm

(1) Compute initial sum S0 of all values of φ.
(2) Find minimal value φmin below 0.
(3) Find maximal value φmax above 1.
(4) Assign to φi 6 |φmin| value 0.
(5) Assign to φi > 2− φmax value 1.
(6) Compute sum S1 of all values of φ.
(7) Compute the number num of 0 < φj < 1.
(8) Add dist = (S1 − S0)/num to all 0 < φj < 1.

634 CHAPTER 34. DYNAMIC SIMULATIONS OF CONVECTION IN THE EARTH’S MANTLE

34.4 Implementation

34.4.1 Main algorithm

The main body of the implementation consists of the temporal loop defined in Algorithm 9. An
abridged version of this code is listed in Figure 34.2, and explained in detail in the corresponding
caption. As the filtering step is straightforward to implement based on the algorithm described
in Algorithm 10, we will not comment any further on this aspect. Below, we make some general
observations and comments.

• In each iteration, five variational problems are solved. First, a predicted temperature is
computed based on the velocity and the temperature from the previous time step. Next,
a tentative composition is computed based on the velocity and the composition from the
previous time step; then filtered using as described by Algorithm 10. With the filtered
composition and the predicted temperature, the velocity and pressure are predicted. The
corrected temperature is then calculated by the Crank–Nicolson system using the predicted
velocity, and the velocity and the temperature from the previous time step. The Stokes system
is then solved again, this time with the filtered composition and the corrected temperature as
input to yield the corrected velocity and pressure at this time step.

• The advection-diffusion problems for calculating the predicted composition and the predicted
and corrected temperature depend on the velocity at the previous and current time steps.
Analogously, the Stokes equations for the predicted and corrected velocity depend on the
composition and temperature through the viscosity and the source terms. Thus, the linear
systems of equations have to be assembled (and solved) at each time. For simplicity, we gen-
erate the variational forms describing the equations and define a new VariationalProblem

for each of these problems at each time. The compute time used for this is insignificant in
comparison with the time required for the assembly and solution of the linear systems.

• The linear systems resulting from the equations for the composition and the temperature are
positive definite but not symmetric. Hence, these are solved iteratively using a standard gen-
eralized minimal residual solver (GMRES). For the simulations considered in the subsequent
section, these solvers converge in 4− 10 iterations. On the other hand, the linear systems
resulting from the Stokes equations are symmetric but indefinite. Non-preconditioned itera-
tive solvers typically fail to converge for such systems, while direct solvers are prohibitively
(memory) expensive. Therefore, these systems require preconditioning. Following Chapter 37,
we here take advantage of a standard Stokes preconditioner, neglecting possible advantages
in using a preconditioner that varies synchronously with the viscosity. As such, we can
assemble the preconditioner matrix outside the loop and reuse it and the Krylov solver in
each iteration.

• The time step dt is computed adaptively in each iteration of the temporal loop using the
formula (34.34). The minimal mesh size is easily extracted using mesh.hmin() and the
maximal value for the velocity is extracted as the maximal degree of freedom from the numpy

array of degrees of freedom. Since the time step varies in each iteration and with the mesh
size, it is convenient to use a Constant for its representation in order to avoid recompilation
of the variational forms at each iteration.

• The solutions for the composition, the temperature and the velocity are stored at each
time using the TimeSeries class; allowing for easy storage and retrieval of meshes and
solution vectors. Moreover, it naturally encourages a decoupling of the simulation and the

34.5. RESULTS 635

post-processing of the simulation data. This can be highly advantageous, especially for
computations with significant run times.

In the subsections below, we discuss the definition of each of the variational forms and problems
and an implementational structure for these.

34.4.2 Variational formulation of the Stokes equations

The mixed variational formulation for the Stokes equations is classical and listed in Figure 34.3.
The definition of the bilinear and linear forms rely only on the mesh, a source vector field f =
(RaTh − Rbφh)e and the viscosity η, see (34.20). The viscosity itself is temperature- and depth-
dependent, but crucially not velocity dependent. Thus the bilinear and linear forms can be
represented by standard linear formulations. Since the preconditioner for this system relies on the
same function spaces and basis functions, we define the form for the preconditioner together with
the variational forms describing the partial differential equation.

34.4.3 Variational formulation of advection-diffusion equations

In the implementation of the variational forms for the advection-diffusion problems, we emphasize
the following: first, the variational forms defining the predictor step for the temperature and the
composition are the same (modulo the diffusivity constant and possibly the penalty constant).
Second, the predictor and the corrector steps for the temperature involve the same mathematical
building blocks. Third, discontinuous Galerkin methods often involve quite a number of terms
and the combined forms may easily become intractable. In view of these aspects, a minimal (as in
highly reused) code close to mathematical syntax seemed preferable.
To this end, the implementation mimics the structure defined by (34.24), (34.28), and (34.31). The
pure advection form aA and the pure diffusion form aD are defined through separate Python
functions. The code for these is listed in Figures ?? and ?? and explained in the captions of those
figures. The implementation of the weak forms of the predictor equation for the composition,
and the predictor and corrector equations for the temperature are then built using these basic
functions. The code for the corrector equation is included and discussed in Figure ??. The code for
the predictor equations is similar but simpler and not discussed here.

34.5 Results

In this section we present the results of the thermochemical convection simulation, calculated on
a mesh constructed by dividing the domain into 160× 80 squares. Each square is split into two
triangles by the right diagonal. The CCFL time step parameter in (34.34) is 0.5.
The equations presented in Section 34.2 are dimensionalised using the physical parameters in
Table ??. Scaling parameters for time ts and velocity us are obtained as follows:

ts =
h2

kth
, us =

h
ts

. (34.35)

Convection in the model domain is determined by the kinematic energy of the fluid, given by:

EK =
1
2

∫

Ω
ρ‖u‖2dx. (34.36)

636 CHAPTER 34. DYNAMIC SIMULATIONS OF CONVECTION IN THE EARTH’S MANTLE

Python code
Functions at previous time step (and initial

conditions)
(phi_, T_, u_, P) = compute_initial_conditions()

Containers for storage
velocity_series = TimeSeries("bin/velocity")
temperature_series = TimeSeries("bin/temperature")
composition_series = TimeSeries("bin/composition")

Solver for the Stokes systems
solver = KrylovSolver("tfqmr", "amg_ml")
...
while (t <= finish):

Solve for predicted temperature
(a, L) = energy(mesh, Constant(dt), u_, T_)
eq = VariationalProblem(a, L, T_bcs)
eq.parameters["solver"]["linear_solver"] = "gmres"
eq.solve(T_pr)

Solve for predicted phi
(a, L) = transport(mesh, Constant(dt), u_, phi_)
eq = VariationalProblem(a, L, bc)
eq.parameters["solver"]["linear_solver"] = "gmres"
eq.solve(phi_pr)

Filter predicted phi (in place)
filter_properties(phi_pr)
phi.assign(phi_pr)

Solve for predicted velocity
H = Ra*T_pr - Rb*phi_pr
eta = viscosity(T_pr)
(a, L, precond) = stokes(mesh, eta, H*g)
(A, b) = assemble_system(a, L, bcs)
solver.set_operators(A, P)
solver.solve(velocity_pressure.vector(), b)
u_pr.assign(velocity_pressure.split()[0])

Solve for corrected temperature T
(a, L) = energy_correction(mesh, Constant(dt),

u_pr, u_, T_)
eq = VariationalProblem(a, L, T_bcs)
eq.parameters["solver"]["linear_solver"] = "gmres"
eq.solve(T)

Solve for corrected velocity
H = Ra*T - Rb*phi
eta = viscosity(T)
(a, L, precond) = stokes(mesh, eta, H*g)
(A, b) = assemble_system(a, L, bcs)
solver.set_operators(A, P)
solver.solve(velocity_pressure.vector(), b)
u.assign(velocity_pressure.split()[0])

Store stuff
composition_series.store(phi.vector(), t)
temperature_series.store(T.vector(), t)
velocity_series.store(u.vector(), t)

Define dt based on CFL condition
dt = compute_timestep(u)

Move to new timestep, including updating functions
phi_.assign(phi)
T_.assign(T)
u_.assign(u)
t += dt

Figure 34.2: Abridged code for the
main predictor-corrector algorithm,
see Algorithm 9. The initialization of
the mesh mesh, the viscous and chemi-
cal parameters and the boundary con-
ditions are omitted. The solution fields
are consistently named T, u, and phi
for solutions at the current time; T_,
u_, and phi_ for fields at the previ-
ous time; and T_pr, u_pr, and phi_pr
for predictor fields. These Functions
are all initialized (but the initialization
is not included here). First, the ini-
tial conditions are constructed. This
involves the solution of a Stokes sys-
tem for the initial velocity u_, and in
particular the construction of a pre-
conditioner matrix P. Since the matrix
is to be reused, the initial condition
computation also return this matrix.
Next, TimeSeries objects are initial-
ized for easy storage of the solutions
at each time. The KrylovSolver can
also be reused in each iteration and
is therefore created outside the loop.
The contents of the loop follow steps
(1) – (6) of Algorithm 9. First, the
predicted temperature T_pr must be
computed. This is done is 4 sub-steps:
the forms for the variational problem
are created; the forms are passed to-
gether with the boundary conditions
to a VariationalProblem; the type of
linear solver is set for the problem;
and the problem is solved. Next, the
same steps are performed for the pre-
dicted composition phi_pr. The pre-
dicted composition is then filtered (in
place) and also assigned to phi. Using
the predicted temperature and filtered
composition, the source term and vis-
cosity for the Stokes equations are de-
fined, and then the variational Stokes
form is created. In order to retain the
symmetry of the matrix under the ap-
plication of Dirichlet boundary condi-
tions, the linear system is assembled
and solved explicitly. This consists of
calling the method assemble_system,
updating the KrylovSolver with the
current operators A and P, and apply-
ing the solver to the right-hand side
vector. The procedure is repeated for
the corrected temperature and again
for the corrected Stokes system. Fi-
nally, the solution fields at the current
time are stored, the new time step dt
is computed based on the current ve-
locity and the current solutions are as-
signed to the previous time as we step
forward in time.

34.5. RESULTS 637

Figure 34.3: Definition of variational
forms for the Stokes equations and
the corresponding preconditioner. The
Taylor–Hood mixed finite element
space is defined by combining La-
grange vector elements of polynomial
order 2 with Lagrange elements of or-
der 1. The equation is phrased in the
style F(·, ·) = 0, and the form for the
preconditioner is defined using the
same basis functions. The left- and
right-hand side of the form F are ex-
tracted using the UFL functions lhs
and rhs.

Python code
def stokes(mesh, eta, f):

Define spatial discretization (Taylor--Hood)
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)
W = V * Q

Define basis functions
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)

Define equation F((u, p), (v, q)) = 0
F = (2.0*eta*inner(sym(grad(u)), sym(grad(v)))*dx

+ div(v)*p*dx
+ div(u)*q*dx
+ inner(f, v)*dx)

Define form for preconditioner
precond = inner(grad(u), grad(v))*dx + p*q*dx

Return right and left hand side and preconditioner
return (lhs(F), rhs(F), precond)

Figure 34.4: Definition of an up-
winded discontinuous Galerkin formu-
lation of the advection term. The in-
put consists of: phi and psi (typically
functions or basis functions); a given
velocity u; a facet normal n; and an
optional scalar multiplier theta. The
absolute value of the normal compo-
nent of u is defined and the contribu-
tions from the cell integrals and facet
integrals are defined in accordance
with (34.24). The sum of the contri-
butions is returned.

Python code
def advection(phi, psi, u, n, theta=1.0):

Define |u * n|
un = abs(dot(u(’+’), n(’+’)))

Contributions from cells
a_cell = - theta*dot(u*phi, grad(psi))*dx

Contribution from interior facets
a_int = theta*(dot(u(’+’), jump(psi, n))*avg(phi)

+ 0.5*un*dot(jump(phi, n), jump(psi,
n)))*dS

return a_cell + a_int

Figure 34.5: Definition of a discon-
tinuous Galerkin formulation of the
diffusion term. The input consists of:
phi and psi (typically functions or ba-
sis functions); the diffusivity constant
k_c; a stabilization parameter alpha; a
facet normal n; the cell size h; and an
optional scalar multiplier theta. The
contributions from the cell integrals
and facet integrals are defined follow-
ing (34.28). The sum of the contribu-
tions is returned.

Python code
def diffusion(phi, psi, k_c, alpha, n, h, theta=1.0):

Contribution from the cells
a_cell = theta*k_c*dot(grad(phi), grad(psi))*dx

Contribution from the interior facets
a_int =

theta*(k_c(’+’)*alpha(’+’)/h(’+’)*dot(jump(phi,
n), jump(psi, n))

- k_c(’+’)*dot(avg(grad(psi)),
jump(phi, n))

- k_c(’+’)*dot(jump(psi, n),
avg(grad(phi))))*dS

return a_cell + a_int

638 CHAPTER 34. DYNAMIC SIMULATIONS OF CONVECTION IN THE EARTH’S MANTLE

Python code
def energy_correction(mesh, dt, u, u_, T_):

Define function space and test and trial functions
P = FunctionSpace(mesh, "DG", 1)
T = TrialFunction(P)
psi = TestFunction(P)

Diffusivity constant
k_c = Constant(1.0)

Constants associated with DG scheme
alpha = Constant(50.0)
h = CellSize(mesh)
n = FacetNormal(mesh)

Define discrete time derivative operator
Dt = lambda T: (T - T_)/dt

Add syntactical sugar for advection and diffusion
terms

a_A = lambda u, T, psi: advection(T, psi, u, n,
theta=0.5)

a_D = lambda u, T, psi: diffusion(T, psi, k_c,
alpha, n, h, theta=0.5)

Define form
F = Dt(T)*psi*dx + a_A(u, T, psi) + a_A(u_, T_,

psi) \
+ a_D(u, T, psi) + a_D(u_, T_, psi)

return (lhs(F), rhs(F))

Figure 34.6: Definition of variational
forms for one correction step for the
temperature, see (34.33). The input is
the mesh, the time step dt, two given
velocities u and u_, and (typically) a
previous temperature T_. We define
the function space of (discontinuous)
piecewise linears, the unknown tem-
perature T and the test function psi.
The diffusivity constant k_c is in this
case 1.0. We define the penalty param-
eter alpha and also the cell normal n
and mesh size h to be used in the ad-
vection and diffusion forms. We use
lambda functions to reduce the num-
ber of input arguments to the advec-
tion and diffusion functions. This is in
part merely syntactical, but does also
increase readability and facilitates de-
bugging. The input to the functions
a_A and a_D thus directly corresponds
to the arguments of aA and aD. The
equation is again phrased in the style
F(·, ·) = 0. The reader is encouraged
to compare the code with the math-
ematical formulation of the equation,
see (34.33). Finally, the left- and right-
hand side forms are extracted using
the UFL functions lhs and rhs.

34.5. RESULTS 639

Dimensional Dimensionless
Parameter value value

Box height h 3000km 1.0
Box length λ 6000km 2.0
Boundary layer thickness d 150km 0.05
Acceleration due to gravity g 10m/s2 1.0
Thermal contrast ∆T 3000K 1.0
Thermal expansivity α 2× 10−5K−1

Thermal diffusivity kth 10−6m2/s
Chemical diffusivity kch 10−10m2/s
Reference density ρ0 3100kg/m3

Compositional density contrast ∆ρ 185kg/m3 1.0
Reference viscosity η0 5× 1022Pa s 1.0
Thermal Rayleigh number Ra 1× 106 1× 106

Chemical Rayleigh number Rb 1× 106 1× 106

Velocity us 3× 10−13m/s 1.0
Time ts 1× 1019s 1.0

Table 34.1: Specification of parameters and parameter values.

Figure 34.7: Dimensionless root mean
square velocity over dimensionless
time. A to M are labels used to refer to
stages in the model. Nondimensional
time period of 0.001 corresponds to ap-
proximately 300 Ma, and dimensional
value for urms = 100 is approximately
1 mm/year.

Since the variation in density is small, ρ can be taken out of the integral, and by defining the
root-mean square velocity, urms by:

urms =

(
1

λh

∫

Ω
‖u‖2dx

)1/2
, (34.37)

we have the relationship:

EK ≈
1
2

ρλhu2
rms. (34.38)

Thus, urms is a scaled measure of the kinematic energy of convection. For the discussion of the
results, we will use Figure ?? to describe the local turning points, A to M, of the root-mean square
velocity and refer to the driving forces in the model to explain these turning points. See the
captions to Figures ?? and ?? for details.

640 CHAPTER 34. DYNAMIC SIMULATIONS OF CONVECTION IN THE EARTH’S MANTLE

Temperature Viscosity

B

C

D

E

F

G

Figure 34.8: Dimensionless tempera-
ture and viscosity for turning points A
to G, with composition barrier shown
in white. To convert to physically rele-
vant temperature contrast and viscosi-
ties, these values should be multiplied
by dimensional η0 and ∆T from Ta-
ble ??. The initial condition drives the
system’s high velocity from point A,
but as the cold surface material (slab)
reaches the deeper mantle, there is a
retardation of the flow, towards B. The
rising hot material (plume) during the
stage A to B drives lateral flow of the
surface causing cold material to build
up until B. From B to C this cold mate-
rial begins to rapidly sink, increasing
urms until it is slowed by the increas-
ing viscosity at C. However, the slab’s
downward motion has created a ther-
mal instability at the base of the model,
which rises between C and D increas-
ing urms again. The pace of the mate-
rial slows as the plume necks between
D and E and the compositional den-
sity of the remaining material prevents
it from rising further. A small plume
rises from the left side of the base, in-
creasing the urms briefly. Between E
and G short-lived plumes and slabs
are generated from the bottom and top
boundary layers, causing small insta-
bilities in the root-mean square veloc-
ity.

34.5. RESULTS 641

Figure 34.9: Continued from Figure ??,
temperature and viscosity for points
H to M. During the stage G-H, a sec-
ond slab forms and the two down-
wellings merge increasing the root-
mean square velocity rapidly. From
H, the downwelling is impeded by
the higher viscosity at depth, reduc-
ing urms until I. Then a plume arising
from the bottom left rises more rapidly
through the lower viscosities of the up-
per mantle until J. Between J and K,
no new up- or downwellings occur, re-
tarding the root-mean square velocity.
From K to L a new plume increases
the kinetic energy in the model, then
pushes material laterally from under-
neath the top boundary layer until a
slab begins to sink at the edge from M,
increasing the velocity again.

Temperature Viscosity

H

I

J

K

L

M

642 CHAPTER 34. DYNAMIC SIMULATIONS OF CONVECTION IN THE EARTH’S MANTLE

34.6 Discussion and concluding remarks

The presented results show the mantle convecting with two distinct chemical layers: plumes arise
from atop piles on the bottom denser layer, but are not compositionally distinct. The location
of these piles is initially set by the thermally dense slabs. Slabs collapsing into the mantle drive
the largest changes in the system energy, while plumes drive smaller increases because of their
composition counteracts their thermal buoyancy. The upwellings and downwellings react: slabs
rapidly sinking cause upwellings to form; the lateral motion of upwellings at the top pushes and
thickens the top layer, causing it to become unstable and sink. As the system evolves, colder slab
material builds up at the bottom, increasing the viscosity of the lower mantle, while the reverse
happens in the upper mantle.
The simulation code for the convecting mantle has been included almost in its entirety. We can
conclude that the amount of code required to implement such a problem within the FEniCS
framework is quite small. Moreover, the code for the variational problems closely matches the
mathematical formulation of the problems, and thus the complexity of the code scales with the
complexity of the numerical algorithm. The numerical simulations presented here are spatially
two-dimensional and serve as a simplified model. Realistic three-dimensional simulations would
require taking advantage of the parallel, and possibly more sophisticated adaptive, features of
the FEniCS project. However, such would not require significant additional problem-specific
implementational effort, though preconditioning would have to be carefully considered.
Tracking composition in the problem requires the solution of the compositional advection-diffusion
equation (34.6), creating difficulties for standard field-based methods to solve because of sharp
discontinuities, often numerically smoothed by such methods. Tracers and marker chain ap-
proaches are often used to overcome this problem [Ismail-Zadeh and Tackley, 2010]. However, the
approach presented here allows us to represent compositional heterogeneities because it employs
discontinuous Galerkin methods, while a filtering scheme minimizes the numerical smoothing
error.

35 A coupled stochastic and deterministic model
of Ca2+ dynamics in the dyadic cleft

By Johan Hake

From the time we are children we are told that we should drink milk because it is an important
source of calcium (Ca2+), and that Ca2+ is vital for a strong bone structure. What we do not hear
as frequently is that Ca2+ is one of the most important cellular messengers in the human body
[Alberts et al., 2002]. In particular, Ca2+ controls cell death, neural signaling, secretion of different
chemical substances, the contraction of cells in the heart. The latter is the focus of this chapter.
In this chapter, we will present a computational model that can be used to model Ca2+ dynamics
in a small sub-cellular domain called the dyadic cleft. The model includes Ca2+ diffusion, which is
described by an advection-diffusion partial differential equation, and discrete channel dynamics,
which are described by stochastic Markov models. Numerical methods implemented in DOLFIN
solving the partial differential equation will also be presented. In the last section, we describe a
time stepping scheme that is used to solve both the stochastic and deterministic models. We will
also present a solver framework, diffsim, that implements this time stepping scheme together
with the numerical methods to solve the model described above.

35.1 Biological background

In a healthy heart every heart beat originates in the sinoatrial node where pacemaker cells trigger
an electric signal. This signal is a difference in electric potential between the interior and exterior
of the heart cells; these two domains are separated by the cell membrane. The difference in the
electric potential between these two domains is called the membrane potential. The membrane
potential propagates through the whole heart via electrical currents which move through the cell
membrane using specific ion channels. The actively propagating membrane potential is called an
action potential. When an action potential arrives at a specific heart cell, it triggers the opening
of L-type Ca2+ channels (LCCs), which bring Ca2+ into the cell. Some of the Ca2+ diffuses over
a small distance, called the dyadic cleft, and causes further Ca2+ release from an intracellular
Ca2+ storage, the sarcoplasmic reticulum (SR), through a channel known as the ryanodine receptor
(RyR). The Ca2+ ions then diffuse to the main intracellular domain of the cell, the cytosol, in which
the contractile proteins are situated. These proteins are responsible for generating contraction in
the heart cell and Ca2+ serves as the trigger. The strength of the contraction is controlled by the
strength of the Ca2+ concentration (

[
Ca2+

]
) in cytosol. The contraction is succeeded by a period

of relaxation caused by the extraction of Ca2+ from the intracellular space by various proteins.
This chain of events is known as the Excitation Contraction (EC) coupling [Bers, 2001]. Several
severe heart diseases can be related to impaired EC coupling. By broadening knowledge of the EC

643

644CHAPTER 35. A COUPLED STOCHASTIC AND DETERMINISTIC MODEL OF CA2+ DYNAMICS IN THE DYADIC CLEFT

Figure 35.1: (A): A diagram showing
the relationship between the TT, the
SR, and the jSR in the interior of a
heart cell. The volume between the
flat jSR and the TT is the dyadic cleft.
The black structures in the cleft are
Ryanodine receptors, which are large
channel proteins. (B): The geometry
used for the computational model of
the dyadic cleft. The top of the disk
is the cell membrane of the SR or jSR.
The bottom is the cell membrane of
the TT, and the circumference of the
disk is the interface to the cytosol. The
elevations in the TT membrane model
two Ca2+ ion channels.

coupling, it may be possible to develop better treatments for such diseases. Although grasping the
big picture of EC coupling is straightforward, it actually involves the nonlinear action of hundreds
of different protein species. Computational methods have emerged as a natural complement to
experimental studies to better understand this process. In this chapter, we focus on the initial
phase of EC coupling wherein Ca2+ flows into the cell and triggers further Ca2+ release.

35.2 Mathematical models

In this section we describe the computational model for the early phase of EC coupling. We first
present the morphology of the dyadic cleft and how we model this in our study. We then describe
the mathematical formulation for the diffusion of Ca2+ inside the cleft as well for the Ca2+ fluxes
across the boundaries. Finally, we discuss stochastic models that govern discrete channel dynamics
of the LCCs and RyRs.

35.2.1 Morphology

The dyadic cleft is the volume in the interior of the heart cell between a structure called the t-tubule
(TT) and the SR. The TT is a network of pipe-like invaginations of the cell membrane that perforate
the heart cell [Soeller and Cannell, 1999]. In Figure ?? (A), a sketch of a small part of a single
TT together with a piece of SR is presented. Here we see that the junctional SR (jSR) is wrapped
around the TT. The small volume between these two structures is the dyadic cleft. The space is not
well defined as it is crowded with channel proteins and varies in size. In computational studies it
is commonly approximated as a disk or a rectangular slab [Peskoff et al., 1992, Soeller and Cannell,
1997, Koh et al., 2006, Tanskanen et al., 2007]. In this study a disk with height h = 12 nm and radius
r = 50 nm has been used for the domain Ω; see Figure ?? (B).

35.2.2 Ca2+ diffusion

Electro-diffusion. We will use Fick’s second law to model diffusion of Ca2+ in the dyadic cleft.
The diffusion constant of Ca2+ is set to σ = 105 nm2 ms−1 [Langer and Peskoff, 1996]. Close to
the cell membrane, ions are affected by an electric potential caused by negative charges on the
membrane [McLaughlin et al., 1971, Langner et al., 1990]. The potential attenuates rapidly as it
is countered by positive ions that are attracted by the negative electrical field. This process is

35.2. MATHEMATICAL MODELS 645

known as screening. We will describe the electric potential using the Gouy–Chapman method
[Grahame, 1947]. This theory introduces an advection term to the standard diffusion equation,
which makes the resulting equation more difficult to solve. To simplify the presentation, we will
use a non-dimensional electric potential ψ, which is the electric potential scaled by a factor of e/kT.
Here e is the electron charge, k is Boltzmann’s constant and T is the temperature. We will also use
a non-dimensional electric field which is given by:

E = −∇ψ. (35.1)

The Ca2+ flux in a solution in the presence of an electric field is governed by the Nernst-Planck
equation,

J = −σ (∇c− 2 cE) , (35.2)

where c = c(x, t) is the
[
Ca2+

]
(x ∈ Ω and t ∈[0,T]), σ the diffusion constant, E = E(x) the

non-dimensional electric field and 2 is the valence of Ca2+. Assuming conservation of mass, we
arrive at the advection-diffusion equation,

ċ = σ (∆c +∇ · (2 cE)) , (35.3)

where ċ is the time derivative of c.
The strength of ψ is defined by the amount of charge at the cell membrane and by the combined
screening effect of all the ions in the dyadic cleft. In addition to Ca2+, the intracellular solution
also contains K+, Na+, Cl−, and Mg2+. Following the previous approach by Langner et al. [1990]
and Soeller and Cannell [1997], these other ions are treated as being in steady state. The cell
membrane is assumed to be planar and effectively infinite. This last assumption allows us to use
an approximation of the electric potential in the solution,

ψ(z) = ψ0e−κz. (35.4)

Here ψ0 is the non-dimensional potential at the membrane, κ the inverse Debye length and z the
distance from the cell membrane. We will use ψ0 = −2.2 and κ = 1 nm [Soeller and Cannell, 1997].

Boundary fluxes. The boundary ∂Ω is divided into four disjoint boundaries ∂Ωk for k = 0, . . . , 3;
see Figure ?? (B). To each boundary we assign a flux, J|∂Ωk

= Jk. The SR and TT membranes are
impermeable to ions, effectively making ∂Ω

0
in Figure ?? (B) a no-flux boundary, giving us

J0 = 0. (35.5)

We include 2 LCCs in our model. The Ca2+ flows into the cleft at the ∂Ω[1,2] boundaries; see
Figure ?? (B). Ca2+ entering via these channels then diffuses to the RyRs, triggering Ca2+ release
from the SR. This additional Ca2+ flux will not be included in the simulations; however, the
stochastic dynamics of the opening of the RyR channel will be considered. The Ca2+ that enters
the dyadic cleft diffuses into the main compartment of cytosol, introducing a third flux. This flux
is included in the model at the ∂Ω

3
boundary.

The LCC is a stochastic channel that is either open or closed. When the channel is open Ca2+ flows
into the cleft. The current amplitude of an open LCC channel is modeled to be -0.1 pA [Guia et al.,
2001]. The LCC flux is then,

J[2,3] =

{
0, closed channel,

− i
2 F A , open channel,

(35.6)

646CHAPTER 35. A COUPLED STOCHASTIC AND DETERMINISTIC MODEL OF CA2+ DYNAMICS IN THE DYADIC CLEFT

Figure 35.2: (A): State diagram of the
discrete LCC Markov model from Jafri
et al. [1998]. Each channel can be in
one of the 12 states. The transitions
between the states are controlled by
propensities. The α, and β are voltage-

dependent, γ is
[
Ca2+

]
-dependent

and f , a, b, and ω are constant (see
Jafri et al. [1998] for further details).
The channel operates in two modes:
Mode normal, represented by the states
in the upper row, and Mode Ca, rep-
resented by the states in the lower
row. In state 6 and 12, the channel
is open, but state 12 is rarely entered
as f ′ � f , effectively making Mode
Ca an inactivated mode. (B): State
diagram of an RyR from Stern et al.
[1999]. The α and γ propensities are
Ca2+-dependent, representing the ac-
tivation and inactivation dependency

of the cytosolic
[
Ca2+

]
. The β and δ

propensities are constant.

where i is the amplitude, 2 the valence of Ca2+, F Faraday’s constant and A the area of the channel.
Note that an inward current is, by convention, negative.
The flux to the cytosol is modeled as a concentration-dependent flux,

J3 = −σ
c− c0

∆s
, (35.7)

where c is the concentration in the cleft at the boundary, c0 the concentration in the cytosol, and
∆s is an approximation of the distance to the center of the cytosol. In our model, we have used ∆s
= 50 nm.

35.2.3 Stochastic models of single channels

Discrete and stochastic Markov chain models are used to describe single channel dynamics for the
LCC and RyR. Such models are described by a certain number of discrete states. Each channel
can be in any one of these states, and a transition between two states is a stochastic event. The
frequency of these events is determined by the so called propensity functions associated with each
transition. These functions, which may vary with time, characterize the probability per unit time
that the corresponding transition event occurs. Each Markov model defines its own propensity
functions.

L-type Ca2+ channel. The LCC opens when an action potential arrives at the cell, and the channel
inactivates when Ca2+ ions bind to binding sites on the intracellular side of the channel. An LCC
is composed of a complex of four transmembrane subunits. Each of these can be permissive or
non-permissive. For the whole channel to be open, all four subunits must be permissive, and the
channel must then undergo a last conformational change to the open state [Hille, 2001]. In this
chapter, we employ a Markov model of the LCC that incorporates voltage-dependent activation

35.3. NUMERICAL METHODS FOR THE CONTINUOUS SYSTEM 647

together with a Ca2+-dependent inactivation [Jafri et al., 1998, Greenstein and Winslow, 2002]. The
state diagram of this model is presented in Figure ?? (A). It consists of 12 states, where state 6 and
12 are the only conducting states and hence define the open states. The transition propensities are
defined by a set of functions and constants, which are all described in Greenstein and Winslow
[2002].

Ryanodine receptors. RyRs are Ca2+ specific channels that are gathered in clusters at the SR
membrane in the dyadic cleft. These clusters can consist of several hundred RyRs [Beuckelmann
and Wier, 1988, Franzini-Armstrong et al., 1999]. They open by single Ca2+ ions attaching to the
receptors on the cytosolic side. We will use a modified version of a phenomenological RyR model
that mimics the physiological functions of the channel [Stern et al., 1999]. The model consists
of four states where only one, state 2, is conducting; see Figure ?? (B). The α and γ propensities

are Ca2+-dependent, representing the activation and inactivation dependency of cytosolic
[
Ca2+

]
.

The β and δ propensities are constants. For specific values of propensities; see Stern et al. [1999].

35.3 Numerical methods for the continuous system

In this section we will describe the numerical methods used to solve the continuous part of the
computational model of Ca2+ dynamics in the dyadic cleft. We will provide DOLFIN code for each
part of the presentation. The first part of the section describes the discretization of the continuous
problem using a finite element method. The second part describes a method to stabilize the
discretization, and we also conduct a parameter study to find the optimal stabilization parameters.

