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1 Introduction

By Anders Logg, Garth N. Wells and Kent-Andre Mardal






2 Tutorial

By Hans Petter Langtangen

This chapter presents a FEniCS tutorial to get new users quickly up and running with solving
differential equations. FEniCS can be programmed both in C++ and Python, but this tutorial
focuses exclusively on Python programming, since this is the simplest approach to exploring
FEniCS for beginners and since it actually gives high performance. After having digested the
examples in this tutorial, the reader should be able to learn more from the FEniCS documentation
and from the other chapters in this book.

2.1 Fundamentals

FEniCS is a user-friendly tool for solving partial differential equations (PDEs). The goal of this
tutorial is to get you started with FEniCS through a series of simple examples that demonstrate

¢ how to define the PDE problem in terms of a variational problem,

* how to define simple domains,

¢ how to deal with Dirichlet, Neumann, and Robin conditions,

¢ how to deal with variable coefficients,

¢ how to deal with domains built of several materials (subdomains),

* how to compute derived quantities like the flux vector field or a functional of the solution,
* how to quickly visualize the mesh, the solution, the flux, etc.,

* how to solve nonlinear PDEs in various ways,

¢ how to deal with time-dependent PDEs,

¢ how to set parameters governing solution methods for linear systems,
¢ how to create domains of more complex shape.

The mathematics of the illustrations is kept simple to better focus on FEniCS functionality and
syntax. This means that we mostly use the Poisson equation and the time-dependent diffusion
equation as model problems, often with input data adjusted such that we get a very simple solution
that can be exactly reproduced by any standard finite element method over a uniform, structured
mesh. This latter property greatly simplifies the verification of the implementations. Occasionally
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we insert a physically more relevant example to remind the reader that changing the PDE and
boundary conditions to something more real might often be a trivial task.

FEniCS may seem to require a thorough understanding of the abstract mathematical version
of the finite element method as well as familiarity with the Python programming language.
Nevertheless, it turns out that many are able to pick up the fundamentals of finite elements and
Python programming as they go along with this tutorial. Simply keep on reading and try out the
examples. You will be amazed of how easy it is to solve PDEs with FEniCS!

Reading this tutorial obviously requires access to a machine where the FEniCS software is installed.
Section 2.8.3 explains briefly how to install the necessary tools.

2.1.1  The Poisson equation

Our first example regards the Poisson problem,

—Au=f inQ),
(2.1)
u=uy on I

Here, u = u(x) is the unknown function, f = f(x) is a prescribed function, A is the Laplace
operator (also often written as V?), Q) is the spatial domain, and 9Q) is the boundary of Q.
A stationary PDE like this, together with a complete set of boundary conditions, constitute a
boundary-value problem, which must be precisely stated before it makes sense to start solving it
with FEniCS.
In two space dimensions with coordinates x and y, we can write out the Poisson equation (2.1) in

detail: 5 5
“u  o‘u
T o = f(xy). (22)

The unknown u is now a function of two variables, u(x,y), defined over a two-dimensional domain
Q.

The Poisson equation (2.1) arises in numerous physical contexts, including heat conduction,
electrostatics, diffusion of substances, twisting of elastic rods, inviscid fluid flow, and water waves.
Moreover, the equation appears in numerical splitting strategies of more complicated systems of
PDEs, in particular the Navier—Stokes equations.

Solving a physical problem with FEniCS consists of the following steps:

1. Identify the PDE and its boundary conditions.
2. Reformulate the PDE problem as a variational problem.

3. Make a Python program where the formulas in the variational problem are coded, along
with definitions of input data such as f, 19, and a mesh for () in (2.1).

4. Add statements in the program for solving the variational problem, computing derived
quantities such as Vu, and visualizing the results.

We shall now go through steps 2—4 in detail. The key feature of FEniCS is that steps 3 and 4 result
in fairly short code, while most other software frameworks for PDEs require much more code and
more technically difficult programming.

2.1.2  Variational formulation

FEniCS makes it easy to solve PDEs if finite elements are used for discretization in space and
the problem is expressed as a variational problem. Readers who are not familiar with variational
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problems will get a brief introduction to the topic in this tutorial, and in the forthcoming chapter,
but getting and reading a proper book on the finite element method in addition is encouraged.
Section 2.8.4 contains a list of some suitable books.

The core of the recipe for turning a PDE into a variational problem is to multiply the PDE by a
function v, integrate the resulting equation over (), and perform integration by parts of terms with
second-order derivatives. The function v which multiplies the PDE is in the mathematical finite
element literature called a test function. The unknown function u to be approximated is referred
to as a trial function. The terms test and trial function are used in FEniCS programs too. Suitable
function spaces must be specified for the test and trial functions. For standard PDEs arising in
physics and mechanics such spaces are well known.

In the present case, we first multiply the Poisson equation by the test function v and integrate:

—/Q(Au)vdx:/nfvdx. (2.3)

Then we apply integration by parts to the integrand with second-order derivatives:

—/Q(Au)vdx:/;)Vu'Vvdx—/a.Q g—ZUds, (2-4)

where du/0n is the derivative of u in the outward normal direction on the boundary. The test
function v is required to vanish on the parts of the boundary where u is known, which in the
present problem implies that v = 0 on the whole boundary d(). The second term on the right-hand
side of (2.4) therefore vanishes. From (2.3) and (2.4) it follows that

/QVu'Vvdx:/vadx. (2.5)

This equation is supposed to hold for all v in some function space V. The trial function u lies
in some (possibly different) function space V. We refer to (2.5) as the weak form of the original
boundary-value problem (2.1).

The proper statement of our variational problem now goes as follows: find u € V such that
/QVu-Vvdx:/vadx VoeV. (2.6)

The trial and test spaces V and V are in the present problem defined as

V ={ve HY(Q):v=uyonoQ},

X 1 (27)

V={ve H(Q):v=0o0n0d0}.
In short, H!(Q) is the mathematically well-known Sobolev space containing functions v such
that v? and |Vo|? have finite integrals over Q). The solution of the underlying PDE must lie
in a function space where also the derivatives are continuous, but the Sobolev space H'(Q)
allows functions with discontinuous derivatives. This weaker continuity requirement of u in the
variational statement (2.6), caused by the integration by parts, has great practical consequences
when it comes to constructing finite elements.

To solve the Poisson equation numerically, we need to transform the continuous variational
problem (2.6) to a discrete variational problem. This is done by introducing finite-dimensional test
and trial spaces, often denoted as V;, C V and V}, C V. The discrete variational problem reads:
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find u;, € Vj, C V such that

/QVuh~Vvdx:/vadx YoeV,cV. (2.8)

The choice of V}, and V}, follows directly from the kind of finite elements we want to apply in
our problem. For example, choosing the well-known linear triangular element with three nodes
implies that Vj, and V}, are the spaces of all piecewise linear functions over a mesh of triangles,
where the functions in Vj, are zero on the boundary and those in V}, equal g on the boundary.
The mathematics literature on variational problems writes uj, for the solution of the discrete
problem and u for the solution of the continuous problem. To obtain (almost) a one-to-one
relationship between the mathematical formulation of a problem and the corresponding FEniCS
program, we shall use u for the solution of the discrete problem and u, for the exact solution of
the continuous problem, if we need to explicitly distinguish between the two. In most cases, we
will introduce the PDE problem with u as unknown, derive a variational equation a(u,v) = L(v)
with u € V and v € V, and then simply discretize the problem by saying that we choose
finite-dimensional spaces for V and V. This restriction of V implies that u becomes a discrete
finite element function. In practice this means that we turn our PDE problem into a continuous
variational problem, create a mesh and specify an element type, and then let V correspond to this
mesh and element choice. Depending upon whether V is infinite- or finite-dimensional, u will be
the exact or approximate solution.

It turns out to be convenient to introduce a unified notation for a weak form like (2.8):

a(u,v) = L(v). (2.9)
In the present problem we have that
a(u,v) = / Vu-Vodx, (2.10)
Q
L(v) = / fodx. (2.11)
Ja

From the mathematics literature, a(u, v) is known as a bilinear form and L(u) as a linear form. We
shall in every problem we solve identify the terms with the unknown u and collect them in a(u,v),
and similarly collect all terms with only known functions in L(v). The formulas for 2 and L are
then coded directly in the program.

To summarize, before making a FEniCS program for solving a PDE, we must first perform two
steps:

1. Turn the PDE problem into a discrete variational problem: find u € V such that

a(u,v) = L(v) VoveV. (2.12)
2. Specify the choice of spaces (V and V); that is, the mesh and type of finite elements.

2.1.3 Implementation

The test problem so far has a general domain () and general functions ug and f. However, we
must specify (), ug, and f prior to our first implementation. It will be wise to construct a specific
problem where we can easily check that the solution is correct. Let us choose u(x,y) = 1+ x? + 2y/?
to be the solution of our Poisson problem since the finite element method with linear elements
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over a uniform mesh of triangular cells should exactly reproduce a second-order polynomial at
the vertices of the cells, regardless of the size of the elements. This property allows us to verify
the code by using very few elements and checking that the computed and the exact solution are
equal to the machine precision. Test problems with this property will be frequently constructed
throughout the present tutorial.

Specifying u(x,y) = 1+ x> + 2y? in the problem from Section 2.1.2 implies ug(x,y) = 1+ x> + 22
and f(x,y) = —6. We let Q) be the unit square for simplicity. A FEniCS program for solving (2.1)
with the given choices of uy, f, and () may look as follows (the complete code can be found in the
file Poisson2D_D1.py):

Python code

from dolfin import =

# Create mesh and define function space
mesh = UnitSquare(6, 4)
V = FunctionSpace(mesh, "CG", 1)

# Define boundary conditions
ud = Expression("l + x[0]*x[0] + 2*xx[1]xx[1]")

def u@_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u@, u®_boundary)

Define variational problem

= TrialFunction(V)

= TestFunction(V)
Constant(-6.0)

= inner(grad(u), grad(v))*dx
= frvxdx

r o -+ < c #%
I

# Compute solution
problem = VariationalProblem(a, L, bc)
u = problem.solve()

# Plot solution and mesh
plot(u)
plot(mesh)

# Dump solution to file in VTK format
file = File("poisson.pvd")
file << u

# Hold plot
interactive()

We shall now dissect this FEniCS program in detail. The program is written in the Python
programming language. You may either take a quick look at a Python tutorial [

] to pick up the basics of Python if you are unfamiliar with the language, or you may learn
enough Python as you go along with the examples in the present tutorial. The latter strategy has
proven to work for many newcomers to FEniCS'. Section 2.8.5 lists some relevant Python books.

'The requirement of using Python and an abstract mathematical formulation of the finite element problem may seem
difficult for those who are unfamiliar with these topics. However, the amount of mathematics and Python that is really
demanded to get you productive with FEniCS is quited limited. And Python is an easy-to-learn language that you certainly
will love and use far beyond FEniCS programming.
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The listed FEniCS program defines a finite element mesh, the discrete function spaces V and V
corresponding to this mesh and the element type, boundary conditions for u (the function uy),
a(u,v), and L(v). Thereafter, the unknown trial function u is computed. Then we can investigate u
visually or analyze the computed values.

The first line in the program,

Python code

from dolfin import x

imports the key classes UnitSquare, FunctionSpace, Function, and so forth, from the DOLFIN
library. All FEniCS programs for solving PDEs by the finite element method normally start with
this line. DOLFIN is a software library with efficient and convenient C++ classes for finite element
computing, and dolfin is a Python package providing access to this C++ library from Python
programs. You can think of FEniCS as an umbrella, or project name, for a set of computational
components, where DOLFIN is one important component for writing finite element programs.
DOLFIN applies other components in the FEniCS suite under the hood, but newcomers to FEniCS
programming do not need to care about this.

The statement

Python code
mesh = UnitSquare(6, 4)

defines a uniform finite element mesh over the unit square [0, 1] x [0,1]. The mesh consists of cells,
which are triangles with straight sides. The parameters 6 and 4 tell that the square is first divided
into 6 x 4 rectangles, and then each rectangle is divided into two triangles. The total number of
triangles then becomes 48. The total number of vertices in this mesh is 7 - 5 = 35. DOLFIN offers
some classes for creating meshes over very simple geometries. For domains of more complicated
shape one needs to use a separate preprocessor program to create the mesh. The FEniCS program
will then read the mesh from file.

Having a mesh, we can define a discrete function space V over this mesh:

Python code
V = FunctionSpace(mesh, "CG", 1)

The second argument reflects the type of element, while the third argument is the degree of
the basis functions on the element. Here, "CG" stands for Continuous Galerkin, implying the
standard Lagrange family of elements. Instead of "CG" we could have written "Lagrange". With
degree 1, we simply get the standard linear Lagrange element, which is a triangle with nodes at
the three vertices. Some finite element practitioners refer to this element as the “linear triangle”.
The computed u will be continuous and linearly varying in x and y over each cell in the mesh.
Higher-degree polynomial approximations over each cell are trivially obtained by increasing the
third parameter in FunctionSpace. Changing the second parameter to "DG" creates a function
space for discontinuous Galerkin methods.

In mathematics, we distinguish between the trial and test spaces V and V. The only difference
in the present problem is the boundary conditions. In FEniCS we do not specify the boundary
conditions as part of the function space, so it is sufficient to work with one common space V for
the test and trial functions in the program:

Python code

TrialFunction(V)
TestFunction(V)
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The next step is to specify the boundary condition: # = ug on 9€). This is done by

Python code
bc = DirichletBC(V, u@, u®_boundary)

where u0 is an instance holding the 1 values, and u@_boundary is a function (or object) describing
whether a point lies on the boundary where u is specified.

Boundary conditions of the type u = ug are known as Dirichlet conditions, and also as essential
boundary conditions in a finite element context. Naturally, the name of the DOLFIN class holding
the information about Dirichlet boundary conditions is DirichletBC.

The u@ variable refers to an Expression object, which is used to represent a mathematical function.
The typical construction is

Python code

ud = Expression(formula)

where formula is a string containing the mathematical expression. This formula is written with
C++ syntax (the expression is automatically turned into an efficient, compiled C++ function, see
Section 2.8.6 for details on the syntax). The independent variables in the function expression are
supposed to be available as a point vector x, where the first element x[0] corresponds to the x
coordinate, the second element x[1] to the y coordinate, and (in a three-dimensional problem)
x[2] to the z coordinate. With our choice of ug(x,y) = 1+ x2 + 2y?, the formula string must be
written as 1 + x[0]*x[0] + 2xx[1]*x[1]:

Python code
ud = Expression("1l + x[0]*x[0] + 2xx[1]*x[1]")

The information about where to apply the u6 function as boundary condition is coded in a function
boundary:

Python code

def u@_boundary(x, on_boundary):
return on_boundary

A function like u@_boundary for marking the boundary must return a boolean value: True if the
point x lies on the Dirichlet boundary and False otherwise. The argument on_boundary is True if
x is on the physical boundary of the mesh, so in the present case we can just return on_boundary.
The u6_boundary function will be called for every discrete point in the mesh, which allows us to
have boundaries where u are known also inside the domain, if desired.

One can also omit the on_boundary argument, but in that case we need to test on the value of the
coordinates in x:

Python code
def u@_boundary(x):
return x[0] == 0 or x[1] == 0 or x[0] == 1 or x[1] ==

As for the formula in Expression objects, x in the u@_boundary function represents a point in space
with coordinates x[0], x[1], etc. Comparing floating-point values using an exact match test with
== is not good programming practice, because small round-off errors in the computations of the x
values could make a test x[0] == 1 become false even though x lies on the boundary. A better test
is to check for equality with a tolerance:

Python code
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def u@_boundary(x):
tol = 1E-15
return abs(x[0]) < tol or \
abs(x[1]) < tol or \
abs(x[0] - 1) < tol or \
abs(x[1] - 1) < tol

Before defining a(u,v) and L(v) we have to specify the f function:

Python code
f = Expression("-6")

When f is constant over the domain, f can be more efficiently represented as a Constant object:

Python code
f = Constant(-6.0)

Now we have all the objects we need in order to specify this problem’s a(u,v) and L(v):
Python code

a
L

inner(grad(u), grad(v))+dx
frvxdx

In essence, these two lines specify the PDE to be solved. Note the very close correspondence
between the Python syntax and the mathematical formulas Vu - Vodx and fodx. This is a
key strength of FEniCS: the formulas in the variational formulation translate directly to very
similar Python code, a feature that makes it easy to specify PDE problems with lots of PDEs and
complicated terms in the equations. The language used to express weak forms is called UFL
(Unified Form Language) and is an integral part of FEniCS.

Having a and L defined, and information about essential (Dirichlet) boundary conditions in bc, we
can formulate a VariationalProblem:

Python code

problem = VariationalProblem(a, L, bc)

Solving the variational problem for the solution u is just a matter of writing

Python code

u = problem.solve()

Unless otherwise stated, a sparse direct solver is used to solve the underlying linear system implied
by the variational formulation. The type of sparse direct solver depends on which linear algebra
package that is used by default. If DOLFIN is compiled with PETSc, that package is the default
linear algebra backend, otherwise it is uBLAS. The FEniCS distribution for Ubuntu Linux contains
PETSc, and then the default solver becomes the sparse LU solver from UMFPACK (which PETSc
has an interface to). We shall later in Section 2.4 demonstrate how to get full control of the choice
of solver and any solver parameters.