35.3.1 Discretization

The continuous problem is defined by (35.3 -35.7) together with an initial condition. Given a
bounded domain Ω ⊂ R3 with the boundary ∂Ω we want to find c = c(x, t) ∈ R+, for x ∈ Ω and
t ∈ [0, T], such that:

{
ċ = σ∆c−∇ · (ca) in Ω,

σ∂nc− ca · n = Jk on ∂Ωk, k = 1, . . . , 4,
(35.8)

and c(·, 0) = c0(x). Here a = a(x) = 2σE(x) and Jk is the kth flux at the kth boundary ∂Ωk, where⋃4
k=1 ∂Ωk = ∂Ω, ∂nc = ∇c · n, where n is the outward normal on the boundary. The Jk are given

by (35.5)-(35.7).
The continuous equations are discretized using a finite element method in space. (35.8) is multiplied
with a proper test function, v, and integrated over the spatial domain, thus obtaining:

∫

Ω
ċv dx =

∫

Ω
(σ∆c−∇(ca)) v dx. (35.9)

Integration by parts together with the boundary conditions in (35.8) yields:
∫

Ω
ċv dx = −

∫

Ω
(σ∇c− ca) · ∇v dx + ∑

k

∫

∂Ωk

Jkv dsk. (35.10)

Consider a mesh Th = {T} of simplicial cells T. Let Vh denote the space of piecewise linear
polynomials defined relative to the mesh Th. Using the backward Euler methods in time, we seek
an approximation of c: ch ∈ Vh with nodal basis {φi}N

i=1. (35.10) can now be discretized as follows:

648CHAPTER 35. A COUPLED STOCHASTIC AND DETERMINISTIC MODEL OF CA2+ DYNAMICS IN THE DYADIC CLEFT

Consider the nth time step, then given cn
h find cn+1

h ∈ Vh such that

∫

Ω

cn+1
h − cn

h
∆t

v dx = −
∫

Ω

(
σ∇cn+1

h − cn+1
h a

)
· ∇v dx + ∑

k

∫

∂Ω
Jkv dsk, ∀ v ∈ Vh, (35.11)

where ∆t is the size of the time step. The trial function cn
h(x) is expressed as a weighted sum of

basis functions,

cn
h(x) =

N

∑
j

Cn
j φj(x). (35.12)

where Cn
j are the coefficients. Due to the choice of Vh, the number of unknowns N will coincide

with the number of vertices of the mesh.
Taking test function, v = φi, i ∈ {1, . . . , N} gives the following algebraic system of equations in

terms of the coefficients
{

cn+1
i

}N

i=1
:

1
∆t

M
(

Cn+1 − Cn
)
=

(
−K + E + ∑

k
αkFk

)
Cn+1

j + ∑
k

ck
0 f k. (35.13)

Here Cn ∈ RN is the vector of coefficients from the discrete solution, cn
h(x), αk and ck

0 are constant
coefficients given by (35.5)–(35.7) and

Mij =
∫

Ω
φiφj dx, Kij =

∫

Ω
∇φi · ∇φj dx,

Eij =
∫

Ω
aφi · ∇φj dx, Fk

ij =
∫

∂Ωk

φiφj ds,
(35.14)

are the entries in the M, K, E and Fk matrices. f k are boundary source vectors corresponding to
the kth boundary, with vector elements given by:

f k
i =

∫

∂Ωk

φi ds. (35.15)

The following DOLFIN code assembles the matrices and vectors from (35.14)–(35.15):

Python code
import numpy as np

from dolfin import *

mesh = Mesh("cleft_mesh.xml.gz")

mesh.order()

Vs = FunctionSpace(mesh, "CG", 1)

Vv = VectorFunctionSpace(mesh, "CG", 1)

v = TestFunction(Vs)

u = TrialFunction(Vs)

Defining the electric field-function

a = Expression(["0.0","0.0","phi_0*valence*kappa*sigma*exp(-kappa*x[2])"],

defaults = {"phi_0":-2.2,"valence":2,"kappa":1,"sigma":1.e5},

element=Vv.ufl_element())

Assembly of the K, M and A matrices

K = assemble(inner(grad(u), grad(v))*dx)

35.3. NUMERICAL METHODS FOR THE CONTINUOUS SYSTEM 649

M = assemble(u*v*dx)

E = assemble(-u*inner(a, grad(v))*dx)

Collecting face markers from a file, and skip the 0 one

sub_domains = MeshFunction("uint", mesh, "cleft_mesh_face_markers.xml.gz")

unique_sub_domains = list(set(sub_domains.values()))

unique_sub_domains.remove(0)

Assemble matrices and source vectors from exterior facets domains

domain = MeshFunction("uint", mesh, 2)

F = {}; f = {}; tmp = K.copy(); tmp.zero()

for k in unique_sub_domains:

domain.values()[:] = (sub_domains.values() != k)

F[k] = assemble(u*v*ds, exterior_facet_domains = domain,

tensor = tmp.copy(), reset_sparsity = False)

f[k] = assemble(v*ds, exterior_facet_domains = domain)

In the above code we define only one form for the different boundary mass matrices and boundary
source vectors, u*v*ds and v*ds, respectively. The assemble routine will assemble these forms
over the 0th sub-domain. By passing sub-domain specific MeshFunctions to the assemble routine,
we can assemble the correct boundary mass matrices and boundary source vectors. We collect
the matrices and boundary source vectors; these are then added to form the linear system to be
solved at each time step. If an LCC opens, the collected source vector from that boundary will
contribute to the right hand side. If an LCC closes the same source vector are removed from the
right-hand side. When an LCC either opens or closes, a large flux is either added to or removed
from the system. To be able to resolve sharp time gradients correctly we need to take smaller time
steps following such an event. After the time step has been reset to a small number we can start
expanding it by multiplying the time step with a constant > 1.

The sparse linear system is solved using the PETSc linear algebra backend [Balay et al., 2001] in
DOLFIN together with the Bi-CGSTAB iterative solver [van der Vorst, 1992], and the BoomerAMG
preconditioners from hypre [Falgout and Yang, 2002]. A script that solves the algebraic system
from (35.13) together with a crude time stepping scheme for the opening and closing of the
included LCC channel is presented below.

35.3.2 Stabilization

It turns out that the algebraic system in (35.13) can be numerically unstable for physiological
relevant values of a. This is due to the transport term introduced by Eij from (35.14). We have
chosen to stabilize the system using the Streamline upwind Petrov-Galerkin (SUPG) method
[Brooks and Hughes, 1982]. This method adds an upwind discontinuous contribution to the test
function in the streamline direction (35.9):

v′ = v + s, where s = τ
hτe

2‖a‖ a · ∇v. (35.16)

Here τ is a parameter we want to optimize (see later in this Section), ‖ · ‖ is the Euclidean norm in
R3, h = h(x) is the element size, and τe = τe(x), is given by,

τe = coth(PEe)−
1

PEe
, (35.17)

650CHAPTER 35. A COUPLED STOCHASTIC AND DETERMINISTIC MODEL OF CA2+ DYNAMICS IN THE DYADIC CLEFT

where PEe is the element Péclet number:

PEe =
‖a‖h
2σ

. (35.18)

When PEe is larger than 1 the system becomes unstable, and oscillations are introduced.
In the 1D case with a uniform mesh, the stabilization term defined by (35.17)–(35.18) can give exact
nodal solutions [Christie et al., 1976, Brooks and Hughes, 1982]. Our choice of stabilization param-
eter is inspired by this. We have used h to denote the diameter of the sphere that circumscribes
the local tetrahedron. This is what DOLFIN implements in the function Cell.diameter(). We
recognize that other choices exist, which might give improved stabilization [John and Knobloch,
2007]; for example Tezduyar and Park [1986] use a length based on the size of the element in the
direction of a.
The DOLFIN code that assembles the SUPG part of the problem is presented in the following
script:

Python code
Python code for the assembly of the SUPG term for the mass and advection matrices

Defining the stabilization using local Peclet number

cppcode = ’’’class Stab : public Expression {

public:

GenericFunction* field; double sigma;

Stab(): Expression(3), field(0), sigma(1.0e5){}

void eval(Array<double>& v, const Data& data) const {

if (!field)

error("Attach a field function.");

double field_norm = 0.0; double tau = 0.0;

double h = data.cell().diameter();

field->eval(v, data);

for (uint i = 0;i < data.x.size(); ++i)

field_norm += v[i]*v[i];

field_norm = sqrt(field_norm);

double PE = 0.5*field_norm * h/sigma;

if (PE > DOLFIN_EPS)

tau = 1/tanh(PE)-1/PE;

for (uint i = 0;i < data.x.size(); ++i)

v[i] *= 0.5*h*tau/field_norm;

}};

’’’

stab = Expression(cppcode); stab.field = a

Assemble the stabilization matrices

E_stab = assemble(div(a*u)*inner(stab, grad(v))*dx)

M_stab = assemble(u*inner(stab, grad(v))*dx)

Adding them to the A and M matrices, weighted by the global tau

tau = 0.28; E.axpy(tau, E_stab, True); M.axpy(tau, M_stab,True)

In the above script, two matrices E_stab and M_stab are assembled. Both matrices are added to
the corresponding advection and mass matrices E and M, weighted by the global parameter tau.
A mesh with finer resolution close to the TT surface, at z = 0 nm, is used to resolve the steep
gradient of the solution in this area. It is here the electric field is at its strongest yielding an element
Péclet number larger than 1. However the field attenuates quickly: at z = 3 nm the field is down
to 5% of the maximum amplitude, and at z = 5 nm it is down to 0.7%. The mesh can thus be fairly
coarse in the interior of the domain. The mesh generator tetgen is used to to produce meshes
with the required resolution [Si, 2007].

35.3. NUMERICAL METHODS FOR THE CONTINUOUS SYSTEM 651

Figure 35.3: The figure shows a plot
of the error versus the stabilization pa-
rameter τ for 3 different mesh resolu-
tions. The mesh resolutions are given
by the median of the z distance of all
vertices and the total number of ver-
tices in the mesh; see legend. We see
that the minimal values of the error
for the three meshes occur at three dif-
ferent τ: 0.22, 0.28, and 0.38.

35.3.3 Solving the discretized system

The DOLFIN code that solves the discretized and stabilized system from (35.13) is given by:

Python code
Model parameters

dt_min = 1.0e-10; dt = dt_min; t = 0; c0 = 0.1; tstop = 1.0

events = [0.2,tstop/2,tstop,tstop]; dt_expand = 2.0;

sigma = 1e5; ds = 50; area = pi; Faraday = 0.0965; amp = -0.1

t_channels = {1:[0.2,tstop/2], 2:[tstop/2,tstop]}

Initialize the solution Function and the left and right hand side

u = Function(Vs); x = u.vector()

x[:] = c0*exp(-a.valence*a.phi_0*exp(-a.kappa*mesh.coordinates()[:,-1]))

b = Vector(len(x)); A = K.copy();

solver = KrylovSolver("bicgstab","amg_hypre")

solver.parameters["relative_tolerance"] = 1e-10

solver.parameters["absolute_tolerance"] = 1e-7

plot(u, vmin=0, vmax=4000, interactive=True)

while t < tstop:

Initalize the left and right hand side

A.assign(K); A *= sigma; A += E; b[:] = 0

Adding channel fluxes

for c in [1,2]:

if t >= t_channels[c][0] and t < t_channels[c][1]:

b.axpy(-amp*1e9/(2*Faraday*area),f[c])

Adding cytosole flux at Omega 3

A.axpy(sigma/ds,F[3],True); b.axpy(c0*sigma/ds,f[3])

Applying the Backward Euler time discretization

A *= dt; b *= dt; b += M*x; A += M

solver.solve(A,x,b)

t += dt; print "Ca Concentration solved for t:",t

Handle the next time step

if t == events[0]:

652CHAPTER 35. A COUPLED STOCHASTIC AND DETERMINISTIC MODEL OF CA2+ DYNAMICS IN THE DYADIC CLEFT

Figure 35.4: The figure shows concen-
tration results from numerical solu-
tions from Mesh 1 (see legend of Fig-
ure ??), for three different τ, together
with the analytical solution. The solu-
tions were picked from a line between
the points (0,0,0) and (0,0,12). We see
that the solution with τ = 0.10 oscil-
lates. The solution with τ = 0.22 was
the solution with smallest global error
for this mesh (see Fig ??), and the so-
lution with τ = 0.60 undershoots the
analytical solution at z = 0 nm with
'1.7 µM.

dt = dt_min; events.pop(0)

elif t + dt*dt_expand > events[0]:

dt = events[0] - t

else:

dt *= dt_expand

plot(u, vmin=0, vmax=4000)

plot(u, vmin=0, vmax=4000, interactive=True)

The time stepping scheme presented in the above code is crude, but simple and explicit. The
solution algorithm is based on pre-assembled matrices. Adding matrices and vectors together
makes the construction of the linear system more complicated compared to including the time
discretization directly into a variational form. However, by pre-assemble the matrices and source
vectors we do not have to reassemble the linear system during the time stepping, and time is
saved during execution. This becomes important when larger meshes and hundred of channels are
included.

35.3.4 Finding an optimal stabilization parameter

The global stabilization parameter, τ, is problem-dependent. To find an optimal τ for a certain
electric field and mesh, the system in (35.13) is solved to steady state, defined as T = 1.0 ms, using
only homogeneous Neumann boundary conditions. A homogeneous concentration of c0 = 0.1
µM is used as the initial condition. The numerical solution is then compared with the analytical
solution of the problem. This solution is acquired by setting J = 0 in (35.2) and solving for the c,
with the following result:

c(z) = cbe−2ψ(z). (35.19)

Here ψ is given by (35.4), and cb is the bulk concentration; that is, where z is large. cb was chosen
such that the integral of the analytical solution was equal to c0 ×V, where V is the volume of the
domain.
The error of the numerical solution for different values of τ and for three different mesh resolutions
is plotted in Figure ??. The meshes are enumerated from 1-3, and a higher number corresponds to
a better resolved boundary layer at z=0 nm. As expected, we see that the mesh that resolves the
boundary layer best produces the smallest error. The error is computed using the L2(Ω) norm and

35.3. NUMERICAL METHODS FOR THE CONTINUOUS SYSTEM 653

Figure 35.5: The figures show the con-
centration traces of the numerical solu-
tions from Mesh 2 (see legend of Fig-
ure ??), for three different τ, together
with the analytical solution. The solu-
tion traces in the two panels are picked
from a line between the points (0,0,0)
and (0,0,1.5), for the left panel, and
between spatial points (0,0,10.5) and
(0,0,12) for the right panel. We see
from both panels that the solution for
τ = 0.10 gives the poorest approxima-
tion. The solution with τ = 0.28 was
the solution with smallest global error
for this mesh (see Fig ??), and this is re-
flected in the reasonable good fit seen
in the left panel, especially at z = 0
nm. The solution with τ = 0.60 under-
shoots the analytical solution at z = 0
with '1.2 µM. From the right panel
we see that all numerical solutions un-
dershoot at z = 12 nm. We also see
that the trace for τ = 0.60 comes the
closest to the analytical solution.

is normalized by the L2(Ω) norm of the analytical solution,

‖c(T)− cnT
h ‖L2

‖c(T)‖L2
, (35.20)

where nT is the time step at t = T. The mesh resolutions are quantified by the number of vertices
close to z = 0. In the legend of Figure ??, the median of the z distance of all vertices and the total
number of vertices in each mesh is presented.
Traces from the actual simulations are plotted in Figure ??-??. In each figure are three numerical
and one analytical solution plotted for each mesh. The numerical solutions are from simulations
using three different τ: 0.1, 0.6 and the L2-optimal τ (see Figure ??). The traces in the figures
are from the discrete solution cnT

h , interpolated onto the straight line between the spatial points
p0=(0,0,0) and p1=(0,0,12).
In Figure ?? the traces from Mesh 1 are plotted. Here we see that the numerical solutions are quite
poor for some τ. The solution with τ = 0.10 is not correct as it produces negative concentrations; a
physiological impossibility. The solution with τ = 0.60 seems more correct, but it undershoots the
analytical solution at z = 0 with '1.7 µM. The solution with τ = 0.22 is the L2-optimal solution
for Mesh 1, and approximates the analytical solution at z = 0 well.
In Figure ??, the traces from Mesh 2 are presented in two plots. The left plot shows the traces for
z < 1.5 nm, and the right shows traces for z > 10.5 nm. In the left plot, we see the same tendency
as in Figure ??: an overshoot of the solution with τ = 0.10 and an undershoot of the solution with
τ = 0.60. The L2-optimal solution for τ = 0.28, overshoots the analytical solution for the shown
interval in the left plot, but undershoots for the rest of the trace.
In the last figure, Figure ??, traces from mesh 3 are presented. The results are also presented in
two plots here, corresponding to the same z interval as in Figure ??. We see that the solution
with τ = 0.10 is again not acceptable in either interval. In the left plot, it clearly overshoots the

654CHAPTER 35. A COUPLED STOCHASTIC AND DETERMINISTIC MODEL OF CA2+ DYNAMICS IN THE DYADIC CLEFT

Figure 35.6: The figure shows the con-
centration traces of the numerical solu-
tions from Mesh 3 (see legend of Fig-
ure ??), for three different τ, together
with the analytical solution. The traces
in the two panels were picked from the
same lines for Figure ??. Again, we
see from both panels that the solution
with τ = 0.10 give the poorest solu-
tion. The solution with τ = 0.38 was
the solution with smallest global error
for this mesh (see Fig ??), and this is
reflected in the good fit seen in the left
panel, especially at z = 0nm. The so-
lution with τ = 0.60 undershoots the
analytical solution at z = 0 with '0.7
µM. From the right panel, we see that
all numerical solutions undershoot at
z = 15 nm, and the trace with τ = 0.60
here also comes closest to the analyti-
cal solution.

analytical solution for most of the interval, and then undershoot the analytical solution for the
rest of the interval. The solution with τ = 0.60 is improved here compared to the two previous
plots. It undershoots the analytical solution at z = 0; but stays closer for the rest of the interval as
compared to the L2-optimal solution. The L2 norm penalizes larger distances between two traces;
that is, weighting the error close to z = 0 more than the rest. The optimal solution measured in the
Max norm is given when τ = 50 (result not shown).
The numerical results tell us that the Streamline upwind Petrov-Galerkin method can be used to
stabilize the Finite element solution of the advection-diffusion problem presented in (35.8). Three
different meshes that resolve the boundary layer at z = 0 nm differently were used. For each
mesh a global τ, which produce an L2 optimal solution, were obtained. To test convergence rate
we also did simulations with homogeneously refined meshes. The largest mesh had '180 000

number of vertices. The errors for the optimal τ for each mesh resolution were compared and
linear convergence rate was obtained (result not shown).
The largest mesh in our test problems, the one that resolves the boundary layer best, is not large: '
24 000 vertices. The convergence study we performed showed that we could decrease the reported
error more by using meshes with better resolution. However, the meshes we ran our simulations
on, where physiological small meshes; radius=20nm. A relevant size would need a radius of '200

nm. This would create a mesh with '2.5 million vertices for the highest resolution we use in this
chapter. A mesh with such a size would be a challenge for a serial solver, and parallel solvers need
to be employed. The software that will be presented next, diffsim, does unfortunately not support
parallel solvers.

35.4 diffsim an event-driven simulator

In the DOLFIN scripts above, we show how a simple continuous solver can be built with DOLFIN.
By pre-assembling the matrices from (35.14), a flexible system for adding and removing boundary
fluxes corresponding to the state of the channels can be constructed. The solving script uses fixed
time points for the channel state transitions. At these time points, we minimize ∆t so we can

35.4. DIFFSIM AN EVENT-DRIVEN SIMULATOR 655

Figure 35.7: Diagram for the time step-
ping algorithm using 3 discrete objects:
DtExpander, StochasticHandler,
TStop. The values below the small
ticks corresponds to the time to the
next event for each of the discrete
objects. This time is measured from
the last realized event, which is
denoted by the thicker tick. See text
for details.

resolve the sharp time gradient. In between the channel transitions we expand ∆t. This simplistic
time stepping scheme has been sufficient to solve the presented example. However, it would be
difficult to extend this to incorporate the time stepping involved with the solution of stochastic
Markov models and other discrete variables. For such scenarios, an event-driven simulator called
diffsim has been developed. In the final subsections in this chapter the algorithm underlying the
time stepping scheme in diffsim will be presented. An example of how one can use diffsim to
describe and solve a model of Ca2+ dynamics in the dyadic cleft is also demonstrated.

35.4.1 Stochastic system

The stochastic evolution of the Markov chain models presented in Section 35.2.3 is determined by a
modified Gillespie method [Gillespie, 1977], which resembles one presented in Rüdiger et al. [2007].
Here we will not go into detail, but rather focus on the part of the method that has importance for
the overall time stepping algorithm.
The solution of the included stochastic Markov chain models is stored in a state vector S. Each
element in S corresponds to one Markov model, and the value reflects which state each model is in.
The transitions between these states are modeled stochastically and are computed using a modified
Gillespie method. Basically this method gives us which of the states in S changes to what state and
when. Not all such state transitions are relevant for the continuous system. A transition between
two closed states in the LCC model, for instance, will not have any impact on the boundary fluxes,
and can be ignored. Only transitions that either open or close a channel (channel transitions),
will be recognized. The modified Gillespie method assumes that any continuous variables on
which a certain propensity function depends are constant during a time step. The error incurred
by this assumption is reduced by taking smaller time steps right after a channel transition as the
continuous field is indeed changing dramatically during this time period.

35.4.2 Time stepping algorithm

To simplify the presentation of the time stepping algorithm, we only consider one continuous
variable, the Ca2+ field. A Python-like pseudo code for the time stepping algorithm is shown in
the following script:

Python code
Python-like pseudo code for the time stepping algorithm used in diffsim

while not stop_sim:

The next event

event = min(discrete_objects)

dt = event.next_time()

Step the event and check result

656CHAPTER 35. A COUPLED STOCHASTIC AND DETERMINISTIC MODEL OF CA2+ DYNAMICS IN THE DYADIC CLEFT

while not event.step():

event = min(discrete_objects)

dt = event.next_time()

Update the other discrete objects with dt

for obj in discrete_objects:

obj.update_time(dt)

Solve the continuous equation

ca_field.solve(dt)

ca_field.send()

Distribute the event

event.send()

The framework presented with this pseudo code can be expanded to handle several continuous
variables. We define a base class called DiscreteObject, which defines the interface for all
discrete objects. A key function of a discrete object is to know when its next event is due. The
DiscreteObject that has the smallest next event time gets to define the size of the next ∆t. In
Python, this is easily achieved by making the DiscreteObjects sortable with respect to their next
event time. All DiscreteObjects are then collected in a list discrete_objects (see script below).
The DiscreteObject with the smallest next event time is then simply min(discrete_objects). An
event from a DiscreteObject that does not have an impact on the continuous solution will be
ignored; for example, a Markov chain model transition that is not a channel transition as noted
above. A transition needs to be realized before we can tell if it is a channel transition or not.
This is done by stepping the DiscreteObject; that is, calling the object’s step() method. If the
method returns False it will not affect the Ca2+ field. We then enter a while loop and a new
DiscreteObject is picked. If the object returns True when stepped we exit the loop and continue.
Next, we have to update the other discrete objects with the chosen ∆t, solve for the Ca2+ field,
broadcast the solution, and last but not least, execute the discrete event that is scheduled to happen
at ∆t.
In Figure ??, we show an example of a possible realization of this algorithm. In (A) we have
realized a time event at t = 2.0 ms. The next event to be realized is a stochastic transition, the one
with smallest value below the ticks. In (B) this event is realized, and the StochasticHandler now
shows a new next event time. The event is a channel transition forcing the dt, controlled by the
DtExpander, to be minimized. DtExpander now has the smallest next event time, and is realized in
(C). The channel transition that was realized in (B) raised the

[
Ca2+

]
in the cleft, which in turn

increased the Ca2+-dependent propensity functions in the included Markov models. The time to
next event time of the StochasticHandler has therefore been updated, and moved forward in (C).
Also note that the DtExpander has expanded its next event time. In (D), the stochastic transition is
realized and updated with a new next event time, but it is ignored as it is not a channel transition.
The smallest time step is now the DtExpander, and this is realized in (E). In this example, we do
not realize the TStop event, as it is too far away.

35.4.3 diffsim: an example

diffsim is a versatile, event-driven simulator that incorporates the time stepping algorithm
presented in the previous section together with the infrastructure to solve models with one
or more diffusional domains defined by a computational mesh. Each such domain can have
several diffusive ligands. Custom fluxes can easily be included through the framework. The
submodule dyadiccleft implements some published Markov models that can be used to simulate

35.4. DIFFSIM AN EVENT-DRIVEN SIMULATOR 657

the stochastic behavior of a dyad and some convenient boundary fluxes. It also implements
the field flux from the lipid bi-layer discussed in Section 35.2.2. The following script runs 10

simulations to collect the time to release, also called the latency, for a dyad:

Python code
An example of how diffsim can be used to simulate the time to RyR release latency, from

a small dyad who’s domain is defined by the mesh in the file cleft_mesh_with_RyR.xml.gz

from diffsim import *
from diffsim.dyadiccleft import *
from numpy import exp, from file

Model parameters

c0_bulk = 0.1; D_Ca = 1.e5; Ds_cyt = 50; phi0 = -2.2; tau = 0.28

AP_offset = 0.1; dV = 0.5, ryr_scale = 100; end_sim_when_opend = True

Setting boundary markers

LCC_markers = range(10,14); RyR_markers = range(100,104); Cyt_marker = 3

Add a diffusion domain

domain = DiffusionDomain("Dyadic_cleft","cleft_mesh_with_RyR.xml.gz")

c0_vec = c0_bulk*exp(-VALENCE[Ca]*phi0*exp(-domain.mesh().coordinates()[:,-1]))

Add the ligand with fluxes

ligand = DiffusiveLigand(domain.name(),Ca,c0_vec,D_Ca)

field = StaticField("Bi_lipid_field",domain.name())

Ca_cyt = CytosolicStaticFieldFlux(field,Ca,Cyt_marker,c0_bulk,Ds_cyt)

Adding channels with Markov models

for m in LCC_markers:

LCCVoltageDepFlux(domain.name(), m, activator=LCCMarkovModel_Greenstein)

for m in RyR_markers:

RyRMarkovModel_Stern("RyR_%d"%m, m, end_sim_when_opend)

Adding a dynamic voltage clamp that drives the LCC Markov model

AP_time = fromfile(’AP_time_steps.txt’,sep=’\n’)

dvc = DynamicVoltageClamp(AP_time,fromfile(’AP.txt’,sep=’\n’),AP_offset,dV)

Get and set parameters

params = get_params()

params.io.save_data = True

params.Bi_lipid_field.tau = tau

params.time.tstop = AP_time[-1] + AP_offset

params.RyRMarkovChain_Stern.scale = ryr_scale

info(str(params))

Run 10 simulations

data = run_sim(10,"Dyadic_cleft_with_4_RyR_scale")

mean_release_latency = mean([run["tstop"] for run in data["time"]])

The two Markov models presented in Section 35.2.3 are here used to model the stochastic dynamics
of the RyRs and the LCCs. The simulation is driven by a so-called dynamic voltage clamp. With a
voltage clamp we can dynamically clamp the voltage to a certain wave form. The wave form can
be acquired from experiments. The data that define the voltage clamp are read from a file using
utilities from NumPy Python packages.

658CHAPTER 35. A COUPLED STOCHASTIC AND DETERMINISTIC MODEL OF CA2+ DYNAMICS IN THE DYADIC CLEFT

35.5 Discussion

We have presented a computational model of Ca2+ dynamics of the dyadic cleft in heart cells.
It consists of a coupled stochastic and continuous system. We have showed how one can use
DOLFIN to discretise and solve the continuous system using a finite element method. Because the
continuous system is an advection-diffusion equation that produces unstable discretizations, we
investigate how one can use the SUPG method for stability. We employ three different meshes each
with different resolutions at the boundary layer of the electrical potential, and find an L2-optimal
global stabilization parameter τ for each mesh.
We do not present a solver for the stochastic system. However, we outline a time stepping scheme
that can be used to couple the stochastic solver with solver presented for the continuous system. A
simulator diffsim is briefly introduced, which implements the presented time stepping scheme
together with the presented solver for the continuous system.

36 Electromagnetic waveguide analysis

By Evan Lezar and David B. Davidson

At their core, Maxwell’s equations are a set of differential equations describing the interactions
between electric and magnetic fields, charges, and currents. These equations provide the tools with
which to predict the behavior of electromagnetic phenomena, giving us the ability to use them in a
wide variety of applications, including communication and power generation. Due to the complex
nature of typical problems in these fields, numeric methods such as the finite element method are
often employed to solve them.

One of the earliest applications of the finite element method in electromagnetics was in Silvester
[1969] where it was applied to the analysis of waveguide structures. These structures are typically
bounded structures – although open waveguides do exist – for which a countably infinite number
of modes satisfy Maxwell’s equations and their associated boundary conditions [Pozar, 2005]. The
finite element analysis of these structures is concerned with calculating these waveguide modes,
which are generally characterized by a complex propagation constant as well as an associated
electromagnetic field distribution (which may both be a function of frequency). The formulation
adopted in this work is that of Lee et al. [1991] for lossless materials, with an extension to the
lossy case presented in Lee [1994]. An overview of the state-of-the-art in the field is presented
in Davidson [2011]. Alternate formulations are discussed subsequently.

Since waveguides are some of the most common structures in microwave engineering, especially
in areas where high power and low loss are essential [Pozar, 2005], their analysis is still a topic of
much interest. This chapter considers the use of FEniCS in the cutoff and dispersion analysis of
these structures as well as the analysis of waveguide discontinuities. These types of analysis form
an important part of the design and optimization of waveguide structures for a particular purpose.
In these kinds of waveguide problems, the solution of generalized eigensystems are required with
the eigenvalues and eigenvectors of the systems associated with the waveguide modes that are of
interest.

The aim of this chapter is to guide the reader through the process followed in implementing
solvers for various electromagnetic problems with both cutoff and dispersion analysis considered
in depth. To this end a brief introduction to electromagnetic waveguide theory, the mathematical
formulation of these problems, and the specifics of their solutions using the finite element method
are presented in 36.1. This lays the groundwork for a discussion of the details pertaining to the
FEniCS implementation of these solvers, covered in 36.2. The translation of the finite element
formulation to FEniCS, as well as some post-processing considerations are covered. In 36.3
the solution results for three typical waveguide configurations are presented and compared to
analytical or previously published data. This serves to validate the implementation and illustrates
the kinds of problems that can be solved.

659

660 CHAPTER 36. ELECTROMAGNETIC WAVEGUIDE ANALYSIS

36.1 Formulation

In electromagnetics, the behavior of the electric and magnetic fields are described by Maxwell’s
equations [Jin, 2002, Smith, 1997]. Using these partial differential equations, various boundary
value problems can be obtained depending on the problem being solved. In the case of time-
harmonic fields, the equation used is the vector Helmholtz wave equation. If the problem is further
restricted to a domain surrounded by perfect electrical or magnetic conductors (as is the case in
general waveguide problems) the wave equation in terms of the electric field, E, can be written
as [Jin, 2002]

∇× 1
µr
∇× E− k2

oεrE = 0 in Ωv, (36.1)

subject to the boundary conditions

n̂× E = 0 on Γe (36.2)

n̂×∇× E = 0 on Γm, (36.3)

with Ωv representing the interior of the waveguide and Γe and Γm electric and magnetic walls
respectively. µr and εr are the relative permeability and relative permittivity respectively. These
are material parameters that may be inhomogeneous (varying in space) but only the isotropic case
is considered here. In this case, isotropic means that the medium’s response is the same for all
directions of the electric field vector [Ramo et al., 1994]. It should be noted that the formulations
discussed here can also be extended to the anisotropic case as in Polycarpou et al. [1996].
In (36.1), ko is the operating wavenumber which is related to the operating frequency (fo) by the
expression

ko =
2π fo

c0
, (36.4)

with c0 the speed of light in free space. This boundary value problem can also be written in terms
of the magnetic field as in Jin [2002], but as the discussions that follow are applicable to both
formulations this will not be considered here.
One way to solve the boundary value problem is to find the stationary point of the following
variational functional

F(E) =
1
2

∫

Ωv

[
1
µr

(∇× E) · (∇× E)− k2
oεrE · E

]
dx, (36.5)

which can be found in a number of computational electromagnetic texts, including those by Jin
[2002] and Pelosi et al. [1998], as well as the paper by Lee et al. [1991]. In the case of the waveguide
problems considered here, a number of simplifications can be made to the solution process and
these will now be discussed. Note that for this source-free formulation, the 1

2 factor in (36.5) is
superfluous, and is subsequently dropped.
If the guide is sufficiently long, and the z-axis is chosen parallel to its cylinder axis as shown
in Figure 36.1, then the z-dependence of the electric field can be assumed to be of the form
e−γz with γ = α + jβ a complex propagation constant [Pelosi et al., 1998, Pozar, 2005]. Making
this assumption and splitting the electric field into transverse (Et = x̂Ex + ŷEy) and axial (ẑEz)
components, results in the following expression for the field

E(x, y, z) = [Et(x, y) + ẑEz(x, y)]e−γz, (36.6)

with x and y the Cartesian coordinates in the cross sectional plane of the waveguide and z the

36.1. FORMULATION 661

Figure 36.1: A long waveguide with
an arbitrary cross section aligned with
the z-axis. Note the labels for the do-
main corresponding to the waveguide
interior (Ωv) as well as the electric wall
Γe.

x̂
ẑ

ŷ
εr
µr

Ωv
Γe

coordinate along the length of the waveguide. Here x̂, ŷ, and ẑ, represent unit vectors in the x,
y, and z-direction respectively. For the purpose of this discussion, also consider the following
representation of ∇ in Cartesian coordinates

∇ = ∇t +∇z, (36.7)

with
∇t =

∂

∂x
x̂ +

∂

∂y
ŷ, (36.8)

the transverse gradient, and

∇z =
∂

∂z
ẑ, (36.9)

the partial derivative with respect to z in the z-direction.