The u variable refers to a finite element function, called simply a Function in FEniCS terminology.
Note that we first defined u as a TrialFunction and used it to specify a. Thereafter, we redefined u
to be a Function representing the computed solution. This redefinition of the variable u is possible
in Python and a programming practice in FEniCS applications.

The simplest way of quickly looking at u and the mesh is to say

Python code
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Figure 2.1: Plot of the solution in
the first FEniCS example. (A bound-
ing box around the mesh is added by
pressing o in the plot window, and the
mouse buttons are then used to rotate
and move the plot, see Section 2.1.8.)

4.00

Figure 2.2: Plot of the mesh in the first
FEniCS example.

‘plot(u) ‘
Iplot (mesh) ‘
linteractive() ‘

The interactive() call is necessary for the plot to remain on the screen. With the left, middle,
and right mouse buttons you can rotate, translate, and zoom (respectively) the plotted surface to
better examine what the solution looks like. Figures ?? and ?? display the resulting u function and
the finite element mesh, respectively.

It is also possible to dump the computed solution to file, e.g., in the VIK format:

Python code

file = File("poisson.pvd")
file << u

The poisson.pvd file can now be loaded into any front-end to VTK, say ParaView or Vislt. The
plot function from Viper is intended for quick examination of the solution during program
development. More in-depth visual investigations of finite element solutions will normally benefit
from using highly professional tools such as ParaView and Vislt.
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2.1.4 Examining the discrete solution

We know that, in the particular boundary-value problem of Section 2.1.3, the computed solution
u should equal the exact solution at the vertices of the cells. An important extension of our first
program is therefore to examine the computed values of the solution, which is the focus of the
present section.

A finite element function like u is expressed as a linear combination of basis functions ¢;, spanning
the space V:

N
Z chpj. (2.13)
j=1

By writing u = problem.solve() in the program, a linear system will be formed from a and L,
and this system is solved for the Uj, ..., Uy values. The Uj, ..., Uy values are known as degrees of
freedom of u. For Lagrange elements (and many other element types) Uy is simply the value of u at
the node with global number k. (The nodes and cell vertices coincide for linear Lagrange elements,
while for higher-order elements there may be additional nodes at the facets and in the interior of
cells.)

Having u represented as a Function object, we can either evaluate u(x) at any vertex x in the mesh,
or we can grab all the values U; directly by

Python code

u_nodal_values = u.vector()

The result is a DOLFIN Vector object, which is basically an encapsulation of the vector object used
in the linear algebra package that is applied to solve the linear system arising form the variational
problem. Since we program in Python it is convenient to convert the Vector object to a standard
numpy array for further processing:

Python code

u_array = u_nodal_values.array()

With numpy arrays we can write “MATLAB-like” code to analyze the data. Indexing is done with
square brackets: u_array[i], where the index i always starts at 0.
The coordinates of the vertices in the mesh can be extracted by

Python code

coor = mesh.coordinates()

For a d-dimensional problem, coor is an M x d numpy array, M being the number of vertices in the
mesh. Writing out the solution on the screen can now be done by a simple loop:

Python code
for i in range(len(u_array)):
print "u(%8g,%8g) = %g" % \
(coor[i][0], coor[il[1l], u_array[i])
The beginning of the output looks like this:
Output
u( 0, 0) =1
u(0.166667, 0) = 1.02778
u(0.333333, 0) = 1.11111
u( 0.5, 0) =1.25
u(0.666667, 0) = 1.44444
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u(0.833333, 0) 1.69444
u( iy 0) =2

For Lagrange elements of degree higher than one, the vertices and the nodes do not coincide, and
then the loop above is meaningless.

For verification purposes we want to compare the values of u at the nodes; that is, the values of
the vector u_array, with the exact solution given by u@. At each node, the difference between the
computed and exact solution should be less than a small tolerance. The exact solution is given by
the Expression object ud, which we can evaluate directly as ud(coor[i]) at the vertex with global
number i, or as ud(x) for any spatial point. Alternatively, we can make a finite element field u_e,
representing the exact solution, whose values at the nodes are given by the u0 function. With
mathematics, u, = El-il Ej¢;, where E; = uo(xj,yj), (xj,yj) being the coordinates of node number

]
j- This process is known as interpolation. FEniCS has a function for performing the operation:

Python code

u_e = interpolate(u@, V)

The maximum error can now be computed as

Python code

u_e_array = u_e.vector().array()
diff = abs(u_array - u_e_array)
print "Max error:", diff.max()

# or more compactly:
print "Max error:", abs(u_e_array - u_array).max()

The value of the error should be at the level of the machine precision (10716).
To demonstrate the use of point evaluations of Function objects, we write out the computed u at
the center point of the domain and compare it with the exact solution:

Python code

center = (0.5, 0.5)

u_value = u(center)

u0_value = u@(center)

print "numerical u at the center point:", u_value
print "exact u at the center point:", u@_value

Trying a 3 x 3 mesh, the output from the previous snippet becomes
Output

numerical u at the center point: [ 1.83333333]
exact u at the center point: [ 1.75]

The discrepancy is due to the fact that the center point is not a node in this particular mesh, but a
point in the interior of a cell, and u varies linearly over the cell while u0 is a quadratic function.
Mesh information can be gathered from the mesh object, e.g.,

* mesh.num_cells() returns the number of cells (triangles) in the mesh,

e mesh.num_vertices() returns the number of vertices in the mesh (with our choice of linear
Lagrange elements this equals the number of nodes),

® str(mesh) returns a short “pretty print” description of the mesh, e.g.,
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Output
<Mesh of topological dimension 2 (triangles) with
16 vertices and 18 cells, ordered>

and print mesh is actually the same as print str(mesh).

All mesh objects are of type Mesh so typing the command pydoc dolfin.Mesh in a terminal window
will give a list of methods?® that can be called through any Mesh object. In fact, pydoc dolfin.X
shows the documentation of any DOLFIN name X (at the time of this writing, some names have
missing or incomplete documentation).

We have seen how to extract the nodal values in a numpy array. If desired, we can adjust the nodal
values too. Say we want to normalize the solution such that max; U; = 1. Then we must divide all
U; values by max; U;. The following snippet performs the task:

Python code
max_u = u_array.max()
u_array /= max_u
u.vector()[:] = u_array
print u.vector().array()

That is, we manipulate u_array as desired, and then we insert this array into u’s Vector object. The
/= operator implies an in-place modification of the object on the left-hand side: all elements of the
u_array are divided by the value max_u. Alternatively, one could write u_array = u_array/max_u,
which implies creating a new array on the right-hand side and assigning this array to the name
u_array. We can equally well insert the entries of u_array into u’s numpy array:

Python code

u.vector().array()[:] = u_array

All the code in this subsection can be found in the file Poisson2D_D2.py.

2.1.5 Formulating a real physical problem

Perhaps you are not particularly amazed by viewing the simple surface of u in the test problem
from Sections 2.1.3 and 2.1.4. However, solving a real physical problem with a more interesting and
amazing solution on the screen is only a matter of specifying a more exciting domain, boundary
condition, and/or right-hand side f.

One possible physical problem regards the deflection D(x,y) of an elastic circular membrane with
radius R, subject to a localized perpendicular pressure force, modeled as a Gaussian function. The
appropriate PDE model is

—TAD = p(x,y) in Q= {(x,y)|**+y* <R}, (2.14)

A 1/x—x\> 1[/yv—y)*
p(x,y):%exp (‘2 (x Ux()) _Z(W)) ) (2.15)

Here, T is the tension in the membrane (constant), p is the external pressure load, A the amplitude
of the pressure, (xo,1o) the localization of the Gaussian pressure function, and ¢ the “width” of
this function. The boundary condition is D = 0.

with

2A method in Python (and other languages supporting the class construct) is simply a function in a class.
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Introducing a scaling with R as characteristic length and 8710 T/ A as characteristic size of D, we
can derive the equivalent scaled problem on the unit circle,

_ 1 /Rx—x\> 1 Ry —yo 2
—Aw = 4exp <—2 ((7) —2<U , (2.16)

with w = 0 on the boundary. We have that D = AR?*w/ (870 T).
A mesh over the unit circle can be created by

Python code

mesh = UnitCircle(n)

where n is the typical number of elements in the radial direction. You should now be able to figure
out how to modify the Poisson2D_D1.py code to solve this membrane problem. More specifically,
you are recommended to perform the following extensions:

1. initialize R, xo, yo, 0, T, and A in the beginning of the program,

2. build a string expression for p with correct C++ syntax (use “printf” formatting in Python to
build the expression),

3. define the a and L variables in the variational problem for w and compute the solution,
4. plot the mesh, w, and the scaled pressure function p (the right-hand side of (2.16)),
5. write out the maximum real deflection D (the maximum of the w values times A/(87oT)).

Use variable names in the program similar to the mathematical symbols in this problem.
Choosing a small width ¢ (say 0.01) and a location (xg,yp) toward the circular boundary (say
(0.6R cos 6,0.6R sin ) for any 6 € [0,27]), may produce an exciting visual comparison of w and
p that demonstrates the very smoothed elastic response to a peak force (or mathematically, the
smoothing properties of the inverse of the Laplace operator). You need to experiment with the
mesh resolution to get a smooth visual representation of p.

In the limit ¢ — oo, the right-hand side p of (2.16) approaches the constant 4, and then the solution
should be w(x,y) = 1 — x> — y2. Compute the absolute value of the difference between the exact
and the numerical solution if o > 50 and write out the maximum difference to provide some
evidence that the implementation is correct.

You are strongly encouraged to spend some time on doing this exercise and play around with the
plots and different mesh resolutions. A suggested solution to the exercise can be found in the file
membranel. py.

Python code

from dolfin import *

Set pressure function:

= 10.0 # tension

=1.0 # pressure amplitude
= 0.3 # radius of domain
theta = 0.2

x0 = 0.6*Rxcos(theta)

o x> #*

3Assuming ¢ large enough so that p = const ~ A/(27t0) in (), we can integrate an axi-symmetric version of the
equation in the radial coordinate r € [0, R] and obtain D = (r2 — R?)A/(87cT), which for r = 0 gives a rough estimate of
the size of |D|: AR?/(87cT).
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y0 = 0.6+R+sin(theta)

sigma = 0.025

#sigma = 50 # verification

pressure = "4xexp(-0.5%(pow((%g*x[0] - %
o - 0.5%(pow( (%g*x[1] - %
(R, x0, sigma, R, y0O, sigma)

n =40 # approx no of elements in radial direction
mesh = UnitCircle(n)
V = FunctionSpace(mesh, "CG", 1)

# Define boundary condition w=0

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

Define variational problem
= TrialFunction(V)
TestFunction(V)

= Expression(pressure)
inner(grad(w), grad(v))xdx
vHprdx

r o T < = #
1]

# Compute solution
problem = VariationalProblem(a, L, bc)
w = problem.solve()

# Plot solution and mesh

plot(mesh, title="Mesh over scaled domain")
plot(w, title="Scaled deflection")

p = interpolate(p, V)

plot(p, title="Scaled pressure")

# Find maximum real deflection

max_w = w.vector().array().max()

max_D = Axmax_w/(8+pi*sigma*T)

print "Maximum real deflection is", max_D

# Verification for "flat" pressure (big sigma)
if sigma >= 50:
w_exact = Expression("1l - x[0]*x[0] - x[1]*x[1]")
w_e = interpolate(w_exact, V)
w_e_array = w_e.vector().array()
w_array = w.vector().array()
diff_array = abs(w_e_array - w_array)
print "Verification of the solution, max difference is %.4E" % \
diff_array.max()

# Create finite element field over V and fill with error values
difference = Function(V)

difference.vector()[:] = diff_array

#plot(difference, title="Error field for sigma=%g" % sigma)

# Should be at the end
interactive()

TUTORIAL
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2.1.6 Computing derivatives

In many Poisson and other problems the gradient of the solution is of interest. The computation is
in principle simple: since u = Z]N: 1 U@, we have that

N
Vu = 2 U]V(P] (2.17)
j=1

Given the solution variable u in the program, grad(u) denotes the gradient. However, the gradient
of a piecewise continuous finite element scalar field is a discontinuous vector field since the ¢; has
discontinuous derivatives at the boundaries of the cells. For example, using Lagrange elements
of degree 1, u is linear over each cell, and the numerical Vu becomes a piecewise constant vector
field. On the contrary, the exact gradient is continuous. For visualization and data analysis
purposes we often want the computed gradient to be a continuous vector field. Typically, we
want each component of Vu to be represented in the same way as u itself. To this end, we can
project the components of Vu onto the same function space as we used for u. This means that we
solve w = Vu approximately by a finite element method*, using the the same elements for the
components of w as we used for u.

The variational problem for w reads: find w € V(8) such that

a(w,v) = L(v) VoeV®), (2.18)

where
a(w,v):/nw-vdx, (2.19)
L(v) = /Q Vi vdr. (2.20)

The function spaces V(&) and V(&) (with the superscript g denoting “gradient”) are vector versions
of the function space for u, with boundary conditions removed (if V is the space we used for u,
with no restrictions on boundary values, Ve = vE) = [V]4, where d is the number of space
dimensions). For example, if we used piecewise linear functions on the mesh to approximate u, the
variational problem for w corresponds to approximating each component field of w by piecewise
linear functions.

The variational problem for the vector field w, called gradu in the code, is easy to solve in FEniCS:

Python code
V_g = VectorFunctionSpace(mesh, "CG", 1)
w = TrialFunction(V_g)
v = TestFunction(V_g)

a = inner(w, v)=*dx

L = inner(grad(u), v)=*dx

problem = VariationalProblem(a, L)
gradu = problem.solve()

plot(gradu, title="grad(u)")

4This process is known as projection. Looking at the component du/dx of the gradient, we project the (discrete) derivative
Y U;jo$;/0x onto another function space with basis ¢;, ¢», ... such that the derivative in this space is expressed by the

standard sum Y; U;¢;, for suitable (new) coefficients U;.
j Ui¢i j
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Figure 2.3: Example on visualizing the
vector field Vu by arrows at the nodes.
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The new thing is basically that we work with a VectorFunctionSpace, since the unknown is now a
vector field, instead of the FunctionSpace object for scalar fields. Figure ?? shows an example of
how Viper can visualize such a vector field.

The scalar component fields of the gradient can be extracted as separated fields and, e.g., visualized:

Python code

gradu_x, gradu_y = gradu.split(deepcopy=True) # extract components
plot(gradu_x, title="x-component of grad(u)")
plot(gradu_y, title="y-component of grad(u)")

The deepcopy=True argument signifies a deep copy, which is a general term in computer science
implying that a copy of the data is returned. (The opposite, deepcopy=False, means a shallow copy,
where the returned objects are just pointers to the original data.)

The gradu_x and gradu_y variables behave as Function objects. In particular, we can extract the
underlying arrays of nodal values by

Python code
gradu_x_array = gradu_x.vector().array()
gradu_y_array = gradu_y.vector().array()
The degrees of freedom of the gradu vector field can also be reached by
Python code

gradu_array = gradu.vector().array()

but this is a flat numpy array where the degrees of freedom for the x component of the gradient is
stored in the first part, then the degrees of freedom of the y component, and so on.

The program Poisson2D_D3.py extends the code Poisson2D_D2.py from Section 2.1.4 with compu-
tations and visualizations of the gradient. Examining the arrays gradu_x_array and gradu_y_array,
or looking at the plots of gradu_x and gradu_y, quickly reveals that the computed gradu field does
not equal the exact gradient (2x,4y) in this particular test problem where u = 1+ x2 + 2y?. There
are inaccuracies at the boundaries, arising from the approximation problem for w. Increasing the
mesh resolution shows, however, that the components of the gradient vary linearly as 2x and 4y in
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the interior of the mesh (as soon as we are one element away from the boundary). See Section 2.1.8
for illustrations of this phenomenon.

Representing the gradient by the same elements as we used for the solution is a very common step
in finite element programs, so the formation and solution of a variational problem for w as shown
above can be replaced by a one-line call:

Python code
gradu = project(grad(u), VectorFunctionSpace(mesh, "CG", 1))

The project function can take an expression involving some finite element function in some space
and project the expression onto another space. The applications are many, including turning
discontinuous gradient fields into continuous ones, comparing higher- and lower-order function
approximations, and transforming a higher-order finite element solution down to a piecewise
linear field, which is required by many visualization packages.

2.1.7 Computing functionals

After the solution u of a PDE is computed, we often want to compute functionals of u, for example,

%||Vu| 2= % /QVu -Vudx, (2.21)

which often reflects the some energy quantity. Another frequently occurring functional is the error

1/2
|[te — ul| = (/Q(ue—u)2dx) , (2.22)

which is of particular interest when studying convergence properties. Sometimes the interest
concerns the flux out of a part I' of the boundary 0(,

F= —/qu'nds, (2.23)
T

where 1 is an outward unit normal at I and p is a coefficient (see the problem in Section 2.1.12
for a specific example). All these functionals are easy to compute with FEniCS, and this section
describes how it can be done.

Energy functional. The integrand of the energy functional (2.21) is described in the UFL language
in the same manner as we describe weak forms:

Python code
energy = 0.5+inner(grad(u), grad(u))x*dx
E = assemble(energy)

The assemble call performs the integration. It is possible to restrict the integration to subdomains,
or parts of the boundary, by using a mesh function to mark the subdomains as explained in
Section 2.6.3. The program membrane2. py carries out the computation of the elastic energy

1 1/ AR\?
SITVDIE =5 (520 ) 17l (224

in the membrane problem from Section 2.1.5.
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Convergence estimation. To illustrate error computations and convergence of finite element solu-
tions, we modify the Poisson2D_D3.py program from Section 2.1.6 and specify a more complicated
solution,

u(x,y) = sin(wmx) sin(wmy) (2.25)

on the unit square. This choice implies f(x,y) = 2w?m?u(x,y). With w restricted to an integer it
follows that 1y = 0. We must define the appropriate boundary conditions, the exact solution, and
the f function in the code:

Python code

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

omega = 1.0
u_exact = Expression("sin(%g+pi*x[0])*sin(%sg*pi*x[1])" % \
(omega, omega))

f = 2+pix*2+omega*+2+u_exact
The computation of (2.22) can be done by

Python code
error = (u - u_exact)x*2xdx
E = sqrt(assemble(error))

However, u_exact will here be interpolated onto the function space V; that is, the exact solution
used in the integral will vary linearly over the cells, and not as a sine function, if V corresponds to
linear Lagrange elements. This may yield a smaller error u - u_e than what is actually true.
More accurate representation of the exact solution is easily achieved by interpolating the formula
onto a space defined by higher-order elements, say of third degree:

Python code
Ve = FunctionSpace(mesh, "CG", degree=3)
u_e = interpolate(u_exact, Ve)
error = (u - u_e)**2x*dx
E = sqrt(assemble(error))

The u function will here be automatically interpolated and represented in the Ve space. When
functions in different function spaces enter UFL expressions, they will be represented in the space
of highest order before integrations are carried out. When in doubt, we should explicitly interpolate
u:

Python code
u_Ve = interpolate(u, Ve)
error = (u_Ve - u_e)=**2xdx

The square in the expression for error will be expanded and lead to a lot of terms that almost
cancel when the error is small, with the potential of introducing significant round-off errors. The
function errornorm is available for avoiding this effect by first interpolating u and u_exact to a
space with higher-order elements, then subtracting the degrees of freedom, and then performing
the integration of the error field. The usage is simple:

Python code

E = errornorm(u_exact, u, normtype="L2", degree=3)
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At the time of this writing, errornorm does not work with Expression objects for u_exact, making
the function inapplicable for most practical purposes. Nevertheless, we can easily express the
procedure explicitly:

Python code

def errornorm(u_exact, u, Ve):
u_Ve = interpolate(u, Ve)
u_e_Ve = interpolate(u_exact, Ve)
e_Ve = Function(Ve)
# Subtract degrees of freedom for the error field
e_Ve.vector()[:] = u_e_Ve.vector().array() - \
u_Ve.vector().array()
error = e_Vexx2xdx
return sqrt(assemble(error))

The errornorm procedure turns out to be identical to computing the expression (u_e - u)**2xdx
directly in the present test case.

Sometimes it is of interest to compute the error of the gradient field: ||V (u — u,)|| (often referred
to as the H! seminorm of the error). Given the error field e_Ve above, we simply write

Python code

Hlseminorm = sqrt(assemble(inner(grad(e_Ve), grad(e_Ve))x*dx))

Finally, we remove all plot calls and printouts of u values in the original program, and collect the
computations in a function:

Python code

def compute(nx, ny, polynomial_degree):
mesh = UnitSquare(nx, ny)
V = FunctionSpace(mesh, "CG", degree=polynomial_degree)

Ve = FunctionSpace(mesh, "CG", degree=3)
E = errornorm(u_exact, u, Ve)
return E

Calling compute for finer and finer meshes enables us to study the convergence rate. Define the
element size i = 1/n, where n is the number of divisions in x and y direction (nx=ny in the code).
We perform experiments with hg > h; > hy - - - and compute the corresponding errors Ey, E1, E3
and so forth. Assuming E; = Ch] for unknown constants C and r, we can compare two consecutive
experiments, E; = Chj and E;_; = Ch}_,, and solve for r:

_ In(Ei/Eiy)
" (/i) (220

The r values should approach the expected convergence rate degree+1 as i increases.
The procedure above can easily be turned into Python code:

Python code

import sys
degree = int(sys.argv[1l]) # read degree as 1st command-line arg
h =[] # element sizes
E =[] # errors
for nx in [4, 8, 16, 32, 64, 128, 264]:

h.append(1.0/nx)

E.append(compute(nx, nx, degree))
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# Convergence rates
from math import log as ln # (log is a dolfin name too)
for i in range(l, len(E)):

r = 1n(E[i]/E[i-1])/In(h[i]/h[i-1])

print "h=%10.2E r=%.2f" % (h[i], r)

The resulting program has the name Poisson2D_D4.py and computes error norms in various ways.
Running this program for elements of first degree and w = 1 yields the output

Output
.25E-01 E=3.25E-02 r=1.83
.25E-02 E=8.37E-03 r=1.96
.12E-02 E=2.11E-03 r=1.99
.56E-02 E=5.29E-04 r=2.00
.81E-03 E=1.32E-04 r=2.00
.79E-03 E=3.11E-05 r=2.00

W NP Wo =

That is, we approach the expected second-order convergence of linear Lagrange elements as the
meshes become sufficiently fine.
Running the program for second-degree elements results in the expected value r = 3,

Output
h=1.25E-01 E=5.66E-04 r=3.09
h=6.25E-02 E=6.93E-05 r=3.03
h=3.12E-02 E=8.62E-06 r=3.01
h=1.56E-02 E=1.08E-06 r=3.00
h=7.81E-03 E=1.34E-07 r=3.00
h=3.79E-03 E=1.53E-08 r=3.00

However, using (u - u_exact)*x2 for the error computation, which implies interpolating u_exact
onto the same space as u, results in r = 4 (!). This is an example where it is important to
interpolate u_exact to a higher-order space (polynomials of degree 3 are sufficient here) to avoid
computing a too optimistic convergence rate. Looking at the error in the degrees of freedom
(u.vector().array()) reveals a convergence rate of » = 4 for second-degree elements. For elements
of polynomial degree 3 all the rates are r = 4, regardless of whether we choose a “fine” space Ve
with polynomials of degree 3 or 5.

Running the program for third-degree elements results in the expected value r = 4:

Output
h=1.25E-01 r=4.09
h=6.25E-02 r=4.03
h=3.12E-02 r=4.01
h=1.56E-02 r=4.00
h=7.81E-03 r=4.00

Checking convergence rates is the next best method for verifying PDE codes (the best being exact
recovery of a solution as in Section 2.1.4 and many other places in this tutorial).

Flux functionals. To compute flux integrals like (2.23) we need to define the n vector, referred to
as facet normal in FEniCS. If T is the complete boundary we can perform the flux computation by

Python code
n = FacetNormal(mesh)
flux = -pxinner(grad(u), n)x*ds
total_flux = assemble(flux)
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It is possible to restrict the integration to a part of the boundary using a mesh function to mark
the relevant part, as explained in Section 2.6.3. Assuming that the part corresponds to subdomain
number n, the relevant form for the flux is -pxinner(grad(u), n)*ds(n).

2.1.8 Quick visualization with VTK

As we go along with examples it is fun to play around with plot commands and visualize what is
computed. This section explains some useful visualization features.

The plot(u) command launches a FEniCS component called Viper, which applies the VTK package
to visualize finite element functions. Viper is not a full-fledged, easy-to-use front-end to VTK
(like ParaView or Vislt), but rather a thin layer on top of VIK’s Python interface, allowing us to
quickly visualize a DOLFIN function or mesh, or data in plain Numerical Python arrays, within a
Python program. Viper is ideal for debugging, teaching, and initial scientific investigations. The
visualization can be interactive, or you can steer and automate it through program statements.
More advanced and professional visualizations are usually better done with advanced tools like
MayaViz, ParaView, or Vislt.

We have made a program membranelv.py for the membrane deflection problem in Section 2.1.5
and added various demonstrations of Viper capabilities. You are encouraged to play around
with membranelv.py and modify the code as you read about various features. The membranelv.py
program solves the two-dimensional Poisson equation for a scalar field w (the membrane deflection).
The plot function can take additional arguments, such as a title of the plot, or a specification of a
wireframe plot (elevated mesh) instead of a colored surface plot:

Python code
plot(mesh, title="Finite element mesh")
plot(w, wireframe=True, title="solution")

The three mouse buttons can be used to rotate, translate, and zoom the surface. Pressing h in the
plot window makes a printout of several key bindings that are available in such windows. For
example, pressing m in the mesh plot window dumps the plot of the mesh to an Encapsulated
PostScript (.eps) file, while pressing i saves the plot in PNG format. All file names are automati-
cally generated as simulationX.eps, where X is a counter 6000, 0001, 8002, etc., being increased
every time a new plot file in that format is generated (the extension of PNG files is .png instead of
.eps). Pressing o adds a red outline of a bounding box around the domain.

One can alternatively control the visualization from the program code directly. This is done
through a Viper object returned from the plot command. Let us grab this object and use it to 1)
tilt the camera —65 degrees in latitude direction, 2) add x and y axes, 3) change the default name
of the plot files (generated by typing m and i in the plot window), 4) change the color scale, and 5)
write the plot to a PNG and an EPS file. Here is the code:

Python code
viz_w = plot(w,
wireframe=False,
title="Scaled membrane deflection",
rescale=False,
axes=True, # include axes
basename="deflection", # default plotfile name

)

viz_w.elevate(-65) # tilt camera -65 degrees (latitude dir)
viz_w.set_min_max(0, 0.5+*max_w) # color scale
viz_w.update(w) # bring settings above into action
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Figure 2.4: Plot of the deflection of a
membrane.

viz_w.write_png("deflection.png")
viz_w.write_ps("deflection", format="eps")

The format argument in the latter line can also take the values "ps" for a standard PostScript file
and "pdf" for a PDF file. Note the necessity of the viz_w.update(w) call — without it we will not
see the effects of tilting the camera and changing the color scale. Figure ?? shows the resulting
scalar surface.

2.1.9 Combining Dirichlet and Neumann conditions

Let us make a slight extension of our two-dimensional Poisson problem from Section 2.1.1 and add
a Neumann boundary condition. The domain is still the unit square, but now we set the Dirichlet
condition u = ug at the left and right sides, x = 0 and x = 1, while the Neumann condition

~5n =8 (227)

is applied to the remaining sides y = 0 and ¥ = 1. The Neumann condition is also known as a
natural boundary condition (in contrast to an essential boundary condition).

Let I'p and T'y denote the parts of d(2 where the Dirichlet and Neumann conditions apply,
respectively. The complete boundary-value problem can be written as

—Au=finQ, (2.28)
u=ugonlp, (2.29)

ou
5, = gonIy. (2.30)

Again we choose u = 1+ x? 4 2y as the exact solution and adjust f, g, and 1 accordingly:
f=-6 (2.31)

B —4, y=1
8—{0, y 0 (2:32)

up=1+x*+ Zyz. (2.33)
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For ease of programming we may introduce a g function defined over the whole of () such that g
takes on the right values at y = 0 and y = 1. One possible extension is

g(x,y) = —4y. (2.34)

The first task is to derive the variational problem. This time we cannot omit the boundary term
arising from the integration by parts, because v is only zero at the I'p. We have

—/Q(Au)vdx:/QVu-Vvdx—/aQ g—ZUds, (2.35)

and since v =0 on I'p,

ou ou
_/anﬁvd57_/m %vdsf/rNgvdS, (2.36)

by applying the boundary condition at I'y. The resulting weak form reads

/Vu-Vvdx—l—/ gvds:/fvdx. (2-37)
Q Iy Q

Expressing (2.37) in the standard notation a(u,v) = L(v) is straightforward with
a(u,v) = / Vu-Vodx, (2.38)
Ja
L(v) = / dx — / ds. .
(0) = | fodx , Sds (2:39)

How does the Neumann condition impact the implementation? The code in the file Poisson2D_D2.py
remains almost the same. Only two adjustments are necessary:

1. The function describing the boundary where Dirichlet conditions apply must be modified.
2. The new boundary term must be added to the expression in L.

Step 1 can be coded as

Python code
def Dirichlet_boundary(x, on_boundary):
if on_boundary:
if x[0] == 0 or x[0] ==
return True
else:
return False
else:
return False

A more compact implementation reads

Python code
def Dirichlet_boundary(x, on_boundary):
return on_boundary and (x[0] == 0 or x[0] == 1)

As pointed out already in Section 2.1.3, testing for an exact match of real numbers is not good
programming practice so we introduce a tolerance in the test:
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Python code
def Dirichlet_boundary(x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons
return on_boundary and \
(abs(x[0]) < tol or abs(x[0] - 1) < tol)

We may also split the boundary functions into two separate pieces, one for each part of the
boundary:

Python code
tol = 1E-14
def Dirichlet_boundaryQ(x, on_boundary):
return on_boundary and abs(x[0]) < tol

def Dirichlet_boundaryl(x, on_boundary):
return on_boundary and abs(x[0] - 1) < tol

bc® = DirichletBC(V, Constant(0), Dirichlet_boundary0)
bcl = DirichletBC(V, Constant(1l), Dirichlet_boundaryl)
bc = [bcO, bcl]

The second adjustment of our program concerns the definition of L, where we have to add a
boundary integral and a definition of the g function to be integrated:

Python code
Expression("-4xx[1]")
L = fxvxdx - g+v*ds

«Q
L}

The ds variable implies a boundary integral, while dx implies an integral over the domain
). No more modifications are necessary. Running the resulting program, found in the file
Poisson2D_DN1.py, shows a successful verification — u equals the exact solution at all the nodes,
regardless of how many elements we use.

2.1.10 Multiple Dirichlet conditions

The PDE problem from the previous section applies a function u((x,y) for setting Dirichlet
conditions at two parts of the boundary. Having a single function to set multiple Dirichlet
conditions is seldom possible. The more general case is to have m functions for setting Dirichlet
conditions at m parts of the boundary. The purpose of this section is to explain how such multiple
conditions are treated in FEniCS programs.

Let us return to the case from Section 2.1.9 and define two separate functions for the two Dirichlet
conditions:

—Au=—-6in (), (2.40)
u =ur on I, (2.41)
u=ugronly, (2.42)

ou

—3, =8on I'n. (2.43)

Here, I'y is the boundary x = 0, while I'y corresponds to the boundary x = 1. We have that
up = 1+2y%, ug = 2+2y?, and ¢ = —4y. For the left boundary Ty we define the usual triple
of a function for the boundary value, a function for defining the boundary of interest, and a
DirichletBC object:
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Python code
u_L = Expression("1l + 2kx[1]*x[1]")

def left_boundary(x, on_nboundary):
tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = DirichletBC(V, u_L, left_boundary)
For the boundary x = 1 we define a similar code:

Python code
U_R = Expression("2 + 2xx[1]*x[1]1")

def right_boundary(x, on_boundary):
tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = DirichletBC(V, u_R, right_boundary)

The various essential conditions are then collected in a list and passed onto our problem object of
type VariationalProblem:

Python code

bc = [Gamma_0, Gamma_1]
problem = VariationalProblem(a, L, bc)

If the u values are constant at a part of the boundary, we may use a simple Constant object instead
of an Expression object.

The file Poisson2D_DN2.py contains a complete program which demonstrates the constructions
above. An extended example with multiple Neumann conditions would have been quite natural
now, but this requires marking various parts of the boundary using the mesh function concept and
is therefore left to Section 2.6.3.

2.1.11 A linear algebra formulation

Given a(u,v) = L(v), the discrete solution u is computed by inserting u = 2}!1 U;¢; into a(u,v)
and demanding a(u,v) = L(v) to be fulfilled for N test functions ¢1, ..., $y. This implies

N

Za((l)],(i)l)u] = L(‘i’i)/ i=1,...,N, (244)

=1

which is nothing but a linear system,
AU =0, (2.45)

N (2.46)

The examples so far have constructed a VariationalProblem object and called its solve method
to compute the solution u. The VariationalProblem object creates a linear system AU = b and
calls an appropriate solution method for such systems. An alternative is dropping the use of a
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VariationalProblem object and instead asking FEniCS to create the matrix A and right-hand side
b, and then solve for the solution vector U of the linear system. The relevant statements read

Python code
A = assemble(a)
b = assemble(L)
bc.apply (A, b)
u = Function(V)
solve(A, u.vector(), b)

The variables a and L are as before; that is, a refers to the bilinear form involving a TrialFunction
object (say u) and a TestFunction object (v), and L involves a TestFunction object (v). From a and
L, the assemble function can compute the matrix elements A;; and the vector elements b;.