By substituting the expression for the field in (36.6) as well as the decomposition of ∇ of (36.7) into
the functional of (36.5) and performing a number of vector manipulations, the following modified
functional can be obtained

F(E) =
∫

Ω

1
µr

(∇t × Et) · (∇t × Et)− k2
oεrEt · Et

+
1
µr

(∇tEz + γEt) · (∇tEz + γEt)− k2
oεrEzEz dx. (36.10)

Note that in this case the integration domain (Ωv) of (36.5) – representing the entire waveguide
interior volume – has been replaced by integration over the waveguide cross section – indicated
by the domain Ω in (36.10) – for an arbitrary z position. Functionals similar to the one shown in
(36.10) are employed in Lee et al. [1991], Jin [2002], and Pelosi et al. [1998], although in the latter
case, this is derived by substituting (36.6) into the original Helmholtz equation of (36.1).

Using two dimensional curl-conforming vector basis functions (Ni) for the discretization of the trans-
verse field (such as the basis functions from the Nédélec function space of the first kind [Nédélec,
1980, Webb, 1993, Monk, 2003]), and nodal scalar basis functions (Li) for the axial components [Jin,
2002, Pelosi et al., 1998], the discretized field components (indicated by the h subscript) of (36.6)
are given by [Jin, 2002, Pelosi et al., 1998]

Et,h =
NN

∑
i=1

(et)i Ni, (36.11)

Ez,h =
NL

∑
i=1

(ez)iLi. (36.12)

Here (et)i and (ez)i are the coefficient of the ith vector and scalar basis functions respectively, while
NN and NL are the total number of each type of basis function used in the discretization. The

662 CHAPTER 36. ELECTROMAGNETIC WAVEGUIDE ANALYSIS

letters N and L are chosen for the basis function names as a reminder that the basis functions come
from a Nédélec function space and a Lagrange polynomial space respectively. A discussion on
these and other basis functions is presented in Chapter 4.
The formulation used here, where the electric field in the waveguide is expressed as a combination
of transverse and axial components, is probably one of the most widely used in practice. A number
of other approaches have also been taken, with other vector formulations (most notably that of
Davies in Itoh et al. [1996]) discussed by Dillon and Webb [1994]. Other formulations, for instance,
involve only nodal elements; some use the axial fields as the working variable; and the problem
has also been formulated in terms of potentials, rather than fields. A good summary of these may
be found in Chapter 9 of Zhu and Cangellaris [2006].

36.1.1 Waveguide cutoff analysis

One of the simplest cases to consider, and often a starting point when testing a new finite element
implementation, is waveguide cutoff analysis. When a waveguide is operating at cutoff, the electric
field is constant along the z-axis which corresponds to γ = 0 in (36.6) [Pozar, 2005]. Substituting
γ = 0 into (36.10) yields the following functional for cutoff analysis

Fc(E) =
∫

Ω

1
µr

(∇t × Et) · (∇t × Et)− k2
c εrEt · Et +

1
µr

(∇tEz) · (∇tEz)− k2
c εrEzEz dx. (36.13)

The symbol for the operating wavenumber, ko, has been replaced with kc, with the c subscript
indicating that the quantity of interest is now the cutoff wavenumber. This quantity and the electric
field distribution at cutoff are of interest in these kinds of problems.
Substituting the discretized field equations of (36.11) and (36.12) into the functional (36.13) and
applying a minimization procedure, yields the following matrix equation [Davidson, 2011]

[
Stt 0
0 Szz

]{
et
ez

}
= k2

c

[
Ttt 0
0 Tzz

]{
et
ez

}
, (36.14)

or simply [
S
] {

e
}
= k2

c
[
T
] {

e
}

. (36.15)

The matrix equation of (36.14) is in the form of a generalized eigenvalue problem with the square of
the cutoff wavenumber the (unknown) eigenvalue. The sub-matrices Soo and Too (with oo = tt, zz)
represent the stiffness and mass matrices common in the finite element literature [Davidson, 2011,
Jin, 2002]. The subscripts tt and zz indicate transverse and axial components respectively. The
entries of the matrices of (36.14) are defined as [Pelosi et al., 1998, Jin, 2002]

(Stt)ij =
∫

Ω

1
µr

(∇t × Ni) · (∇t × Nj)dx, (36.16)

(Ttt)ij =
∫

Ω
εr Ni · Nj dx, (36.17)

(Szz)ij =
∫

Ω

1
µr

(∇tLi) · (∇tLj)dx, (36.18)

(Tzz)ij =
∫

Ω
εrLiLj dx, (36.19)

with
∫

Ω ·dx representing integration over the cross section of the waveguide.
In (36.14) the possible cutoff wavenumbers kc are the square roots of the eigenvalues of the system

36.1. FORMULATION 663

and the elements of the corresponding eigenvectors are the coefficient of the basis functions as in
(36.11) and (36.12). As such, the solution of the eigensystem not only allows for the computation
of the cutoff wavenumbers, but also for the visualization of the fields associated with the modes by
substituting the elements of the computed eigenvector into (36.11) and (36.12). It should also be
noted that transverse electric (TE) modes will have zeros as coefficients for the scalar basis functions
(
{

ez
}
= 0) whereas transverse magnetic modes will have

{
et
}
= 0, although this condition only

holds at cutoff [Pozar, 2005].

36.1.2 Waveguide dispersion analysis

In the case of cutoff analysis discussed in 36.1.1, one attempts to obtain the value of k2
o = k2

c for a
given propagation constant γ, namely γ = 0. For most waveguide design applications however,
ko is specified and the propagation constant is calculated from the resultant eigensystem [Jin,
2002, Pelosi et al., 1998]. This calculation can be simplified somewhat by making the following
substitution into (36.10) (after multiplying by γ2)

Et,γ = γEt, (36.20)

which yields the modified functional

Fγ(E) =
∫

Ω

1
µr

(∇t × Et,γ) · (∇t × Et,γ)− k2
oεrEt,γ · Et,γ

+ γ2
[

1
µr

(∇tEz + Et,γ) · (∇tEz + Et,γ)− k2
oεrEzEz

]
dx. (36.21)

Using the same discretization as for the cutoff analysis discussed in the preceding section, the
matrix equation associated with the solution of the variational problem is given by [Pelosi et al.,
1998] [

Att 0
0 0

]{
et
ez

}
= −γ2

[
Btt Btz
Bzt Bzz

]{
et
ez

}
, (36.22)

with

Att = Stt − k2
oTtt, (36.23)

Bzz = Szz − k2
oTzz, (36.24)

which is also in the form of a generalized eigenvalue problem with the eigenvalues a function of
the square of the complex propagation constant (γ).
The matrices Stt, Ttt, Szz, and Tzz are identical to those defined for the waveguide cutoff analysis of
the previous section, with entries given by (36.16), (36.17), (36.18), and (36.19) respectively. The
entries of the other sub-matrices, Btt, Btz, and Bzt, are defined by

(Btt)ij =
∫

Ω

1
µr

Ni · Nj dx, (36.25)

(Btz)ij =
∫

Ω

1
µr

Ni · ∇tLj dx, (36.26)

(Bzt)ij =
∫

Ω

1
µr
∇tLi · Nj dx. (36.27)

A common challenge in electromagnetic eigenvalue problems such as these is the occurrence of

664 CHAPTER 36. ELECTROMAGNETIC WAVEGUIDE ANALYSIS

Figure 36.2: An illustration of the finite
element mesh used for the rectangular
waveguide problems considered here.
The mesh corresponds to 64 triangular
elements and it should be noted that
only the interior of the waveguide is
meshed.

spurious modes which are discussed in Jin [2002] and Davidson [2011]. These are non-physical
modes that fall in the null space of the ∇×∇× operator of (36.1) [Bossavit, 1998], with the issue
of spurious modes revisited in the work by Fernandes and Raffetto [2002].
One of the strengths of the curl-conforming vector basis functions (edge elements) used in the
discretization of the transverse component of the field, is that they allow for a better representation
of the null-space in question and improve the modelling of singularities when compared to nodal
basis functions [Webb, 1993]. This means that the null-space modes can be more readily identified
[Davidson, 2011, Jin, 2002]. A number of other solutions to the problem have been proposed. These
include the use of Lagrange multipliers as in Vardapetyan and Demkowicz [2002], the use of a
divergence term to regularize the ∇×∇× operator in the functional of (36.5) [Costabel and Dauge,
2002], and the use of a discontinuous Galerkin formulation as presented in Buffa et al. [2007], but
are not discussed further in this chapter.

36.2 Implementation

This section considers the details of the implementation of a FEniCS-based solver for waveguide
cutoff mode and dispersion curve problems, as described in the preceding section. A number of
code snippets illustrate some of the finer points of the implementation.

36.2.1 Formulation

The code listing that follows shows the definitions of the function spaces used in the solution of the
cutoff and dispersion problems considered here. As already discussed, the Nédélec basis functions
of the first kind are used to approximate the transverse component of the electric field. This
ensures the tangential continuity of the discrete transverse field [Jin, 2002]. The axial component of
the field is modelled using a set of Lagrange basis functions, with the integration domain (Ω) the
waveguide cross section. The finite element mesh (generated using the DOLFIN Rectangle class)
for the rectangular waveguide problems considered here is shown in Figure 36.2.

Python code
V_N = FunctionSpace(mesh, "Nedelec 1st kind H(curl)", transverse_order)

V_L = FunctionSpace(mesh, "Lagrange", axial_order)

combined_space = V_N * V_L

(N_v, L_v) = TestFunctions(combined_space)

(N_u, L_u) = TrialFunctions(combined_space)

In order to deal with material properties, the Expression class is subclassed and the eval method is
overridden. This is illustrated in the next listing, which shows the implementation of the dielectric

36.2. IMPLEMENTATION 665

properties of a half-filled rectangular guide defined as follows

εr(x, y) =

{
4 if y < 0.25 ,
1 otherwise.

(36.28)

This class is then instantiated for the relative permittivity (εr) and a constant expression is used
for the relative permeability (or more specifically its inverse (1

µr
= 1)). The listing also shows

the Expression class used for the square of the operating wavenumber (k2
o), which is frequency

dependent. Note that although it is set to zero, this value can be set for each frequency step as part
of the dispersion analysis of a waveguide structure.

Python code
class HalfLoadedDielectric(Expression):

def eval(self, values, x):

if x[1] < 0.25:

values[0] = 4.0

else:

values[0] = 1.0;

e_r = HalfLoadedDielectric()

one_over_u_r = Expression("1.0")

k_o_squared = Expression("value", {"value" : 0.0})

The testing and trial functions shown as well as the desired material properties can now be used to
create the forms required for matrix assembly as specified in (36.16) through (36.19), and (36.23)
through (36.27). The implementations of the forms are shown in the listing below, and the matrices
of (36.14) and (36.22) can be assembled using the required combinations of these forms. It should
be noted that the use of the Expression class for the representation of k2

o means that the forms
need not be recompiled each time the operating frequency is changed. This is especially beneficial
when the calculation of dispersion curves is considered since the same calculation is performed for
a range of operating frequencies.

Python code
s_tt = one_over_u_r*dot(curl_t(N_v), curl_t(N_u))

t_tt = e_r*dot(N_v, N_u)

s_zz = one_over_u_r*dot(grad(M_v), grad(M_u))

t_zz = e_r*M_v*M_u

b_tt = one_over_u_r*dot(N_v, N_u)

b_tz = one_over_u_r*dot(N_v, grad(M_u))

b_zt = one_over_u_r*dot(grad(M_v), N_u)

a_tt = s_tt - k_o_squared*t_tt

b_zz = s_zz - k_o_squared*t_zz

From (36.2) it follows that the tangential component of the electric field must be zero on perfectly
electrical conducting (PEC) surfaces [Smith, 1997]. What this means in practice is that the degrees
of freedom associated with both the Lagrange and Nédélec basis functions on the boundary must
be set to zero. An implementation example for a PEC surface surrounding the entire computational
domain is shown in the code listing below as the ElectricWalls class. This sub-domain is then
used to create a Dirichlet boundary condition that can be applied to the constructed matrices
before solving the eigenvalue systems.

666 CHAPTER 36. ELECTROMAGNETIC WAVEGUIDE ANALYSIS

Python code
class ElectricWalls(SubDomain):

def inside(self, x, on_boundary):

return on_boundary

zero = Expression("0.0","0.0","0.0")

dirichlet_bc = DirichletBC(combined_space, zero, ElectricWalls())

The boundary condition given in (36.3) is a natural boundary condition for the problems and
formulations considered and thus it is not necessary to explicitly enforce it [Pelosi et al., 1998].
Such magnetic walls and the symmetry of a problem are often used to decrease the size of the
computational domain although this does limit the solution obtained to even modes [Jin, 2002].
Once the required matrices have been assembled and the boundary conditions applied, the resultant
eigenproblem can be solved. This can be done by saving the matrices and solving the problem
externally, or by making use of the eigensolvers provided by SLEPc – which is discussed in more
detail in Chapter 38 – through the FEniCS package.

36.2.2 Post-processing

After the eigenvalue system has been solved, an eigenpair can be post-processed to obtain various
quantities of interest. For the cutoff wavenumber, this is a relatively straight-forward process and
only involves simple operations on the eigenvalues of the system. For the calculation of dispersion
curves and visualization of the resultant field components the process is slightly more complex.

Dispersion curves. For dispersion curves the computed value of the propagation constant (γ =
α + jβ) is plotted as a function of the operating frequency (fo). Since γ is a complex variable, a
mapping is required to represent the data on a single two-dimensional graph. This is achieved
by choosing the fo-axis to represent the value γ = 0, effectively dividing the γ− fo plane into
two regions. The region above the fo-axis is used to represent the magnitude of the imaginary
part of γ (|β|), whereas the magnitude of the real part (|α|) falls in the lower region. A mode that
propagates along the guide for a given frequency will thus lie in the upper half-plane of the plot,
an evanescent mode will fall in the lower half-plane, and a complex mode will be represented by
a data point above and below the fo-axis. This procedure is followed in Pelosi et al. [1998] and
allows for quick comparisons and validation of results.

Field visualization. In order to visualize the fields associated with a given solution, the basis
functions need to be weighted with coefficients corresponding to the entries in an eigenvector
obtained from one of the eigenvalue problems. In addition, the transverse or axial components of
the field may need to be extracted. An example for plotting the transverse and axial components
of the field is given in the code listing below. Here the variable x assigned to the function vector
is one of the eigenvectors obtained by solving the eigenvalue problem. The eval method of the
transverse and axial functions can also be called in order to evaluate the functions at a given
spatial coordinate, allowing for further visualization or post-processing options.

Python code
f = Function(combined_space, x)

(transverse, axial) = f.split()

plot(transverse)

plot(axial)

36.3. EXAMPLES 667

Figure 36.3: A diagram showing the
cross section (Ω) and dimensions of a
1m× 0.5m hollow rectangular waveg-
uide. The electric wall Γe, where the
zero Dirichlet boundary condition of
(36.2) is applied, is also shown.

a = 1.0m

b
=

0.
5mεr = 1

µr = 1

Γe

Ω

36.3 Examples

The first of the examples considered is the canonical one of a hollow rectangular waveguide, which
has been covered in a multitude of texts on the subject [Davidson, 2011, Jin, 2002, Pelosi et al., 1998,
Pozar, 2005]. Since the analytical solutions for this structure are known, it provides an excellent
benchmark and is a typical starting point for the validation of a computational electromagnetic
solver for solving waveguide problems.

The second and third examples are a partially filled rectangular guide and a shielded microstrip
line on a dielectric substrate, respectively. In each case results are compared to published results
from the literature for validation.

36.3.1 Hollow rectangular waveguide

Figure 36.3 shows the cross section of a hollow rectangular waveguide with dimensions a = 1m
and b = 0.5m. The analytical expressions for the electric field components of a hollow rectangular
guide with width a and height b are given by [Pozar, 2005]

Ex =
n
b

Amn cos
(mπx

a

)
sin
(nπy

b

)
, (36.29)

Ey = −m
a

Amn sin
(mπx

a

)
cos

(nπy
b

)
, (36.30)

for the TEmn (transverse electric) modes. These modes have electric field components in the
waveguide cross section and correspond with the transverse part (Et) of the finite element solution.
The subscripts mn are used to identify the modes, with m and n non-negative integers subject to
the restriction that at least one of them must be non-zero. These transverse electric modes have
electric field components only in the plane perpendicular to the direction of propagation [Pozar,
2005].

The z-directed (axial) electric field corresponds to the TMmn (transverse magnetic) modes and has
the form [Pozar, 2005]

Ez = Bmn sin
(mπx

a

)
sin
(nπy

b

)
. (36.31)

Once again the subscript mn is used to identify the mode, but in this case neither m nor n may be
zero. Such a TM mode has components of the magnetic field in the xy-plane, while the electric
field has only an axial component. In (36.29), (36.30), and (36.31), Amn and Bmn are constants for a
given mode.

For a hollow rectangular guide, the propagation constant, γ, has the form

γ =
√

k2
c − k2

o, (36.32)

668 CHAPTER 36. ELECTROMAGNETIC WAVEGUIDE ANALYSIS

normalized electric field magnitude

Figure 36.4: The calculated TE10 cut-
off mode for the 1m× 0.5m hollow
rectangular waveguide shown in Fig-
ure 36.3.

normalized electric field magnitude

Figure 36.5: The calculated TM11 cut-
off mode for the 1m× 0.5m hollow
rectangular waveguide shown in Fig-
ure 36.3.

with ko the operating wavenumber dependent on the operating frequency as in (36.4), and

k2
c =

(mπ

a

)2
+
(nπ

b

)2
, (36.33)

the analytical solution for the square of the cutoff wavenumber for both the TEmn and TMmn
modes.

Cutoff analysis. Figure 36.4 and Figure 36.5 show the calculated TE10 and TM11 cutoff modes,
respectively, for the hollow rectangular guide of Figure 36.3.
Table 36.1 gives a comparison of the calculated and analytical values for the square of the cutoff
wavenumber of a number of modes for a hollow rectangular guide. As can be seen from the table,
there is excellent agreement between the values.

Dispersion analysis. When considering the calculation of the dispersion curves for the hollow
rectangular waveguide, the mixed formulation as discussed in 36.1.2 is used. The calculated
dispersion curves for the first 5 modes of the hollow rectangular guide are shown in Figure 36.6
along with the analytical results. For the rectangular guide a number of modes are degenerate [see
Davidson, 2011, Chapter 10] with the same dispersion and cutoff properties as predicted by (36.32)

Mode Analytical [m−2] Calculated [m−2] Relative Error
TE10 9.8696 9.8696 1.4452e-06

TE01 39.4784 39.4784 2.1855e-05

TE20 39.4784 39.4784 2.1894e-05

TM11 49.3480 49.4048 1.1514e-03

TM21 78.9568 79.2197 3.3295e-03

TM31 128.3049 129.3059 7.8018e-03

Table 36.1: Comparison of analytical and calculated cutoff wavenumber squared (k2
c) for various TE and TM

modes of a 1m× 0.5m hollow rectangular waveguide.

36.3. EXAMPLES 669

Figure 36.6: Dispersion curves for the
first 5 modes of a 1m× 0.5m hollow
rectangular waveguide of Figure 36.3.
Markers are used to indicate the ana-
lytical results with � and � indicating
TE and TM modes respectively. Note
that the analytical TE01 and TE20 form
a degenerate pair, as do the TE11 and
TM11 modes.

operating frequency (fo) [MHz]

∣∣∣ α
ko

∣∣∣

∣∣∣ β
ko

∣∣∣

TE10

TE20, TE01

TE11

TM11

Figure 36.7: A diagram showing the
cross section (Ω) and dimensions of
a 1m × 0.5m half-loaded rectangu-
lar waveguide. The lower half of the
guide is filled with an εr = 4 dielectric
material. The electric wall Γe, where
the zero Dirichlet boundary condition
of (36.2) is applied, is also shown.

a = 1.0m

b
=

0.
5m

Γe

Ω

d
=

0.
25

m

εr = 1
µr = 1

εr = 4
µr = 1

and (36.33). (As an example consider the TE01 and TM20 modes that will be degenerate for any
rectangular waveguide that is twice as wide as it is high, as is the case here.) There is excellent
agreement between the analytical and computed results.

36.3.2 Half-loaded rectangular waveguide

In some cases, a hollow rectangular guide may not be the ideal structure to use due to, for example,
limitations on its dimensions. If the guide is filled with a dielectric material with a relative
permittivity εr > 1, the cutoff frequency of the dominant mode will be lowered. Consequently
a loaded waveguide will be more compact than a hollow guide for the same dominant mode
frequency. Furthermore, in many practical applications, such as impedance matching or phase
shifting sections, a waveguide that is only partially loaded is used [Pozar, 2005].
Figure 36.7 shows the cross section of such a guide. The guide considered here has the same
dimensions as the hollow rectangular waveguide used in the previous section, but its lower half is
filled with an εr = 4 dielectric material.

Cutoff analysis. Figure 36.8 and Figure 36.9 show the TE10 and TM11 cutoff modes of the half-
loaded guide (shown in Figure 36.7) respectively. Note the concentration of the transverse electric
field in the hollow part of the guide. This is due to the fact that the displacement flux, D = εE,
must be normally continuous at the dielectric interface [Pozar, 2005, Smith, 1997].

670 CHAPTER 36. ELECTROMAGNETIC WAVEGUIDE ANALYSIS

Figure 36.8: The first calculated cut-
off mode of a 1m × 0.5m half-filled
rectangular waveguide as shown in
Figure 36.7. The dielectric surface is
shown as a dashed horizontal line.

normalized electric field magnitude

normalized electric field magnitude

Figure 36.9: The forth calculated cut-
off mode of a 1m × 0.5m half-filled
rectangular waveguide as shown in
Figure 36.7. The dielectric surface is
shown as a dashed horizontal line.

Dispersion analysis. The dispersion curves for the first 4 modes of the half-loaded waveguide are
shown in Figure 36.10 with results for the same modes from Jin [2002] provided as reference. Here
it can be seen that the cutoff frequency of the dominant mode has decreased and there is no longer
the same degeneracy in the modes when compared to the hollow guide of the same dimensions.

36.3.3 Shielded microstrip

Microstrip line is a very popular type of planar transmission line, primarily due to the fact that it
can be constructed using photolithographic processes and integrates easily with other microwave
components [Pozar, 2005]. Such a structure typically consists of a thin conducting strip on a
dielectric substrate above a ground plane. In addition, the strip may be shielded by enclosing
it in a PEC box to reduce electromagnetic interference. A cross section of a lossless shielded
microstrip line is shown in Figure 36.11 with the thickness of the strip, t, exaggerated for clarity.
The dimensions used to obtain the results discussed here, are the same as those in Pelosi et al.
[1998], and are indicated in the figure.
Since the shielded microstrip structure consists of two conductors, it supports a dominant transverse
electromagnetic (TEM) wave that has no axial component of the electric or magnetic field [Pozar,
2005]. Such a mode has a cutoff wavenumber of zero and thus propagates for all frequencies [Jin,
2002, Pelosi et al., 1998]. Although it can be performed, the cutoff analysis of this structure is not
considered here explicitly and only the dispersion analysis is performed. The cutoff wavenumbers
for the higher order modes (which are hybrid TE-TM modes [Pozar, 2005]) can however be
determined from the dispersion curves by the intersection of a curve with the fo-axis.

Dispersion analysis. The dispersion analysis presented in Pelosi et al. [1998] is repeated here for
validation, with the resultant curves shown in Figure 36.12. As is the case with the half-loaded
guide, the results calculated with FEniCS agree well with previously published results. In this
figure, it is shown that for certain parts of the frequency range of interest, mode six and mode
seven have complex propagation constants. Since the matrices in the eigenvalue problem are real
valued, the complex eigenvalues – and thus the propagation constants – must occur in complex
conjugate pairs as is the case here and reported earlier in Huang and Itoh [1988]. It should be noted

36.3. EXAMPLES 671

operating frequency (fo) [MHz]

∣∣∣ α
ko

∣∣∣

∣∣∣ β
ko

∣∣∣

Figure 36.10: Dispersion curves for the
first 4 modes of a 1m × 0.5m half-
filled rectangular waveguide as shown
in Figure 36.7. Reference values for
the first 4 modes from Jin [2002] are
shown as �.

Figure 36.11: A diagram showing
the cross section and dimensions of
a shielded microstrip line. The mi-
crostrip is etched on a dielectric ma-
terial with a relative permittivity of
εr = 8.875. The plane of symmetry is
indicated by a dashed line and is mod-
elled as a magnetic wall (Γm) in order
to reduce the size of the computational
domain. The electric wall (Γe) is also
shown.

a = 12.7mm

b
=

12
.7

m
m

d
=

1.
27

m
m

t
=

0.
12

7m
m

w = 1.27mm

Γe Γm

Ωεr = 1
µr = 1

εr = 8.875
µr = 1

672 CHAPTER 36. ELECTROMAGNETIC WAVEGUIDE ANALYSIS

Figure 36.12: Dispersion curves for
the first 7 even modes of shielded
microstrip line of Figure 36.11 using
a magnetic wall to enforce symme-
try. Reference values from Pelosi et al.
[1998] are shown as �. The presence
of complex mode pairs are indicated
by N and • and highlighted in grey.

operating frequency (fo) [MHz]

∣∣∣ α
ko

∣∣∣

∣∣∣ β
ko

∣∣∣

that for lossy materials (not considered here), complex modes are expected but do not necessarily
occur in conjugate pairs [Pelosi et al., 1998].

36.4 Conclusion.

In this chapter, the solutions of cutoff and dispersion problems associated with electromagnetic
waveguiding structures have been implemented and the results analyzed. In all cases, the results
obtained agree well with previously published or analytical results.
It should be noted that although the examples are limited to two-dimensional resonant problems,
the formulations presented here can be extended to include three-dimensional eigenvalue problems
(where resonant cavities are considered) as well as driven problems in both two and three
dimensions. Details can be found in Jin [2002] and Pelosi et al. [1998].
This chapter has also illustrated the ease with which complex formulations can be implemented and
how quickly solutions can be obtained. This is largely due to the almost one-to-one correspondence
between the expressions at a formulation level and the high-level FEniCS code that is used to
implement a particular solution. Even in cases where the required functionality is limited or
missing, the use of FEniCS in conjunction with external packages greatly reduces development
time.

37 Block preconditioning of systems of PDEs
By Kent-Andre Mardal and Joachim Berdal Haga

In this chapter we describe the implementation of block preconditioned Krylov solvers for systems
of partial differential equations (PDEs) using cbc.block and the Python interfaces of DOLFIN and
Trilinos. We start by reviewing the abstract theory of constructing preconditioners by considering
the differential operators as mappings in properly chosen Sobolev spaces, before giving a short
overview of cbc.block. We then present several examples, namely the Poisson problem, the
Stokes problem, the time-dependent Stokes problem and finally a mixed formulation of the Hodge
Laplacian.

37.1 Abstract framework for constructing preconditioners

This presentation of preconditioning is largely taken from the review paper [Mardal and Winther,
2011], where a more comprehensive mathematical presentation is given. Consider the following
abstract formulation of a linear PDE problem: Find u in a Hilbert space H such that:

Au = f , (37.1)

where f ∈ H′ and H′ is the dual space of H. We will assume that the PDE problem is well-posed;
that is, A : H → H′ is a bounded invertible operator in the sense that,

‖A‖L(H,H′) ≤ C and ‖A−1‖L(H′ ,H) ≤ C. (37.2)

The reader should notice that this operator is bounded only when viewed as an operator from H
to H′. The spectrum of the operator is unbounded and discretizations of the operator will typically
have condition numbers that increase in negative powers of h, where h is the characteristic cell size,
as the mesh is refined. The remedy for the unbounded spectrum is to introduce a preconditioner.
Let the preconditioner B be an operator mapping H′ to H such that

‖B‖L(H′ ,H) ≤ C and ‖B−1‖L(H,H′) ≤ C. (37.3)

Then BA : H → H and

‖BA‖L(H,H) ≤ C2 and ‖(BA)−1‖L(H,H) ≤ C2. (37.4)

Hence, the spectrum and therefore the condition number of the preconditioned operator is bounded:

κ(BA) = ‖BA‖L(H,H)‖(BA)−1‖L(H,H) ≤ C4. (37.5)

673

674 CHAPTER 37. BLOCK PRECONDITIONING OF SYSTEMS OF PDES

block_add

block_mul C

A B

Figure 37.1: Expression tree for the
composed matrix M = AB + C.

One example of such a preconditioner is the Riesz operator R; that is, the identity mapping
between H′ and H. In this case

‖R‖L(H′ ,H) = 1 and ‖R−1‖L(H,H′) = 1. (37.6)

In fact, in most of our examples the preconditioners are approximate Riesz mappings.
Given that the discretized operators Ah and Bh are stable; that is,

‖Ah‖L(H,H′) ≤ C, ‖A−1
h ‖L(H′ ,H) ≤ C, ‖Bh‖L(H′ ,H) ≤ C, ‖B−1

h ‖L(H,H′) ≤ C, (37.7)

then the condition number of the discrete preconditioned operator, κ(BhAh), will be bounded by
C4 independently of h. Furthermore, the number of iterations required by a Krylov solver to reach
a certain convergence criterion can typically be bounded by the condition number. Hence, when
the condition number of the discrete problem is bounded independent of h, the Krylov solvers
will have a convergence rate that is independent of h. If Bh is similar to Ah in terms of storage
and evaluation, then the solution algorithm is order-optimal. We remark that it is crucial that Ah
is a stable operator and we will illustrate what happens for unstable operators in the example
concerning Stokes problem. Finally, we will see that Bh often can be constructed using multigrid
techniques. These multigrid preconditioners will be spectrally equivalent with the Riesz mappings.

37.2 Overview of cbc.block

cbc.block makes it possible to write matrix operations in mathematical notation, such as M =
AB + C, where A, B and C are matrices or operators. The algebraic operations are not performed
explicitly; instead the operators are stored in a graph as shown in Figure 37.1. When M is called
upon to operate on a vector, as in y = Mx, the individual operations are performed in the right
order on the vector: u = Bx, v = Au, w = Cx, y = v + w. Since the matrix product or sum is not
created explicitly, the individual operators do not need to have an explicit matrix representation,
but may be a DOLFIN matrix, a preconditioner such as ML, or even an inner iterative solver. To
enable the construction of this graph cbc.block injects the methods __mul__, __add__, and __sub__

into the Matrix and Vector classes in DOLFIN. The module also implements block partitioned
matrices and vectors. These are pure python objects, and do not use the block matrix in DOLFIN.
When the explicit matrix product is required, such as for input to the ML preconditioner, a method
collapse is provided that performs the calculations using PyTrilinos. This method requires that
all components are actual matrices, not general operators.
The module also provides services to set Dirichlet boundary conditions and perform other trans-
formations of the system, and a range of iterative solvers and preconditioners.

37.3. NUMERICAL EXAMPLES 675

37.3 Numerical examples

In all examples the mesh will be refinements of the unit square or unit cube. The code examples
presented in this chapter differ slightly from the source code, in the sense that import state-
ments, safety checks, command-line arguments, definitions of Functions and Subdomains are often
removed to shorten the presentation.

37.3.1 The Poisson problem with homogeneous Neumann conditions

The Poisson equation with Neumann conditions reads: Find u such that

−∆u = f in Ω, (37.8)
∂u
∂n

= g on ∂Ω. (37.9)

The corresponding variational problem is: Find u ∈ H1 ∩ L2
0 such that

∫

Ω
∇u · ∇v dx =

∫

Ω
f v dx +

∫

∂Ω
gv ds, ∀ v ∈ H1 ∩ L2

0.

Let the linear operator A be defined in terms of the bilinear form,

(Au, v) =
∫

Ω
∇u · ∇v dx.

It is well-known that A is a bounded invertible operator from H1 ∩ L2
0 into its dual space. Further-

more, it is well-known that one can construct multigrid preconditioners for this operator such that
the preconditioner is spectrally equivalent with the inverse of A, independent of the characteristic
size of the cells in the mesh [Bramble, 1993, Hackbusch, 1994, Trottenberg et al., 2001].
In this example, we use a multigrid preconditioner based on the algebraic multigrid package ML
contained in PyTrilinos. Furthermore, we will estimate the eigenvalues of the preconditioned
system. We use continuous piecewise linear elements and compute the condition number of the
preconditioned system and corresponding number of iteration required for convergence using the
conjugate gradient method for various uniform refinements of the unit square.
First of all, the ML preconditioner is constructed as follows,

Python code
class ML(block_base):

def __init__(self, A, pdes=1):

create the ML preconditioner

MLList = {

"smoother: type" : "ML symmetric Gauss-Seidel" ,

"aggregation: type" : "Uncoupled" ,

"ML validate parameter list": True,

}

self.A = A # Prevent matrix being deleted

self.ml_prec = MultiLevelPreconditioner(A.down_cast().mat(), 0)

self.ml_prec.SetParameterList(MLList)

self.ml_agg = self.ml_prec.GetML_Aggregate()

self.ml_prec.ComputePreconditioner()

def matvec(self, b):

x = self.A.create_vec()

self.ml_prec.ApplyInverse(b.down_cast().vec(), x.down_cast().vec())

676 CHAPTER 37. BLOCK PRECONDITIONING OF SYSTEMS OF PDES

return x

The linear algebra backends uBLAS, PETSc and Trilinos all have a wide range of Krylov solvers.
Here, we implement these solvers in Python because we need to store intermediate variables
and used them to compute an estimate of the condition number. The following code shows the
implementation of the conjugate gradient method using the Python linear algebra interface in
DOLFIN:

Python code
def precondconjgrad(B, A, x, b, tolerance, maxiter, progress, relativeconv=False):

r = b - A*x

z = B*r

d = z

rz = inner(r,z)

iter = 0

alphas = []

betas = []

residuals = [sqrt(rz)]

if relativeconv:

tolerance *= residuals[0]

while residuals[-1] > tolerance and iter <= maxiter:

z = A*d

dz = inner(d,z)

alpha = rz/dz

x += alpha*d

r -= alpha*z

z = B*r

rz_prev = rz

rz = inner(r,z)

beta = rz/rz_prev

d = z + beta*d

iter += 1

progress += 1

alphas.append(alpha)

betas.append(beta)

residuals.append(sqrt(rz))

return x, residuals, alphas, betas

The intermediate variables called alphas and betas can then be used to estimate the condition
number of the preconditioned matrix as follows; see Saad [2003]. Notice that since the precondi-
tioned conjugate gradient method converges quite fast when using algebraic multigrid (AMG) as a
preconditioner, there will be only a small number of alphas and betas. Therefore we use the dense
linear algebra tools in NumPy to compute the eigenvalue estimates.

Python code
def eigenvalue_estimates(self):

eigenvalues estimates in terms of alphas and betas

import numpy

n = len(self.alphas)

M = numpy.zeros([n,n])

37.3. NUMERICAL EXAMPLES 677

M[0,0] = 1/self.alphas[0]

for k in range(1, n):

M[k,k] = 1/self.alphas[k] + self.betas[k-1]/self.alphas[k-1]

M[k,k-1] = numpy.sqrt(self.betas[k-1])/self.alphas[k-1]

M[k-1,k] = M[k,k-1]

e,v = numpy.linalg.eig(M)

e.sort()

return e

The following code shows the implementation of a Poisson problem solver, using the above
mentioned ML preconditioner and conjugate gradient algorithm. We remark here that it is
essential for the convergence of the method that both the start vector and the right-hand side are
both in L2

0. For this reason we subtract the mean value from the right hand-side. The start vector is
zero and does therefore have mean value zero.

Python code
Create mesh and finite element

mesh = UnitSquare(N,N)

V = FunctionSpace(mesh, "CG", 1)

Define variational problem

v = TestFunction(V)

u = TrialFunction(V)

f = Source()

g = Flux()

a = dot(grad(v), grad(u))*dx

L = v*f*dx + v*g*ds

Assemble matrix and vector

A, b = assemble_system(a,L)

remove constant from right handside

c = b.array()

c -= sum(c)/len(c)

b[:] = c

create preconditioner

B = ML(A)

Ainv = ConjGrad(A, precond=B, tolerance=1e-8)

x = Ainv*b

e = Ainv.eigenvalue_estimates()

print "N=%d iter=%d K=%.3g" % (N, Ainv.iterations, e[-1]/e[0])

In Table 37.1 we list the number of iterations for convergence and the estimated condition number
of the preconditioned system based on the code shown above. We test different refinements
of the unit square and continuous piecewise linear elements, CG1. The source function is f =
500 exp(−((x− 0.5)2 + (y− 0.5)2)/0.02) and the boundary condition is g = 25 sin(5πy) for x = 0
and zero elsewhere, see also the source code poisson_neumann.py.

678 CHAPTER 37. BLOCK PRECONDITIONING OF SYSTEMS OF PDES

h 2−4 2−5 2−6 2−7 2−8

κ 1.57 1.26 2.09 1.49 1.20

#iterations 8 8 10 9 7

Table 37.1: The estimated condition number κ and the number of iterations for convergence with respect to
various uniform mesh refinements for the Poisson problem with Neumann conditions solved with the CG1
method.

37.3.2 The Stokes problem

Our next example is the Stokes problem,

−∆u−∇p = f in Ω, (37.10)

∇ · u = 0 in Ω, (37.11)

u = g on ∂Ω. (37.12)

The variational form is:
Find u, p ∈ H1

g × L2
0 such that

∫

Ω
∇u : ∇v dx +

∫

Ω
∇ · u q dx +

∫

Ω
∇ · v p dx =

∫

Ω
f v dx, ∀ v, q ∈ H1

0 × L2
0.

Let the linear operator A be defined as

A =

(
A B∗

B 0

)
.

where

(Au, v) =
∫

Ω
∇u : ∇v dx, (37.13)

(Bu, q) =
∫

Ω
∇ · u q dx, (37.14)

and B∗ is the adjoint of B. Then it is well-known that A is a bounded operator from H1
g × L2

0 to its
dual H−1

g × L2
0, see for example Brezzi [1974], Brezzi and Fortin [1991]. Therefore, we construct a

preconditioner, B : H−1
g × L2

0 → H1
g × L2

0 defined as

B =

(
K−1 0

0 L−1

)
.

where

(Ku, v) =
∫

Ω
∇u : ∇v dx, (37.15)

(Lp, q) =
∫

Ω
p q dx. (37.16)

We refer to Mardal and Winther [2011] for a mathematical explanation of the derivation of such
preconditioners. Notice that the operator B is positive in contrast to A. Hence, the preconditioned

37.3. NUMERICAL EXAMPLES 679

method h 2−4 2−5 2−6 2−7 2−8

CG2 −CG1 iterations 52 57 62 64 67

CG2 −CG1 κ 13.6 13.6 13.6 13.6 13.6
CG2 −DG0 iterations 43 48 55 59 62

CG2 −DG0 κ 8.5 9.2 9.7 10.3 10.7
CG1 −CG1 iterations 200+ 200+ 200+ 200+ 200+
CG1 −CG1 κ 696 828 672 651 630

CG1 −CG1-stab iterations 41 40 40 39 39

CG1 −CG1-stab κ 12.5 12.6 12.7 12.7 12.7

Table 37.2: Estimated condition number κ and number of iterations for convergence with respect to mesh
refinements. The methods CG2 −CG1, CG2 −DG0, and CG1 −CG1-stab are stable, while CG1 −CG1 is not.

operator BA will be indefinite. For both K and L, we use the AMG preconditioner provided
by ML/Trilinos as described in the previous example (A simple Jacobi preconditioner would be
sufficient for L). For symmetric indefinite problems the Minimum Residual Method is the fastest
method. Preconditioners of this form has been studied by many [Elman et al., 2005, Rusten and
Winther, 1992, Silvester and Wathen, 1993, 1994].
In Table 37.2 we present the number of iterations needed for convergence and estimates on the
condition number κ with respect to different discretization methods and different characteristic
cell sizes h. The problem we are solving is the so-called lid driven cavity problem; that is, f = 0
and g = (1, 0) for y = 1 and zero elsewhere. We use different mixed methods, namely the
CG2 − CG1, CG2 −DG0, CG1 − CG1, and CG1 − CG1 stabilized. The iteration is stopped when
(Bhrk, rk)/(Bhr0, r0) ≤ 10−8, where rk is the residual at iteration k. The condition numbers, κ, were
estimated using the conjugate gradient method on the normal equation. This condition number
will always be less than the real condition number and is probably too low for the last columns for
the CG1 −CG1 method without stabilization. Notice that for the stable methods that satisfy the
LBB condition (see also Chapter 38); that is, CG2 −CG1 and CG2 −DG0, the number of iterations
and the condition number seems to be bounded independently of h. For the unstable CG1 −CG1
method, the number of iterations and the condition number increases as h decreases, but is here
stopped. However, for the stabilized method, CG1 −CG1-stab, where the pressure is stabilized by

∫

Ω
∇ · u q− αh2∇p · ∇q dx,

with α = 0.01, the number of iterations and the condition number appear to be bounded.
We will now describe the code in detail. In this case, the preconditioner consists of two precon-
ditioners. The following shows how to implement this block preconditioner based on the ML
preconditioner defined in the previous example.

Python code
mesh = UnitSquare(N,N)

def CG(n):

return (’DG’,0) if n==0 else (’CG’,n)

V = VectorFunctionSpace(mesh, *CG(vorder))

Q = FunctionSpace(mesh, *CG(porder))

f = Constant((0,0))

g = Constant(0)

680 CHAPTER 37. BLOCK PRECONDITIONING OF SYSTEMS OF PDES

alpha = Constant(alpha)

h = CellSize(mesh)

v,u = TestFunction(V), TrialFunction(V)

q,p = TestFunction(Q), TrialFunction(Q)

A = assemble(inner(grad(v), grad(u))*dx)

B = assemble(div(v)*p*dx)

C = assemble(div(u)*q*dx)

D = assemble(-alpha*h*h*dot(grad(p), grad(q))*dx)

M1 = assemble(p*q*dx)

b0 = assemble(inner(v, f)*dx)

b1 = assemble(q*g*dx)

AA = block_mat([[A, B],

[C, D]])

bc = block_bc([DirichletBC(V, BoundaryFunction(), Boundary()), None])

b = block_vec([b0, b1])

bc.apply(AA, b)

BB = block_mat([[ML(A), 0],

[0, ML(M1)]])

AAinv = MinRes(AA, precond=BB, tolerance=1e-8)

x = AAinv * b

x.randomize()

AAi = CGN(AA, precond=BB, initial_guess=x, tolerance=1e-8, maxiter=1000)

AAi * b

e = AAi.eigenvalue_estimates()

print "N=%d iter=%d K=%.3g" % (N, AAinv.iterations, sqrt(e[-1]/e[0]))

We refer to stokes.py for the complete code.

37.3.3 The time-dependent Stokes problem

Our next example is the time-dependent Stokes problem,

u− k∆u−∇p = f in Ω, (37.17)

∇ · u = 0 in Ω, (37.18)

u = 0 on ∂Ω. (37.19)

Here k is the time stepping parameter.
The variational form is:
Find u, p ∈ H1

0 × L2
0 such that

∫

Ω
u · v dx + k

∫

Ω
∇u : ∇v dx +

∫

Ω
∇ · u q dx +

∫

Ω
∇ · v p dx =

∫

Ω
f v dx, ∀ v, q ∈ H1

0 × L2
0.

Let

A =

(
A B∗

B 0

)
.

37.3. NUMERICAL EXAMPLES 681

k\h 2−4 2−5 2−6 2−7 2−8

1.0 13.6 13.6 13.6 13.7 13.7
0.1 13.4 13.5 13.6 13.6 13.6

0.01 12.8 13.2 13.4 13.5 13.6
0.001 11.0 12.3 13.0 12.3 13.5

Table 37.3: The convergence with respect to k and mesh refinements for the time-dependent Stokes problem
when using the CG2 −CG1 method.

where

(Au, v) =
∫

Ω
u · v dx + k

∫

Ω
∇u : ∇v dx, (37.20)

(Bu, q) =
∫

Ω
∇ · u q dx, (37.21)

This operator changes character as k varies. For k = 1 the problem behaves like Stokes problem,
with a non-harmful low order term. However as k approaches zero the problems change to the
mixed formulation of a Poisson equation; that is,

u−∇p = f , in Ω, (37.22)

∇ · u = 0, in Ω. (37.23)

This problem is not a well-defined operator from H1
0 × L2

0 into its dual. Instead, it is a mapping
from H(div)× L2

0 to its dual. However, as pointed out in Mardal and Winther [2004] this operator
can also be seen as an operator L2 × H1 to its dual. In fact, in Mardal et al. [2002], Mardal and
Winther [2004] it was shown that A is a bounded operator from L2 ∩ k1/2H1

0 × H1 ∩ L2
0 + k−1/2L2

0
to its dual space with a bounded inverse. Furthermore, the bounds are uniform in k. Therefore, we
construct a preconditioner B, such that

B : L2 ∩ k1/2H1
0 × H1 ∩ L2

0 + k−1/2L2
0 → L2 + k−1/2H−1 × H−1 ∩ L2

0 + k1/2L2
0.

Such a B can be defined as

B =

(
K−1 0

0 L−1 + M−1

)
.

where

(Ku, v) =
∫

Ω
u · v + k∇u : ∇v dx, (37.24)

(Lp, q) =
∫

Ω
k−1 pq dx, (37.25)

(Mp, q) =
∫

Ω
∇p · ∇q dx. (37.26)

Again we refer to Mardal and Winther [2011] and references therein, for an overview and more
comprehensive mathematical derivation of the construction of such preconditioners. Precondition-
ers of this form has been studied by many; see for example Cahouet and Chabard [1988], Elman
et al. [2005], Mardal and Winther [2004, 2011], Turek [1999].

Creating the preconditioner in this example is completely analogous to the Stokes example except

682 CHAPTER 37. BLOCK PRECONDITIONING OF SYSTEMS OF PDES

that we need three matrices based on three bilinear forms:

Python code

function spaces, trial and test functions, boundary conditions etc. are previously defined

A = assemble((dot(u,v) + k*inner(grad(u),grad(v)))*dx)

B = assemble(div(v)*p*dx)

C = assemble(div(u)*q*dx)

b = assemble(dot(f, v)*dx)

AA = block_mat([[A, B],

[C, 0]])

bb = block_vec([b, 0])

M = assemble(kinv*p*q*dx)

L = assemble(dot(grad(p),grad(q))*dx)

prec = block_mat([[ML(A), 0],

[0, ML(L)+ML(M)]])

In Table 37.3 we show the condition number for the time-dependent Stokes problem discretized
with the CG2 − CG1 method for various uniform mesh refinements and values of k. We have
the same boundary conditions as for the Stokes problem; that is, f = 0 and g = (1, 0) for y = 1
and zero elsewhere. Clearly, the condition number appears to be bounded by ≈ 14, although the
asymptotic limit is not reached for small k on these coarse meshes. The complete code can be
found in timestokes.py

37.3.4 Mixed form of the Hodge Laplacian

The final example is a mixed formulation of the Hodge Laplacian,

∇×∇× u−∇p = f in Ω, (37.27)

∇ · u− p = 0 in Ω, (37.28)

u× n = 0 on ∂Ω, (37.29)

p = 0 on ∂Ω. (37.30)

The variational form is:
Find u, p ∈ H0(curl)× H1

0 such that
∫

Ω
∇× u · ∇ × v dx−

∫

Ω
∇pv dx =

∫

Ω
f v dx ∀ v ∈ H0(curl), (37.31)

∫

Ω
u∇q dx−

∫

Ω
pq dx = 0 ∀ q ∈ H1

0 . (37.32)

Hence, it is natural to consider a preconditioner for H(curl) problems (in addition to H1 pre-
conditioners). Such preconditioners have been considered by many [Arnold et al., 1997, 2000,
Hiptmair, 1997, 1999]. One important observation in these papers is that point-wise smoothers are
not appropriate for geometric multigrid methods. Furthermore, for algebraic multigrid methods,
extra care has to be taken for the aggregation step [Gee et al., 2006, Hu et al., 2006].
Let

A =

(
A B∗

B −C

)
,

37.3. NUMERICAL EXAMPLES 683

where,

(Au, v) =
∫

Ω
∇× u · ∇ × v dx, (37.33)

(Bp, v) = −
∫

Ω
∇pv dx, (37.34)

(Cp, q) = −
∫

Ω
pq dx. (37.35)

Then A : H0(curl)× H1
0 → H−1(curl)× H−1, where H−1(curl) is the dual of H0(curl).

However, if we for the moment forget about the boundary conditions, we can obtain the Laplacian
form by eliminating p from (37.27)-(37.28); that is,

∇×∇× u−∇∇ · u = f .

Hence, the problem is elliptic in nature and modulo boundary conditions, A : H1× L2 → H−1× L2.
To avoid constructing a H(curl) preconditioner we will employ the observation that this is a vector
Laplacian. Let the discrete operator be

A =

(
A B∗

B −C

)
,

where we assume that the discrete system has been obtained by using a stable finite element
method. We eliminate the p to obtain the matrix

K = A + B∗C−1B,

A problem here is that C−1 is a dense matrix. However, the diagonal of C is spectrally equivalent
with C and a cheap approximation of C−1 is hence to invert the diagonal. We then obtain the
following approximation of L:

L = A + B∗(diag(C))−1B,

The matrix L is then in some sense a vector Laplacian, incorporating the mixed discretization
technique. To test the efficiency of this preconditioner compared with more straightforward
applications of AMG, we compare a couple of different problems. First, we test the preconditioners
for the A and the L operators; that is, we estimate the condition number for the systems P1 A and
P2L, where P1 and P2 is simply the algebraic multigrid preconditioners for A and L, respectively.
Then we test the preconditioners

B1 =

(
A 0
0 D

)
.

Here, D is a discrete Laplacian. The other preconditioner is

B2 =

(
L 0
0 C

)
.

The following code demonstrate the construction of B2, B1 can be created in a similar fashion as
described earlier.

Python code
V = FunctionSpace(mesh, "N1curl", 1)

Q = FunctionSpace(mesh, "CG", 1)

684 CHAPTER 37. BLOCK PRECONDITIONING OF SYSTEMS OF PDES

h 2−1 2−2 2−3 2−4 2−5

P1 A 15.5 40.7 155 618 2370

P2L 1.7 2.2 5.5 18.4 68.9
B1A 4.1 6.8 14.9 44.1 148

B2A 5.6 8.8 23.2 76.7 287

Table 37.4: The estimated condition number κ with respect to various uniform mesh refinements and
preconditioners for the mixed formulation of the Hodge Laplacian.

v,u = TestFunction(V), TrialFunction(V)

q,p = TestFunction(Q), TrialFunction(Q)

A = assemble(dot(u,v)*dx + dot(curl(v), curl(u))*dx)

B = assemble(dot(grad(p),v)*dx)

C = assemble(dot(grad(q),u)*dx)

D = assemble(p*q*dx)

AA = block_mat([[A, B],

[C, -D]])

bb = block_vec([0,0])

L = collapse(A+B*InvDiag(D)*C)

The complete code can be found in hodge.py.
In Table 37.4 we list the estimated condition numbers on various uniform mesh refinements on
the unit cube. We use the lowest order Nédélec elements of first kind [Nédélec, 1980] combined
with continuous piecewise linears. In this example we use homogeneous boundary conditions and
f = 0, but we use a random start vector. Clearly, the simplest preconditioner P1 does not work
well for A, as compared with P2 for L. However, it seems that for the fully coupled system, both
preconditioners work quite well. The reason is probably that the P1 preconditioner is poor main
on gradients, but these gradients are closely related to p.

37.4 Conclusion

In this chapter we have demonstrated that advanced solution algorithms can be developed relatively
easily by using cbc.block and the Python interfaces of DOLFIN and Trilinos. The cbc.block

module allows rather complicated block-partitioned preconditioners to be written in a simple form
since it represent the linear operators as a graph. The Python linear algebra interface in DOLFIN
allow us to write Krylov solvers and customize them in the language which these algorithms
are typically expressed in books. Furthermore, it is relatively simple to employ state–of–the–art
algebraic multigrid algorithms in Python using Trilinos. We remark that an alternative to PyTrilinos
is PyAMG [Bell et al., 2011] which can be used together with the DOLFIN Python interface.
We have shown the implementation of block preconditioners for a few selected problems. Block
preconditioners have been used in a variety of applications, we refer to Mardal and Winther [2011]
and the references therein for a more complete discussion on this topic. For an overview of similar
and alternative preconditioning techniques; see for example Benzi et al. [2005], Elman et al. [2005],
Hiptmair [2006], Kirby [2010b].

38 Automated testing of saddle point stability con-
ditions

By Marie E. Rognes

38.1 Introduction

Over the last five decades, there has been a substantial body of research on the theory of mixed
finite element methods. Mixed finite element methods are finite element methods where two
or more finite element spaces are used to approximate separate variables. These methods have
often been applied to saddle point problems arising from constrained minimization problems.
Examples include the Stokes equations, the equations of Darcy flow (or the mixed Laplacian) or the
Hellinger-Reissner formulation for linear elasticity. For equations involving several variables, and
where elimination of any of the variables is not a viable option, the usefulness of such methods is
evident. For other equations, discretizations based on the introduction of additional variables may
have improved properties.
For any discretization of a variational problem, stability is crucial to ensure well-posedness. For
coercive problems, the discrete stability may often be easily ensured. For mixed discretizations of
saddle point problems on the other hand, stability may be a nontrivial affair. Indeed, the mixed
finite element spaces must usually be carefully chosen. The stability theory for mixed finite element
discretizations originates from the work of Babuška [1973] and Brezzi [1974] in the early 1970’s.
Brezzi established two conditions ensuring the stability of a mixed finite element discretization of
a canonical saddle point problem. Since then, many papers (and books) have been devoted to the
identification and construction of specific stable mixed finite elements for specific saddle point
problems [Arnold et al., 2006a, Brezzi et al., 1985a, Brezzi and Falk, 1991, Brezzi and Fortin, 1991,
Raviart and Thomas, 1977, Taylor and Hood, 1973]. Some of the analytical results are well known,
such as the stability of the Taylor–Hood elements for the Stokes equations [Brezzi and Falk, 1991,
Stenberg, 1984, Taylor and Hood, 1973]. Others, such as the reduced stability of the CG2

1 ×DG0
elements on criss-cross triangulations for the mixed Laplacian [Boffi et al., 2000], may be less so.
The goal of this chapter is to demonstrate that the process of numerically examining the stability
of any given discretization can be automated. For a given discretization, the Brezzi constants are
computable through a set of eigenvalue problems. These eigenvalue problems have previously
been used to numerically study the stability of certain discretizations [Arnold and Rognes, 2009,
Chapelle and Bathe, 1993, Qin, 1994]. However, automation of this task has not been previously
considered in the literature. A secondary aim is to show that the automation process is fairly easy
given a software framework supporting the following components: a suitable range of different
finite element spaces, easy support of bilinear forms defining equations and inner products,

685

686 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

and finally, a linear algebra backend with support for generalized, possibly singular, eigenvalue
problems. The components of the FEniCS project provide these tools.
An automated stability tester provides several advantages. First, the notion of saddle point stability
goes from something rather abstract to something rather hands-on. Moreover, even a novice user
can easily get an overview of the available stable (or unstable) finite elements for a given equation.
For research purposes, it provides a tool for the careful examination of discretizations that have
stability properties depending on the tessellation structure. In particular, this framework has been
used to study the stability properties of Lagrange elements for the mixed Laplacian [Arnold and
Rognes, 2009].
This paper is organized as follows. For motivational purposes, a simple example illustrating
the importance of discrete stability is presented in Section 38.2. The subsequent two sections
summarize the discrete stability theory of Babuška and Brezzi and how the stability constants
involved can be computed through a set of eigenvalue problems. In Section 38.5, a strategy for the
automation of numerical stability testing is presented. In particular, a light-weight python module,
ASCoT [Rognes, 2009], constructed on top of DOLFIN [Logg and Wells, 2010], is described. This
module is freely available as a FEniCS Application at https://launchpad.net/ascot. The use and
capabilities of this framework are demonstrated when applied to two classical examples: the mixed
Laplacian and the Stokes equations in Section 38.6. Finally, Section 38.7 provides some concluding
remarks and a discussion of limitations.

38.2 Why does discrete stability matter?

The following simple example illustrates that discrete stability is indeed crucial for the ap-
proximation of saddle point problems. Let Ω = (0, 1)2 be the unit square in R2, and take
f = −2π2 sin(πx) sin(πy). Consider the following mixed formulation of the Poisson problem with
homogeneous Dirichlet boundary conditions: for the given data f ∈ L2(Ω), find σ ∈ H(div, Ω),
and u ∈ L2(Ω) such that

〈σ, τ〉+ 〈div τ, u〉 = 0 ∀ τ ∈ H(div, Ω),

〈div σ, v〉 = 〈 f , v〉 ∀ v ∈ L2(Ω).
(38.1)

This problem is well-posed: such solutions exist, are unique and depend continuously on the given
data. In particular, u = sin(πx) sin(πy) and σ = grad u solve (38.1).
Next, let Th be a uniform triangulation of the unit square that is formed by dividing the domain
into n× n sub-squares (with h the maximal triangle diameter) and dividing each square by the
diagonal with positive slope. Given a pair of finite element spaces Σh × Vh defined relative to
this tessellation, the equations (38.1) can be discretized in the standard manner: find σh ∈ Σh and
uh ∈ Vh such that

〈σh, τ〉+ 〈div τ, uh〉 = 0 ∀ τ ∈ Σh,

〈div σh, v〉 = 〈 f , v〉 ∀ v ∈ Vh.
(38.2)

The final question becomes what finite element spaces Σh and Vh to choose. As we shall see, the
well-posedness of the discrete problem will heavily rely on the choice of spaces.
First, let us consider a naive choice; namely, taking the space of continuous piecewise linear vector
fields defined relative to Th for the space Σh and the space of continuous piecewise linears for Vh.
This choice turns out to be a rather bad one: the finite element matrix associated with this pair will
be singular! Hence, there does not exist a discrete solution (σh, uh) with this choice of Σh ×Vh.

https://launchpad.net/ascot

38.3. DISCRETE STABILITY 687

Figure 38.1: The scalar variable ap-
proximation uh for two choices of
mixed finite element spaces for the
mixed Laplacian. The data are as de-
fined immediately above (38.1). The
element spaces are CG2

1 ×DG0 in (a)
and RT1 ×DG0 in (b). (The scales are
less relevant for the current purpose
and have therefore been omitted.)

(a) Bad approximation (b) Good approximation

As a second attempt, we keep the space of continuous piecewise linear vector fields for Σh, but
replace the previous space Vh by the space of piecewise constant functions. This pair might appear
to be a more attractive alternative: there does indeed exist a discrete solution (σh, uh). However,
the discrete solution is not at all satisfactory. In particular, the approximation of the scalar variable
uh is highly oscillatory, see Figure 38.1(a), and hence it is a poor approximation to the correct
solution.
The above two alternatives give unsatisfactory results because the discretizations defined by the
element spaces are both unstable. A stable low order element pairing is the combination of the
lowest order Raviart–Thomas elements and the space of piecewise constants [Raviart and Thomas,
1977]. The corresponding uh approximation is plotted in Figure 38.1(b). This approximation looks
qualitatively correct.
The reason for the instabilities of the first two choices, and the stability of the third choice, may
not be immediately obvious. The goal of this chapter is to construct a framework that automates
this stability identification procedure, by characterizing the stability properties of a finite element
discretization automatically and accurately. We will return to this example in Section 38.6 where
we give a more careful characterization of the stability properties of the above sample elements.

38.3 Discrete stability

In order to automatically characterize the stability of a discretization, we need a precise definition
of discrete stability and preferably conditions for such to hold. In this section, the Babuška and
Brezzi stability conditions are described and motivated in the general abstract setting. The material
presented here is largely taken from the classical references [Babuška, 1973, Brezzi, 1974, Brezzi
and Fortin, 1991].
For a Hilbert space W, we denote the norm on W by ‖ · ‖W and the inner product by 〈·, ·〉W .
Assume that c is a symmetric, bilinear form on W and that L is a continuous, linear form on W.
We will consider the following canonical variational problem: find u ∈W such that

c(u, v) = L(v) ∀ v ∈W. (38.3)

Assume that c is continuous; that is, there exists a positive constant C such that

|c(u, v)| 6 C ‖u‖W‖v‖W ∀ u, v ∈W. (38.4)

688 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

If additionally there exists a positive constant γ such that

c(u, u) > γ‖u‖2
W , (38.5)

the form c is by definition coercive. This is indeed the case for many variational formulations of
partial differential equations arising from standard minimization problems. On the other hand, for
many constrained minimization problems, such as those giving rise to saddle point problems, the
corresponding c is not coercive. Fortunately, the coercivity condition is sufficient, but not necessary.
A weaker condition suffices: there exists a positive constant γ such that

0 < γ = inf
0 6=u∈W

sup
0 6=v∈W

|c(u, v)|
‖u‖W‖v‖W

. (38.6)

If the continuous c satisfies (38.6), there exists a unique u ∈W solving (38.3) [Babuška, 1973].
Now, we turn to consider discretizations of (38.3). Let Wh ⊂ W be a finite dimensional subspace,
and consider the discrete problem: find uh ∈Wh such that

c(uh, v) = L(v) ∀ v ∈Wh. (38.7)

For the discrete system to be well-posed, analogous conditions as for the continuous case must
be satisfied. Note that c restricted to Wh is continuous a fortiori. However, the discrete analogue
of (38.6) does not trivially hold. In order to guarantee that (38.7) has a unique solution, we must
also have that there exists a positive constant γ0 such that

0 < γ0 6 γh = inf
0 6=u∈Wh

sup
0 6=v∈Wh

|c(u, v)|
‖u‖W‖v‖W

. (38.8)

Moreover, in order to have uniform behavior in the limit as h→ 0, we must have that γh > γ0 > 0
for all h > 0; that is, that γh is bounded from below independently of h [Babuška, 1973].
The condition (38.8) has a simple interpretation in the linear algebra perspective. Taking a
basis {φi}n

i=1 for Wh, in combination with the Ansatz uh = ujφj, we obtain the standard matrix
formulation of (38.7):

Cijuj = L(φi) i = 1, . . . , n, (38.9)

where Cij = c(φj, φi). The Einstein notation, in which summation over repeated indices is implied,
has been used here. This system will have a unique solution if the matrix C is non-singular, or
equivalently, if the eigenvalues of C are non-zero. In the special case where c is coercive, all
eigenvalues will in fact be positive. Moreover, we must ensure that the generalized eigenvalues
(generalized with respect to the inner product on W) do not approach zero as h → 0. This is
precisely what is implied by the condition (38.8).

38.3.1 Stability conditions for saddle point problems

We now turn to consider the special case of abstract saddle point problems. In this case, the
stability condition (38.8) can be rephrased in an alternative, but equivalent form.
Assume that V and Q are Hilbert spaces, that a is a continuous, symmetric, bilinear form on V×V,
that b is a continuous, bilinear form on V ×Q, and that L is a continuous linear form on V ×Q. A
saddle point problem has the following canonical form: find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) + b(u, q) = L((v, q)) ∀ v ∈ V, q ∈ Q. (38.10)

38.3. DISCRETE STABILITY 689

The system (38.10) is clearly a special case of (38.3) with the following identifications: let W =
V ×Q, endow the product space with the norm ‖(v, q)‖W = ‖v‖V + ‖q‖Q, and label

c((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q). (38.11)

Assuming that the condition (38.6) is satisfied, the above system admits a unique solution (u, p) ∈
V ×Q.
As in the general case, we aim to discretize (38.10), but now using a pair of conforming finite
element spaces Vh and Qh. Letting Wh = Vh ×Qh, we obtain the following special form of (38.7):
find uh ∈ Vh and ph ∈ Qh satisfying:

a(uh, v) + b(v, ph) + b(uh, q) = L((v, q)) ∀ v ∈ Vh, q ∈ Qh. (38.12)

Again, the well-posedness of the discrete problem follows from the general theory. Applying the
definition of (38.8) to (38.10), we define the Babuška constant γh:

γh = inf
0 6=(u,p)∈Wh

sup
0 6=(v,q)∈Wh

|a(u, v) + b(v, p) + b(u, q)|
(‖u‖V + ‖p‖Q)(‖v‖V + ‖q‖Q)

(38.13)

In particular, the discrete problem is well-posed if the Babuška stability condition holds; namely, if
γh > γ0 > 0 for any h > 0.
The previous deliberations simply summarized the general theory applied to the particular
variational form defined by (38.10). However, the special structure of (38.10) also offers an
alternative characterization. The single Babuška stability condition can be split into a pair of
stability conditions as follows [Brezzi, 1974]. Define

αh = inf
0 6=u∈Zh

sup
0 6=v∈Zh

a(u, v)
‖u‖V‖v‖V

, (38.14)

βh = inf
0 6=q∈Qh

sup
0 6=v∈Vh

b(v, q)
‖v‖V‖q‖Q

, (38.15)

where
Zh = {v ∈ Vh | b(v, q) = 0 ∀ q ∈ Qh}. (38.16)

We shall refer to αh as the Brezzi coercivity constant and βh as the Brezzi inf-sup constant. The
Brezzi stability conditions state that these must stay bounded above zero for all h > 0. The Brezzi
conditions are indeed equivalent to the Babuška condition [Brezzi, 1974]. However, for a specific
saddle point problem and a given pair of function spaces, it might be easier to verify the two
Brezzi conditions than the single Babuška condition. In summary, these conditions enable a concise
characterization of the stability of discretizations of saddle point problems.