The matrix A and vector b are first assembled without incorporating essential (Dirichlet) boundary
conditions. Thereafter, the bc.apply (A, b) call performs the necessary modifications to the linear
system. The first three statements above can alternatively be carried out by>

Python code

A, b = assemble_system(a, L, bc)

When we have multiple Dirichlet conditions stored in a list bc, as explained in Section 2.1.10, we
must apply each condition in bc to the system:

Python code
# bc is a list of DirichletBC objects
for condition in bc:
condition.apply(A, b)

Alternatively, we can make the call

Python code
A, b = assemble_system(a, L, bc)

The assemble_system function incorporates the boundary conditions in a symmetric way in the
coefficient matrix. (For each degree of freedom that is known, the corresponding row and column
is zeroed out and 1 is placed on the main diagonal, and the right-hand side b is modified by
subtracting the column in A times the value of the degree of freedom, and then the corresponding
entry in b is replaced by the known value of the degree of freedom.) With condition.apply(A,
b), the matrix A is modified in an unsymmetric way. (The row is zeroed out and 1 is placed on the
main diagonal, and the degree of freedom value is inserted in b.)

Note that the solution u is, as before, a Function object. The degrees of freedom, U = A~1p, are
filled into u’s Vector object (u.vector()) by the solve function.

The object A is of type Matrix, while b and u.vector() are of type Vector. We may convert the
matrix and vector data to numpy arrays by calling the array() method as shown before. If you
wonder how essential boundary conditions are incorporated in the linear system, you can print
out A and b before and after the bc.apply (A, b) call:

Python code
if mesh.num_cells() < 16: # print for small meshes only
print A.array()
print b.array()
bc.apply(A, b)
if mesh.num_cells() < 16:

5The essential boundary conditions are now applied to the element matrices and vectors prior to assembly.
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print A.array()
print b.array()

Sometimes it can be handy to transfer the linear system to MATLAB or Octave for further analysis,
e.g., computation of eigenvalues of A. This is easily done by opening a File object with a filename
extension .m and dump the Matrix and Vector objects as follows:

Python code
mfile
mfile

File("A.m"); mfile << A
File("b.m"); mfile << b

The data files A.m and b.m can be loaded directly into MATLAB or Octave.

The complete code where our Poisson problem is solved by forming the linear system AU =
b explicitly, is stored in the files Poisson2D_DN_1lal.py (one common Dirichlet condition) and
Poisson2D_DN_la2.py (two separate Dirichlet conditions).

Creating the linear system explicitly in the user’s program, as an alternative to using a VariationalProblem
object, can have some advantages in more advanced problem settings. For example, A may be
constant throughout a time-dependent simulation, so we can avoid recalculating A at every time

level and save a significant amount of simulation time. Sections 2.3.2 and 2.3.3 deal with this topic

in detail.

2.1.12 A variable-coefficient Poisson problem

Suppose we have a variable coefficient p(x, y) in the Laplace operator, as in the boundary-value
problem

=V [px,y)Vu(x,y)] = f(x,y) inQ,

u(x,y) =up(x,y) onoQ. (247)

We shall quickly demonstrate that this simple extension of our model problem only requires an
equally simple extension of the FEniCS program.
Let us continue to use our favorite solution u(x, y) = 1+ x? + 2y? and then prescribe p(x,y) = x +y.

It follows that ug(x,y) = 1+ x? +2y? and f(x,y) = —8x — 10y.

What are the modifications we need to do in the Poisson2D_D2.py program from Section 2.1.47?
1. f must be an Expression since it is no longer a constant,
2. anew Expression p must be defined for the variable coefficient,

3. the variational problem is slightly changed.

First we address the modified variational problem. Multiplying the PDE in (2.47) and integrating
by parts now results in

/Qqu-Vvdx—/ang—Zvds:/vadx. (2.48)

The function spaces for 1 and v are the same as in Section 2.1.2, implying that the boundary integral
vanishes since v = 0 on 0Q) where we have Dirichlet conditions. The weak form a(u,v) = L(v)
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then has
a(u,v) = /Q pVu - Vodx, (2.49)
L(v) = /Q fodx. (2.50)

In the code from Section 2.1.3 we must replace

Python code

a = inner(grad(u), grad(v))=*dx

by
Python code
a = p*xinner(grad(u), grad(v))xdx

The definitions of p and f read

Python code
p = Expression("x[0] + x[11")
f = Expression("-8%x[0] - 10%x[1]")

No additional modifications are necessary. The complete code can be found in in the file
Poisson2D_Dvc.py. You can run it and confirm that it recovers the exact u at the nodes.

The flux —pVu may be of particular interest in variable-coefficient Poisson problems. As explained
in Section 2.1.6, we normally want the piecewise discontinuous flux or gradient to be approximated
by a continuous vector field, using the same elements as used for the numerical solution u. The

approximation now consists of solving w = —pVu by a finite element method: find w € V(8) such

et a(w,v) =L(v) Vove Ve, (2.51)
where

a(w,v) = N w-vdx, (2.52)

L(v) = /Q(—qu) -vdx. (2.53)

This problem is identical to the one in Section 2.1.6, except that p enters the integral in L.
The relevant Python statements for computing the flux field take the form

Python code

V_g = VectorFunctionSpace(mesh, "CG", 1)
w = TrialFunction(V_g)
v = TestFunction(V_g)

a = inner(w, v)=*dx

L = inner(-pxgrad(u), v)=*dx
problem = VariationalProblem(a, L)
flux = problem.solve()

The convenience function project was made to condense the frequently occurring statements
above:

Python code
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flux = project(-p*grad(u),
VectorFunctionSpace(mesh, "CG", 1))

Plotting the flux vector field is naturally as easy as plotting the gradient in Section 2.1.6:

Python code
plot(flux, title="flux field")

flux_x, flux_y = flux.split(deepcopy=True) # extract components
plot(flux_x, title="x-component of flux (-pxgrad(u))")
plot(flux_y, title="y-component of flux (-pxgrad(u))")

Data analysis of the nodal values of the flux field may conveniently apply the underlying numpy
arrays:

Python code
flux_x_array = flux_x.vector().array()
flux_y_array = flux_y.vector().array()

The program Poisson2D_Dvc.py contains in addition some plots, including a curve plot comparing
flux_x and the exact counterpart along the line y = 1/2. The associated programming details
related to this visualization are explained in Section 2.1.13.

2.1.13 Visualization of structured mesh data

When finite element computations are done on a structured rectangular mesh, maybe with uniform
partitioning, VTK-based tools for completely unstructured 2D /3D meshes are not required. Instead
we can use many alternative high-quality visualization tools for structured data, like the data
appearing in finite difference simulations and image analysis. We shall demonstrate the potential
of such tools and how they allow for more tailored and flexible visualization and data analysis.
A necessary first step is to transform our mesh object to an object representing a rectangle with
equally-shaped rectangular cells. The Python package scitools has this type of structure, called
a UniformBoxGrid. The second step is to transform the one-dimensional array of nodal values to
a two-dimensional array holding the values at the corners of the cells in the structured grid. In
such grids, we want to access a value by its i and j indices, i counting cells in the x direction,
and j counting cells in the y direction. This transformation is in principle straightforward, yet it
frequently leads to obscure indexing errors. The BoxField object in scitools takes conveniently
care of the details of the transformation. With a BoxField defined on a UniformBoxGrid it is very
easy to call up more standard plotting packages to visualize the solution along lines in the domain
or as 2D contours or lifted surfaces.

Let us go back to the Poisson2D_Dvc.py code from Section 2.1.12 and map u onto a BoxField
object:

Python code

from scitools.BoxField import =
u2 = u if u.ufl_element().degree() == 1 else \
interpolate(u, FunctionSpace(mesh, "CG", 1))
u_box = dolfin_function2BoxField(u2, mesh, (nx,ny), uniform_mesh=True)

Note that the function do1fin_function2BoxField can only work with finite element fields with
linear (degree 1) elements, so for higher-degree elements we here simply interpolate the solution
onto a mesh with linear elements. We could also project u or interpolate/project onto a finer
mesh in the higher-degree case. Such transformations to linear finite element fields are very often
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needed when calling up plotting packages or data analysis tools. The u.ufl_element() method
returns an object holding the element type, and this object has a method degree() for returning
the element degree as an integer. The parameters nx and ny are the number of divisions in each
space direction that were used when calling UnitSquare to make the mesh object. The result u_box
is a BoxField object that supports “finite difference” indexing and an underlying grid suitable for
numpy operations on 2D data. Also 1D and 3D functions (with linear elements) in DOLFIN can be
turned into BoxField objects for plotting and analysis.

The ability to access a finite element field in the way one can access a finite difference-type of field
is handy in many occasions, including visualization and data analysis. Here is an example of
writing out the coordinates and the field value at a grid point with indices i and j (going from o
to nx and ny, respectively, from lower left to upper right corner):

Python code
i=nx; j=ny # upper right corner
print "u(%g,%g)=%g" % (u_box.grid.coor[X][i],
u_box.grid.coor[Y][j],
u_box.values[i,j])

For instance, the x coordinates are reached by u_box.grid.coor[X], where X is an integer (o)
imported from scitools.BoxField. The grid attribute is an instance of class UniformBoxGrid.
Many plotting programs can be used to visualize the data in u_box. Matplotlib is now a very
popular plotting program in the Python world and could be used to make contour plots of u_box.
However, other programs like Gnuplot, VTK, and MATLAB have better support for surface plots.
Our choice in this tutorial is to use the Python package scitools.easyviz, which offers a uniform
MATLAB-like syntax as interface to various plotting packages such as Gnuplot, matplotlib, VTK,
OpenDX, MATLAB, and others. With scitools.easyviz we write one set of statements, close to
what one would do in MATLAB or Octave, and then it is easy to switch between different plotting
programs, at a later stage, through a command-line option, a line in a configuration file, or an
import statement in the program. By default, scitools.easyviz employs Gnuplot as plotting
program, and this is a highly relevant choice for scalar fields over two-dimensional, structured
meshes, or for curve plots along lines through the domain.

A contour plot is made by the following scitools.easyviz command:

Python code

from scitools.easyviz import contour, title, hardcopy

contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,
5, clabels="on")

title("Contour plot of u")

hardcopy("u_contours.eps")

# or more compact syntax:

contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,
5, clabels="on",
hardcopy="u_contours.eps", title="Contour plot of u")

The resulting plot can be viewed in Figure ??a. The contour function needs arrays with the x and
y coordinates expanded to 2D arrays (in the same way as demanded when making vectorized
numpy calculations of arithmetic expressions over all grid points). The correctly expanded arrays
are stored in grid. coorv. The above call to contour creates 5 equally spaced contour lines, and
with clabels="on" the contour values can be seen in the plot.

Other functions for visualizing 2D scalar fields are surf and mesh as known from MATLAB.
Because the from dolfin import * statement imports several names that are also present in
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scitools.easyviz (e.g., plot, mesh, and figure), we use functions from the latter package through
a module prefix ev from now on:

Python code
import scitools.easyviz as ev
ev.figure()
ev.surf(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,
shading="interp", colorbar="on",
title="surf plot of u", hardcopy="u_surf.eps")

ev.figure()
ev.mesh(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,
title="mesh plot of u", hardcopy="u_mesh.eps")

Figure ?? exemplifies the surfaces arising from the two plotting commands above. You can type
pydoc scitools.easyviz in a terminal window to get a full tutorial.

A handy feature of BoxField is the ability to give a start point in the grid and a direction, and then
extract the field and corresponding coordinates along the nearest grid line. In 3D fields one can
also extract data in a plane. Say we want to plot u along the line y = 1/2 in the grid. The grid
points, x, and the u values along this line, uval, are extracted by

Python code
start = (0, 0.5)
x, uval, y_fixed, snapped = u_box.gridline(start, direction=X)

The variable snapped is true if the line had to be snapped onto a grid line and in that case y_fixed
holds the snapped (altered) y value. Plotting u versus the x coordinate along this line, using
scitools.easyviz, is now a matter of

Python code
ev.figure() # new plot window
ev.plot(x, uval, "r-") # "r--: red solid line
ev.title("Solution")
ev.legend("finite element solution")

# or more compactly:
ev.plot(x, uval, "r-", title="Solution",
legend="finite element solution")

A more exciting plot compares the projected numerical flux in x direction along the line y = 1/2
with the exact flux:

Python code
ev.figure()
flux2_x = flux_x if flux_x.ufl_element().degree() == 1 else \
interpolate(flux_x, FunctionSpace(mesh, "CG", 1))
flux_x_box = dolfin_function2BoxField(flux2_x, mesh, (nx,ny),
uniform_mesh=True)
x, fluxval, y_fixed, snapped = \
flux_x_box.gridline(start, direction=X)
y = y_fixed
flux_x_exact = - (X + y)*2*Xx
ev.plot(x, fluxval, "r-",
x, flux_x_exact, "b-",
legend=("numerical (projected) flux", "exact flux"),
title="Flux in x-direction (at y=%g)" % y_fixed,
hardcopy="flux.eps")
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Figure 2.5: Examples on plots cre-

Finxroton 14:09 ‘ ted by transforming the finite element

‘‘‘‘‘‘‘‘‘ "R field to a field on a uniform, structured

2D grid: (a) contour plot of the solu-

tion; (b) curve plot of the exact flux

—pou/dx against the corresponding
projected numerical flux.

Gontour plot of u

Figure 2.6: Examples on plots cre-
ooty gt ated by transforming the finite element
field to a field on a uniform, structured
2D grid: (a) a surface plot of the solu-
tion; (b) lifted mesh plot of the solu-
tion.

As seen from Figure ??b, the numerical flux is accurate except in the elements closest to the
boundaries.

It should be easy with the information above to transform a finite element field over a uniform
rectangular or box-shaped mesh to the corresponding BoxField object and perform MATLAB-style
visualizations of the whole field or the field over planes or along lines through the domain. By the
transformation to a regular grid we have some more flexibility than what Viper offers. (It should
be added that comprehensive tools like VisIt, MayaViz2, or ParaView also have the possibility for
plotting fields along lines and extracting planes in 3D geometries, though usually with less degree
of control compared to Gnuplot, MATLAB, and matplotlib.)

2.1.14 Parameterizing the number of space dimensions

FEniCS makes it is easy to write a unified simulation code that can operate in 1D, 2D, and 3D. We
will conveniently make use of this feature in forthcoming examples. The relevant technicalities are
therefore explained below.

Consider the simple problem

u(x)=2in[0,1], u(0)=0, u(1) =1, (2.54)

with exact solution #(x) = x2. Our aim is to formulate and solve this problem in a 2D and a 3D
domain as well. We may generalize the domain [0, 1] to a box of any size in the y and z directions
and pose homogeneous Neumann conditions du/dn = 0 at all additional boundaries y = const
and z = const to ensure that u only varies with x. For example, let us choose a unit hypercube as
domain: Q) = [O, 1]d, where d is the number of space dimensions. The generalized d-dimensional
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Poisson problem then reads

Au = 2 inQ,
u = 0 onTy,
= 1 onIy, (255)
u 0 onoQ\ (FoUTy),

where Iy is the side of the hypercube where x = 0, and where I’y is the side where x = 1.

Implementing (2.55) for any d is no more complicated than solving a problem with a specific
number of dimensions. The only non-trivial part of the code is actually to define the mesh. We
use the command-line to provide user-input to the program. The first argument can be the degree
of the polynomial in the finite element basis functions. Thereafter, we supply the cell divisions
in the various spatial directions. The number of command-line arguments will then imply the
number of space dimensions. For example, writing 3 10 3 4 on the command-line means that
we want to approximate u by piecewise polynomials of degree 3, and that the domain is a three-
dimensional cube with 10 x 3 x 4 divisions in the x, y, and z directions, respectively. Each of the
10 x 3 x 4 = 120 boxes will be divided into six tetrahedra. The Python code can be quite compact:

Python code
degree = int(sys.argv[1l])
divisions = [int(arg) for arg in sys.argv[2:]]
d = len(divisions)
domain_type = [UnitInterval, UnitSquare, UnitCube]
mesh = domain_type[d-1](*divisions)
V = FunctionSpace(mesh, "CG", degree)

First note that although sys.argv[2:] holds the divisions of the mesh, all elements of the list
sys.argv[2:] are string objects, so we need to explicitly convert each element to an integer. The
construction domain_type[d-1] will pick the right name of the object used to define the domain
and generate the mesh. Moreover, the argument *xdivisions sends each component of the list
divisions as a separate argument. For example, in a 2D problem where divisions has two
elements, the statement

Python code

mesh = domain_type[d-1](*divisions)
is equivalent to

Python code
mesh = UnitSquare(divisions[0], divisions[1])

The next part of the program is to set up the boundary conditions. Since the Neumann conditions
have du/dn = 0 we can omit the boundary integral from the weak form. We then only need to
take care of Dirichlet conditions at two sides:

Python code
tol = 1E-14  # tolerance for coordinate comparisons
def Dirichlet_boundary0(x, on_boundary):
return on_boundary and abs(x[0]) < tol

def Dirichlet_boundaryl(x, on_boundary):
return on_boundary and abs(x[0] - 1) < tol

bcO® = DirichletBC(V, Constant(0), Dirichlet_boundary0)
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bcl = DirichletBC(V, Constant(1l), Dirichlet_boundaryl)
bc = [bcO, bcl]

Note that this code is independent of the number of space dimensions. So are the statements
defining and solving the variational problem:

Python code

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(-2)

a = inner(grad(u), grad(v))*dx
L = fxvxdx

problem = VariationalProblem(a, L, bc)
u = problem.solve()

The complete code is found in Poisson123D_DN1.py.