Definition 38.1 A family of finite element discretizations {Vh × Qh}h is stable in V × Q if the Brezzi
coercivity and inf-sup constants {αh}h and {βh}h (or equivalently the Babuška inf-sup constants {γh}h)
are bounded from below by a positive constant independent of h.

Throughout this chapter, the term a family of discretizations refers to a collection of finite element
discretizations parametrized over a family of meshes.
There are families of discretizations that are not stable in the sense defined above, but possess a
certain reduced stability. For a pair Vh ×Qh, we can define the space of spurious modes Nh ⊆ Qh:

Nh = {q ∈ Qh | b(v, q) = 0 ∀ v ∈ Vh}. (38.17)

690 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

It can be shown that the Brezzi inf-sup constant is positive if and only if there are no nontrivial
spurious modes; that is, if Nh = {0} [Qin, 1994]. On the other hand, if Nh is nontrivial, one may,
loosely speaking, think of the space Qh as a bit too large. In that case, it may be natural to replace
Qh by the reduced space N⊥h , the orthogonal complement of Nh in Qh. This idea motivates the
definition of the reduced Brezzi inf-sup constant, relating to the stability of Vh × N⊥h :

β̃h = inf
0 6=q∈N⊥h

sup
0 6=v∈Vh

b(v, q)
‖v‖V‖q‖Q

, (38.18)

and the definition of reduced stable below. By definition, β̃h 6= 0. The identification of reduced
stable discretizations can be interesting from a theoretical viewpoint. Further, such could be used
for practical purposes after a filtration of the spurious modes.

Definition 38.2 A family of discretizations {Vh×Qh}h is reduced stable in V×Q if the Brezzi coerciv-
ity constants {αh}h and the reduced Brezzi inf-sup constants {β̃h}h are bounded from below by a positive
constant independent of h.

38.4 Eigenvalue problems associated with saddle point stability

For a given variational problem, the Brezzi conditions provide a method to inspect the stability
of a family of conforming discretizations, defined relative to a family of meshes. However, it
seems hardly feasible to automatically verify these conditions in their current form. Fortunately
and as we shall see in this section, there is an alternative characterization of the Babuška and
Brezzi constants: each stability constant will be related to the smallest (in modulus) eigenvalue of
a certain eigenvalue problem. The automatic testing of the stability of a given discretization family
can therefore be based on the computation and inspection of certain eigenvalues.
We begin by considering the Babuška inf-sup constant for the element pair Vh × Qh. It can be
easily seen that the Babuška inf-sup constant γh = |λmin| where λmin is the smallest in modulus
eigenvalue of the generalized eigenvalue problem [Arnold and Rognes, 2009, Malkus, 1981]: find
0 6= (uh, ph) ∈ Vh ×Qh and λ ∈ R such that

a(uh, v) + b(v, ph) + b(uh, q) = λ
(
〈uh, v〉V + 〈ph, q〉Q

)
∀ v ∈ V, q ∈ Q. (38.19)

By the same arguments, the Brezzi coercivity constant αh is the smallest in modulus eigenvalue of
the following generalized eigenvalue problem: find 0 6= uh ∈ Zh and λ ∈ R satisfying

a(uh, v) = λ〈uh, v〉V (38.20)

For the spaces Vh and Qh, a basis is normally known. For Zh however, this is usually not the case.
(If it had been, the space Zh might have been better to compute with in the first place.) Therefore,
the eigenvalue problem (38.20) is not that easily constructed in practice.
Instead, one may consider an alternative generalized eigenvalue problem: find 0 6= (uh, ph) ∈
Vh ×Qh and λ ∈ R satisfying

a(uh, v) + b(v, ph) + b(uh, q) = λ〈uh, v〉V (38.21)

It can be shown that the smallest in modulus eigenvalue of the above eigenvalue problem and the
smallest in modulus eigenvalue of (38.20) agree [Arnold and Rognes, 2009]. Therefore αh = |λmin|
when λmin is the smallest in modulus eigenvalue of (38.21). The eigenvalue problem (38.21)

38.5. AUTOMATING THE STABILITY TESTING 691

involves the spaces Vh and Qh and is therefore more tractable. One word of caution however: if
there exists a q ∈ Qh such that b(v, q) = 0 for all v ∈ Vh, then any λ is an eigenvalue of (38.21).
Thus, the problem (38.21) is ill-posed if such q exists. The case where such q exists is precisely the
case where the Brezzi inf-sup constant is zero.
Finally, the Brezzi inf-sup constant βh is the square-root of the smallest eigenvalue λmin of the
following eigenvalue problem [Malkus, 1981, Qin, 1994]: find 0 6= (uh, ph) ∈ Vh ×Qh and λ ∈ R

satisfying
〈uh, v〉V + b(v, ph) + b(uh, q) = −λ〈ph, q〉Q (38.22)

The eigenvalues of (38.22) are all non-negative. Any eigenvector associated with a zero eigenvalue
corresponds to a spurious mode. Further, the square-root of the smallest non-zero eigenvalue will
be the reduced Brezzi inf-sup constant [Qin, 1994].

38.5 Automating the stability testing

The mathematical framework is now in place. For a given variational formulation, given inner
product(s), and a family of function spaces, the eigenvalue problem (38.19) or the problems (38.21)
and (38.22) can be used to numerically check stability. The eigenvalue problem (38.22) applied to
the Stokes equations was used in this context by Qin [1994] and Chapelle and Bathe [1993]. A fully
automated approach has not been previously available though. This is perhaps not so strange, as
an automated approach would be rather challenging to implement within many finite element
libraries. However, DOLFIN provides ample and suitable tools for this task. In particular, the UFL
form language, the collection of finite element spaces supported by FIAT/FFC, and the available
SLEPc eigenvalue solvers provide the required functionality.
The definition of an abstract saddle point problem (38.10) and the definition of stability of
discretizations of such, Definition 38.1, provide a natural starting point. Based on these definitions,
the testing of stability relies on the following input.

• The bilinear forms a and b defining a variational saddle point problem.

• The function spaces V and Q through the inner products 〈·, ·〉V and 〈·, ·〉Q.

• A family of finite element function spaces {Wh}h = {Vh ×Qh}h parametrized over the mesh
size h.

We pause to remark that since (38.10) is a special case of the canonical form (38.3), one may
consider the Babuška constant only. However, for the analysis of saddle point problems, the
separate behavior of the individual Brezzi constants may be interesting. For this reason, we focus
on the Brezzi stability conditions and the decomposed variational form here.
The following strategy presents itself naturally in order to attempt to characterize the stability of a
discretization family. With the above information, one can proceed in the following steps

1. For each function space Wh, construct the eigenvalue problems associated with the Brezzi
conditions

2. Solve the eigenvalue problems and identify the appropriate eigenvalues corresponding to
the Brezzi constants.

3. Based on the behavior of the Brezzi constants with respect to h, the discretization family
should be classified, see Definitions 38.1 and 38.2, as

(a) Stable

692 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

(b) Unstable

(c) Unstable, but reduced stable

The above strategy is implemented in the automated stability condition tester ASCoT [Rognes,
2009]. ASCoT is a python module dependent on DOLFIN compiled with SLEPc. It is designed
to automatically evaluate the stability of a discretization family, and in particular, the stability of
mixed finite element methods for saddle point problems. ASCoT can be imported as any python
module:

Python code
from ascot import *

The remainder of this section describes how the afore described strategy is implemented in ASCoT.
Emphasis is placed on the form of the input, the construction and solving of the eigenvalue
problems, and the classification of stability based on the stability constants.
Before continuing however, it is necessary to point out a limitation of the numerical testing. The
mathematical definition of stability is indeed based on taking the limit as h → 0. However, it is
hardly feasible to examine an infinite family of function spaces {Wh}h∈R+ numerically. In practice,
one can only consider a finite set of spaces {Whi

}i∈(0,...,N). Therefore, this strategy can only give
numerical evidence, which must be interpreted using appropriate heuristics.

38.5.1 Defining input

ASCoT relies on the variational form language defined by UFL and DOLFIN for the specification
of forms, inner products and function spaces. In order to illustrate, we take the discrete mixed
Laplacian introduced in (38.2) as an example.
First and foremost, consider the specification of the forms a and b. Recall that discrete saddle
point stability is not a property relating to a single set of function spaces, but rather a property
relating to a family of function spaces. In the typical DOLFIN approach, forms are specified in
terms of basis functions on a single function space. For our purposes, this seems like a less ideal
approach. Instead, to be able to specify the forms independently of the function spaces, we can
take advantage of the python λ functionality. For the mixed Laplacian, the forms a and b read
a = a(u, v) = 〈u, v〉 and b = b(v, q) = 〈div v, q〉. These should be specified as

Python code
Define a and b forms:

a = lambda u, v: dot(u, v)*dx

b = lambda v, q: div(v)*q*dx

The above format is advantageous as it separates the definition of the forms from the function
spaces. Hence, the user needs not specify basis functions on each of the separate function spaces:
ASCoT handles the initialization of the appropriate basis functions.
Second, the inner products 〈·, ·〉V and 〈·, ·〉Q must be provided. The inner products are bilinear
forms and can therefore be viewed as a special case of the above. For the mixed Laplacian,
the appropriate inner products are 〈u, v〉div = 〈u, v〉 + 〈div u, div v〉 and 〈p, q〉0 = 〈p, q〉. The
corresponding code reads

Python code
Define inner products:

Hdiv = lambda u, v: (dot(u, v) + div(u)*div(v))*dx

L2 = lambda p, q: dot(p, q)*dx

38.5. AUTOMATING THE STABILITY TESTING 693

Third, the function spaces have to be specified. In particular, a list of function spaces corresponding
to a set of meshes should be defined. For the testing of the mixed function space consisting of
continuous piecewise linear vector fields CG2

1, combined with continuous piecewise linears CG1,
for a set of diagonal triangulations of the unit square, one can do as follows:

Python code
Construct a family of mixed function spaces

meshsizes = [2, 4, 6, 8, 10]

meshes = [UnitSquare(n, n) for n in meshsizes]

W_hs = [VectorFunctionSpace(mesh, "CG", 1) * FunctionSpace(mesh, "CG", 1)

for mesh in meshes]

Note that the reliability of the computed stability characterization increases with the number of
meshes and their refinement level.
The stability of the above can now be tested. The main entry point function provided by ASCoT is
test_stability. This function takes three arguments: a (list of) forms, a (list of) inner products
and a list of function spaces:

Python code
result = test_stability((a, b), (Hdiv, L2), W_hs)

A StabilityResult is returned. The instructions carried out by this function and the properties of
the StabilityResult are described in the subsequent paragraphs.

38.5.2 Constructing and solving eigenvalue problems

For the testing of saddle point problems, specified by the two forms a and b, it is assumed
that the user wants to check the Brezzi conditions. In order to test these conditions, the Brezzi
constants; that is, the Brezzi coercivity and Brezzi inf-sup constants, must be computed for each
of the function spaces. ASCoT provides functionality for the computation of these constants: the
functions compute_brezzi_coercivity and compute_brezzi_infsup.
Let us take a closer look at the implementation of compute_brezzi_infsup. The input consists
of the form b, the inner products (m, n), and a function space Wh (and optionally, an essential
boundary condition bc). The aim is to construct the eigenvalue problem given by (38.22) and
then solve this problem efficiently. To accomplish this, the basis functions on the function space
Wh are defined first. The left and right-hand sides of the eigenvalue problems are specified
through the forms defined by (38.22). These forms are sent to an EigenProblem, and the resulting
eigenvalues are then used to initialize an InfSupConstant. The InfSupConstant class is a part of
the characterization machinery and will be discussed further in the next subsection.

Python code
def compute_brezzi_infsup(b, (m, n), W, bc=None):

"""

For a given form b: V x Q \rightarrow \R and inner products m and

n defining V and Q respectively and a function space W = V_h x

Q_h, compute the Brezzi inf-sup constant.

"""

Define forms for eigenproblem

(u, p) = TrialFunctions(W)

(v, q) = TestFunctions(W)

lhs = m(u, v) + b(v, p) + b(u, q)

rhs = - n(p, q)

694 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

Get parameters

params = ascot_parameters["brezzi_infsup"]

num = ascot_parameters["number_of_eigenvalues"]

Compute eigenvalues

eigenvalues = EigenProblem(lhs, rhs, params, bc).solve(num)

return InfSupConstant(W.mesh().hmax(), eigenvalues, operator=sqrt)

The computation of the Brezzi coercivity constant takes a virtually identical form, only differing in
the definition of the left and right hand sides (lhs and rhs). If only a single form c and a single
inner product m is specified, the Babuška condition is tested by similar constructs.
The EigenProblem class is a simple wrapper class for the DOLFIN SLEPcEigenSolver, taking either
a single form, corresponding to a standard eigenvalue problem, or two forms, corresponding
to a generalized eigenvalue problem. The eigenvalue problems generated by the Babuška and
Brezzi conditions are all generalized eigenvalue problems. For both the Brezzi conditions, the
right-hand side matrix will always be singular. The left-hand side matrix may or may not be
singular depending on the discretization. For the Babuška conditions, the right-hand side matrix
should never be singular, however the left-hand side matrix may be.
SLEPc provides a collection of eigenvalue solvers that can handle generalized, possibly singular
eigenvalue problems [Hernandez et al., 2005, 2009]. The type of eigenvalue solver can be specified
through the DOLFIN parameter interface. For our purposes, two solver types are particularly
relevant: the LAPACK and the Krylov-Schur solvers. The LAPACK solver is a direct method.
This solver is very robust. However, it computes all of the eigenvalues, and it is thus only suited
for relatively small problems. In contrast, the Krylov-Schur method offers the possibility of only
computing a given number of eigenvalues. Since the Brezzi constants are related to the eigenvalue
closest to zero, it seems meaningful to only compute the eigenvalue of smallest magnitude. This
solver is therefore set as the default solver type in ASCoT. Unfortunately, the Krylov-Schur solver
is less robust for singular problems: it may fail to converge. A partial remedy may be to apply a
shift-and-invert spectral transform with an appropriate shift factor to the eigenvalue problem. For
more details on spectral transformations in SLEPc, see Hernandez et al. [2009]. ASCoT applies a
shift-and-invert transform with a small shift factor by default for the Brezzi and Babuška inf-sup
problems.

38.5.3 Characterizing the discretization

After the eigenvalues and thus the stability constants are computed for the family of function
spaces, all that remains is to interpret these constants. ASCoT provides three classes intended to
represent and interpret the behavior of the stability constants: InfSupConstant, InfSupCollection
and StabilityResult.
An InfSupConstant represents a single inf-sup constant. It is initialized using a mesh size h, a set
of values, and an optional operator. The values typically correspond to the computed eigenvalues.
If supplied, the operator is applied to the eigenvalues. For instance, ASCoT supplies a square-root
operator when computing the Brezzi inf-sup constant. The object can return the inf-sup constant
and, if computed, the reduced inf-sup constant and the number of zero eigenvalues. The latter two
items are most useful for careful analysis purposes.
A collection of InfSupConstants forms an InfSupCollection. An InfSupCollection’s main pur-
pose is to identify whether or not the stability condition associated with the inf-sup constants
holds. The method is_stable returns a boolean answer. The stability condition will not hold if
any of the inf-sup constants is zero, and it will probably not hold if the inf-sup constants seem to
decay with the mesh size h. The rate of decay ri between two subsequent constants ci and ci+1 is

38.6. EXAMPLES 695

defined as:

ri =
log2(ci)− log2(ci+1)

log2(hi)− log2(hi+1)
(38.23)

where hi is the corresponding mesh size. Currently, ASCoT classifies a discretization as stable if
there are no singularities (no zero eigenvalues for all meshes), and the decay rates are below 1
and consistently decrease, or the rate corresponding to the finest mesh is less than a heuristically
chosen small number.
Finally, the StabilityResult class holds a list of possibly several InfSupCollections, each cor-
responding to a separate inf-sup condition, such as the Brezzi coercivity and the Brezzi inf-sup
condition. The StabilityResult identifies a discretization as stable if all stability conditions are
satisfied, and as unstable otherwise.

38.6 Examples

In this section, we apply the automated stability testing framework to two classical saddle point
problems: the mixed Laplacian and the Stokes equations. The behavior of the various mixed finite
elements observed in Section 38.2 will be explained and classical analytical results reproduced.
The complete code is available from the demo directory of the ASCoT module.

38.6.1 Mixed Laplacian

We can now return to the mixed Laplacian example described in Section 38.2 and inspect the Brezzi
stability properties of the element spaces involved, namely CG2

1×CG1, CG2
1×DG0 and RT1×DG0.

The example considered a family of diagonal triangulations of the unit square. The complete
code required to test the stability of the first discretization family was presented piecewise in
Section 38.5.1. The stability result can be inspected as follows:

Python code
print result

for condition in result.conditions:

print condition

The following output appears:

Python code
<Mixed element: (<Mixed element: (<CG1 on a <triangle of degree 1>>,

<CG1 on a <triangle of degree 1>>)>, <CG1 on a <triangle of degree 1>>)>

Not computing Brezzi coercivity constants because of singularity

Discretization family is: Unstable. Singular. Decaying.

InfSupCollection: beta_h

singularities = [2, 2, 2, 2, 2]

reduced = [0.56032, 0.35682, 0.24822, 0.18929, 0.15251]

rates = [0.651, 0.895, 0.942, 0.968]

Empty InfSupCollection: alpha_h

ASCoT characterizes this discretization family as unstable. For the Brezzi inf-sup eigenvalue
problems, there are 2 zero eigenvalues for each mesh. Hence, the Brezzi inf-sup constant is zero,
and moreover, the element matrix will be singular. This is precisely what we observed in the
introductory example: there was no solution to the discrete system of equations. Moreover, the
reduced inf-sup constant is also decaying with the mesh size at a rate that seems to be increasing

696 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

towards O(h). So, there is no hope of recovering a stable method by filtering out the spurious
modes. Since each Brezzi inf-sup constant is zero, the Brezzi coercivity eigenvalue problems are
not computationally well-posed, and thus these constants have not been computed.
The second family of elements considered in Section 38.2 was the combination of continuous
piecewise linear vector fields and piecewise constants. Using the same code as before, just replacing
the finite element spaces, we obtain the following results:

Python code
<Mixed element: (<Mixed element: (<CG1 on a <triangle of degree 1>>,

<CG1 on a <triangle of degree 1>>)>, <DG0 on a <triangle of degree 1>>)>

Discretization family is: Unstable. Decaying.

InfSupCollection: beta_h

values = [0.96443, 0.84717, 0.71668, 0.60558, 0.51771]

rates = [0.187, 0.413, 0.586, 0.703]

InfSupCollection: alpha_h

values = [1, 1, 1, 1, 1]

rates = [-1.35e-14, 6.13e-14, 3.88e-13, 4.05e-13]

Look at the Brezzi inf-sup constants first. In this case, there are no singular values, and hence the
Brezzi inf-sup constants are positive. However, the constants seem to decay with the mesh size at
increasing rates. Extrapolating, we can suppose that the constants βh depend on the mesh size h
and decay towards zero with h. ASCoT accordingly labels the discretization as unstable. Since
there are no singular values, the Brezzi coercivity problem is well-posed. The Brezzi coercivity
constants have therefore been computed. We see that the Brezzi coercivity constant is equal to one
for all of the meshes tested. This is also easily deduced: the divergence of the velocity space is
included in the pressure space and hence the Brezzi coercivity constant is indeed one for all meshes.
Since neither constant is singular, we expect the discrete system of equations to be solvable – as we
indeed saw in Section 38.2. The problem with this method hence only lies in the decaying Brezzi
inf-sup constant. However, the instability did indeed manifest itself in the discrete approximation
see Figure 38.1(a).
Finally, we can inspect a stable method, namely the lowest order Raviart–Thomas space combined
with the space of piecewise constants:

Python code
<Mixed element: (<RT1 on a <triangle of degree 1>>,

<DG0 on a <triangle of degree 1>>)>

Discretization family is: Stable.

InfSupCollection: beta_h

values = [0.97682, 0.97597, 0.97577, 0.97569, 0.97566]

rates = [0.00126, 0.000508, 0.000265, 0.000162]

InfSupCollection: alpha_h

values = [1, 1, 1, 1, 1]

rates = [5.6e-11, 1.39e-08, 1.64e-08, 2.24e-07]

ASCoT characterizes this mixed element method as stable. It is indeed proven so [Raviart and
Thomas, 1977]. The Brezzi coercivity constant is equal to 1 for all meshes tested and hence
bounded from below. The Brezzi inf-sup constant definitely seems to be bounded from below. (The
constant will actually converge to the value

√
2π(1 + 2π2)−1/2, see [Arnold and Rognes, 2009].)

The satisfactory result observed in Figure 38.1(b) is thus agreement with the general theory.

38.6. EXAMPLES 697

Caveat emptor. It is worth noting that the stability properties of some mixed elements can vary
dramatically. Here is one example: take the combination of continuous linear vector fields and
piecewise constants for the mixed Laplacian. As we have seen above, this element family is
non-singular on the diagonal mesh family, but the Brezzi inf-sup constants decay. However, if we
inspect a family of criss-cross meshes, specified in DOLFIN using

Python code
meshes = [UnitSquare(n, n, "crossed") for n in meshsizes]

with the mesh sizes as before, the results are different:

Python code
Discretization family is: Unstable. Singular. Reduced stable.

InfSupCollection: beta_h

singularities = [4, 16, 36, 64, 100]

reduced = [0.97832, 0.97637, 0.97595, 0.97579, 0.97572]

rates = [0.00288, 0.00106, 0.000543, 0.000328]

For this mesh family, the Brezzi inf-sup constants are zero and thus the method is singular. (In
fact, there are n2 spurious modes for this element on this mesh [Qin, 1994].) However, the reduced
Brezzi inf-sup constants seem to be bounded from below, and so the method could theoretically be
stabilized by a removal of the spurious modes. For a careful study of the stability of Lagrange
elements for the mixed Laplacian on various mesh families, see Arnold and Rognes [2009].
The results may be more different than illustrated above. A truly stable method will be stable for
any admissible tessellation family, but there are methods that are stable on some mesh families,
but not in general. Therefore, if determining whether a mixed element is appropriate or not, the
discretization should be tested on more than a single mesh family.

38.6.2 Stokes

The Stokes equations is another classical and highly relevant saddle point problem. For simplicity,
we here consider the following discrete formulation: find the velocity uh ∈ Vh, and the pressure
ph ∈ Qh such that

〈grad uh, grad v〉+ 〈div v, ph〉 = 〈 f , v〉 ∀ v ∈ Vh,

〈div uh, q〉 = 0 ∀ q ∈ Qh.
(38.24)

The previous example demonstrated that it is feasible, even easy, to test stability for any given
family of discretizations. Taking this a step further, we can generate a set of all available conforming
function spaces on a family of meshes, and test the stability of each. With this aim in mind, ASCoT
provides some functionality for creating combinations of mixed function spaces given information
on the value dimension of the spaces, the polynomial degree, the meshes and the desired regularity.
For instance, to generate all available H1-conforming vector fields of polynomial degree between 1
and 4 matched with L2-conforming functions of polynomial degrees between 0 and 3 on a given
set of meshes, define

Python code
specifications = {"value_dimensions": (2, 1),

"degrees": ((i,j) for i in range(1,5) for j in range(i)),

"spaces": ("H1", "L2")}

spaces = create_spaces(meshes, **specifications)

698 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

1. CG2
2 ×CG1

2. CG2
3 ×CG1

3. CG2
3 ×CG2

4. CG2
4 ×CG1

5. CG2
4 ×CG2

6. CG2
4 ×CG3

7. CG2
2 ×DG0

8. CG2
3 ×DG0

9. CG2
3 ×DG1

10. CG2
4 ×DG0

11. CG2
4 ×DG1

12. CG2
4 ×DG2

13. CG2
4 ×DG3

Figure 38.2: List of elements identified
as satisfying the Brezzi inf-sup con-
dition for the Stokes equations on a
family of diagonal triangulations of
the unit square.

For the equations (38.24), the Brezzi coercivity condition always holds as long as Vh does not
contain the constant functions. Therefore, it suffices to examine the Brezzi inf-sup condition.
For simplicity though, we here examine the Vh spaces with no essential boundary conditions
prescribed. With spaces generated as above, this can be accomplished as follows:

Python code
Define b form

b = lambda v, q: div(v)*q*dx

Define inner products:

H1 = lambda u, v: (dot(u, v) + inner(grad(u), grad(v)))*dx

L2 = lambda p, q: dot(p, q)*dx

Test Brezzi inf-sup condition for the generated spaces

for W_hs in spaces:

beta_hs = [compute_brezzi_infsup(b, (H1, L2), W_h) for W_h in W_hs]

result = StabilityResult(InfSupCollection(beta_hs, "beta_h"))

Finally, ASCoT provides an optimized mode where only the stability of a discretization family is
detected and not possible reduced stabilities. This mode is off by default, but can easily be turned
on:

Python code
ascot_parameters["only_stable"] = True

Applying the above to the diagonal mesh family used in the previous example and printing those
elements that are classified as stable result in the list of mixed elements summarized in Figure 38.2.
The first item on this list is the lowest order Taylor–Hood element, while the third and sixth items
are the next elements of the Taylor–Hood family: CG2

k+1 ×CGk for k > 1. These mixed elements
are indeed stable for any family of tessellations consisting of more than three triangles [Taylor and
Hood, 1973, Stenberg, 1984, Brezzi and Falk, 1991]. The seventh item on the list is the CG2

2 ×DG0
element [Crouzeix and Raviart, 1973], while the 9’th and 12’th item are the next order elements
of the CG2

k+1 ×DGk−1 family, which again is truly stable for k > 1. The 13’th item on this list,
CG2

4 ×DG3 is the lowest order Scott–Vogelius element. This element is the lowest order element of
the Scott–Vogelius family CG2

k ×DGk−1 for k > 4. Note that these elements for k = 1, 2, 3 are not
on the list — as they should not: these lower order mixed elements are indeed unstable on this
tessellation family [Qin, 1994]. The stability of the remaining elements follow from the previous
results: if the Brezzi inf-sup condition holds for a family {Vh ×Qh}, by definition it will also hold
for the families {Vh × Ph} for Ph ⊆ Qh.
In conclusion, the elements identified are indeed known to be stable, and the list comprises all
the stable conforming finite elements for the Stokes equations on this tessellation family that are
available in FFC and generated by the create_spaces function.

38.7. CONCLUSION 699

38.7 Conclusion

This chapter describes an automated strategy for the testing of stability conditions for mixed
finite element discretizations. The strategy has been implemented as a very light-weight python
module, ASCoT, on top of DOLFIN. The implementation is light-weight because of the powerful
tools provided by the DOLFIN module, in particular the flexible form language provided through
UFL/FFC, the availability of arbitrary order mixed finite elements of various families, and the
SLEPc eigenvalue solvers.
We have seen that the automated stability tester has successfully identified available stable and
unstable elements when applied to the Stokes equations for a diagonal tessellation family. Moreover,
the framework has been used to identify previously unknown stability properties for lower order
Lagrange elements for the mixed Laplacian [Arnold and Rognes, 2009].
There are however some limitations. First, numerical evidence is not analytical evidence. The
tester makes a stability conjecture based on the computed constants. The conjecture may in some
cases be erroneous, and the reliability of this conjecture may be low if only a few meshes are
considered. Second, solving generalized, singular eigenvalue problems can be nontrivial. For the
Brezzi coercivity constants, the Krylov-Schur solver easily fails to converge even with an applied
shift-and-invert spectral transform. In such a case, one must either return to use a LAPACK-type
solver or consider the Babuška constant directly.

List of authors

The following authors have contributed to this book.

Martin Sandve Alnæs
Chapters 18, 17, 16 and 15

Center for Biomedical Computing at Simula Research Laboratory, Norway
Department of Informatics, University of Oslo, Norway

This work is supported by an Outstanding Young Investigator grant from the Research Council of Norway, NFR 162730.
This work is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for
Biomedical Computing at Simula Research Laboratory.

Stuart R. Clark
Chapter 34

Computational Geoscience Department at Simula Research Laboratory, Norway

This work was funded by a research grant from Statoil.

David B. Davidson
Chapter 36

Department of Electrical and Electronic Engineering, Stellenbosch University, South Africa

This work is supported by grants from the National Research Foundation, South Africa, as well as the Centre for High
Performance Computing, South Africa as part of a flagship project.

Rodrigo Vilela De Abreu
Chapter 24

School of Computer Science and Communication, KTH, Sweden

Cem Degirmenci
Chapter 19

School of Computer Science and Communication, KTH, Sweden

701

702 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

Joachim Berdal Haga
Chapter 37

Center for Biomedical Computing at Simula Research Laboratory, Norway

This work is supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Johan Hake
Chapters 11, 20 and 35

Department of Bioengeneering, UCSD, USA
Center for Biomedical Computing at Simula Research Laboratory, Norway

This work was supported by the National Biomedical Computational Resource (NIH grant 5P41RR08605-17). This work
is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Johan Hoffman
Chapters 24 and 19

School of Computer Science and Communication, KTH, Sweden

Johan Jansson
Chapters 24 and 19

School of Computer Science and Communication, KTH, Sweden

Niclas Jansson
Chapters 24 and 19

School of Computer Science and Communication, KTH, Sweden

Claes Johnson
Chapter 24

School of Computer Science and Communication, KTH, Sweden

Robert C. Kirby
Chapters 3, 21, 9, 4, 14, 13, 10, 5 and 6

Department of Mathematics and Statistics, Texas Tech University, USA

38.7. CONCLUSION 703

Matthew Gregg Knepley
Chapter 21

Computation Institute, University of Chicago, Chicago, USA
Department of Molecular Biology and Physiology, Rush University Medical Center, Chicago, USA
Mathematics and Computer Science Division, Argonne National Laboratory, Chicago, USA

This work was also supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357.

Hans Petter Langtangen
Chapter 2

Center for Biomedical Computing at Simula Research Laboratory, Norway
Department of Informatics, University of Oslo, Norway

This work is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for
Biomedical Computing at Simula Research Laboratory.

Evan Lezar
Chapter 36

Department of Electrical and Electronic Engineering, Stellenbosch University, South Africa

This work is supported by grants from the National Research Foundation, South Africa, as well as the Centre for High
Performance Computing, South Africa as part of a flagship project.

Svein Linge
Chapter 29

Telemark University College and the Center for Biomedical Computing at Simula Research Labora-
tory, Norway

This work is supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Anders Logg
Chapters 17, 13, 10, 6, 4, 3, 9, 22, 28, 12, 11 and 7

Center for Biomedical Computing at Simula Research Laboratory, Norway
Department of Informatics, University of Oslo, Norway

This work is supported by an Outstanding Young Investigator grant from the Research Council of Norway, NFR 180450.
This work is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for
Biomedical Computing at Simula Research Laboratory.

704 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

Nuno D. Lopes
Chapter 27

ADEM, Área Departamental de Matemática, ISEL, Instituto Superior de Engenharia de Lisboa,
Portugal
Departamento de Matemática, FCT–UNL, Faculdade de Ciências e Tecnologia da Universidade
Nova de Lisboa, Portugal
CMAF, Centro de Matemática e Aplicações Fundamentais, Lisboa, Portugal

This work is supported by ISEL, Instituto Superior de Engenharia de Lisboa.

Alf Emil Løvgren
Chapter 29

Nofas Management AS, Norway

This work is supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Kent-Andre Mardal
Chapters 5, 7, 15, 16, 17, 20, 22, 23, 28, 29 and 37

Center for Biomedical Computing at Simula Research Laboratory, Norway
Department of Informatics, University of Oslo, Norway

This work is supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Mikael Mortensen
Chapter 23

Norwegian Defence Research Establishment (FFI), Norway

Harish Narayanan
Chapters 30 and 22

Center for Biomedical Computing at Simula Research Laboratory, Norway

This work is supported by an Outstanding Young Investigator grant from the Research Council of Norway, NFR 180450.
This work is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for
Biomedical Computing at Simula Research Laboratory.

Murtazo Nazarov
Chapter 19

School of Computer Science and Communication, KTH, Sweden

38.7. CONCLUSION 705

Mehdi Nikbakht
Chapter 32

Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands

Support from the Netherlands Technology Foundation STW, the Netherlands Organisation for Scientific Research and
the Ministry of Public Works and Water Management is gratefully acknowledged.

Pedro J. S. Pereira
Chapter 27

ADEM, Área Departamental de Matemática, ISEL, Instituto Superior de Engenharia de Lisboa,
Portugal
CEFITEC, Centro de Física e Investigação Tecnológica, FCT–UNL, Faculdade de Ciências e Tec-
nologia da Universidade Nova de Lisboa, Portugal

Johannes Ring
FEniCS packaging, buildbots, benchbots and build system

Center for Biomedical Computing at Simula Research Laboratory, Norway

This work is supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Marie E. Rognes
Chapters 12, 4, 38 and 34

Center for Biomedical Computing at Simula Research Laboratory, Norway

This work is supported by an Outstanding Young Investigator grant from the Research Council of Norway, NFR 180450.
This work is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for
Biomedical Computing at Simula Research Laboratory.

Hans Joachim Schroll
Chapter 33

Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Denmark

This work was funded by a research grant from Statoil. The work has been conducted at Simula Research Laboratory,
Norway

L. Ridgway Scott
Chapter 21

Departments of Computer Science and Mathematics, Institute for Biophysical Dynamics and the
Computation Institute, University of Chicago, USA

This work was supported in part by NSF grant DMS-0920960.

706 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

Kristoffer Selim
Chapter 25

Center for Biomedical Computing at Simula Research Laboratory, Norway
Department of Informatics, University of Oslo, Norway

This work is supported by an Outstanding Young Investigator grant from the Research Council of Norway, NFR 180450.
This work is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for
Biomedical Computing at Simula Research Laboratory.

Susanne Støle-Hentschel
Chapter 29

Det Norske Veritas AS

This work is supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Andy R. Terrel
Chapters 21, 10 and 4

Enthought Inc., Austin, Texas, USA

Luís Trabucho
Chapter 27

Departamento de Matemática, FCT–UNL, Faculdade de Ciências e Tecnologia da Universidade
Nova de Lisboa, Portugal
CMAF, Centro de Matemática e Aplicações Fundamentais, Lisboa, Portugal

This work is partially supported by Fundação para a Ciência e Tecnologia, Financiamento Base 2008-ISFL-1-209.

Kristian Valen-Sendstad
Chapters 22 and 28

Simula School of Research and Innovation
Center for Biomedical Computing at Simula Research Laboratory, Norway

This work is supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Lyudmyla Vynnytska
Chapter 34

Computational Geoscience Department at Simula Research Laboratory, Norway

This work was funded by a research grant from Statoil.

Garth N. Wells
Chapters 12, 11, 7, 32, 31, 8, 21 and 26

Department of Enginering, University of Cambridge, United Kingdom

38.7. CONCLUSION 707

Ilmar M. Wilbers
Chapter 15

Center for Biomedical Computing at Simula Research Laboratory, Norway

This work is supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical
Computing at Simula Research Laboratory.

Kristian B. Ølgaard
Chapters 8, 31 and 12

Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands

This work is supported by the Netherlands Technology Foundation STW, the Netherlands Organisation for Scientific
Research and the Ministry of Public Works and Water Management.

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection

709

710 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.
The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control

3.. COPYING IN QUANTITY 711

the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

712 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made

5.. COMBINING DOCUMENTS 713

by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

714 CHAPTER 38. AUTOMATED TESTING OF SADDLE POINT STABILITY CONDITIONS

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a transla-
tion of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11.. RELICENSING 715

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San
Francisco, California, as well as future copyleft versions of that license published by that same
organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

References

S. Adams and B. Cockburn. A mixed finite element method for elasticity in three dimen-
sions. Journal of Scientific Computing, 25(3):515–521, 2005. URL http://dx.doi.org/10.1007/

s10915-004-4807-3.

M. Ainsworth and J. Coyle. Hierarchic finite element bases on unstructured tetrahedral meshes.
International Journal for Numerical Methods in Engineering, 58(14):2103–2130, 2003. URL http:

//dx.doi.org/10.1002/nme.847.

M. Ainsworth and J. T. Oden. A unified approach to a posteriori error estimation using element
residual methods. Numerische Mathematik, 65(1):23–50, 1993. URL http://dx.doi.org/10.1007/

BF01385738.

M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. Wiley and
Sons, New York, 2000.

J. Alastruey, K. H. Parker, J. Peiro, S. M. Byrd, and S. J. Sherwin. Modelling the circle of Willis to
assess the effects of anatomical variations and occlusions on cerebral flows. Journal of Biomechanics,
40(8):1794–1805, 2007. URL http://dx.doi.org/10.1016/j.jbiomech.2006.07.008.

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell.
Garland, 4th edition, 2002.

V. Alfred, R. Sethi, and D. U. Jeffrey. Compilers: Principles, Techniques and Tools. Addison-Wesley,
Reading, Massachusetts, 1986.

M. Alnæs, H. P. Langtangen, A. Logg, K.-A. Mardal, and O. Skavhaug. UFC Specification and User
Manual, 2007. URL http://www.fenics.org/ufc/.

M. S. Alnæs and A. Logg. UFL Specification and User Manual, 2009. URL http://www.fenics.org/

ufl/.

M. S. Alnæs and K.-A. Mardal. SyFi, 2009. URL http://www.fenics.org/wiki/SyFi/.

M. S. Alnæs and K.-A. Mardal. On the efficiency of symbolic computations combined with
code generation for finite element methods. ACM Trans. Math. Softw., 37:6:1–6:26, 2010. URL
http://dx.doi.org/10.1145/1644001.1644007.

M. S. Alnæs, A. Logg, K.-A. Mardal, O. Skavhaug, and H. P. Langtangen. Unified framework
for finite element assembly. International Journal of Computational Science and Engineering, 2009.
Accepted for publication. Preprint: http://simula.no/research/scientific/publications/

Simula.SC.96.

717

http://dx.doi.org/10.1007/s10915-004-4807-3
http://dx.doi.org/10.1007/s10915-004-4807-3
http://dx.doi.org/10.1002/nme.847
http://dx.doi.org/10.1002/nme.847
http://dx.doi.org/10.1007/BF01385738
http://dx.doi.org/10.1007/BF01385738
http://dx.doi.org/10.1016/j.jbiomech.2006.07.008
http://www.fenics.org/ufc/
http://www.fenics.org/ufl/
http://www.fenics.org/ufl/
http://www.fenics.org/wiki/SyFi/
http://dx.doi.org/10.1145/1644001.1644007
http://simula.no/research/scientific/publications/Simula.SC.96
http://simula.no/research/scientific/publications/Simula.SC.96

718 REFERENCES

N. Alperin, M. Mazda, T. Lichtor, and S. H. Lee. From cerebrospinal fluid pulsation to noninvasive
intracranial compliance and pressure measured by MRI flow studies. Current Medical Imaging
Reviews, 2:117–129, 2006.

J. H. Argyris, I. Fried, and D. W. Scharpf. The TUBA family of plate elements for the matrix
displacement method. The Aeronautical Journal of the Royal Aeronautical Society, 72:701–709, 1968.

D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J.
Numer. Anal., 19(4), 1982. URL http://dx.doi.org/10.1137/0719052.

D. N. Arnold and R. S. Falk. A uniformly accurate finite element method for the Reissner–Mindlin
plate. SIAM J. Num. Anal., 26:1276–1290, 1989. URL http://dx.doi.org/10.1137/0726074.

D. N. Arnold and M. E. Rognes. Stability of Lagrange elements for the mixed Laplacian. Calcolo,
46(4):245–260, 2009. URL http://dx.doi.org/10.1007/s10092-009-0009-6.

D. N. Arnold and R. Winther. Mixed finite elements for elasticity. Numer. Math., 92(3):401–419,
2002. URL http://dx.doi.org/10.1007/s002110100348.

D. N. Arnold, F. Brezzi, and J. Douglas, Jr. PEERS: a new mixed finite element for plane elasticity.
Japan J. Appl. Math., 1(2):347–367, 1984a. URL http://dx.doi.org/10.1007/BF03167064.

D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. Calcolo, 21

(4):337–344, 1984b. URL http://dx.doi.org/10.1007/BF02576171.

D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning in H(div) and applica-
tions. Mathematics of Computation, 66(219):957–984, 1997. URL http://dx.doi.org/10.1090/

S0025-5718-97-00826-0.

D. N. Arnold, R. S. Falk, and R. Winther. Multigrid in H(div) and H(curl). Numerische Mathematik,
85(2):197–217, 2000. URL http://dx/doi.org/10.1007/PL00005386.

D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological tech-
niques, and applications. Acta Numerica, 15:1–155, 2006a. URL http://dx.doi.org/10.1017/

S0962492906210018.

D. N. Arnold, R. S. Falk, and R. Winther. Differential complexes and stability of finite element
methods. II. The elasticity complex. In Compatible spatial discretizations, volume 142 of IMA Vol.
Math. Appl., pages 47–67. Springer, New York, 2006b.

D. N. Arnold, R. S. Falk, and R. Winther. Mixed finite element methods for linear elasticity with
weakly imposed symmetry. Mathematics of Computation, 76(260):1699–1723, 2007.

D. N. Arnold, G. Awanou, and R. Winther. Finite elements for symmetric tensors in three
dimensions. Math. Comp., 77(263):1229–1251, 2008.

O. Axelsson. A general incomplete block-matrix factorization method. Linear Algebra and its
Applications, 74:179–190, 1986. ISSN 0024-3795.

I. Babuška. The finite element method with Lagrangian multipliers. Numer. Math., 20:179–192,
1973. URL http://dx.doi.org/10.1007/BF01436561.

I. Babuška and W. C. Rheinboldt. A posteriori error estimates for the finite element method. Int. J.
Numer. Meth. Engrg., pages 1597–1615, 1978.

http://dx.doi.org/10.1137/0719052
http://dx.doi.org/10.1137/0726074
http://dx.doi.org/10.1007/s10092-009-0009-6
http://dx.doi.org/10.1007/s002110100348
http://dx.doi.org/10.1007/BF03167064
http://dx.doi.org/10.1007/BF02576171
http://dx.doi.org/10.1090/S0025-5718-97-00826-0
http://dx.doi.org/10.1090/S0025-5718-97-00826-0
http://dx/doi.org/10.1007/PL00005386
http://dx.doi.org/10.1017/S0962492906210018
http://dx.doi.org/10.1017/S0962492906210018
http://dx.doi.org/10.1007/BF01436561

REFERENCES 719

I. Babuška, U. Banerjee, and J. E. Osborn. Survey of meshless and generalized finite element
methods: A unified approach. Acta Numerica, 12:1–125, 2003.

B. Bagheri and L. R. Scott. About Analysa. Technical Report TR–2004–09, University of
Chicago, Department of Computer Science, 2004. URL http://www.cs.uchicago.edu/research/

publications/techreports/TR-2004-09.

S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and
H. Zhang. PETSc web page, 2001. URL http://www.mcs.anl.gov/petsc.

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5,
Argonne National Laboratory, 2004.

W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general-purpose object-oriented finite ele-
ment library. ACM Trans. Math. Softw., 33(4), 2007. URL http://dx.doi.org/10.1145/1268776.

1268779.

R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations.
Mathematics of Computation, pages 283–301, 1985.

G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.

C. Bauer, A. Frink, and R. Kreckel. Introduction to the GiNaC framework for symbolic computation
within the C++ programming language. Journal of Symbolic Computation, 33(1):1–1, 2002. URL
http://dx.doi.org/10.1006/jsco.2001.0494.

D. M. Beazley. SWIG: An easy to use tool for integrating scripting languages with C and C++. In
Proceedings of the 4th conference on USENIX Tcl/Tk Workshop, volume 4, Berkeley, 1996. USENIX
Association. URL http://portal.acm.org/citation.cfm?id=1267498.1267513.

E. B. Becker, G. F. Carey, and J. T. Oden. Finite Elements: An Introduction. Prentice–Hall, Englewood–
Cliffs, 1981.

R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite
element methods. Acta Numerica, 10:1–102, 2001.

S. Beji and K. Nadaoka. A formal derivation and numerical modelling of the improved Boussinesq
equations for varying depth. Ocean engineering, 23(8):691, 1996. ISSN 0029-8018.

W. N. Bell, L. N. Olson, and J. Schroder. PyAMG: Algebraic multigrid solvers in Python, 2011.
URL http://www.pyamg.org.

T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing.
International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999.

F. Bengzon and M. G. Larson. Adaptive finite element approximation of multiphysics prob-
lems: A fluid-structure interaction model problem. International Journal for Numerical Methods in
Engineering, 2010.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica,
14:1–137, 2005.

D. M. Bers. Excitation-Contraction Coupling and Cardiac Contractile Force. Kluwer Academic Publish-
ers, Dordrecht, 2nd edition, 2001.

http://www.cs.uchicago.edu/research/publications/techreports/TR-2004-09
http://www.cs.uchicago.edu/research/publications/techreports/TR-2004-09
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1145/1268776.1268779
http://dx.doi.org/10.1145/1268776.1268779
http://dx.doi.org/10.1006/jsco.2001.0494
http://portal.acm.org/citation.cfm?id=1267498.1267513
http://www.pyamg.org

720 REFERENCES

D. J. Beuckelmann and W. G. Wier. Mechanism of release of calcium from sarcoplasmic reticulum
of guinea-pig cardiac cells. J. Physiol., 405:233–255, Nov 1988.

W. B. Bickford. A First Course in the Finite Element Method. Irwin, 1994.

P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ortí, and R. A. van de Geijn. The science
of deriving dense linear algebra algorithms. ACM Transactions on Mathematical Software, 31(1):
1–26, 2005. URL http://dx.doi.org/10.1145/1055531.1055532.

H. B. Bingham, P. A. Madsen, and D. R. Fuhrman. Velocity potential formulations of highly
accurate Boussinesq-type models. Coastal Engineering, Article in Press, 2008.

C. Bischof, A. Carle, G. Corliss, and A. Griewank. ADIFOR: Automatic differentiation in a source
translator environment. In Papers from the international symposium on Symbolic and algebraic com-
putation, pages 294–302, Berkeley, California, 1992. URL http://dx.doi.org/10.1145/143242.

143335.

C. H. Bischof, P. D. Hovland, and B. Norris. Implementation of automatic differentiation tools. In
Proceedings of the 2002 ACM SIGPLAN workshop on Partial evaluation and semantics-based program
manipulation, pages 98–107, Portland, Oregon, 2002. URL http://dx.doi.org/10.1145/503032.

503047.

H. Blackburn. Semtex, 2011. URL http://users.monash.edu.au/~bburn/semtex.html.

H. M. Blackburn and S. J. Sherwin. Formulation of a Galerkin spectral element-Fourier method for
three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys., 197:759–778,
2004. URL http://dx.doi.org/10.1016/j.jcp.2004.02.013.

B. Blankenbach, F. Busse, U. Christensen, et al. A benchmark comparison for mantle convection
codes. Geophys. J. Int., 98:23–28, 1989.

D. Boffi. Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal.,
34(2):664–670, 1997. URL http://dx.doi.org/10.1137/S0036142994270193.

D. Boffi, F. Brezzi, and L. Gastaldi. On the problem of spurious eigenvalues in the approximation
of linear elliptic problems in mixed form. Math. Comp., 69(229):121–140, 2000.

J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge
University Press, 1997.

A. Bossavit. Computational Electromagnetics: Variational Formulations, Complementarity, Edge Ele-
ments. Academic Press, 1998.

L. Boussel, V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S.
Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress:
Patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke, 39(11):
2997–3002, 2008. URL http://dx.doi.org/10.1161/STROKEAHA.108.521617.

D. Braess. Finite Elements. Cambridge University Press, third edition, 2007. ISBN 978-0-521-70518-9.

J. H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes in Mathematical Sciences.
Longman Scientific & Technical, Essex, England, 1993.

J. H. Bramble and M. Zlámal. Triangular elements in the finite element method. Mathematics of
Computation, pages 809–820, 1970.

http://dx.doi.org/10.1145/1055531.1055532
http://dx.doi.org/10.1145/143242.143335
http://dx.doi.org/10.1145/143242.143335
http://dx.doi.org/10.1145/503032.503047
http://dx.doi.org/10.1145/503032.503047
http://users.monash.edu.au/~bburn/semtex.html
http://dx.doi.org/10.1016/j.jcp.2004.02.013
http://dx.doi.org/10.1137/S0036142994270193
http://dx.doi.org/10.1161/STROKEAHA.108.521617

REFERENCES 721

A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation,
pages 333–390, 1977.

S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts
in Applied Mathematics. Springer, New York, third edition, 2008. URL http://dx.doi.org/10.

1007/978-0-387-75934-0.

F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from
Lagrangian multipliers. RAIRO Anal. Numér., R–2:129–151, 1974.

F. Brezzi and R. S. Falk. Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal., 28

(3):581–590, 1991.

F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods, volume 15 of Springer Series in
Computational Mathematics. Springer-Verlag, New York, 1991.

F. Brezzi, J. Douglas, Jr., and L. D. Marini. Two families of mixed finite elements for second order
elliptic problems. Numer. Math., 47(2):217–235, 1985a.

F. Brezzi, J. Douglas, Jr., and L. D. Marini. Variable degree mixed methods for second order elliptic
problems. Mat. Apl. Comput., 4(1):19–34, 1985b.

F. Brezzi, J. Douglas, R. Duran, and M. Fortin. Mixed finite elements for second order elliptic
problems in three variable. Numerische Matematik, 51:237–250, 1987a.

F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini. Efficient rectangular mixed finite elements in
two and three space variables. RAIRO Modél. Math. Anal. Numér., 21(4):581–604, 1987b.

A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov–Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier–Stokes equations.
Computer Methods in Applied Mechanics and Engineering, 32(1-3):199–259, Sept. 1982. URL http:

//dx.doi.org/10.1016/0045-7825(82)90071-8.

A. Buffa, P. Houston, and I. Perugia. Discontinuous Galerkin computation of the Maxwell
eigenvalues on simplicial meshes. Journal of Computational and Applied Mathematics, 204(2):317 –
333, 2007. URL http://dx.doi.org/DOI:10.1016/j.cam.2006.01.042.

K. Burke, B. Steinberger, T. H. Torsvik, and M. A. Smethurst. Plume generation zones at the margins
of large low shear velocity provinces on the coreâĂŞmantle boundary. Earth and Planetary Science
Letters, 265:49–60, 2008.

J. Cahouet and J.-P. Chabard. Some fast 3D finite element solvers for the generalized Stokes
problem. International Journal for Numerical Methods in Fluids, 8(8):869–895, 1988.

C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods. Springer-Verlag, 2007.
URL http://dx.doi.org/10.1007/978-3-540-30728-0.

C. A. P. Castigliano. Théorie de l’équilibre des systèmes élastiques et ses applications. A.F. Negro ed.,
Torino, 1879.

J. R. Cebral, M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman.
Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific
computational hemodynamics models. American Journal of Neuroradiology, 26(10):2550–2559, 2005.
URL http://www.ajnr.org/cgi/content/abstract/26/10/2550.

http://dx.doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/DOI: 10.1016/j.cam.2006.01.042
http://dx.doi.org/10.1007/978-3-540-30728-0
http://www.ajnr.org/cgi/content/abstract/26/10/2550

722 REFERENCES

O. Certik, F. Seoane, P. Peterson, et al. sympy: Python library for symbolic mathematics, 2009.
URL http://sympy.org.

CGAL. Software package. URL http://www.cgal.org.

D. Chapelle and K.-J. Bathe. The inf-sup test. Comput. & Structures, 47(4-5):537–545, 1993.

G. Chavent and P. Lemmonier. Identification de la non–linearite’ d’une equation parabolique
quasi–lineare. Applied Math. and Opt., 26:121–162, 1974.

Y. Chen and P. L.-F. Liu. Modified Boussinesq equations and associated parabolic models for water
wave propagation. J. Fluid Mech., 288:351–381, 1994.

J. Chessa, P. Smolinski, and T. Belytschko. The extended finite element method (XFEM) for
solidification problems. International Journal for Numerical Methods in Engineering, 53(8):1959–
1977, 2002.

A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745–762, 1968.

I. Christie, D. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz. Finite element methods for second
order differential equations with significant first derivatives. International Journal for Numerical
Methods in Engineering, 10(6):1389–1396, 1976.

V. V. Chudanov, A. G. Popkov, A. G. Churbanov, P. N. Vabishchevich, and M. M. Makarov. Operator-
splitting schemes for the streamfunction-vorticity formulation. Comput. Fluids, v24(7):771–786,
2007.

P. G. Ciarlet. Lectures on the finite element method. Lectures on Mathematics and Physics, Tata
Institute of Fundamental Research, Bombay, 49, 1975.

P. G. Ciarlet. Numerical Analysis of the Finite Element Method. Les Presses de l’Universite de Montreal,
1976.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 40 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002.

P. G. Ciarlet and P.-A. Raviart. General Lagrange and Hermite interpolation in Rn with applications
to finite element methods. Arch. Rational Mech. Anal., 46:177–199, 1972.

R. Cimrman et al. SfePy: Simple Finite Elements in Python, 2008. URL http://sfepy.org.

G. Compère, J.-F. Remacle, J. Jansson, and J. Hoffman. Transient mesh adaptivity applied to large
domain deformations. To appear in Int. J. Numer. Meth. Eng., 2009.

COMSOL. Comsol multiphysics, 2009. URL http://www.comsol.com.

M. Costabel and M. Dauge. Weighted Regularization of Maxwell Equations in Polyhedral Domains.
Numerische Mathematik, 93(2):239–277, 2002. ISSN 0029-599X.

R. Courant. Variational methods for the solution of problems of equilibrium and vibrations. Bull.
Amer. Math. Soc., pages 1–23, 1943.

M. Crouzeix and R. S. Falk. Nonconforming finite elements for the Stokes problem. Mathematics of
Computation, 52:437–456, 1989. URL http://dx.doi.org/10.2307/2008475.

http://sympy.org
http://www.cgal.org
http://sfepy.org
http://www.comsol.com
http://dx.doi.org/10.2307/2008475

REFERENCES 723

M. Crouzeix and P. A. Raviart. Conforming and non-conforming finite element methods for solving
the stationary Stokes equations. RAIRO Anal. Numer., 7:33–76, 1973.

Cython. Software package. URL http://cython.org.

D. B. Davidson. Computational Electromagnetics for RF and Microwave Engineers. Cambridge Univer-
sity Press, Cambridge, second edition, 2011. ISBN 9780521518918.

P. F. Davies, A. Remuzzi, E. J. Gordon, C. F. Dewey, and M. Gimbrone. Turbulent fluid shear stress
induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. USA, 83:2114–2117, 1986.

T. A. Davis. Algorithm 832: Umfpack v4.3 — an unsymmetric-pattern multifrontal method. ACM
Transactions on Mathematical Software, 30(2):196–199, 2004. URL http://dx.doi.org/10.1145/

992200.992206.

DDD. Software package. URL http://www.gnu.org/software/ddd.

R. V. de Abreu, N. Jansson, and J. Hoffman. Adaptive computation of aeroacoustic sources for a
4-wheel rudimentary landing gear benchmark problem. In Proc. Workshop on Benchmark Problems
Airframe Noise Computation (BANC-I), 2010.

D. A. di Pietro, S. L. Forte, and N. Parolini. Mass preserving finite element implementations of the
level set method. Applied Numerical Mathematics, 56:1179–1195, 2006.

B. M. Dillon and J. P. Webb. A comparison of formulations for the vector finite element analysis of
waveguides. IEEE Trans. Microwave Theory Tech., 42(2):308–316, February 1994.

Distutils. distutils âĂŤ Building and installing Python modules. URL http://docs.python.org/

library/distutils.html.

V. Domínguez and F.-J. Sayas. Algorithm 884: A simple Matlab implementation of the Argyris
element. ACM Transactions on Mathematical Software, 35(2):16:1–16:11, July 2008. URL http:

//dx.doi.org/10.1145/1377612.1377620.

J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Wiley, 2003.

J. Donea, S. Giuliani, and J. Halleux. An arbitrary Lagrangian–Eulerian finite element method
for transient dynamic fluid–structure interactions. Computer Methods in Applied Mechanics and
Engineering, 33(1-3):689–723, 1982.

J. Donea, A. Huerta, J. P. Ponthot, and A. Rodrıguez-Ferran. Arbitrary Lagrangian–Eulerian
methods. Encyclopedia of Computational Mechanics, 1:1–25, 2004.

W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM Journal on Numerical
Analysis, 33(3):1106–1124, 1996.

M. Dubiner. Spectral methods on triangles and other domains. Journal of Scientific Computing, 6(4):
345–390, 1991.

P. Dular and C. Geuzaine. GetDP Reference Manual, 2005.

D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle.
International Journal for Numerical Methods in Engineering, 21(6):1129–1148, 1985. ISSN 1097-0207.

T. Dunne. An Eulerian approach to fluid–structure interaction and goal-oriented mesh adaptation.
International Journal for Numerical Methods in Fluids, 51(9-10):1017–1039, 2006.

http://cython.org
http://dx.doi.org/10.1145/992200.992206
http://dx.doi.org/10.1145/992200.992206
http://www.gnu.org/software/ddd
http://docs.python.org/library/distutils.html
http://docs.python.org/library/distutils.html
http://dx.doi.org/10.1145/1377612.1377620
http://dx.doi.org/10.1145/1377612.1377620

724 REFERENCES

T. Dunne. Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on Eulerian and
Arbitrary Lagrangian-Eulerian Variational Formulations. PhD thesis, Ruprecht-Karls-UniversitÃd’t,
Heidelberg, 2007.

T. Dunne and R. Rannacher. Adaptive finite element approximation of fluid-structure interac-
tion based on an Eulerian variational formulation. Lecture Notes In Computational Science And
Engineering, 53:110, 2006.

D. Dutykh and F. Dias. Dissipative Boussinesq equations. Comptes Rendus Mecanique, 335:559, 2007.
URL doi:10.1016/j.crme.2007.08.003.

S. V. Eden, W. J. Meurer, B. N. Sanchez, L. D. Lisabeth, M. A. Smith, D. L. Brown, and L. B.
Morgenstern. Gender and ethnic differences in subarachnoid hemorrhage. Neurology, 71:731–735,
2008.

H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative Solvers: With
Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation.
Oxford University Press, Oxford, 2005.

K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems III: Time
steps variable in space. in preparation.

K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems I: A linear
model problem. SIAM J. Numer. Anal., 28, No. 1:43–77, 1991.

K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems II: Optimal
error estimates in $ l_\ infty l_2$ and$ l_\ infty l_\ infty$. SIAM Journal on Numerical Analysis,
32:706, 1995a.

K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems IV: Nonlinear
problems. SIAM Journal on Numerical Analysis, pages 1729–1749, 1995b.

K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems V: Long-time
integration. SIAM J. Numer. Anal., 32:1750–1763, 1995c.

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods for differential
equations. Acta Numerica, 4:105–158, 1995a.

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods for differential
equations. Acta Numerica, 4:105–158, 1995b.

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential Equations. Cambridge
University Press, 1996.

K. Eriksson, C. Johnson, and S. Larsson. Adaptive finite element methods for parabolic problems
VI: Analytic semigroups. SIAM J. Numer. Anal., 35:1315–1325, 1998.

A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathemat-
ical Sciences. Springer-Verlag, 2004.

C. R. Ethier and D. A. Steinmann. Exact fully 3D Navier–Stokes solution for benchmarking.
Internat. J. Numer. Methods Fluids, 19:369 – 375, 1994.

doi:10.1016/j.crme.2007.08.003

REFERENCES 725

A. J. Evans, F. Iwai, T. A. Grist, H. D. Sostman, L. W. Hedlund, C. E. Spritzer, R. Negro-Vilar,
C. A. Beam, and N. J. Pelc. Magnetic resonance imaging of blood flow with a phase subtraction
technique. in vitro and in vivo validation. Investigative Radiology, 28(2), 1993.

F2PY. Software package. URL http://cens.ioc.ee/projects/f2py2e.

R. D. Falgout and U. M. Yang. Hypre: A library of high performance preconditioners. In Proceedings
of the International Conference on Computational Science-Part III, pages 632–641. Springer-Verlag,
2002.

M. Farhloul and M. Fortin. Dual hybrid methods for the elasticity and the Stokes problems: a
unified approach. Numer. Math., 76(4):419–440, 1997.

V. Feigin. Stroke epidemiology in the developing world. The Lancet, 365(9478):2160–2161, 2005.
URL http://dx.doi.org/10.1016/S0140-6736(05)66755-4.

P. Fernandes and M. Raffetto. Characterization of spurious-free finite element methods in electro-
magnetics. COMPEL - The International Journal for Computation and Mathematics in Electrical and
Electronic Engineering, 21:147–164, 2002. URL http://dx.doi.org/10.1108/03321640210410814.

M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of
volumetric flow rate waveforms in the normal internal cartoid and vertebral arteries. Physiological
Measurement, 26:477–488, 2005.

L. Formaggia and F. Nobile. A stability analysis for the arbitrary Lagrangian Eulerian formulation
with finite elements. EAST WEST JOURNAL OF NUMERICAL MATHEMATICS, 7:105–132, 1999.

S. A. Forth, M. Tadjouddine, J. D. Pryce, and J. K. Reid. Jacobian code generated by source
transformation and vertex elimination can be as efficient as hand-coding. ACM Trans. Math.
Softw., 30(3):266–299, 2004. URL http://dx.doi.org/10.1145/1024074.1024076.

C. Franzini-Armstrong, F. Protasi, and V. Ramesh. Shape, size, and distribution of Ca2+ release
units and couplons in skeletal and cardiac muscles. Biophys. J., 77(3):1528–1539, Sep 1999. URL
http://www.biophysj.org/cgi/content/full/77/3/1528.

Y. C. Fung. Biodynamics: Circulation. Springer-Verlag, 1984.

Y. C. Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, 1993.

B. G. Galerkin. Series solution of some problems in elastic equilibrium of rods and plates. Vestnik
inzhenerov i tekhnikov, 19:897–908, 1915.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

GDB. Software package. URL http://www.gnu.org/software/gdb.

M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala. ML 5.0 smoothed aggregation
user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories, 2006.

W. J. German and S. P. W. Black. Cervical ligation for internal carotid aneurysms. Journal of
Neurosurgery, 23(6):572–577, 1965. URL http://dx.doi.org/10.3171/jns.1965.23.6.0572.

C. Geuzaine and J.-F. Remacle. Gmsh - a 3d mesh generator.

http://cens.ioc.ee/projects/f2py2e
http://dx.doi.org/10.1016/S0140-6736(05)66755-4
http://dx.doi.org/10.1108/03321640210410814
http://dx.doi.org/10.1145/1024074.1024076
http://www.biophysj.org/cgi/content/full/77/3/1528
http://www.gnu.org/software/gdb
http://dx.doi.org/10.3171/jns.1965.23.6.0572

726 REFERENCES

R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Trans. Math. Softw., 24(4):
437–474, 1998. URL http://dx.doi.org/10.1145/293686.293695.

M. Giles and E. Süli. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by
duality. Acta Numer., 11:145–236, 2002.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25):
2340–2361, 1977. URL http://dx.doi.org/10.1021/j100540a008.

V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, volume 5 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.

M. S. Gockenbach. Understanding and Implementing the Finite Element Method. Society for Industrial
and Applied Mathematics, 2006.

K. Goda. A multistep technique with implicit difference schemes for calculating two- or three-
dimensional cavity flows. Journal of Computational Physics, 30(1):76–95, 1979. URL http://dx.

doi.org/10.1016/0021-9991(79)90088-3.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, Baltimore, third edition, 1996.

D. C. Grahame. The electrical double layer and the theory of electrocapillarity. Chem Rev, 41(3):
441–501, Dec 1947.

T. Grätsch and K. Bathe. Goal-oriented error estimation in the analysis of fluid flows with structural
interactions. Computer Methods in Applied Mechanics and Engineering, 195(41-43):5673–5684, 2006.

H. Gray. Anatomy, Descriptive and Surgical. Lea Brothers, 1897.

J. L. Greenstein and R. L. Winslow. An integrative model of the cardiac ventricular myocyte
incorporating local control of Ca2+ release. Biophys. J., 83(6):2918–2945, Dec 2002. URL http:

//dx.doi.org/10.1016/S0006-3495(02)75301-0.

A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathematical
Programming: Recent Developments and Applications, pages 83–108. Kluwer Academic Publishers,
1989.

F. F. Grinstein, L. G. Margolin, and W. J. Rider. Implicit Large Eddy Simulation: Computing Turbulent
Fluid Dynamics. Cambridge University Press, New York, 2007.

J. L. Guermond and J. Shen. A new class of truly consistent splitting schemes for incompressible
flows. J. Comput. Phys., 192(1):262–276, 2003. URL http://dx.doi.org/10.1016/j.jcp.2003.07.

009.

J. L. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible
flows. Comput. Methods Appl. Mech. Engrg, 41:112–134, 2006.

A. Guia, M. D. Stern, E. G. Lakatta, and I. R. Josephson. Ion concentration-dependence of rat
cardiac unitary l-type calcium channel conductance. Biophys J, 80(6):2742–2750, 2001. URL
http://dx.doi.org/10.1016/S0006-3495(01)76242-X.

S. Gupta, M. Soellinger, P. Boesiger, D. Pulikako, and V. Kurtcuoglu. Three-dimensional com-
putational modeling of subject -specific cerebrospinal fluid flow in the subarachnoid space. J.
Biomech. Eng., 131, 2009.

http://dx.doi.org/10.1145/293686.293695
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1016/0021-9991(79)90088-3
http://dx.doi.org/10.1016/0021-9991(79)90088-3
http://dx.doi.org/10.1016/S0006-3495(02)75301-0
http://dx.doi.org/10.1016/S0006-3495(02)75301-0
http://dx.doi.org/10.1016/j.jcp.2003.07.009
http://dx.doi.org/10.1016/j.jcp.2003.07.009
http://dx.doi.org/10.1016/S0006-3495(01)76242-X

REFERENCES 727

M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, 1981.