Observe that if we actually want to test variations in one selected space direction, parameterized by
e, we only need to replace x[8] in the code by x[e]. The parameter e could be given as the second
command-line argument. This extension appears in the file Poisson123D_DN2.py. You can run a
3D problem with this code where u varies in, e.g., z direction and is approximated by, e.g., a 5-th
degree polynomial. For any legal input the numerical solution coincides with the exact solution at
the nodes (because the exact solution is a second-degree polynomial).

2.2 Nonlinear problems

Now we shall address how to solve nonlinear PDEs in FEniCS. Our sample PDE for implementation
is taken as a nonlinear Poisson equation:

=V (q(u)Vu) = f. (2.56)

The coefficient (1) makes the equation nonlinear (unless g(u) is a constant).

To be able to easily verify our implementation, we choose the domain, q(u), f, and the boundary
conditions such that we have a simple, exact solution u. Let Q be the unit hypercube [0,1]¢ in
d dimensions, q(u) = (1+u)™, f =0, u =0for xo =0, u =1 for xg = 1, and du/dn = 0 at all
other boundaries x; =0 and x; =1,i =1,...,d — 1. The coordinates are now represented by the
symbols x, ..., x;_1. The exact solution is then

>1/(m+1)

u(xg, ..., xq) = ((Zm+1 —1)xg+1 —1. (2.57)

The variational formulation of our model problem reads: find u € V such that
F(u;09) =0 VYoeV, (2.58)

where

F(u;0) :/Qq(u)VwVvdx, (2.59)
and

V={veH(Q):v=00nxy=0and xg = 1},

1 (2.60)
V={veH (Q):v=00nxy)=0and v =1o0n xy =1}.
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The discrete problem arises as usual by restricting V and V to a pair of discrete spaces. As usual,
we omit any subscript on discrete spaces and simply say V and V are chosen finite dimensional
according to some mesh and element type. The nonlinear problem then reads: find u € V such
that

F(u;v) =0 VYoeV, (2.61)

with u = Z}il U;¢;. Since F is a nonlinear function of u, (2.61) gives rise to a system of nonlinear
algebraic equations. From now on the interest is only in the discrete problem, and as mentioned in
Section 2.1.2, we simply write u instead of u, to get a closer notation between the mathematics
and the Python code. When the exact solution needs to be distinguished, we denote it by .
FEniCS can be used in alternative ways for solving a nonlinear PDE problem. We shall in the
following subsections go through four solution strategies: 1) a simple Picard-type iteration, 2) a
Newton method at the algebraic level, 3) a Newton method at the PDE level, and 4) an automatic
approach where FEniCS attacks the nonlinear variational problem directly. The “black box”
strategy 4) is definitely the simplest one from a programmer’s point of view, but the others give
more control of the solution process for nonlinear equations (which also has some pedagogical
advantages).

2.2.1 Picard iteration

Picard iteration is an easy way of handling nonlinear PDEs: we simply use a known, previous
solution in the nonlinear terms so that these terms become linear in the unknown u. The strategy
is also known as the method of successive substitutions. For our particular problem, we use a
known, previous solution in the coefficient q(1). More precisely, given a solution u* from iteration
k, we seek a new (hopefully improved) solution u**1 in iteration k + 1 such that u**1 solves the
linear problem

V. (q(uk)Vuk+1> =0, k=0,1,... (2.62)
The iterations require an initial guess u’. The hope is that u¥ — u as k — oo, and that u**1 is
sufficiently close to the exact solution u of the discrete problem after just a few iterations.
We can easily formulate a variational problem for u**1 from Equation (2.62). Equivalently, we can
approximate q(u) by q(u¥) in (2.59) to obtain the same linear variational problem. In both cases,
the problem consists of seeking u**1 € V such that

FLo)=0 YoeV, k=0,1,..., (2.63)
with X
F(uF0) = /Q g(uF)VuF . vodx. (2.64)
Since this is a linear problem in the unknown u**1, we can equivalently use the formulation
a(u*1,v) = L(v), (2.65)
with
a(u,v) = /Q g(uF)Vu - Vody, (2.66)
L(v) =0. (2.67)

k+1 _

The iterations can be stopped when € = ||u uk|| < tol, where tol is small, say 107>, or when
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the number of iterations exceed some critical limit. The latter case will pick up divergence of the
method or unacceptable slow convergence.

In the solution algorithm we only need to store u* and u
The algorithm can then be expressed as follows:

k+1 called uk and u in the code below.

Python code
def q(u):
return (1+u)s**m

# Define variational problem

u = TrialFunction(V)

v = TestFunction(V)

uk = interpolate(Expression("0.0"), V) # previous (known) u
a = inner(q(uk)=*grad(u), grad(v))=dx

f = Constant(0.0)

L = fxvxdx

# Picard iterations

u = Function(V) # new unknown function
eps = 1.0 # error measure ||u-uk||
tol = 1.0E-5 # tolerance
iter = 0 # iteration counter
maxiter = 25 # max no of iterations allowed
while eps > tol and iter < maxiter:
iter += 1

problem = VariationalProblem(a, L, bc)

u = problem.solve()

diff = u.vector().array() - uk.vector().array()
eps = numpy.linalg.norm(diff, ord=numpy.Inf)
print "Norm, iter=%d: %g" % (iter, eps)
uk.assign(u) # update for next iteration

We need to define the previous solution in the iterations, uk, as a finite element function so that uk
can be updated with u at the end of the loop. We may create the initial Function uk by interpolating
an Expression or a Constant to the same vector space as u lives in (V).

In the code above we demonstrate how to use numpy functionality to compute the norm of the
difference between the two most recent solutions. Here we apply the maximum norm (¢« norm)
on the difference of the solution vectors (ord=1 and ord=2 give the ¢; and ¢, vector norms — other
norms are possible for numpy arrays, see pydoc numpy.linalg.norm).

The file nlPoisson_Picard.py contains the complete code for this problem. The implementation
is d dimensional, with mesh construction and setting of Dirichlet conditions as explained in
Section 2.1.14. For a 33 x 33 grid with m = 2 we need g iterations for convergence when the
tolerance is 107°.

2.2.2 A Newton method at the algebraic level

After having discretized our nonlinear PDE problem, we may use Newton’s method to solve the
system of nonlinear algebraic equations. From the continuous variational problem (2.58), the
discrete version (2.61) results in a system of equations for the unknown parameters U, ..., Uy (by
inserting u = Z]»I\Ll Ujp; and v = ¢; in (2.61)):

N N
Fi(ul,...,uN)EZ/ (q(z UK()W) V¢]u]> -V(f)idx:O, i=1,...,N. (2.68)
j=170 =1



2.2. NONLINEAR PROBLEMS 39

Newton’s method for the system F;(Uj, ..., Uj) =0,i=1,...,N can be formulated as

N9
ZW J(Uf,... uf)eu; = —F(us,..., uy), i=1,...,N, (2.69)
]:
U]’,<+1 = u]k +wél;, j=1,...,N, (2.70)
where w € [0,1] is a relaxation parameter, and k is an iteration index. An initial guess u° must be

provided to start the algorithm. The original Newton method has w = 1, but in problems where it
is difficult to obtain convergence, so-called under-relaxation with w < 1 may help.

We need, in a program, to compute the Jacobian matrix dF;/dU; and the right-hand side vector
—F;. Our present problem has F; given by (2.68). The derivative dF;/dU; becomes

/ [ Z UZ‘P/Z ‘P] Z Uk‘P] V‘Pz +q (Z UZ(W) V‘P] V‘Pz] dx. (2.71)

Q

The following results were used to obtain (2.71):

a—”—i%ur— . 2 vu— vy, i(u)— (1) (2.72)
ou; ~ au; 9= Ve T Ve 1 =g 7
We can reformulate the Jacobian matrix in (2.71) by introducing the short notation uk = Zjhil U]’»‘qu:

JL, , . .
au; /Q [ (5t - Vi + () Vg - V] dx (273)

In order to make FEniCS compute this matrix, we need to formulate a corresponding variational
problem. Looking at the linear system of equations in Newton’s method,

]Zau F, i=1,...,N,

we can introduce v as a general test function replacing ¢;, and we can identify the unknown du =
Zjli 10U;¢;. From the linear system we can now go “backwards” to construct the corresponding
discrete weak form

/Q [q’(uk)duVuk.Vv+q(uk)V(5u : VU} dx = —/Qq(uk)Vuk -Vodx. (2.74)

Equation (2.74) fits the standard form a(du,v) = L(v) with

a(du,v) = /Q {q’(uk)éuVuk Vo +q(uF)Vou - VU} dx (2.75)

L(v) = — /Qq(uk)Vuk -Vodx. (2.76)

Note the important feature in Newton’s method that the previous solution u* replaces u in the
formulas when computing the matrix dF;/dU; and vector F; for the linear system in each Newton
iteration.

0

We now turn to the implementation. To obtain a good initial guess u*, we can solve a simplified,
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linear problem, typically with q(u) = 1, which yields the standard Laplace equation Au® = 0. The
recipe for solving this problem appears in Sections 2.1.2, 2.1.3, and 2.1.9. The code for computing
u° becomes as follows:

Python code
tol = 1E-14
def left_boundary(x, on_boundary):
return on_boundary and abs(x[0]) < tol

def right_boundary(x, on_boundary):
return on_boundary and abs(x[0]-1) < tol

Gamma_0 = DirichletBC(V, Constant(0.0), left_boundary)
Gamma_1 = DirichletBC(V, Constant(1.0), right_boundary)
bc = [Gamma_0, Gamma_1]

# Define variational problem for initial guess (q(u)=1, m=0)
u = TrialFunction(V)

v = TestFunction(V)

a = inner(grad(u), grad(v))*dx

f = Constant(0.0)

L = fxvkdx

A, b = assemble_system(a, L, bc_u)

uk = Function(V)

solve(A, uk.vector(), b)

Here, uk denotes the solution function for the previous iteration, so that the solution after each
Newton iteration is u = uk + omega*du. Initially, uk is the initial guess we call #° in the mathemat-
ics.

The Dirichlet boundary conditions for the problem to be solved in each Newton iteration are
somewhat different than the conditions for u. Assuming that u* fulfills the Dirichlet conditions
for u, du must be zero at the boundaries where the Dirichlet conditions apply, in order for
ukHl = 4k 4+ wou to fulfill the right Dirichlet values. We therefore define an additional list of
Dirichlet boundary conditions objects for Ju:

Python code

Gamma_0_du = DirichletBC(V, Constant(0), LeftBoundary())
Gamma_1 du = DirichletBC(V, Constant(0), RightBoundary())
bc_du = [Gamma_0_du, Gamma_1l_du]

The nonlinear coefficient and its derivative must be defined before coding the weak form of the
Newton system:

Python code
def q(u):
return (1+u)*xxm

def Dq(u):
return mx(1+u)s**(m-1)

du = TrialFunction(V) # u = uk + omegaxdu
a = inner(q(uk)+grad(du), grad(v))=*dx + \
inner(Dq(uk)+du*xgrad(uk), grad(v))=*dx
L = -inner(q(uk)=*grad(uk), grad(v))x*dx
The Newton iteration loop is very similar to the Picard iteration loop in Section 2.2.1:

Python code
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du = Function(V)

u = Function(V) # u = uk + omegaxdu
omega = 1.0 # relaxation parameter
eps = 1.0

tol = 1.0E-5

iter = 0

maxiter = 25
while eps > tol and iter < maxiter:

iter += 1

A, b = assemble_system(a, L, bc_du)

solve(A, du.vector(), b)

eps = numpy.linalg.norm(du.vector().array(), ord=numpy.Inf)
print "Norm:", eps

u.vector()[:] = uk.vector() + omegaxdu.vector()

uk.assign(u)

There are other ways of implementing the update of the solution as well:

Python code
u.assign(uk) # u = uk
u.vector().axpy(omega, du.vector())

# or
u.vector()[:] += omegaxdu.vector()

The axpy(a, y) operation adds a scalar a times a Vector y to a Vector object. It is usually a fast
operation calling up an optimized BLAS routine for the calculation.

Mesh construction for a d-dimensional problem with arbitrary degree of the Lagrange ele-
ments can be done as explained in Section 2.1.14. The complete program appears in the file
nlPoisson_algNewton.py.

2.2.3 A Newton method at the PDE level

Although Newton’s method in PDE problems is normally formulated at the linear algebra level;
that is, as a solution method for systems of nonlinear algebraic equations, we can also formulate
the method at the PDE level. This approach yields a linearization of the PDEs before they are
discretized. FEniCS users will probably find this technique simpler to apply than the more standard
method of Section 2.2.2.

Given an approximation to the solution field, u¥, we seek a perturbation éu so that
Wt =+ su (2.77)

fulfills the nonlinear PDE. However, the problem for Ju is still nonlinear and nothing is gained.
The idea is therefore to assume that Ju is sufficiently small so that we can linearize the problem
with respect to du. Inserting u¥*1 in the PDE, linearizing the g term as

gk ) = g(ub) + ¢ (uF)ou + O((8u)?) ~ q(u) + ' (uF)su, (278)

and dropping other nonlinear terms in éu, we get

V- (q(uk)Vuk) +V- (q(uk)V(Su) +V- (q’(uk)éuVuk) =0.
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We may collect the terms with the unknown du on the left-hand side,

V- (q(uk)V(Su) +V. (q’(uk)éuVuk) =-V- (q(uk)Vuk> , (2.79)

The weak form of this PDE is derived by multiplying by a test function v and integrating over (),
integrating the second-order derivatives by parts:

/Q (q(uk)V(Su Vo +q (uF)ouvuk - Vv) dx = — /Q q(uF)Vuk - Vodx. (2.80)
The variational problem reads: find du € V such that a(du,v) = L(v) for all v € V, where
a(éu,v) = / (q(uk)V(Su Vo + ¢ (uF)ouvuk - Vv) dx, (2.81)
Q

L(v) = — /Q q(uF)Vuk - Vodx. (2.82)

The function spaces V and v, being continuous or discrete, are as in the linear Poisson problem
from Section 2.1.2.

We must provide some initial guess, e.g., the solution of the PDE with q(u) = 1. The corresponding
weak form ag(u°,v) = Lo(v) has

ap(u,v) = /QVu -Vodx, L(v)=0. (2.83)

Thereafter, we enter a loop and solve a(éu,v) = L(v) for du and compute a new approximation
uk+1 = 4k + Su. Note that éu is a correction, so if u° satisfies the prescribed Dirichlet conditions
on some part I'p of the boundary, we must demand éu = 0 on I'p.

Looking at (2.81) and (2.82), we see that the variational form is the same as for the Newton method
at the algebraic level in Section 2.2.2. Since Newton’s method at the algebraic level required some
“backward” construction of the underlying weak forms, FEniCS users may prefer Newton’s method
at the PDE level, which is more straightforward. There is seemingly no need for differentiations
to derive a Jacobian matrix, but a mathematically equivalent derivation is done when nonlinear
terms are linearized using the first two Taylor series terms and when products in the perturbation
ou are neglected.

The implementation is identical to the one in Section 2.2.2 and is found in the file n1Poisson_pdeNewton. py
(for the fun of it we use a VariationalProblem object instead of assembling a matrix and vector
and calling solve). The reader is encouraged to go through this code to be convinced that the
present method actually ends up with the same program as needed for the Newton method at the
linear algebra level in Section 2.2.2.

2.2.4 Solving the nonlinear variational problem directly

DOLFIN has a built-in Newton solver and is able to automate the computation of nonlinear,
stationary boundary-value problems. The automation is demonstrated next. A nonlinear variational
problem (2.58) can be solved by

Python code

VariationalProblem(J, F, bc, nonlinear=True)

where F corresponds to the nonlinear form F(u;v) and J is a form for the derivative of F.
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The F form corresponding to (2.59) is straightforwardly defined (assuming q(u) is coded as a
Python function):

Python code

v = TestFunction(V)
u Function(V) # the unknown
F = inner(q(u)+grad(u), grad(v))x*dx

Note here that u is a Function, not a TrialFunction. We could, alternatively, define F(u;v) directly
in terms of a trial function for u and a test function for v, and then created the proper F by

Python code

u = TrialFunction(V)

v = TestFunction(V)

Fuv = inner(q(u)+*grad(u), grad(v))xdx
u = Function(V) # previous guess

F = action(Fuv, u)

The latter statement is equivalent to F(u = ugp; v), where 1y is an existing finite element function
representing the most recently computed approximation to the solution.

The derivative | (3) of F (F) is formally the Gateaux derivative DF (u*; éu,v) of F(u;v) at u = u* in
the direction of du. Technically, this Gateaux derivative is derived by computing

. d k _
!1_1’)1'(1) %Pl (u* + €du;v) (2.84)

The 6u is now the trial function and u* is as usual the previous approximation to the solution u.
We start with

d k k
T /Q Vo- (q(u +edu)V(u" + e&u)) dx (2.85)
and obtain
/Q Vo- [q’(uk + e6u)ouV (uf + edu) 4 q(u* + eéu)V&u} dx, (2.86)
which leads to
/QVU~ {q’(uk)éuV(uk) +q(uk)V(5u} dx, (2.87)

as € — 0. This last expression is the Gateaux derivative of F. We may use | or a(du,v) for this
derivative, the latter having the advantage that we easily recognize the expression as a bilinear
form. However, in the forthcoming code examples J is used as variable name for the Jacobian. The
specification of J goes as follows:

Python code

du = TrialFunction(V)
J = inner(q(u)=*grad(du), grad(v))*dx + \
inner(Dq(u)+*du*grad(u), grad(v))=dx

where u is a Function representing the most recent solution.
The UFL language that we use to specify weak forms supports differentiation of forms. This means
that when F is given as above, we can simply compute the Gateaux derivative by

Python code

J = derivative(F, u, du)



44 CHAPTER 2. TUTORIAL

The differentiation is done symbolically so no numerical approximation formulas are involved.
The derivative function is obviously very convenient in problems where differentiating F by hand
implies lengthy calculations.

The solution of the nonlinear problem is now a question of two statements:

Python code
problem = VariationalProblem(J, F, bc, nonlinear=True)
u = problem.solve(u)

The u we feed to problem.solve is filled with the solution and returned, implying that the
u on the left-hand side actually refers to the same u as provided on the right-hand side®.
The file nlPoisson_vpl.py contains the complete code, where J is calculated manually, while
nlPoisson_vp2.py is a counterpart where J is computed by derivative(F, u, du). The latter file
represents clearly the most automated way of solving the present nonlinear problem in FEniCS.

2.3 Time-dependent problems

The examples in Section 2.1 illustrate that solving linear, stationary PDE problems with the
aid of FEniCS is easy and requires little programming. That is, FEniCS automates the spatial
discretization by the finite element method. The solution of nonlinear problems, as we showed in
Section 2.2, can also be automated (see Section 2.2.4), but many scientists will prefer to code the
solution strategy of the nonlinear problem themselves and experiment with various combinations
of strategies in difficult problems. Time-dependent problems are somewhat similar in this respect:
we have to add a time discretization scheme, which is often quite simple, making it natural to
explicitly code the details of the scheme so that the programmer has full control. We shall explain
how easily this is accomplished through examples.

2.3.1 A diffusion problem and its discretization

Our time-dependent model problem for teaching purposes is naturally the simplest extension of
the Poisson problem into the time domain; that is, the diffusion problem

aa—? =Au+finQ), fort >0, (2.88)
u=ugondQ), fort >0, (2.89)
u=1Iatt=0. (2.90)

Here, u varies with space and time, e.g., u = u(x, y, t) if the spatial domain Q) is two-dimensional.
The source function f and the boundary values 1y may also vary with space and time. The initial
condition I is a function of space only.

A straightforward approach to solving time-dependent PDEs by the finite element method is to
first discretize the time derivative by a finite difference approximation, which yields a recursive set
of stationary problems, and then turn each stationary problem into a variational formulation.
Let superscript k denote a quantity at time i, where k is an integer counting time levels. For
example, u¥ means u at time level k. A finite difference discretization in time first consists in

®Python has a convention that all input data to a function or class method are represented as arguments, while all
output data are returned to the calling code. Data used as both input and output, as in this case, will then be arguments
and returned. It is not necessary to have a variable on the left-hand side, as the function object is modified correctly anyway,
but it is convention that we follow here.
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sampling the PDE at some time level, say k:

)

—uf = AuF + fF (2.91)
ot

The time-derivative can be approximated by a finite difference. For simplicity and stability reasons
we choose a simple backward difference:

) ‘ uk_ukfl
— U =

5 —a (2.92)

where dt is the time discretization parameter. Inserting (2.92) in (2.91) yields

k k-1

u—u - k k

—g = Au® + f5. (2.93)
This is our time-discrete version of the diffusion PDE (2.88). Reordering (2.93) so that uk appears
on the left-hand side only, shows that (2.93) is a recursive set of spatial (stationary) problems for
uk (assuming u*~1 is known from computations at the previous time level):

u = I, (2‘94)
uF — dtAuk = o1 defk, k=1,2,... (2.95)

Given I, we can solve for u°, u!, 12, and so on.

We use a finite element method to solve the equations (2.94) and (2.95). This requires turning
the equations into weak forms. As usual, we multiply by a test function v € V and integrate
second-derivatives by parts. Introducing the symbol u for u* (which is natural in the program too),
the resulting weak form can be conveniently written in the standard notation: ay(u,v) = Ly(v) for
(2.94) and a(u,v) = L(v) for (2.95), where

ao(t,0) = /Q wods, (2.96)
Lo(v) = QIde, (2.97)
a(u,0) = /Q (w0 + dtVu - Vo) dx, (2.98)

L(v) = /Q (41 + dif*) v (2.99)

The continuous variational problem is to find u° € V such that ag(u°,v) = Ly(v) holds for all
v € V, and then find u¥ € V such that a(uk, v) = L(v) forallv € V,k=1,2,...

Approximate solutions in space are found by restricting the functional spaces V and V to finite-
dimensional spaces, exactly as we have done in the Poisson problems. We shall use the symbol
u for the finite element approximation at time f;. In case we need to distinguish this space-time
discrete approximation from the exact solution of the continuous diffusion problem, we use u, for
the latter. By u*~! we mean, from now on, the finite element approximation of the solution at time
te_1-

Note that the forms a¢ and Ly are identical to the forms met in Section 2.1.6, except that the test
and trial functions are now scalar fields and not a vector fields. Instead of solving (2.94) by a
finite element method; that is, projecting I onto V via the problem ag(u,v) = Lo(v), we could
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simply interpolate u° from I. That is, if u® = Z]N:l U?([)p we simply set U; = I(x;,y;), where (x;,y;)
are the coordinates of node number j. We refer to these two strategies as computing the initial
condition by either projecting I or interpolating I. Both operations are easy to compute through
one statement, using either the project or interpolate function.

2.3.2  Implementation

Our program needs to perform the time stepping explicitly, but can rely on FEniCS to easily
compute ag, Lo, a, and L, and solve the linear systems for the unknowns. We realize that 2 does not
depend on time, which means that its associated matrix also will be time independent. Therefore,
it is wise to explicitly create matrices and vectors as in Section 2.1.11. The matrix A arising from
a can be computed prior to the time stepping, so that we only need to compute the right-hand
side b, corresponding to L, in each pass in the time loop. Let us express the solution procedure in
algorithmic form, writing u for u* and uprey for the previous solution u*~1:

define Dirichlet boundary condition (1, Dirichlet boundary, etc.)
if Uprey is to be computed by projecting I:
define ap and L
assemble matrix M from ay and vector b from L
solve MU = b and store U in Uprey
else: (interpolation)
let uprey interpolate I
define a and L
assemble matrix A from a
set some stopping time T
t= dt
while t < T
assemble vector b from L
apply essential boundary conditions
solve AU = b for U and store in u
t <+ t4 dt
Uprev < u (be ready for next step)

Before starting the coding, we shall construct a problem where it is easy to determine if the
calculations are correct. The simple backward time difference is exact for linear functions, so we
decide to have a linear variation in time. Combining a second-degree polynomial in space with a
linear term in time,

u=1+x*+ay*+pt, (2.100)

yields a function whose computed values at the nodes may be exact, regardless of the size of
the elements and dt, as long as the mesh is uniformly partitioned. Inserting (2.100) in the PDE
problem (2.88), it follows that uy must be given as (2.100) and that f(x,y,t) = p—2 — 2a and
I(x,y) =14 22+ ay?.

A new programming issue is how to deal with functions that vary in space and time, such as the
boundary condition u( given by (2.100). Given a mesh and an associated function space V, we can
specify the u( function as

Python code
alpha = 3; beta = 1.2
ud = Expression("1l + x[0]*x[0] + alpha*x[1]*x[1] + betaxt",
{"alpha": alpha, "beta": beta})



2.3. TIME-DEPENDENT PROBLEMS 47

ud.t = 0

This function expression has the components of x as independent variables, while alpha, beta, and
t are parameters. The parameters can either be set through a dictionary at construction time, as
demonstrated for alpha and beta, or anytime through attributes in the function object, as shown
for the t parameter.

The essential boundary conditions, along the whole boundary in this case, are set in the usual way,

Python code

def boundary(x, on_boundary): # define the Dirichlet boundary
return on_boundary

bc = DirichletBC(V, u0®, boundary)

The initial condition can be computed by either projecting or interpolating I. The I(x,y) function
is available in the program through u0, as long as u0.t is zero. We can then do

Python code
u_prev = interpolate(u@, V)
# or
u_prev = project(u@, V)

Note that we could, as an equivalent alternative to using project, define a9 and Ly as we did
in Section 2.1.6 and form a VariationalProblem object. To actually recover (2.100) to machine
precision, it is important not to compute the discrete initial condition by projecting I, but by
interpolating I so that the nodal values are exact at t = 0 (projection will imply approximative
values at the nodes).

The definition of 2 and L goes as follows:

Python code
dt = 0.3 # time step

u = TrialFunction(V)
v = TestFunction(V)
f = Constant(beta - 2 - 2+alpha)

a = uxvxdx + dtxinner(grad(u), grad(v))=*dx
L = (u_prev + dt*f)=*v*dx

A = assemble(a) # assemble only once, before the time stepping

Finally, we perform the time stepping in a loop:

Python code
u = Function(V) # the unknown at a new time level
T=2 # total simulation time
t = dt

while t <= T:
b = assemble(L)
uo.t = t
bc.apply(A, b)
solve(A, u.vector(), b)

t += dt
u_prev.assign(u)
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Observe that u@.t must be updated before bc applies it to enforce the Dirichlet conditions at the
current time level.

The time loop above does not contain any examination of the numerical solution, which we must
include in order to verify the implementation. As in many previous examples, we compute the
difference between the array of nodal values of u and the array of the interpolated exact solution.
The following code is to be included inside the loop, after u is found:

Python code
u_e = interpolate(u0, V)
maxdiff = (u_e.vector().array() - u.vector().array()).max()
print "Max error, t=%.2f: %-10.3f" % (t, maxdiff)

The right-hand side vector b must obviously be recomputed at each time level. With the construction
b = assemble(L), a new vector for b is allocated in memory in every pass of the time loop. It
would be much more memory friendly to reuse the storage of the b we already have. This is easily
accomplished by

Python code

b = assemble(L, tensor=b)

That is, we send in our previous b, which is then filled with new values and returned from
assemble. Now there will be only a single memory allocation of the right-hand side vector. Before
the time loop we set b = None such that b is defined in the first call to assemble.

The complete program code for this time-dependent case is stored in the file diffusion2D_D1.py.

2.3.3 Awvoiding assembly

The purpose of this section is to present a technique for speeding up FEniCS simulators for
time-dependent problems where it is possible to perform all assembly operations prior to the time
loop. There are two costly operations in the time loop: assembly of the right-hand side b and
solution of the linear system via the solve call. The assembly process involves work proportional
to the number of degrees of freedom N, while the solve operation has a work estimate of O(N*),
for some & > 1. As N — oo, the solve operation will dominate for « > 1, but for the values of N
typically used on smaller computers, the assembly step may still represent a considerable part
of the total work at each time level. Avoiding repeated assembly can therefore contribute to a
significant speed-up of a finite element code in time-dependent problems.

To see how repeated assembly can be avoided, we look at the L(v) form in (2.99), which in general
varies with time through u*~1, ¥, and possibly also with dt if the time step is adjusted during
the simulation. The technique for avoiding repeated assembly consists in expanding the finite
element functions in sums over the basis functions ¢;, as explained in Section 2.1.11, to identify
matrix-vector products that build up the complete system. We have uf~1 = Z]N: 1 U]’.‘_1¢]-, and we

can expand f* as f* = Z]-Zil F]?‘4>j. Inserting these expressions in L(v) and using v = ¢; result in
/ (1 + dtfF) odx = / (% Uk—1g; + dt %th-) i dx
0 a\& " j =l j | Pi X
a n k—1 a 2 k
= ]; (/Q Pig; dx) U= + dt}; (/Q Pipj dx) F.

(2.101)
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Introducing Mjj = [ ¢;j dx, we see that the last expression can be written

N N
Z Mijujkil + dt Z Ml]F]k, (2.102)
j=1 j=1
which is nothing but two matrix-vector products,
MU*1 + dtMF, (2.103)
if M is the matrix with entries M;; and
uk-1 = (Ull‘fl,...,ll;‘\fl)T, (2.104)
and
F* = (Ff,...,F;)T. (2.105)

We have immediate access to U~ ! in the program since that is the vector in the u_prev function.
The F vector can easily be computed by interpolating the prescribed f function (at each time level
if f varies with time). Given M, uk=1 and Fk, the right-hand side b can be calculated as

b= MU+ dtMF*. (2.106)

That is, no assembly is necessary to compute b.
The coefficient matrix A can also be split into two terms. We insert v = ¢; and u* = Z]-Iil U]’.‘4>]~ in
the expression (2.98) to get

N R N .
D </Q Pip; dx) U]k +dt)’ </Q Vi Vi dx) U]’-‘, (2.107)
j=1 j=1

which can be written as a sum of matrix-vector products,
MUF 4+ dtKU* = (M + dtK)UF, (2.108)

if we identify the matrix M with entries M;; as above and the matrix K with entries

Kij = /Q V- V¢, dx. (2.109)

The matrix M is often called the “mass matrix” while “stiffness matrix” is a common nickname for
K. The associated bilinear forms for these matrices, as we need them for the assembly process in a
FEniCS program, become

ag(u,v) = /QVM -Vodx, (2.110)

ap(u,v) :/qudx. (2.111)

The linear system at each time level, written as AU¥ = b, can now be computed by first computing
M and K, and then forming A = M + dtK at t = 0, while b is computed as b = MU*~! 4 dtMF*
at each time level.

The following modifications are needed in the diffusion2D_D1.py program from the previous
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section in order to implement the new strategy of avoiding assembly at each time level:
1. Define separate forms aj; and ag
2. Assemble ap; to M and ag to K
3. Compute A = M + dtK
4. Define f as an Expression
5. Interpolate the formula for f to a finite element function F
6. Compute b = MU*~1 4 dtMF*
The relevant code segments become

Python code

a_K = inner(grad(u), grad(v))xdx
a_M = uxvxdx

2. and 3.

= assemble(a_M)
= assemble(a_K)
=M + dt*K

> X = #
I

H*
N

f = Expression("beta - 2 - 2xalpha", {"beta": beta, "alpha": alpha})

# 5. and 6.
while t <= T:
fk = interpolate(f, V)
Fk = fk.vector()
b = M+xu_prev.vector() + dt+*M«Fk

The complete program appears in the file diffusion2D_D2.py.