W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag, 1994.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations I — Nonstiff Problems. Springer
Series in Computational Mathematics, vol. 8, 1991a.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II, volume 14 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 1991b.

P. Hansbo. A Crank–Nicolson type space-time finite element method for computing on moving
meshes. Journal of Computational Physics, 159:274–289, 2000.

P. Hansbo and M. G. Larson. Discontinuous Galerkin and the Crouzeix–Raviart element: application
to elasticity. Math. Model. Numer. Anal., 37:63–72, 2003. URL http://dx.doi.org/10.1051/m2an:

2003020.

T. Hansen and G. Wollman. Us secure hash algorithm 1 (sha1). URL http://www.apps.ietf.org/

rfc/rfc3174.html.

U. Hansen and A. Ebel. Time-dependent thermal convection – a possible explanation for a
multiscale flow in the earth’s mantle. Geophysical Journal, 94:181–191, 1988.

U. Hansen and D. A. Yuen. Numerical simulation of thermal-chemical instabilities at the core-
mantle boundary. Nature, 334:237–240, 1988.

V. Haughton, F. R. Korosec, J. E. Medow, M. T. Dolar, and B. J. Iskandar. Peak systolic and diastolic
CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in
normal control participants. Am. J. Neuroradiol., 24:169–176, 2003.

J. D. Heiss, N. Patronas, H. L. DeVroom, T. Shawker, R. Ennis, W. Kammerer, A. Eidsath, T. Talbot,
J. Morris, E. Eskioglu, and E. H. Oldfield. Elucidating the pathophysiology of syringomyelia. J.
Neurosurg., 91:532–562, 1999.

S. Hentschel, K.-A. Mardal, A. E. Løvgren, S. Linge, and V. Haughton. Characterization of cyclical
csf flow in the foramen magnum and upper cervical spinal canal with mr flow imaging and
computational fluid dynamics. American Journal of Neuroradiology, 31(6):997 – 1002, 2010.

J. Hermansson and P. Hansbo. A variable diffusion method for mesh smoothing. Communications
in Numerical Methods in Engineering, 19(11):897–908, 2003.

V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution of
eigenvalue problems. ACM Transactions on Mathematical Software, 31(3):351–362, Sept. 2005.

V. Hernandez, J. E. Roman, E. Romero, A. Tomas, and V. Vidal. SLEPc users manual. Technical
Report DSIC-II/24/02 - Revision 3.0.0, D. Sistemas Informáticos y Computación, Universidad
Politécnica de Valencia, 2009.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.
Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM Trans.
Math. Softw., 31(3):397–423, 2005. URL http://dx.doi.org/10.1145/1089014.1089021.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res.
Nat. Bur. Stand, 49(6):409–436, 1952.

http://dx.doi.org/10.1051/m2an:2003020
http://dx.doi.org/10.1051/m2an:2003020
http://www.apps.ietf.org/rfc/rfc3174.html
http://www.apps.ietf.org/rfc/rfc3174.html
http://dx.doi.org/10.1145/1089014.1089021

728 REFERENCES

M. L. Hetland. Practical Python. APress, 2002.

H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time integration
algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics, 5(3):283–292,
1977.

B. Hille. Ion Channels of Excitable Membranes. Sinauer, Sunderland, MA, 2001.

R. Hiptmair. Multigrid method for H(div) in three dimensions. Electronic Transactions on Numerical
Analysis, 6:133–152, 1997.

R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM Journal on Numerical Analysis, 36

(1):204–225, 1999. ISSN 0036-1429.

R. Hiptmair. Operator preconditioning. Computers & Mathematics with Applications, 52(5):699–706,
2006.

J. Hoffman. Computation of mean drag for bluff body problems using adaptive dns/les. SIAM J.
Sci. Comput., 27(1):184–207, 2005.

J. Hoffman. Adaptive simulation of the turbulent flow past a sphere. J. Fluid Mech., 568:77–88,
2006.

J. Hoffman. Efficient computation of mean drag for the subcritical flow past a circular cylinder
using general Galerkin G2. Int. J. Numer. Meth. Fluids, 2009.

J. Hoffman and N. Jansson. A computational study of turbulent flow separation for a circular
cylinder using skin friction boundary conditions. In Proceedings of Workshop for Quality and
Reliability of Large-Eddy Simulations II, 2009.

J. Hoffman and C. Johnson. A new approach to computational turbulence modeling. Comput.
Methods Appl. Mech. Engrg., 195:2865–2880, 2006.

J. Hoffman and C. Johnson. Computational Turbulent Incompressible Flow. Springer, 2007. URL
http://dx.doi.org/10.1007/978-3-540-46533-1.

J. Hoffman and C. Johnson. Resolution of d’alembert’s paradox. J. Math. Fluid Mech., Online First
December 2008, 2008.

J. Hoffman, J. Jansson, and M. Stöckli. Unified continuum modeling of fluid-structure interaction.
Mathematical Models and Methods in Applied Sciences, 2011.

J. Hoffman, J. Jansson, and R. V. de Abreu. Adaptive modeling of turbulent flow with residual
based turbulent kinetic energy dissipation. Comput. Meth. Appl. Mech. Engrg., in press.

E. Hofmann, M. Warmuth-Metz, M. Bendszus, and L. Solymosi. Phase-contrast MR imaging of the
cervical CSF and spinal cord: volumetric motion analysis in patients with Chiari i malformation.
AJNR Am J Neuroradiol, 21:151–158, 2000.

G. A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley &
Sons, 2000.

http://dx.doi.org/10.1007/978-3-540-46533-1

REFERENCES 729

J. Hron and S. Turek. A monolithic FEM solver for ALE formulation of fluid structure interaction
with configurations for numerical benchmarking. In M. Papadrakakis, E. Onate, and B. Schrefler,
editors, Computational Methods for Coupled Problems in Science and Engineering, volume First Edi-
tion, page 148, 2005. Konferenzband ‘First International Conference on Computational Methods
for Coupled Problems in Science and Engineering‘ (Santorini, May 25th - 27th).

J. Hu, R. Tuminaro, P. Bochev, C. Garasi, and A. Robinson. Toward an h-independent algebraic
multigrid method for Maxwell’s equations. SIAM Journal on Scientific Computing, 27(5):1669–1688,
2006.

J. Huang, L. Guo, and Z. Shi. Vibration analysis of Kirchhoff plates by the Morley element method.
Journal of Computational and Applied Mathematics, 213(1):14–34, 2008.

W. X. Huang and T. Itoh. Complex modes in lossless shielded microstrip lines. IEEE Transactions
on Microwave Theory and Techniques, 36(1):163–165, 1988.

T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Prentice-Hall, 1987.

T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering,
194(39-41):4135–4195, 2005.

J. D. Humphrey. Cardiovascular Solid Mechanics. Springer, 2001.

Hypre. software package. URL http://www.llnl.gov/CASC/hypre/.

M. G. Imhof and A. K. Sharma. Seismostratigraphic inversion: Appraisal, ambiguity, and uncer-
tainty. Geophysics, 72(4):R51–R65, 2007.

T. Ingebrigtsen, M. K. Morgan, K. Faulder, L. Ingebrigtsen, T. Sparr, and H. Schirmer. Bifurcation
geometry and the presence of cerebral artery aneurysms. J Neurosurg., 101:108–113, 2004. URL
http://dx.doi.org/10.3171/jns.2004.101.1.0108.

A. Ismail-Zadeh and P. Tackley. Computational Methods for Geodynamics. Cambridge University
Press, 2010.

T. Itoh, P. Silvester, and G. Pelosi. Finite Element Software for Microwave Engineering. John Wiley &
Sons, Inc. New York, NY, USA, 1996. ISBN 0471126365.

M. S. Jafri, J. J. Rice, and R. L. Winslow. Cardiac Ca2+ dynamics: the roles of ryanodine receptor
adaptation and sarcoplasmic reticulum load. Biophys. J., 74(3):1149–68, Mar 1998. URL http:

//www.biophysj.org/cgi/content/full/74/3/1149.

P. Jäger, P. Steinmann, and E. Kuhl. Modeling three-dimensional crack propagation - a comparison
of crack path tracking strategies. International Journal for Numerical Methods in Engineering, 76(9):
1328–1352, 2008.

J. Jansson. Performance optimization of unicorn. Technical report, 2009.

G. T. Jarvis and J. P. Lowman. Survival times of subducted slab remnants in numerical models
of mantle flow. Earth and Planetary Science Letters, 260(1–2):23–36, 2007. ISSN 0012-821X. URL
http://dx.doi.org/10.1016/j.epsl.2007.05.009.

http://www.llnl.gov/CASC/hypre/
http://dx.doi.org/10.3171/jns.2004.101.1.0108
http://www.biophysj.org/cgi/content/full/74/3/1149
http://www.biophysj.org/cgi/content/full/74/3/1149
http://dx.doi.org/10.1016/j.epsl.2007.05.009

730 REFERENCES

J. Jiang, K. Johnson, K. Valen-Sendstad, K.-A. Mardal, O. Wieben, and C. Strother. Flow char-
acteristics in a canine aneurysm model: A comparison of 4-D accelerated phase-contrast MR
measurements and computational fluid dynamics simulations. 2010. Submitted.

J. Jin. The Finite Element Method in Electromagnetics. John Wiley & Sons, Inc., New York, 2nd edition,
2002. ISBN 0471438189.

V. John and P. Knobloch. On spurious oscillations at layers diminishing (SOLD) methods for
convection-diffusion equations: Part - A review. Computer Methods in Applied Mechanics and
Engineering, 196(17-20):2197 – 2215, 2007. URL http://dx.doi.org/10.1016/j.cma.2006.11.

013.

R. S. Johnson. A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge Texts in
Applied Mathematics. Cabridge University Press, Cambridge, 1997.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, 2009. URL
http://scipy.org.

J. Karczmarczuk. Functional differentiation of computer programs. Higher-Order and Symbolic
Computation, 14(1):35–57, 2001. URL http://dx.doi.org/10.1023/A:1011501232197.

G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics.
Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, second
edition, 2005.

M. Keegan, D. Ridzal, and P. Bochev. Sparse-grid integration in finite element spaces. CSRI Summer
Proceedings, page 32, 2008.

B. L. N. Kennett and H.-P. Bunge. Geophysical Continua. Cambridge University Press, 2008.

J. T. Kirby. Funwave homepage, 1998. URL http://chinacat.coastal.udel.edu/programs/

funwave/funwave.html.

R. C. Kirby. Algorithm 839: FIAT, a new paradigm for computing finite element basis functions.
ACM Trans. Math. Softw., 30:502–516, 2004. URL http://dx.doi.org/10.1145/1039813.1039820.

R. C. Kirby. FIAT, 2006a. URL http://www.fenics.org/fiat/.

R. C. Kirby. Optimizing FIAT with level 3 BLAS. ACM Trans. Math. Softw., 32:223–235, 2006b. URL
http://dx.doi.org/10.1145/1141885.1141889.

R. C. Kirby. Singularity-free evaluation of collapsed-coordinate orthogonal polynomials. ACM
Trans. Math. Softw., 37:5:1–5:16, 2010a. URL http://dx.doi.org/10.1145/1644001.1644006.

R. C. Kirby. From functional analysis to iterative methods. SIAM Review, 52:269–293, 2010b.

R. C. Kirby. Fast simplicial finite element algorithms using Bernstein polynomials. Numerische
Mathematik, 117(4):631–652, 2011.

R. C. Kirby and A. Logg. A compiler for variational forms. ACM Trans. Math. Softw., 32:417–444,
2006. URL http://dx.doi.org/10.1145/1163641.1163644.

R. C. Kirby and A. Logg. Efficient compilation of a class of variational forms. ACM Transactions on
Mathematical Software, 33(3), 2007.

http://dx.doi.org/10.1016/j.cma.2006.11.013
http://dx.doi.org/10.1016/j.cma.2006.11.013
http://scipy.org
http://dx.doi.org/10.1023/A:1011501232197
http://chinacat.coastal.udel.edu/programs/funwave/funwave.html
http://chinacat.coastal.udel.edu/programs/funwave/funwave.html
http://dx.doi.org/10.1145/1039813.1039820
http://www.fenics.org/fiat/
http://dx.doi.org/10.1145/1141885.1141889
http://dx.doi.org/10.1145/1644001.1644006
http://dx.doi.org/10.1145/1163641.1163644

REFERENCES 731

R. C. Kirby and A. Logg. Benchmarking domain-specific compiler optimizations for variational
forms. ACM Transactions on Mathematical Software, 35(2):1–18, 2008. URL http://dx.doi.org/

10.1145/1377612.1377614.

R. C. Kirby and L. R. Scott. Geometric optimization of the evaluation of finite element matrices.
SIAM J. Sci. Comput., 29:827–841, 2007. URL http://dx.doi.org/10.1137/060660722.

R. C. Kirby, M. G. Knepley, A. Logg, and L. R. Scott. Optimizing the evaluation of finite element
matrices. SIAM J. Sci. Comput., 27(6):741–758, 2005. ISSN 1064-8275.

R. C. Kirby, A. Logg, L. R. Scott, and A. R. Terrel. Topological optimization of the evaluation
of finite element matrices. SIAM Journal on Scientific Computing, 28(1):224–240, 2006. URL
http://dx.doi.org/10.1137/050635547.

J. Kiusalaas. Numerical Methods in Engineering with Python. Cambridge University Press, second
edition, 2009.

M. G. Knepley and D. A. Karpeev. Mesh algorithms for PDE with Sieve I: Mesh distribution.
Scientific Programming, 17(3):215–230, 2009.

X. Koh, B. Srinivasan, H. S. Ching, and A. Levchenko. A 3D Monte Carlo analysis of the
role of dyadic space geometry in spark generation. Biophys. J., 90(6):1999–2014, 2006. URL
http://dx.doi.org/10.1529/biophysj.105.065466.

G. L. Kongable, G. Lanzino, T. P. Germanson, L. L. Truskowski, W. M. Alves, J. C. Torner, and
N. F. Kassell. Gender-related differences in aneurysmal subarachnoid hemorrhage. Journal of
Neurosurgery, 84:43–48, 1996.

J. Korelc. Automatic generation of finite-element code by simultaneous optimization of expres-
sions. Theoretical Computer Science, 187(1-2):231–248, 1997. URL http://dx.doi.org/10.1016/

S0304-3975(97)00067-4.

J. Korelc. Multi-language and multi-environment generation of nonlinear finite element codes. Engi-
neering with Computers, 18(4):312–327, 2002. URL http://dx.doi.org/10.1007/s003660200028.

J. Krejza, P. Szydlik, D. S. Liebeskind, J. Kochanowicz, O. Bronov, Z. Mariak, and E. R. Melhem. Age
and sex variability and normal reference values for the vMCA/vICA index. American Journal of
Neuroradiology, 26(4):730–735, 2005. URL http://www.ajnr.org/cgi/content/abstract/26/4/

730.

A. Kuchling. Python’s dictionary implementation: Being all things to all people. In A. Oram
and G. Wilson, editors, Beautiful Code, chapter 18, pages 293–302. O’Reilly, 2007. URL http:

//portal.acm.org/citation.cfm?id=1407867.

J. D. Lambert. Numerical Methods for Ordinary Differential Systems. John Wiley & Sons Ltd., Chich-
ester, 1991.

L. Landweber. An iteration formula for Fredholm integral equations of the first kind. Amer. J.
Math., 73:615–624, 1951.

G. A. Langer and A. Peskoff. Calcium concentration and movement in the diadic cleft space of the
cardiac ventricular cell. Biophys. J., 70(3):1169–1182, 1996. URL http://dx.doi.org/10.1016/

S0006-3495(96)79677-7.

http://dx.doi.org/10.1145/1377612.1377614
http://dx.doi.org/10.1145/1377612.1377614
http://dx.doi.org/10.1137/060660722
http://dx.doi.org/10.1137/050635547
http://dx.doi.org/10.1529/biophysj.105.065466
http://dx.doi.org/10.1016/S0304-3975(97)00067-4
http://dx.doi.org/10.1016/S0304-3975(97)00067-4
http://dx.doi.org/10.1007/s003660200028
http://www.ajnr.org/cgi/content/abstract/26/4/730
http://www.ajnr.org/cgi/content/abstract/26/4/730
http://portal.acm.org/citation.cfm?id=1407867
http://portal.acm.org/citation.cfm?id=1407867
http://dx.doi.org/10.1016/S0006-3495(96)79677-7
http://dx.doi.org/10.1016/S0006-3495(96)79677-7

732 REFERENCES

M. Langner, D. Cafiso, S. Marcelja, and S. McLaughlin. Electrostatics of phosphoinositide bilayer
membranes. Theoretical and experimental results. Biophys. J., 57(2):335–349, 1990. URL http:

//dx.doi.org/10.1016/S0006-3495(90)82535-2.

H. P. Langtangen. Python Scripting for Computational Science, volume 3 of Texts in Computa-
tional Science and Engineering. Springer, third edition, 2008. URL http://dx.doi.org/10.1007/

978-3-540-73916-6.

H. P. Langtangen. A Primer on Scientific Programming with Python, volume 6 of Texts in Computational
Science and Engineering. Springer, second edition, 2011. URL http://dx.doi.org/10.1007/

978-3-642-18366-9.

H. P. Langtangen and K.-A. Mardal. Using Diffpack from Python scripts. In H. P. Langtangen
and A. Tveito, editors, Advanced Topics in Computational Partial Differential Equations - Numerical
Methods and Diffpack Programming, Lecture Notes in Computational Science and Engineering,
pages 321–360. Springer-Verlag, 2003.

H. P. Langtangen and G. Pedersen. Computational models for weakly dispersive nonlinear water
waves. Computer Methods in Applied Mechanics and Engineering, 160(3-4):337 – 358, 1998. URL
http://dx.doi.org/10.1016/S0045-7825(98)00293-X.

P. Lascaux and P. Lesaint. Some nonconforming finite elements for the plate bending problem.
Rev. Française Automat. Informat. Recherche Operationnelle RAIRO Analyse Numérique, 9(R-1):9–53,
1975.

P. D. Lax and A. N. Milgram. Parabolic equations. Annals of Mathematics Studies, 33:167–190, 1954.

J.-F. Lee. Finite element analysis of lossy dielectric waveguides. IEEE Transactions on Microwave
Theory Techniques, 42(5):1025–1031, June 1994.

J.-F. Lee, D.-K. Sun, and Z. J. Cendes. Full-wave analysis of dielectric waveguides using tangential
vector finite elements. IEEE Trans. Microwave Theory Tech., 39(8):1262–1271, August 1991.

A. Lenardic and W. M. Kaula. A numerical treatment of geodynamic viscous flow problems
involving the advection of material interfaces. J. Geophys. Res., 98(B5):8243–8260, 1993.

X. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Transactions
on Mathematical Software, 31(3):302–325, 2005.

B. Q. Lin. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Computational Fluid
and Solid Mechanics. Springer-Verlag, 2006. URL http://dx.doi.org/10.1007/1-84628-205-5.

H. Lindekleiv, K. Valen-Sendstad, M. F. Morgan, K.-A. Mardal, K. Faulder, J. Magnus, K. Waterloo,
B. Romner, and T. Ingebrigtsen. Sex differences in intracranial arterial bifurcations. Gender
Medicine, 7(2):149–155, 2010. URL http://dx.doi.org/10.1016/j.genm.2010.03.003.

S. Linge, V. Haughton, A. E. Løvgren, K.-A. Mardal, and H. P. Langtangen. CSF flow dynamics
at the craniovertebral junction studied with an idealized model of the subarachnoid space
and computational flow analysis. American Journal of Neuroradiology, 31(1):185–192, 2010. URL
http://dx.doi.org/10.3174/ajnr.A1766.

S. Linge, V. Haughton, A. E. Løvgren, K.-A. Mardal, A. Helgeland, and H. P. Langtangen. Effect
of tonsilar herniation on cyclic CSF flow studied with computational flow analysis. American
Journal of Neuroradiology, 2011. To appear.

http://dx.doi.org/10.1016/S0006-3495(90)82535-2
http://dx.doi.org/10.1016/S0006-3495(90)82535-2
http://dx.doi.org/10.1007/978-3-540-73916-6
http://dx.doi.org/10.1007/978-3-540-73916-6
http://dx.doi.org/10.1007/978-3-642-18366-9
http://dx.doi.org/10.1007/978-3-642-18366-9
http://dx.doi.org/10.1016/S0045-7825(98)00293-X
http://dx.doi.org/10.1007/1-84628-205-5
http://dx.doi.org/10.1016/j.genm.2010.03.003
http://dx.doi.org/10.3174/ajnr.A1766

REFERENCES 733

A. Logg. Multi-adaptive time-integration. Applied Numerical Mathematics, 48(3–4):339–354, 2004.
URL http://dx.doi.org/10.1016/j.apnum.2003.11.004.

A. Logg. Efficient representation of computational meshes. International Journal of Computational
Science and Engineering, 4(4):283–295, 2009.

A. Logg and K.-A. Mardal. Exterior, 2009. URL http//www.fenics.org/hg/exterior.

A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM Transactions on
Mathematical Software, 32(2):1–28, 2010. URL http://dx.doi.org/10.1145/1731022.1731030.

K. Long. Sundance, a rapid prototyping tool for parallel PDE-constrained optimization. In Large-
Scale PDE-Constrained Optimization, Lecture Notes in Computational Science and Engineering.
Springer-Verlag, 2003.

K. Long. Sundance 2.0 tutorial. Technical Report TR–2004–09, Sandia National Laboratories, 2004a.

K. Long. Efficient discretization and differentiation of partial differential equations through
automatic functional differentiation, 2004b. http://www.autodiff.org/ad04/abstracts/Long.pdf.

W. T. Longstreth, L. M. Nelson, and G. T. D. Koepsell andvan Belle. Subarachnoid hemorrhage
and hormonal factors in women: A population-based case-control study. Ann Intern Med, 121(3):
168–173, 1994.

N. Lopes. Relatório do Curso de Formação avançada: Alguns Modelos de Propagação de Ondas Marítimas.
PhD thesis, Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa,
2007.

N. D. Lopes, P. J. S. Pereira, and L. Trabucho. A numerical analysis of a class of generalized
Boussinesq-type equations using continuous/discontinuous FEM. Submitted.

E. J. López, N. M. Nigro, and M. A. Storti. Simultaneous untangling and smoothing of moving
grids. International Journal for Numerical Methods in Engineering, 76(7):994–1019, 2008.

F. Loth, M. A. Yardimci, and N. Alperin. Hydrodynamic modeling of cerebrospinal fluid motion
within the spinal cavity. J. Biomech. Eng., 123:71–79, 2001.

J. Lotz, C. Meier, A. Leppert, and M. Galanski. Cardiovascular flow measurement with phase-
contrast MR imaging: Basic facts and implementation. Radiographics, 22(3):651–671, 2002.

F. Løvholt and G. Pedersen. Instabilities of Boussinesq models in non-uniform depth. International
Journal for Numerical Methods in Fluids, 61(6):606–637, 2009. ISSN 0271-2091.

J. Lubliner. Plasticity Theory. Dover Publications, 2008.

M. Lutz. Programming Python. O’Reilly, third edition, 2006.

M. Lutz. Learning Python. O’Reilly, third edition, 2007.

P. J. Lynett and P. L.-F. Liu. Coulwave model page, 2004. URL https://ceprofs.civil.tamu.edu/

plynett/COULWAVE/default.htm.

Y. Maday, A. Patera, and E. Rønquist. The PN × PN−2 method for the approximation of the Stokes
problem. Technical report, Department of Mechanical Engineering, Massachusetts Institute of
Technology, 1992.

http://dx.doi.org/10.1016/j.apnum.2003.11.004
http//www.fenics.org/hg/exterior
http://dx.doi.org/10.1145/1731022.1731030
https://ceprofs.civil.tamu.edu/plynett/COULWAVE/default.htm
https://ceprofs.civil.tamu.edu/plynett/COULWAVE/default.htm

734 REFERENCES

P. A. Madsen and Y. Agnon. Accuracy and convergence of velocity formulations for water waves
in the framework of Boussinesq theory. J. Fluid Mech., 477:285–319, 2003.

P. A. Madsen, R. Murray, and O. R. Sørensen. A new form of the Boussinesq equations with
improved linear dispersion characteristics. Coastal Engineering, 15(4):371 – 388, 1991. URL
http://dx.doi.org/10.1016/0378-3839(91)90017-B.

P. A. Madsen, H. B. Bingham, and H. A. Schäffer. Boussinesq-type formulations for fully nonlinear
and extremely dispersive water waves: derivation and analysis. Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences, 459(2033):1075–1104, 2003. URL
http://dx.doi.org/10.1098/rspa.2002.1067.

M. R. Malik, T. R. Zang, and M. Y. Hussaini. A spectral collocation method for the Navier–Stokes
equations. Technical Report 172365, ICASE report no. 84-19., NASA, 1984.

D. S. Malkus. Eigenproblems associated with the discrete LBB condition for incompressible finite
elements. Internat. J. Engrg. Sci., 19(10):1299–1310, 1981.

D. S. Malkus. The Finite Element Method, chapter 4.II, pages 276 – 303. Dover, 2000.

T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems.
Mathematics of Computation, 34(150):473–497, 1980.

G. Marckmann and E. Verron. Comparison of hyperelastic models for rubber-like materials. Rubber
chemistry and technology, 79(5):835–858, 2006.

K.-A. Mardal and R. Winther. Uniform preconditioners for the time dependent Stokes problem.
Numerische Mathematik, 98(2):305–327, 2004. ISSN 0029-599X.

K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial differential
equations. Numerical Linear Algebra with Applications, 18(1):1–40, 2011. URL http://dx.doi.org/

10.1002/nla.716.

K. A. Mardal, X.-C. Tai, and R. Winther. A robust finite element method for Darcy-Stokes flow.
SIAM J. Numer. Anal., 40(5):1605–1631, 2002.

A. Martelli. Python in a Nutshell. O’Reilly, second edition, 2006.

A. Martelli and D. Ascher. Python Cookbook. O’Reilly, second edition, 2005.

MayaVi2. Software package. URL http://code.enthought.com/projects/mayavi/.

B. W. McCormick. Aerodynamics, Aeronautics and Flight Mechanics. John Wiley and Sons, second
edition, 1995.

S. G. McLaughlin, G. Szabo, and G. Eisenman. Divalent ions and the surface potential of charged
phospholipid membranes. J. Gen. Physiol., 58(6):667–687, Dec 1971. URL http://www.jgp.org/

cgi/reprint/58/6/667.

A. K. McNamara and S. Zhong. Thermochemical structures beneath Africa and the Pacific Ocean.
Nature, 437:1136–1139, 2005.

A. K. McNamara, E. J. Garnero, and S. Rost. Tracking deep mantle reservoirs with ultra-low
velocity zones. Earth and Planetry Science Letters, 299:1–9, 2010.

http://dx.doi.org/10.1016/0378-3839(91)90017-B
http://dx.doi.org/10.1098/rspa.2002.1067
http://dx.doi.org/10.1002/nla.716
http://dx.doi.org/10.1002/nla.716
http://code.enthought.com/projects/mayavi/
http://www.jgp.org/cgi/reprint/58/6/667
http://www.jgp.org/cgi/reprint/58/6/667

REFERENCES 735

M. K. McNutt. Superswells. Rev. Geophys., 36:211–244, 1998.

MeshBuilder. Software package. URL http://launchpad.net/meshbuilder.

C. N. Mhurchu, C. Anderson, K. Jamrozik, G. Hankey, and D. Dunbabin. Hormonal factors and
risk of aneurysmal subarachnoid hemorrhage: An international population-based, case-control
study. Stroke, 32:606–612, 2001.

T. Milhorat and P. A. Bolognese. Tailored operative technique for chiari type i malformations using
intraoperative color doppler ultrasonography. Neurosurgery, 53(4):899–906, 2003.

W. Ming and J. Xu. The Morley element for fourth order elliptic equations in any dimensions.
Numerische Mathematik, 103(1):155–169, 2006.

N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without
remeshing. International Journal for Numerical Methods in Engineering, 46(1):231–150, 1999.

P. Monk. Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford, 2003.
ISBN 0198508883.

N. L. Montague, H. L. Kellogg, and M. Manga. High Rayleigh number thermo-chemical models of
a dense boundary layer in D”. Geophys. Res. Lett., 25(13):2345–2348, 1998.

L. S. D. Morley. The triangular equilibrium element in the solution of plate bending problems.
Aero. Quart., 19:149–169, 1968.

L. S. D. Morley. The constant-moment plate-bending element. The Journal of Strain Analysis for
Engineering Design, 6(1):20–24, 1971.

MTL4. Software package. URL http://www.mtl4.org.

C. J. L. Murray and A. D. Lopez. Alternative projections of mortality and disability by cause
1990-2020: Global burden of disease study. The Lancet, 349(9064):1498 –1504, 1997. URL
http://dx.doi.org/10.1016/S0140-6736(96)07492-2.

J. C. Nagtegaal, D. M. Parks, and J. R. Rice. On numerically accurate finite element solutions in the
fully plastic range. Computer Methods in Applied Mechanics and Engineering, 4(2):153–177, 1974.
URL http://dx.doi.org/10.1016/0045-7825(74)90032-2.

M. Nazarov. An adaptive finite element method for the compressible Euler equations, 2009.
Licentiate Thesis.

J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980. URL http://dx.doi.

org/10.1007/BF01396415.

J.-C. Nédélec. A new family of mixed finite elements in R3. Numer. Math., 50(1):57–81, 1986.

M. Nikbakht and G. N. Wells. Automated modelling of evolving discontinuities. Algorithms, 2(3):
1008–1030, 2009. URL http://dx.doi.org/10.3390/a2031008.

O. Nwogu. Alternative form of Boussinesq equations for nearshore wave propagation. Journal of
Waterway, Port, Coastal, and Ocean Engineering, 119(6):618–638, 1993.

J. T. Oden and L. Demkowicz. Applied Functional Analysis. CRC press, 1996.

R. W. Ogden. Nonlinear Elastic Deformations. Dover Publications, 1997.

http://launchpad.net/meshbuilder
http://www.mtl4.org
http://dx.doi.org/10.1016/S0140-6736(96)07492-2
http://dx.doi.org/10.1016/0045-7825(74)90032-2
http://dx.doi.org/10.1007/BF01396415
http://dx.doi.org/10.1007/BF01396415
http://dx.doi.org/10.3390/a2031008

736 REFERENCES

E. H. Oldfield, K. Muraszko, T. H. Shawker, and N. J. Patronas. Pathophyiology of syringomyelia
associated with chiari i malformation of the cerebellar tonsils. Neurosurg., 80:3–15, 1994.

K. B. Ølgaard and G. N. Wells. Optimisations for quadrature representations of finite element
tensors through automated code generation. ACM Transactions on Mathematical Software, 37(1):
8:1–8:23, 2010. URL http://dx.doi.org/10.1145/1644001.1644009.

K. B. Ølgaard, A. Logg, and G. N. Wells. Automated code generation for discontinuous
Galerkin methods. SIAM J. Sci. Comput., 31(2):849–864, 2008. URL http://dx.doi.org//10.

1137/070710032.

S. A. Orzag. Accurate solution of the orr-sommerfeld stability equation. J. Fluid Mech., 50:689–703,
1971.

S. K. Pandit, J. C. Kalita, and D. C. Dalal. A transient higher order compact scheme for incompress-
ible viscous flows on geometries beyond rectangular. J. Comput. Phys., 225(1):1100–1124, 2007.
URL http://dx.doi.org/10.1016/j.jcp.2007.01.016.

R. L. Panton. Incompressible Flow. John Wiley & Sons Inc, 1984.

ParaView. Software package. URL http://www.paraview.org.

ParMETIS. Software package. URL http://glaros.dtc.umn.edu/gkhome/metis/parmetis/

overview.

PaStiX. Software package. URL http://pastix.gforge.inria.fr/.

B. A. Pearlmutter and J. M. Siskind. Lazy multivariate higher-order forward-mode AD. In Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 155–160, Nice, France, 2007. URL http://dx.doi.org/10.1145/1190216.1190242.

G. Pedersen and F. Løvholt. Documentation of a global Boussinesq solver. Technical report, 2008.
URL http://www.math.uio.no/eprint/appl_math/2008/01-08.html.

F. Pellegrini. Scotch. URL http://www.labri.fr/perso/pelegrin/scotch.

G. Pelosi, R. Coccioli, and S. Selleri. Quick Finite Elements for Electromagnetic Waves. Artech House,
Norwood, 1998. ISBN 0890068488.

D. H. Peregrine. Long waves on a beach. Journal of Fluid Mechanics Digital Archive, (27):815–827,
1967. URL http://dx.doi.org/10.1017/S0022112067002605.

A. Peskoff, J. A. Post, and G. A. Langer. Sarcolemmal calcium binding sites in heart: II. mathematical
model for diffusion of calcium released from the sarcoplasmic reticulum into the diadic region.
J. Membr. Biol., 129(1):59–69, Jul 1992. URL http://dx.doi.org/10.1007/BF00232055.

PETSc. software package. URL http://www.anl.gov/petsc.

G. Pinna, F. Alessandrini, A. Alfieri, M. Rossi, and A. Bricolo. Cerebrospinal fluid flow dynamics
study in Chiari I malformation: implications for syrinx formation. Neurosurg Focus 8, 3(3), 2000.

U. Piomelli and E. Balaras. Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech.,
34:349–374, 2002.

http://dx.doi.org/10.1145/1644001.1644009
http://dx.doi.org//10.1137/070710032
http://dx.doi.org//10.1137/070710032
http://dx.doi.org/10.1016/j.jcp.2007.01.016
http://www.paraview.org
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://pastix.gforge.inria.fr/
http://dx.doi.org/10.1145/1190216.1190242
http://www.math.uio.no/eprint/appl_math/2008/01-08.html
http://www.labri.fr/perso/pelegrin/scotch
http://dx.doi.org/10.1017/S0022112067002605
http://dx.doi.org/10.1007/BF00232055
http://www.anl.gov/petsc

REFERENCES 737

A. C. Polycarpou, M. Lyons, and C. A. Balanis. Finite element analysis of MMIC waveguide
structures with anisotropic substrates. IEEE Trans. Microwave Theory Tech., 44(10):1650–1663,
October 1996.

D. M. Pozar. Microwave Engineering. John Wiley & Sons, Inc., third edition, 2005.

R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,
36(6):1389–1401, 1957. URL http://bstj.bell-labs.com/BSTJ/images/Vol36/bstj36-6-1389.

pdf.

C. Prud’homme. Life: Overview of a unified c++ implementation of the finite and spectral element
methods in 1d, 2d and 3d. In Workshop On State-Of-The-Art In Scientific And Parallel Computing,
Lecture Notes in Computer Science, page 10. Springer-Verlag, dec 2006a.

C. Prud’homme. A domain specific embedded language in C++ for automatic differentiation,
projection, integration and variational formulations. Sci. Program., 14(2):81–110, 2006b. URL
http://portal.acm.org/citation.cfm?id=1376891.1376895.

Pyrex. Software package. URL http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/.

Python C-API. Python C API Reference Manual. URL http://docs.python.org/c-api.

J. Qin. On the Convergence of Some Simple Finite Elements for Incompressible Flows. PhD thesis, Penn
State, 1994.

A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations, volume 23 of
Springer Series in Computational Mathematics. Springer Verlag, 2008. URL http://dx.doi.org/

10.1007/978-3-540-85268-1.

M. F. Quigley, B. J. Iskandar, M. A. Quigley, M. N. Nicosia, and V. Haughton. Cerebrospinal fluid
flow in foramen magnum: Temporal and spatial patterns at MR imaging in volunteers and in
patients with Chiari I malformation. Radiology, 232:229–236, 2004.

S. Ramo, J. R. Whinnery, and T. Van Duzer. Fields and Waves in Communication Electronics. John
Wiley & Sons, New York, third edition, 1994.

R. Rannacher and S. Turek. A simple nonconforming quadrilateral Stokes element. Numer. Meth.
Parth. Diff. Equ., 8:97–111, 1992.

P.-A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order elliptic problems.
In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.),
Rome, 1975), pages 292–315. Lecture Notes in Math., Vol. 606. Springer, Berlin, 1977.

Rayleigh. On the theory of resonance. Trans. Roy. Soc., A161:77–118, 1870.

Y. Ricard. Physics of mantle convection, volume 7 of Treatise on geophysics, pages 1–30. 2009.

W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen
Physik. J. reine angew. Math., 135:1–61, 1908.

M.-C. Rivara. Mesh refinement processes based on the generalized bisection of simplices. SIAM
Journal on Numerical Analysis, 21(3):604–613, 1984. URL http://dx.doi.org/10.1137/0721042.

M.-C. Rivara. Local modification of meshes for adaptive and/or multigrid finite-element methods.
Journal of Computational and Applied Mathematics, 36(1):78–89, 1992.

http://bstj.bell-labs.com/BSTJ/images/Vol36/bstj36-6-1389.pdf
http://bstj.bell-labs.com/BSTJ/images/Vol36/bstj36-6-1389.pdf
http://portal.acm.org/citation.cfm?id=1376891.1376895
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://docs.python.org/c-api
http://dx.doi.org/10.1007/978-3-540-85268-1
http://dx.doi.org/10.1007/978-3-540-85268-1
http://dx.doi.org/10.1137/0721042

738 REFERENCES

J. C. Rivenæs. Application of a dual–lithology, depth–dependent diffusion equation in stratigraphic
simulation. Basin Research, 4:133–146, 1992.

J. C. Rivenæs. A Computer Simulation Model for Siliciclastic Basin Stratigraphy. PhD thesis, NTH–
Trondheim, 1993.

M. E. Rognes. Automated stability condition tester (ASCoT). 2009. URL https://launchpad.net/

ascot.

M. E. Rognes, R. C. Kirby, and A. Logg. Efficient assembly of H(div) and H(curl) conforming
finite elements. SIAM Journal on Scientific Computing, 31(6):4130–4151, 2009.

A. Roldan, , V. Wieben, O. Haughton, T. Osswald, and N. Chesler, N. Characterization of complex
CSF hydrodynamics at the cranio-vertebral junction with computational flow analysis: Healthy
and Chiari I malformation. American Journal of Neuroradiology, 30(5):941–946, 2009.

S. Rüdiger, J. W. Shuai, W. Huisinga, C. Nagaiah, G. Warnecke, I. Parker, and M. Falcke. Hybrid
stochastic and deterministic simulations of calcium blips. Biophys. J., 93(6):1847–1857, Sep 2007.
URL http://dx.doi.org/10.1529/biophysj.106.099879.

T. Rusten and R. Winther. A preconditioned iterative method for saddlepoint problems. SIAM
Journal on Matrix Analysis and Applications, 13(3):887–904, 1992.

Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with
Applications, 1(4):387–402, 1994.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, second edition, 2003.

Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986.

P. Sagaut. Large-Eddy Simulation for Incompressible Flows — An Introduction. Springer-Verlag, 2005.

P. Sagaut, S. Deck, and M. Terracol. Multiscale and Multiresolution Approaches in Turbulence. Imperial
College Press, 2006.

M. Sala, W. F. Spotz, and M. A. Heroux. PyTrilinos: High-performance distributed-memory
solvers for python. ACM Trans. Math. Softw., 34(2):1–33, 2008. ISSN 0098-3500. URL http:

//doi.acm.org/10.1145/1326548.1326549.

H. J. Schroll. Dual Problems in Depositional Modeling. Research Report, Simula Research Laboratory,
2008.

U. Schumann. Subgrid-sclae model for finite difference simulation of turbulent flows in plane
channels and annuli. J. Comput. Phys., 18:376–404, 1975.

C. Schwab. p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics.
Oxford University Press, 1998.

L. R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence operator
in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér., 19(1):111–143, 1985. ISSN
0764-583X.

K. Selim, A. Logg, H. Narayanan, and M. G. Larson. An adaptive finite element method for
fluid–structure interaction. submitted to journal, 2011.

https://launchpad.net/ascot
https://launchpad.net/ascot
http://dx.doi.org/10.1529/biophysj.106.099879
http://doi.acm.org/10.1145/1326548.1326549
http://doi.acm.org/10.1145/1326548.1326549

REFERENCES 739

H. Si. TetGen. a quality tetrahedral mesh generator and three-dimensional delaunay triangulator.,
2007. URL http://tetgen.berlios.de.

SILOON. SILOON, scripting interface languages for object-oriented numerics. URL http://acts.

nersc.gov/siloon/index.html.

D. Silvester and A. Wathen. Fast iterative solution of stabilised Stokes systems. Part I: Using simple
diagonal preconditioners. SIAM Journal on Numerical Analysis, 30(3):630–649, 1993.

D. Silvester and A. Wathen. Fast iterative solution of stabilized Stokes systems. Part II: Using block
diagonal preconditioners. SIAM Journal on Numerical Analysis, 31(5):1352–1367, 1994.

P. P. Silvester. Finite-element solution of homogeneous waveguide problems. Alta Frequenza, 38:
313–317, 1969.

J. C. Simo and F. Armero. Unconditional stability and long-term behavior of transient algorithms for
the incompressible Navier–Stokes and Euler equations. Computer Methods in Applied Mechanics
and Engineering, 111:111–154, 1994.

J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer Verlag, 1998.

J. C. Simo and R. L. Taylor. Consistent tangent operators for rate-independent elastoplasticity.
Computer Methods in Applied Mechanics and Engineering, 48(1):101–118, 1985. URL http://dx.

doi.org/10.1016/0045-7825(85)90070-2.

SIP. Software package. URL http://www.riverbankcomputing.com/software/sip/intro.

J. M. Siskind and B. A. Pearlmutter. Nesting forward-mode AD in a functional frame-
work. Higher Order Symbol. Comput., 21(4):361–376, 2008. URL http://dx.doi.org/10.1007/

s10990-008-9037-1.

O. Skavhaug and O. Certik. Swiginac Python interface to GiNaC, 2009. URL http://swiginac.

berlios.de/.

B. W. Smith, J. G. Chase, G. M. Shaw, and R. I. Nokes. Simulating transient ventricular interaction
using a minimal cardiovascular system model. Physiological Measurement, pages 165–179, 2006.

G. S. Smith. An Introduction to Classical Electromagnetic Radiation. Cambridge University Press,
1997.

C. Soeller and M. B. Cannell. Numerical simulation of local calcium movements during l-type
calcium channel gating in the cardiac diad. Biophys. J., 73(1):97–111, Jul 1997. URL http:

//www.pubmedcentral.gov/articlerender.fcgi?tool=pubmed&pubmedid=9199775.

C. Soeller and M. B. Cannell. Examination of the transverse tubular system in living cardiac rat
myocytes by 2-photon microscopy and digital image-processing techniques. Circ. Res., 84(3):
266–75, 1999. URL http://circres.ahajournals.org/cgi/content/full/84/3/266.

P. Šolín, K. Segeth, and I. Doležel. Higher-order Finite Element Methods. Studies in Advanced
Mathematics. Chapman & Hall/CRC, 2004.

P. R. Spalart and K. M. Mejia. Analysis of experimental and numerical studies of the rudimentary
landing gear. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, number AIAA-2011-355, 2011.

http://tetgen.berlios.de
http://acts.nersc.gov/siloon/index.html
http://acts.nersc.gov/siloon/index.html
http://dx.doi.org/10.1016/0045-7825(85)90070-2
http://dx.doi.org/10.1016/0045-7825(85)90070-2
http://www.riverbankcomputing.com/software/sip/intro
http://dx.doi.org/10.1007/s10990-008-9037-1
http://dx.doi.org/10.1007/s10990-008-9037-1
http://swiginac.berlios.de/
http://swiginac.berlios.de/
http://www.pubmedcentral.gov/articlerender.fcgi?tool=pubmed&pubmedid=9199775
http://www.pubmedcentral.gov/articlerender.fcgi?tool=pubmed&pubmedid=9199775
http://circres.ahajournals.org/cgi/content/full/84/3/266

740 REFERENCES

W. E. Stehbens. Ultrastructure of aneurysms. Arch Neurol, 32(12):798–807, 1975. URL http:

//dx.doi.org/10.1001/archneur.1975.00490540042005.

R. Stenberg. Analysis of mixed finite elements methods for the Stokes problem: a unified approach.
Mathematics of Computation, 42(165):9–23, 1984.

M. D. Stern, L. S. Song, H. Cheng, J. S. Sham, H. T. Yang, K. R. Boheler, and E. Ríos. Local control
models of cardiac excitation-contraction coupling. a possible role for allosteric interactions
between ryanodine receptors. J. Gen. Physiol., 113(3):469–489, 1999.

G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs,
1973.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, July 1997.

SWIG. Software package. URL http://www.swig.org.

B. Szabó, B. Szabó, and I. Babuška. Finite Element Analysis. Wiley-Interscience, 1991.

E. M. Tadjouddine. Vertex-ordering algorithms for automatic differentiation of computer codes. The
Computer Journal, 51(6):688–699, Nov. 2008. URL http://dx.doi.org/10.1093/comjnl/bxm115.

X.-C. Tai and R. Winther. A discrete de Rham complex with enhanced smoothness. Calcolo, 43:
287–306, 2006.

E. Tan and M. Gurnis. Metastable superplumes and mantle compressibility. Geophys. Res. Lett., 32:
1–4, 2005.

A. J. Tanskanen, J. L. Greenstein, A. Chen, S. X. Sun, and R. L. Winslow. Protein geometry and
placement in the cardiac dyad influence macroscopic properties of calcium-induced calcium
release. Biophys. J., 92(10):3379–3396, May 2007. URL http://dx.doi.org/10.1529/biophysj.

106.089425.

C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using the finite
element technique. Internat. J. Comput. & Fluids, 1(1):73–100, 1973. URL http://dx.doi.org/10.

1016/0045-7930(73)90027-3.

R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des
pas fractionnaires. Arc. Ration. Mech. Anal., 32:377–385, 1969.

A. R. Terrel, L. R. Scott, M. G. Knepley, and R. C. Kirby. Automated FEM discretizations for the
Stokes equation. BIT Numerical Mathematics, 48(2):389–404, 2008. URL http://dx.doi.org/10.

1007/s10543-008-0178-8.

T. E. Tezduyar and Y. J. Park. Discontinuity-capturing finite element formulations for nonlinear
convection-diffusion-reaction equations. Comp. Methods Appl. Mech. Eng., 59(3):307–325, 1986.

The Python Tutorial. The python tutorial. http://docs.python.org/tutorial/.

L. N. Trefethen. Spectral Methods in Matlab. Springer-Verlag, New York, 2006.

Trilinos. software package. URL http://trilinos.sandia.gov/.

U. Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2001.

http://dx.doi.org/10.1001/archneur.1975.00490540042005
http://dx.doi.org/10.1001/archneur.1975.00490540042005
http://www.swig.org
http://dx.doi.org/10.1093/comjnl/bxm115
http://dx.doi.org/10.1529/biophysj.106.089425
http://dx.doi.org/10.1529/biophysj.106.089425
http://dx.doi.org/10.1016/0045-7930(73)90027-3
http://dx.doi.org/10.1016/0045-7930(73)90027-3
http://dx.doi.org/10.1007/s10543-008-0178-8
http://dx.doi.org/10.1007/s10543-008-0178-8
http://docs.python.org/tutorial/
http://trilinos.sandia.gov/

REFERENCES 741

C. A. Truesdell and W. Noll. The Non-linear Field Theories (Handbuch der Physik, band III). Springer,
Berlin, 1965.

C. A. Truesdell and R. A. Toupin. The Classical Field Theories (Handbuch der Physik, band III/1).
Springer-Verlag, Berlin, 1960.

S. Turek. Recent benchmark computations of laminar flow around a cylinder. In 3rd World
Conference in Applied Computational Fluid Mechanics, Freiburg, 1996.

S. Turek. Efficient Solvers for Incompressible Flow Problems. Springer, 1999.

uBLAS. Software package. URL http://www.boost.org/libs/numeric/ublas/doc/.

Valgrind. Software package. URL http://valgrind.org.

A. P. van den Berg, P. E. van Keken, and D. A. Yuen. The effects of a composite non-Newtonian
and Newtonian rheology on mantle convection. Geophys. J. Int., 115:62–78, 1993.

D. G. van der Meer, W. Spakman, D. J. J. van Hinsbergen, M. L. Amaru, and T. H. Torsvik. Towards
absolute plate motions constrained by lower-mantle slab remnants. Nature Geoscience, 3:36–40,
2010.

H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of bi-cg for the solution of
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631–644,
1992. URL http://dx.doi.org/10.1137/0913035.

K. G. van der Zee. Goal-Adaptive Discretization of Fluid-Structure Interaction. PhD thesis, Delft
University of Technology, 2009.

K. G. van der Zee, E. H. van Brummelen, and R. de Borst. Goal-oriented error estimation for Stokes
flow interacting with a flexible channel. International Journal for Numerical Methods in Fluids, 56

(8):1551–1557, 2008.

P. E. van Keken, S. D. King, H. Schmeling, et al. A comparison of methods for the modeling of
thermochemical convection. J. Geophys. Res., 102(B10):22477–22495, 1997.

G. van Rossum et al. Python. URL http://www.python.org/.

L. Vardapetyan and L. Demkowicz. hp-vector finite elements method for the full-wave analysis of
waveguides with no spurious modes. Electromagnetics, 22(5):419–428, 2002.

Vascular Modeling Toolkit. Software package. URL http://vmtk.org/.

O. Čertík et al. SymPy, 2009. URL http://docs.sympy.org.

R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. In Proceed-
ings of the Fifth International Conference on Computational and Applied Mathematics, pages 67–83.
Amsterdam, Elsevier Science Publishers, 1994.

R. Verfürth. A review of a posteriori error estimation techniques for elasticity problems. Computer
Methods in Applied Mechanics and Engineering, 176(1-4):419–440, 1999.

I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary
conditions for three-dimensional finite element modeling of blood flow and pressure in arteries.
Computer Methods in Applied Mechanics and Engineering, 195(29-32):3776 – 3796, 2006. URL
http://dx.doi.org/10.1016/j.cma.2005.04.014.

http://www.boost.org/libs/numeric/ublas/doc/
http://valgrind.org
http://dx.doi.org/10.1137/0913035
http://www.python.org/
http://vmtk.org/
http://docs.sympy.org
http://dx.doi.org/10.1016/j.cma.2005.04.014

742 REFERENCES

Viper. Software package. URL https://launchpad.net/fenics-viper.

VMTK. software package. URL http://www.vmtk.org.

VTK. software package. URL http://www.kitware.com.

M. Walkley. A Numerical Method for Extended Boussinesq Shallow-Water Wave Equations. PhD thesis,
The University of Leeds, School of Computer Studies, 1999.

M. Walkley and M. Berzins. A finite element method for the two-dimensional extended Boussinesq
equations. Internat. J. Numer. Methods Fluids, 39(10):865–885, 2002.

T. Warburton. An explicit construction for interpolation nodes on the simplex. Journal of Engineering
Mathematics, 2005.

Weave. Software package. URL http://scipy.org/Weave.

J. P. Webb. Edge elements and what they can do for you. IEEE Trans. Magn., 29(2):1460–1465,
March 1993.

G. Wei and J. T. Kirby. Time-dependent numerical code for extended Boussinesq equations. Journal
of Waterway, Port, Coastal, and Ocean Engineering, 121(5):251–261, 1995. URL http://dx.doi.org/

10.1061/(ASCE)0733-950X(1995)121:5(251).

G. Wei, J. T. Kirby, and A. Sinha. Generation of waves in Boussinesq models using a source function
method. Coastal Engineering, 36:271–279, 1999.

B. Weir. Unruptured intracranial aneurysms: a review. Journal of Neurosurgery, 96(1):3–42, 2002.
URL http://dx.doi.org/10.3171/jns.2002.96.1.0003.

G. N. Wells and L. J. Sluys. A new method for modelling cohesive cracks using finite elements.
International Journal for Numerical Methods in Engineering, 50(12):2667–2682, 2001. URL http:

//dx.doi.org/10.1002/nme.143.

J. R. Welty, C. E. Wicks, and R. E. Wilson. Fundamentals of Momentum, Heat, and Mass Transfer. John
Wiley & Sons Inc, 2001.

P. Wesseling. An Introduction to Multigrid Methods. Wiley & Sons, 1992.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software and
the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001. URL http://dx.doi.org/10.1016/

S0167-8191(00)00087-9.

F. M. White. Viscous Fluid Flow. McGraw-Hill, 1991.

F. M. White. Fluid Mechanics. McGraw-Hill, fourth edition, 1999.

G. B. Whitham. Linear and Nonlinear Waves. John Wiley & Sons, New York, 1974.

I. M. Wilbers, H. P. Langtangen, and A. Ødegård. Using Cython to speed up numerical Python
programs. In B. Skallerud and H. I. Andersson, editors, Proceedings of MekIT’09, pages 495–
512. Norwegian University of Science and Technology, Tapir Academic Press, 2009. ISBN
978-82-519-2421-4.

M. M. Wolf and M. T. Heath. Combinatorial optimization of matrix-vector multiplicaion in finite
element assembly. SIAM J. Sci. Comput., 31:2960, 2009.

https://launchpad.net/fenics-viper
http://www.vmtk.org
http://www.kitware.com
http://scipy.org/Weave
http://dx.doi.org/10.1061/(ASCE)0733-950X(1995)121:5(251)
http://dx.doi.org/10.1061/(ASCE)0733-950X(1995)121:5(251)
http://dx.doi.org/10.3171/jns.2002.96.1.0003
http://dx.doi.org/10.1002/nme.143
http://dx.doi.org/10.1002/nme.143
http://dx.doi.org/10.1016/S0167-8191(00)00087-9
http://dx.doi.org/10.1016/S0167-8191(00)00087-9

REFERENCES 743

S.-B. Woo and P.-F. Liu. Finite element model for modified Boussinesq equations i: Model
development. Journal of Waterway, Port, Coastal and Ocean Engineering, 130(1):1–16, 2004a.

S.-B. Woo and P.-F. Liu. Finite element model for modified Boussinesq equations II: Applications
to nonlinear harbor oscillations. Journal of Waterway, Port, Coastal and Ocean Engineering, 130(1):
17–28, 2004b.

T. Y. Wu. Long waves in ocean and coastal waters. Journal of the Engineering Mechanics, 107(3):
501–522, 1981.

M. M. Zdravkovich. Flow Around Circular Cylinders. Oxford University Press, 2003.

M. Zhao, B. Teng, and L. Cheng. A new form of generalized Boussinesq equations for varying
water depth. Ocean Engineering, 31:2047–2072, 11 2004. URL http://dx.doi.org/10.1016/j.

oceaneng.2004.03.010.

Y. Zhu and A. C. Cangellaris. Multigrid Finite Element Methods for Electromagnetic Field Modelling.
IEEE Press, New York, 2006.

O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method: Fluid dynamics, volume 3.
Butterworth-Heinemann, 5 edition, 2000.

O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical
engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 1987.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method — Its Basis and Fundamentals.
Elsevier, 6th edition, 2005.

http://dx.doi.org/10.1016/j.oceaneng.2004.03.010
http://dx.doi.org/10.1016/j.oceaneng.2004.03.010

Index

∇, 320

Babuška condition, 687

a priori error estimate, 88, 90

Arguments, 317

Argument, 317

Coefficients, 317

Coefficient, 317

ComponentTensor, 318

Constant, 317

Dx, 320

Expr, 326

FiniteElement, 314

Form, 315

Identity, 317

IndexSum, 318

Indexed, 318

Index, 318

Integral, 315

ListTensor, 318

Measure, 315

MixedElement, 314

Operator, 326

TensorConstant, 317

TensorElement, 314

Terminal, 317, 326

TestFunctions, 317

TestFunction, 317

TrialFunctions, 317

TrialFunction, 317

VectorConstant, 317

VectorElement, 314

action, 323

adjoint, 323

as_matrix, 318

as_tensor, 318

as_vector, 318

avg, 322

cbc.block, 671

compile_element, 232

compile_form, 232

cos, 320

cross, 320

curl, 320

derivative, 323

det, 320

diff, 320

div, 320

dot, 320

dx, 320

energy_norm, 323

exp, 320

grad, 320

indices, 318

inner, 320

instant-clean, 271

instant-showcache, 271

inv, 320

jump, 322

lhs, 323

ln, 320

outer, 320

pow, 320

replace, 323

rhs, 323

rot, 320

sensitivity_rhs, 323

sin, 320

split, 317

sqrt, 320

system, 323

transpose, 320

tr, 320

Nédélec element, 85

diffsim, 652, 654

UFL, 311

AD, 332

adaptivity, 91

744

INDEX 745

advection-diffusion, 642

affine equivalence, 87

affine mapping, 85

algebraic operators, 320

algorithms, 337

AMG, 674

assemble, 28, 48

assemble_system, 28

assembly of linear systems, 28

assembly, increasing efficiency, 48

atomic value, 317

Automatic Differentiation, 332

automation, 92

basis function, 317

basis functions, 317

bilinear form, 79

block preconditioner, 677

boundary conditions, 63, 75, 496

boundary measure, 315

boundary specification (class), 61

boundary specification (function), 9

Boussinesq models, 485

Box, 58

Brezzi coercivity condition, 687

Brezzi inf-sup condition, 687

Brezzi–Douglas–Marini element, 85

cache, 272

Cea’s lemma, 89

cell integral, 315

cell membrane, 641, 642

cerebrospinal fluid, 539

CG finite element family, 8

channel transition, 653

Chiari I malformation, 539

Ciarlet finite element definition, 81, 95, 126

coefficient function, 317

coefficient functions, 317

coefficients, 317

compiler, 236

computational graph, 330

computing derivatives, 332

conjugate gradient method, 673

contour plot, 32

contravariant Piola mapping, 86

coordinate stretching, 59

coordinate transformations, 59

covariant Piola mapping, 86

cross product, 320

Crouzeix–Raviart element, 85

CSF, 539

Cython, 278

cytosol, 641, 643

Dörfler marking, 91

degree of freedom, 12

degrees of freedom array, 12, 18

vector field, 18

derivative, 43

derivatives, 332

determinant, 320

DG operators, 322

differential operators, 320

differentiation, 332

diffusion constant, 642

dimension-independent code, 34

Dirichlet boundary conditions, 9, 63

Dirichlet condition, 75

DirichletBC, 9

discontinuities, 599

discontinuous Galerkin, 322

discontinuous Lagrange element, 314

Discrete state, 644

dispersion curves, 662, 664, 667–669

dispersion relation, 492

DOLFIN mesh, 8

domain specific language, 311

dot product, 320

down-casting matrices and vectors, 55

dual problem, 90

dyadic cleft, 642

efficiency index, 92

eigenvalue problem, 661

electro-diffusion, 642

electromagnetics, 657

element tensor, 231

energy functional, 19

error estimation, 88

error functional, 20

event-driven simulator, 654

excitation contraction coupling, 641

Expression, 9, 46

expression, 326

expression representations, 340

expression transformations, 338, 340

expression tree, 326

746 INDEX

expression trees, 337

extended finite element method, 599

exterior facet integral, 315

F2PY, 278

facet normal, 317

FEniCS Apps, 652

FFC, 231

FFC parameters, 236

Fick’s second law, 642

File, 29

finite difference time discretization, 45

finite element, 314

finite element definition, 81, 95, 126

finite element discretization, 77

finite element function spaces, 81

finite element solution, 77

finite element space, 77, 314

finite element specifications, 8

flops, 158

flux functional, 22

foramen magnum, 539

form argument, 317

form arguments, 317

form compiler, 231

form language, 311

form operators, 323

form representation, 239

forms, 315

forward mode AD, 332

Fourier’s law, 76

functional, 311

functionals, 19

functions, 317

FunctionSpace, 8

Gateaux derivative, 43

generalized finite element method, 599

Gillespie method, 653

Gmsh, 547

goal-oriented error estimate, 90

Gouy-Chapman, 642

Hermite element, 87

heterogeneous media, 51, 60

hexahedron, 303, 308

identity matrix, 317

implicit summation, 318

index notation, 318

indices, 318

info, 56

inner product, 320

integrals, 315

interior facet integral, 315

interior measure, 315

interpolate, 13

interpolation, 13

Interval, 58

interval, 302, 306

inverse, 320

JIT, 263

JIT compilation, 240

jump, 322

just-in-time compilation, 240

Ladyzhenskaya–Babuška–Brezzi conditions, 78,
677, 686

Lagrange element, 314

Lagrange finite element family, 8

language operators, 320

LBB conditions, 78, 677, 686

license, ii
linear form, 79

linear Lagrange element, 83

linear solvers, 87

linear systems (in FEniCS), 28

linearization, 80

local-to-global mapping, 84, 231

loop hoisting, 154

mapping from reference element, 85

Markov chain model, 644, 653

Maxwell’s equations, 657

Mesh, 8

mesh, 81

mesh entity, 304

mesh transformations, 59

microstrip, see shielded microstrip
mixed problem, 78

multi-material domain, 51, 60

multifunctions, 337

Nernst-Planck equation, 642

Neumann boundary conditions, 24, 63

Neumann condition, 75

Newton’s method, 80

INDEX 747

Newtonian fluid, 541

nodal basis, 83

nodal values array, 12, 18

nonlinear Poisson equation, 80

nonlinear problems, 79

nonlinear variational problems, 44

numbering, 303

operator, 326

optimization, 240

outer product, 320

partition of unity method, 599

Picard iteration, 37

Piola mapping, 86

plot, 23

Poisson’s equation, 4, 75

Poisson’s equation with variable coefficient, 29

potential, 489

preconditioner, 87, 671

Predictor–Corrector, 494

program, 326

project, 19

projection, 17, 19

propagation constant, 658

propensity function, 653

propensity functions, 644

pydoc, 14, 68

PyTrilinos, 673

quadrature element, 586

quadrature optimizations, 152

quadrature representation, 151, 239

quadrilateral, 302, 307

Rectangle, 58

Reduced discrete stability, 688

reference cells, 302

referential transparency, 326

reflective boundaries, 497

residual, 88

restriction, 322

reverse mode AD, 332

Robin boundary conditions, 63

Runge–Kutta, 494

ryanodine receptor, 641, 643, 645

sarcoplasmic reticulum, 641, 643

SAS, 539

screening, 642

self, 68

SFC, 231

shielded microstrip, 668

signatures, 272, 344

solve(A, x, b), 56

source function, 497

spatial coordinates, 317

spinal canal, 539

spinal cord, 539

sponge-layers, 497

spurious modes, 661

stabilization, 647

element Péclet number, 647

parameter, 647

Streamline upwind Petrov-Galerkin, 647

start vector for linear solvers, 57

stochastic channel, 643, 644

structured mesh, 31

subarachnoid space, 539

successive substitutions, 37

symbolic differentiation, 332

t-tubule, 642, 643

tensor algebra operators, 320

tensor representation, 239

terminal value, 317, 326

test function, 5

TestFunction, 8

tetgen, 647

tetrahedron, 303, 307

time stepping, 652

time-dependent PDEs, 44

topological dimension, 304

trace, 320

transpose, 320

tree traversal, 337

trial function, 5

TrialFunction, 8

triangle, 302, 306

Trilinos, 671

typemaps, 263

UFL, 345

under-relaxation, 39

Unicorn, 347

Unified Form Language, 311

UnitCircle, 58

UnitCube, 58

748 INDEX

UnitInterval, 58

UnitSphere, 58

UnitSquare, 58

variational form, 311

variational formulation, 4

vector Helmholtz equation, 658

vertex numbering, 304

Viper, 23

visualization, 23

visualization, structured mesh, 31

VTK, 23

water waves, 485

waveguide, 657

cutoff analysis, 660, 665, 667

dispersion analysis, 661, 666, 667, 669

half-loaded rectangular, 666–668

hollow rectangular, 665–666

wavenumber
cutoff, 660, 664–666, 668

operating, 658, 660

weak form, 311

Weave, 278

Windkessel model, 264

	Introduction
	Tutorial
	I Methodology
	The finite element method
	Common and unusual finite elements
	Constructing general reference finite elements
	Finite element variational forms
	Finite element assembly
	Quadrature representation of finite element variational forms
	Tensor representation of finite element variational forms
	Discrete optimization of finite element matrix evaluation

	II Implementation
	DOLFIN: A C++/Python finite element library
	FFC: the FEniCS form compiler
	FErari: an optimizing compiler for variational forms
	FIAT: numerical construction of finite element basis functions
	Instant: just-in-time compilation of C/C++ in Python
	SyFi and SFC: symbolic finite elements and form compilation
	UFC: a finite element code generation interface
	UFL: a finite element form language
	Unicorn: a unified continuum mechanics solver
	Lessons learned in mixed language programming

	III Applications
	Finite elements for incompressible fluids
	A comparison of some finite element schemes for the incompressible Navier–Stokes equations
	Simulation of transitional flows
	Turbulent flow and fluid–structure interaction
	An adaptive finite element solver for fluid–structure interaction problems
	Multiphase flow through porous media
	Improved Boussinesq equations for surface water waves
	Computational hemodynamics
	Cerebrospinal fluid flow
	A computational framework for nonlinear elasticity
	Applications in solid mechanics
	Modeling evolving discontinuities
	Automatic calibration of depositional models
	Dynamic simulations of convection in the Earth's mantle
	A coupled stochastic and deterministic model of Ca2+ dynamics in the dyadic cleft
	Electromagnetic waveguide analysis
	Block preconditioning of systems of PDEs
	Automated testing of saddle point stability conditions
	List of authors
	GNU Free Documentation License
	References