2.3.4 A physical example

With the basic programming techniques for time-dependent problems from Sections 2.3.3-2.3.2 we
are ready to attack more physically realistic examples. The next example concerns the question:
How is the temperature in the ground affected by day and night variations at the earth’s surface?
We consider some box-shaped domain ) in d dimensions with coordinates xo,...,x;_1 (the
problem is meaningful in 1D, 2D, and 3D). At the top of the domain, x;_; = 0, we have an
oscillating temperature

To(t) = Tr + T4 sin(wt), (2.112)

where Ty is some reference temperature, Ty is the amplitude of the temperature variations at the
surface, and w is the frequency of the temperature oscillations. At all other boundaries we assume
that the temperature does not change anymore when we move away from the boundary; that is,
the normal derivative is zero. Initially, the temperature can be taken as Tz everywhere. The heat
conductivity properties of the soil in the ground may vary with space so we introduce a variable
coefficient x reflecting this property. Figure ?? shows a sketch of the problem, with a small region
where the heat conductivity is much lower.
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Figure 2.7: Sketch of a (2D) problem y

involving heating and cooling of the To(t) = Tr + T sin(wt)

ground due to an oscillating surface A
temperature

K < Ko
Au/on =0 Au/on =0

0,¢, Ko

The initial-boundary value problem for this problem reads

QC%{ =V (kVT) in Q x (0, tstop), (2.113)
T = Tp(t) on T, (2.114)

oT
5 = 0 on 0O\ T, (2.115)
T=Tratt=0. (2.116)

Here, ¢ is the density of the soil, c is the heat capacity, « is the thermal conductivity (heat conduction
coefficient) in the soil, and I’y is the surface boundary x;_1 = 0.
We use a f-scheme in time; that is, the evolution equation dP/dt = Q(t) is discretized as

Pk o Pk*l

—_ pAk k-1
T =0Q"+(1-0)Q" ", (2.117)

where 6 € [0,1] is a weighting factor: § = 1 corresponds to the backward difference scheme,
0 = 1/2 to the Crank-Nicolson scheme, and 6 = 0 to a forward difference scheme. The 6-scheme
applied to our PDE results in

Tk o Tk—l

ge——— =0V (KVTk) +(1-0)V- (kVTk—l) . (2.118)

Bringing this time-discrete PDE into weak form follows the technique shown many times earlier in
this tutorial. In the standard notation a(T,v) = L(v) the weak form has

a(T,v) = /Q (ocTv+0dixVT - Vo) dx, (2.119)
L(v) = /Q (Qch_lv —(1—0)dtxvVTH! ~Vv) dx. (2.120)

Observe that boundary integrals vanish because of the Neumann boundary conditions.
The size of a 3D box is taken as W x W x D, where D is the depth and W = D/2 is the width.
We give the degree of the basis functions at the command-line, then D, and then the divisions of
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the domain in the various directions. To make a box, rectangle, or interval of arbitrary (not unit)
size, we have the DOLFIN classes Box, Rectangle, and Interval at our disposal. The mesh and
the function space can be created by the following code:

Python code
degree = int(sys.argv[1])
D = float(sys.argv[2])

W =D/2.0
divisions = [int(arg) for arg in sys.argv([3:]]
d = len(divisions) # no of space dimensions
if d == 1:
mesh = Interval(divisions[Q], -D, 0)
elif d == 2:
mesh = Rectangle(-W/2, -D, W/2, 0, divisions[0], divisions[1])
elif d == 3:

mesh = Box(-W/2, -W/2, -D, W/2, W/2, 0,
divisions[0], divisions[1], divisions[2])
V = FunctionSpace(mesh, "CG", degree)

The Rectangle and Box objects are defined by the coordinates of the “minimum” and “maximum”
corners.
Setting Dirichlet conditions at the upper boundary can be done by

Python code
TR=0; T_A=1.0; omega = 2*pi
T_0 = Expression("T_R + T_Axsin(omegaxt)",
{"T_R": T_R, "T_A": T_A, "omega": omega, "t": 0.0})

def surface(x, on_boundary):
return on_boundary and abs(x[d-1]) < 1E-14

bc = DirichletBC(V, T_0, surface)

Quite simple values (non-physical for soil and real temperature variations) are chosen for the
initial testing.

The x function can be defined as a constant «; inside the particular rectangular area with a special
soil composition, as indicated in Figure ??. Outside this area «x is a constant «y. The domain of the
rectangular area is taken as

[~W/4,W/4] x [-W/4,W/4] x [~D/2,~D/2+ D/4]

in 3D, with [-W/4,W/4] x [-D/2,—D/2+ D/4] in 2D and [-D/2,—D/2 + D/4] in 1D. Since
we need some testing in the definition of the x(x) function, the most straightforward approach is
to define a subclass of Expression, where we can use a full Python method instead of just a C++
string formula for specifying a function. The method that defines the function is called eval:

Python code
class Kappa(Function):
def eval(self, value, x):
"""x: spatial point, value[0]: function value."""
d = len(x) # no of space dimensions
material = 0 # 0: outside, 1: inside
if d == 1:
if -D/2. < x[d-1] < -D/2. + D/4.:
material = 1
elif d == 2:
if -D/2. < x[d-1] < -D/2. + D/4. and \
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-W/4. < x[0] < W/4.:
material =1
elif d == 3:
if -D/2. < x[d-1] < -D/2. + D/4. and \
-W/4. < x[0] < W/4. and -W/4. < x[1] < W/4.:
material = 1
value[0] = kappa_0 if material == 0 else kappa_l

The eval method gives great flexibility in defining functions, but a downside is that C++ calls up
eval in Python for each point x, which is a slow process, and the number of calls is proportional
to the number of nodes in the mesh. Function expressions in terms of strings are compiled to
efficient C++ functions, being called from C++, so we should try to express functions as string
expressions if possible. (The eval method can also be defined through C++ code, but this is much
more involved and not covered here.) Using inline if-tests in C++, we can make string expressions
for «:

Python code
kappa_0 = 0.2
kappa_1l = 0.001
kappa_str = {}
kappa_str[l] = "x[0] > -%s/2 && x[0] < -%S/2 + %S/4 ? %Q : %" % \
(D, D, D, kappa_1l, kappa_0)
kappa_str[2] = "x[0] > -%s/4 && x[0] < %s/4 "\
"&& x[1] > -%S/2 && x[1] < -%S/2 + %S/4 ? %Qg : %Q" % \
(W, W, D, D, D, kappa_1, kappa_0)
kappa_str[3] = "x[0] > -%s/4 && x[0] < %s/4 "\
"X[1] > -%s/4 && Xx[1] < %s/4 "\
"&& Xx[2] > -%S/2 && X[2] < -%S/2 + %S/4 7 %Q : %Q" % \
(W, W, W, W, D, D, D, kappa_1l, kappa_0)

kappa = Expression(kappa_str[d])
For example, in 2D kappa_str[1] becomes

Output
x[0] > -0.5/4 && x[0] < 0.5/4 && x[1] > -1.0/2 &&
x[1] < -1.0/2 + 1.0/4 ? 1le-03 : 0.2

for D =1 and W = D/2 (the string is one line, but broken into two here to fit the page width). It
is very important to have a D that is float and not int, otherwise one gets integer divisions in the
C++ expression and a completely wrong x function.

We are now ready to define the initial condition and the a and L forms of our problem:

Python code
T_prev = interpolate(Constant(T_R), V)

rho = 1

c=1

period = 2*pi/omega

t_stop = 5+period

dt = period/20 # 20 time steps per period
theta = 1

TrialFunction(V)

TestFunction(V)

Constant (0)

rhoxc*Txv+dx + thetaxdt+kappa+inner(grad(T), grad(v))=*dx
= (rhoxc*T_prevs*v + dtxf+v -

ro —+< -
Il
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(1-theta)+dt+kappa*inner(grad(T), grad(v)))=dx

A = assemble(a)
b = None # variable used for memory savings in assemble calls

We could, alternatively, break a and L up in subexpressions and assemble a mass matrix and
stiffness matrix, as exemplified in Section 2.3.3, to avoid assembly of b at every time level. This
modification is straightforward and left as an exercise. The speed-up can be significant in 3D
problems.

The time loop is very similar to what we have displayed in Section 2.3.2:

Python code
T = Function(V) # unknown at the current time level
t = dt
while t <= t_stop:
b = assemble(L, tensor=b)

T 0.t =1t

bc.apply(A, b)

solve(A, T.vector(), b)

# visualization statements
t += dt

T_prev.assign(T)

The complete code in diffusion123D_sin.py contains several statements related to visualization
of the solution, both as a finite element field (plot calls) and as a curve in the vertical direction.
The code also plots the exact analytical solution,

woc

T(x,t) = Tg + Tge** sin(wt +ax), a= %, (2.121)
which is valid when « is constant throughout ). The reader is encouraged to play around with the
code and test out various parameter sets:

TR=0,Ta=1x=x1=02,0=c=1 w=2m

TR =0,Ta=1,%x=02,%x =00l,0=c=1,w=2m1

TR =0,Tp=1,%x=02,% =0001,0=c=1 w=27

TR = 10C, Ta = 10 C, k9 = L.1K'Ns™!, xg = 23K 'Ns~!, o = 1500 kg/m?, ¢ =
1600 Nmkg 'K™!, w = 27w/24 1/h =727-10"° 1/s, D = 1.5m

The latter set of data is relevant for real temperature variations in the ground.

2.4 Controlling the solution of linear systems

Several linear algebra packages, referred to as linear algebra backends, can be used in FEniCS to
solve linear systems: PETSc, uBLAS, Epetra (Trilinos), or MTL4. Which backend to apply can be
controlled by setting

Python code

parameters|["linear algebra backend"] = backendname

where backendname is a string, either "PETSc", "uBLAS", "Epetra", or "MTL4". These backends offer
high-quality implementations of both iterative and direct solvers for linear systems of equations.
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The backend determines the specific data structures that are used in the Matrix and Vector classes.
For example, with the PETSc backend, Matrix encapsulates a PETSc matrix storage structure, and
Vector encapsulates a PETSc vector storage structure. Sometimes one wants to perform operations
directly on (say) the underlying PETSc objects. These can be fetched by

Python code
A_PETSc = down_cast(A).mat()
b_PETSc = down_cast(b).vec()
U_PETSc = down_cast(u.vector()).vec()

Here, uis a Function, Ais a Matrix, and b is a Vector. The same syntax applies if we want to fetch
the underlying Epetra, uBLAS, or MTL4 matrices and vectors. Section 2.4.4 provides an example
on working directly with Epetra objects.

Let us explain how one can choose between direct and iterative solvers. We have seen that there are
two ways of solving linear systems, either we call the solve() method in a VariationalProblem
object or we call the solve(A, U, b) function with the assembled coefficient matrix A, right-hand
side vector b, and solution vector U.

2.4.1 Variational problem objects

In case we use a VariationalProblem object, named problem, it has a parameters object that
behaves like a Python dictionary, and we can use this object to choose between a direct or iterative
solver:

Python code

problem.parameters|["solver"]["linear_solver"] = "direct"
# or
problem.parameters|["solver"]["linear_solver"] = "iterative"

Another parameter "symmetric" can be set to True if the coefficient matrix is symmetric so that a
method exploiting symmetry can be utilized. For example, the default iterative solver is GMRES,
but when solving a Poisson equation, the iterative solution process will be more efficient by setting
the "symmetry" parameter so that a Conjugate Gradient method is applied.

Having chosen an iterative solver, we can invoke the submenu "solver"/"krylov_solver" in the
parameters object for setting various parameters for the iterative solver (GMRES or Conjugate
Gradients, depending on whether the matrix is symmetric or not):

Python code

itsolver = problem.parameters["solver"]["krylov_solver"] # short form
itsolver|["absolute_tolerance"] = 1E-10

itsolver|["relative_tolerance"] = 1E-6

itsolver["maximum_iterations"] = 1000

itsolver|["gmres_restart"] = 50

itsolver|["monitor_convergence"] = True

itsolver["report"] = True

Here, "maximum_iterations" governs the maximum allowable number of iterations, the "gmres_restart"
parameter tells how many iterations GMRES performs before it restarts, "monitor_convergence"
prints detailed information about the development of the residual of a solver, "report" governs
whether a one-line report about the solution method and the number of iterations is written on

the screen or not. The absolute and relative tolerances enter (usually residual-based) stopping
criteria, which are dependent on the implementation of the underlying iterative solver in the actual
backend.
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When direct solver is chosen, there is similarly a submenu "lu_solver" to set parameters, but here
only the "report" parameter is available (since direct solvers very seldom have any adjustable
parameters). For nonlinear problems there is also submenu "newton_solver" where tolerances,
maximum iterations, and so on, for a the Newton solver in VariationalProblem can be set.

A complete list of all parameters and their default values is printed to the screen by

Python code

info(problem.parameters, True)

2.4.2  Solve function

For the solve(A, U, b) approach, a 4th argument to solve determines the type of method:
e "lu" for a sparse direct (LU decomposition) method,

¢ "cg" for the Conjugate Gradient (CG) method, which is applicable if A is symmetric and
positive definite,

e "gmres" for the GMRES iterative method, which is applicable when A is nonsymmetric,
¢ "bicgstab" for the BiCGStab iterative method, which is applicable when A is nonsymmetric.

The default solver is "lu".
Good performance of an iterative method requires preconditioning of the linear system. The 5th
argument to solve determines the preconditioner:

¢ "none" for no preconditioning.

® "jacobi" for the simple Jacobi (diagonal) preconditioner,

¢ "sor" for SOR preconditioning,

e "ilu" for incomplete LU factorization (ILU) preconditioning,

¢ "icc" for incomplete Cholesky factorization preconditioning (requires A to be symmetric and
positive definite),

e "amg_hypre" for algebraic multigrid (AMG) preconditioning with the Hypre package (if
available),

* "mag_ml" for algebraic multigrid (AMG) preconditioning with the ML package from Trilinos
(if available),

e "default_pc" for a default preconditioner, which depends on the linear algebra backend
("ilu" for PETSc).

If the 5th argument is not provided, "ilu" is taken as the default preconditioner.
Here are some sample calls to solve demonstrating the choice of solvers and preconditioners:

Python code
solve(A, u.vector(), b) # "lu" is default solver
solve(A, u.vector(), b, "cg") # CG with ILU prec.
solve(A, u.vector(), b, "gmres", "amg_ml") # GMRES with ML prec.
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2.4.3 Setting the start vector

The choice of start vector for the iterations in a linear solver is often important. With the solve(A,
U, b) function the start vector is the vector we feed in for the solution. A start vector with random
numbers in the interval [—1, 1] can be computed as

Python code

n = u.vector().array().size
u.vector()[:] = numpy.random.uniform(-1, 1, n)
solve(A, u.vector(), b, "cg", "ilu")

Or if a VariationalProblem object is used, its solve method may take an optional u function as
argument (which we can fill with the right values):

Python code
problem = VariationalProblem(a, L, bc)
n = u.vector().array().size
u.vector()[:] = numpy.random.uniform(-1, 1, n)
u = problem.solve(u)

The program Poisson2D_DN_laprm.py demonstrates the various control mechanisms for steering
linear solvers as described above.

2.4.4 Using a backend-specific solver

Sometimes one wants to implement tailored solution algorithms, using special features of the
underlying numerical packages. Here is an example where we create an ML preconditioned
Conjugate Gradient solver by programming with Trilinos-specific objects directly. Given a linear
system AU = b, represented by a Matrix object A, and two Vector objects U and b in a Python
program, the purpose is to set up a solver using the Aztec Conjugate Gradient method from
Trilinos” Aztec library and combine that solver with the algebraic multigrid preconditioner ML
from the ML library in Trilinos. Since the various parts of Trilinos are mirrored in Python through
the PyTrilinos package, we can operate directly on Trilinos-specific objects.

Python code

try:

from PyTrilinos import Epetra, Aztec00, TriUtils, ML
except:

print ’’’You Need to have PyTrilinos with

Epetra, Aztec00, TriUtils and ML installed
for this demo to run’’’
exit()

from dolfin import

if not has_la_backend("Epetra"):
print "Warning: Dolfin is not compiled with Trilinos"
exit()

parameters|["linear_algebra_backend"] = "Epetra"

# create matrix A and vector b in the usual way
# u is a Function

# Fetch underlying Epetra objects
A_epetra = down_cast(A).mat()
b_epetra = down_cast(b).vec()
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U_epetra = down_cast(u.vector()).vec()

# Sets up the parameters for ML using a python dictionary

ML_param = {"max levels" : 3,
"output" 110,
"smoother: type" : "ML symmetric Gauss-Seidel",
"aggregation: type" : "Uncoupled",
"ML validate parameter list" : False
}

# Create the preconditioner

prec = ML.MultiLevelPreconditioner(A_epetra, False)
prec.SetParameterList (ML_param)
prec.ComputePreconditioner()

# Create solver and solve system

solver = Aztec00.AztecOO(A_epetra, U_epetra, b_epetra)
solver.SetPrecOperator(prec)
solver.SetAztecOption(Aztec00.AZ solver, Aztec00.AZ cg)
solver.SetAztecOption(Aztec00.AZ output, 16)
solver.Iterate(MaxIters=1550, Tolerance=1le-5)

plot(u)

2.5 Creating more complex domains

Up to now we have been very fond of the unit square as domain, which is an appropriate choice
for initial versions of a PDE solver. The strength of the finite element method, however, is its ease
of handling domains with complex shapes. This section shows some methods that can be used to
create different types of domains and meshes.

Domains of complex shape must normally be constructed in separate preprocessor programs. Two
relevant preprocessors are Triangle for 2D domains and NETGEN for 3D domains.

2.5.1  Built-in mesh generation tools

DOLFIN has a few tools for creating various types of meshes over domains with simple shape:
UnitInterval, UnitSphere, UnitSquare, Interval, Rectangle, Box, UnitCircle, and UnitCube.
Some of these names have been briefly met in previous sections. The hopefully self-explanatory
code snippet below summarizes typical constructions of meshes with the aid of these tools:

Python code
# 1D domains
mesh UnitInterval(20) # 20 cells, 21 vertices
mesh Interval(20, -1, 1) # domain [-1,1]

# 2D domains (6x10 divisions, 120 cells, 77 vertices)
mesh = UnitSquare(6, 10) # "right" diagonal is default
# The diagonals can be right, left or crossed

mesh = UnitSquare(6, 10, "left")

mesh = UnitSquare(6, 10, "crossed")

# Domain [0,3]x[0,2] with 6x10 divisions and left diagonals
mesh = Rectangle(0, 0, 3, 2, 6, 10, "left")

# 6x10x5 boxes in the unit cube, each box gets 6 tetrahedra:
mesh = UnitCube(6, 10, 5)
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# Domain [-1,1]x[-1,0]x[-1,2] with 6x10x5 divisions
mesh = Box(-1, -1, -1, 1, 0, 2, 6, 10, 5)

# 10 divisions in radial directions
mesh = UnitCircle(10)
mesh = UnitSphere(10)

2.5.2  Transforming mesh coordinates

A mesh that is denser toward a boundary is often desired to increase accuracy in that region. Given
a mesh with uniformly spaced coordinates xy, ..., xp)—1 in [4,b], the coordinate transformation
&= (x—a)/(b—a)maps x onto ¢ € [0,1]. A new mapping # = &5, for some s > 1, stretches the
mesh toward § = 0 (x = a), while y = &5 makes a stretching toward ¢ = 1 (x = b). Mapping the
1 € [0,1] coordinates back to [a, b] gives new, stretched x coordinates,

x=a+(b—a)((x—a)b—a)’ (2.122)
toward x = a, or
_ x—a\'*
x:a+(b—a)(b_a> (2.123)

toward x = b

One way of creating more complex geometries is to transform the vertex coordinates in a rectangular
mesh according to some formula. Say we want to create a part of a hollow cylinder of ® degrees,
with inner radius a and outer radius b. A standard mapping from polar coordinates to Cartesian
coordinates can be used to generate the hollow cylinder. Given a rectangle in (%, i) space such that
a < x<band 0 <7 <1, the mapping

£ =xcos(®y), 7= xsin(Of), (2.124)

takes a point in the rectangular (%, 7) geometry and maps it to a point (£,7) in a hollow cylinder.
The corresponding Python code for first stretching the mesh and then mapping it onto a hollow
cylinder looks as follows:

Python code
Theta = pi/2
a, b=1, 5.0
nr = 10 # divisions in r direction
nt = 20 # divisions in theta direction
mesh = Rectangle(a, 0, b, 1, nr, nt, "crossed")

# First make a denser mesh towards r=a
x = mesh.coordinates()[:,0]

y = mesh.coordinates()[:,1]

s = 1.3

def denser(x, y):
return [a + (b-a)*((x-a)/(b-a))*x*s, yl

x_bar, y_bar = denser(x, y)

xy_bar_coor = numpy.array([x_bar, y_bar]).transpose()
mesh.coordinates()[:] = xy_bar_coor

plot(mesh, title="stretched mesh")
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Figure 2.8: A hollow cylinder gener-
ated by mapping a rectangular mesh,
stretched toward the left side.
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def cylinder(r, s):
return [rxnumpy.cos(Thetaxs), rxnumpy.sin(Thetaxs)]

x_hat, y_hat = cylinder(x_bar, y_bar)

Xxy_hat_coor = numpy.array([x_hat, y_hat]).transpose()
mesh.coordinates()[:] = xy_hat_coor

plot(mesh, title="hollow cylinder")

interactive()

The result of calling denser and cylinder above is a list of two vectors, with the x and y coordinates,
respectively. Turning this list into a numpy array object results in a 2 X M array, M being the number
of vertices in the mesh. However, mesh.coordinates() is by a convention an M x 2 array so we
need to take the transpose. The resulting mesh is displayed in Figure ??.

Setting boundary conditions in meshes created from mappings like the one illustrated above is
most conveniently done by using a mesh function to mark parts of the boundary. The marking is
easiest to perform before the mesh is mapped since one can then conceptually work with the sides
in a pure rectangle.

2.6 Handling domains with different materials

Solving PDEs in domains made up of different materials is a frequently encountered task. In
FEniCS, this kind of problems are handled by defining subdomains inside the domain. The subdo-
mains may represent the various materials. We can thereafter define material properties through
functions, known in FEniCS as mesh functions, that are piecewise constant in each subdomain. A
simple example with two materials (subdomains) in 2D will demonstrate the basic steps in the
process.

2.6.1  Working with two subdomains

Suppose we want to solve
V- [k(xy)Vu(x,y)] = 0, (2.125)

in a domain () consisting of two subdomains where k takes on a different value in each subdomain.
For simplicity, yet without loss of generality, we choose for the current implementation the domain
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Figure 2.9: Sketch of a Poisson prob- Y
lem with a variable coefficient that
is constant in each of the two subdo-
mains () and (5.
u=1
M
Ju Ju
an =0 an =0
)
u=20 *

Q =[0,1] x [0,1] and divide it into two equal subdomains, as depicted in Figure ??,
Qo= 1[0,1] x [0,1/2], Q1 =1[0,1] x (1/2,1]. (2.126)

We define k(x,y) = ko in Qg and k(x,y) = ky in O, where ko > 0 and k; > 0 are given constants.
As boundary conditions, we choose u =0aty =0, u=1aty =1, and du/dn =0 at x = 0 and
x = 1. One can show that the exact solution is now given by

2

— ko+ky” Yy )
u(x,y) { Cr itk 4 )9 (2.127)

ko+kq 4

VoA

As long as the element boundaries coincide with the internal boundary y = 1/2, this piecewise
linear solution should be exactly recovered by Lagrange elements of any degree. We use this
property to verify the implementation.

Physically, the present problem may correspond to heat conduction, where the heat conduction in
()1 is ten times more efficient than in (). An alternative interpretation is flow in porous media
with two geological layers, where the layers’ ability to transport the fluid differs by a factor of 10.

2.6.2  Implementation

The new functionality in this subsection regards how to to define the subdomains )y and €2;. For
this purpose we need to use subclasses of class SubDomain, not only plain functions as we have
used so far for specifying boundaries. Consider the boundary function

Python code
def boundary(x, on_boundary):
tol = 1E-14
return on_boundary and abs(x[0]) < tol

for defining the boundary x = 0. Instead of using such a stand-alone function, we can create an
instance’ of a subclass of SubDomain, which implements the inside method as an alternative to

7The term instance means a Python object of a particular type (such as SubDomain, Function, FunctionSpace, etc.). Many
use instance and object as interchangeable terms. In other computer programming languages one may also use the term
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the boundary function:

Python code
class Boundary(SubDomain):
def inside(x, on_boundary):
tol = 1E-14
return on_boundary and abs(x[0]) < tol

boundary = Boundary()
bc = DirichletBC(V, Constant(@), boundary)

A subclass of SubDomain with an inside method gives access to more functionality for marking
parts of the domain or the boundary. Now we need to define one class for the subdomain ()
where y < 1/2 and another for the subdomain (); where y > 1/2:

Python code
class Omega0(SubDomain):
def inside(self, x, on_boundary):
return True if x[1l] <= 0.5 else False

class Omegal(SubDomain):
def inside(self, x, on_boundary):
return True if x[1] >= 0.5 else False

Notice the use of <= and >= in both tests. For a cell to belong to, e.g., ()1, the inside method must
return True for all the vertices x of the cell. So to make the cells at the internal boundary y = 1/2
belong to ()1, we need the test x[1] >= 0.5.

The next task is to use a MeshFunction to mark all cells in (g with the subdomain number o and all
cells in () with the subdomain number 1. Our convention is to number subdomains as 0,1,2, .. ..
A MeshFunction is a discrete function that can be evaluated at a set of so-called mesh entities. Three
mesh entities are cells, facets, and vertices. A MeshFunction over cells is suitable to represent
subdomains (materials), while a MeshFunction over facets is used to represent pieces of external or
internal boundaries. Mesh functions over vertices can be used to describe continuous fields.
Since we need to define subdomains of () in the present example, we must make use of a
MeshFunction over cells. The MeshFunction constructor is fed with three arguments: 1) the type
of value: "int" for integers, "uint" for positive (unsigned) integers, "double" for real numbers,
and "bool" for logical values; 2) a Mesh object, and 3) the topological dimension of the mesh entity
in question: cells have topological dimension equal to the number of space dimensions in the
PDE problem, and facets have one dimension lower. Alternatively, the constructor can take just a
filename and initialize the MeshFunction from data in a file.

We start with creating a MeshFunction whose values are non-negative integers ("uint") for num-
bering the subdomains. The mesh entities of interest are the cells, which have dimension 2 in a
two-dimensional problem (1 in 1D, 3 in 3D). The appropriate code for defining the MeshFunction
for two subdomains then reads

Python code
subdomains = MeshFunction("uint", mesh, 2)
# Mark subdomains with numbers 0 and 1
subdomain® = Omega0()
subdomain®.mark(subdomains, 0)
subdomainl = Omegal()
subdomainl.mark(subdomains, 1)

variable for the same thing. We mostly use the well-known term object in this text.
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Calling subdomains.values () returns a numpy array of the subdomain values. That is, subdomain.values()[1i]
is the subdomain value of cell number i. This array is used to look up the subdomain or material

number of a specific element.

We need a function k that is constant in each subdomain )y and ;. Since we want k to be a finite

element function, it is natural to choose a space of functions that are constant over each element.

The family of discontinuous Galerkin methods, in FEniCS denoted by "DG", is suitable for this

purpose. Since we want functions that are piecewise constant, the value of the degree parameter is

Zero:

Python code
VO = FunctionSpace(mesh, "DG", 0)
k = Function(V0)

To fill k with the right values in each element, we loop over all cells (the indices in subdomain.values()),
extract the corresponding subdomain number of a cell, and assign the corresponding k value to
the k.vector() array:

Python code
k_values = [1.5, 50] # values of k in the two subdomains
for cell_no in range(len(subdomains.values())):
subdomain_no = subdomains.values()[cell_no]
k.vector()[cell_no] = k_values[subdomain_no]

Long loops in Python are known to be slow, so for large meshes it is preferable to avoid such loops
and instead use vectorized code. Normally this implies that the loop must be replaced by calls to
functions from the numpy library that operate on complete arrays (in efficient C code). The function-
ality we want in the present case is to compute an array of the same size as subdomain.values(),
but where the value i of an entry in subdomain.values() is replaced by k_values[i]. Such an
operation is carried out by the numpy function choose:

Python code

help = numpy.asarray(subdomains.values(), dtype=numpy.int32)
k.vector()[:] = numpy.choose(help, k_values)

The help array is required since choose cannot work with subdomain.values() because this array
has elements of type uint32. We must therefore transform this array to an array help with standard
int32 integers.

Having the k function ready for finite element computations, we can proceed in the normal manner
with defining essential boundary conditions, as in Section 2.1.10, and the a(u,v) and L(v) forms,
as in Section 2.1.12. All the details can be found in the file Poisson2D_2mat. py.

2.6.3 Multiple Neumann, Robin, and Dirichlet conditions

Let us go back to the model problem from Section 2.1.10 where we had both Dirichlet and
Neumann conditions. The term vxgxds in the expression for L implies a boundary integral over
the complete boundary, or in FEniCS terms, an integral over all exterior cell facets. However, the
contributions from the parts of the boundary where we have Dirichlet conditions are erased when
the linear system is modified by the Dirichlet conditions. We would like, from an efficiency point
of view, to integrate vxg+ds only over the parts of the boundary where we actually have Neumann
conditions. And more importantly, in other problems one may have different Neumann conditions
or other conditions like the Robin type condition. With the mesh function concept we can mark
different parts of the boundary and integrate over specific parts. The same concept can also be
used to treat multiple Dirichlet conditions. The forthcoming text illustrates how this is done.
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Essentially, we still stick to the model problem from Section 2.1.10, but replace the Neumann
condition at y = 0 by a Robin condition®:

ou
—o = p(u—q), (2.128)

where p and g are specified functions. Since we have prescribed a simple solution in our model
problem, u = 1+ x? + 2y?, we adjust p and g such that the condition holds at y = 0. This implies
that g = 1+ x% 4 2y? and p can be arbitrary (the normal derivative at y = 0: du/dn = —du/dy =
—4y = 0).

Now we have four parts of the boundary: I'y which corresponds to the upper side y = 1, I'r which
corresponds to the lower part y = 0, ') which corresponds to the left part x = 0, and I'y which
corresponds to the right part x = 1. The complete boundary-value problem reads

—Au=—-6inQ), (2.129)
u = ur on Iy, (2.130)
u=ugonly, (2.131)

ou

53, = p(u—gq) onTg, (2.132)

Jou
5. = gonTIy. (2.133)

The involved prescribed functions are u; = 1+ 2y?, ug = 2+ 2y?, g = 1+ x2 + 2y?, p is arbitrary,
and ¢ = —4y.

Integration by parts of — [, vAu dx becomes as usual

—/ UAudx:/ Vu-Vvdx—/ a—uvds. (2.134)
Q Q 20 on

The boundary integral vanishes on I'g U I'1, and we split the parts over I'y and I'r since we have
different conditions at those parts:

ou Ju ou
—/anvads——/FNU%ds—/er%ds—/I_Nvgds+/erp(u—q)ds. (2.135)
The weak form then becomes
V-Vd/d/ —d:/ dx, 136
/Q u-Vodx + rNgv s+ er(u q)vds va x (2.136)

We want to write this weak form in the standard notation a(u,v) = L(v), which requires that we
identify all integrals with both u and v, and collect these in a(u,v), while the remaining integrals
with v and not u go into L(v). The integral from the Robin condition must of this reason be split
in two parts:

/ p(u—q)vds:/ puvds—/ pqu ds. (2.137)
Tk Tk Tk

8The Robin condition is most often used to model heat transfer to the surroundings and arise naturally from Newton’s
cooling law.
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We then have
a(u,v) :/ Vu~Vvdx—|—/ puvds, (2.138)
0 Tx
L :/ d —/ d / ds. .
(v) va X rNgv s+ - pqvds (2.139)

A natural starting point for implementation is the Poisson2D_DN2.py program, which we now
copy to Poisson2D_DNR.py. The new aspects are

1. definition of a mesh function over the boundary,
2. marking each side as a subdomain, using the mesh function,
3. splitting a boundary integral into parts.

Task 1 makes use of the MeshFunction object, but contrary to Section 2.6.2, this is not a function
over cells, but a function over cell facets. The topological dimension of cell facets is one lower than
the cell interiors, so in a two-dimensional problem the dimension becomes 1. In general, the facet
dimension is given as mesh.topology().dim() -1, which we use in the code for ease of direct reuse
in other problems. The construction of a MeshFunction object to mark boundary parts now reads

Python code

boundary_parts = \
MeshFunction("uint", mesh, mesh.topology().dim()-1)

As in Section 2.6.2 we use a subclass of SubDomain to identify the various parts of the mesh function.
Problems with domains of more complicated geometries may set the mesh function for marking
boundaries as part of the mesh generation. In our case, the y = 0 boundary can be marked by

Python code
class LowerRobinBoundary(SubDomain):
def inside(self, x, on_boundary):
tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[1]) < tol

Gamma_R = LowerRobinBoundary()
Gamma_R.mark(boundary_parts, 0)

The code for the ¥ = 1 boundary is similar and is seen in Poisson2D_DNR. py.
The Dirichlet boundaries are marked similarly, using subdomain number 2 for I'y and 3 for I'y:

Python code
class LeftBoundary(SubDomain):
def inside(self, x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = LeftBoundary()
Gamma_0.mark(boundary_parts, 2)

class RightBoundary(SubDomain):
def inside(self, x, on_boundary):
tol = 1E-14  # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = RightBoundary()
Gamma_1l.mark(boundary_parts, 3)
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Specifying the DirichletBC objects may now make use of the mesh function (instead of a SubDomain
subclass object) and an indicator for which subdomain each condition should be applied to:

Python code
u_L = Expression("1 + 2*x[1]*x[1]")
u_R = Expression("2 + 2xx[1]*x[1]")
bc = [DirichletBC(V, u_L, boundary_parts, 2),
DirichletBC(V, u_R, boundary_parts, 3)]

Some functions need to be defined before we can go on with the a and L of the variational problem:

Python code
= Expression("-4*x[1]")
= Expression("l + x[01xx[0] + 2xx[1]xx[1]1")
Constant(100) # arbitrary function can go here
= TrialFunction(V)
= TestFunction(V)
= Constant(-6.0)

-~ < ©C T O«
U}

The new aspect of the variational problem is the two distinct boundary integrals. Having a mesh
function over exterior cell facets (our boundary_parts object), where subdomains (boundary parts)
are numbered as 0,1,2, ..., the special symbol ds(8) implies integration over subdomain (part) o,
ds (1) denotes integration over subdomain (part) 1, and so on. The idea of multiple ds-type objects
generalizes to volume integrals too: dx(0), dx(1), etc., are used to integrate over subdomain o, 1,
etc., inside Q).

The variational problem can be defined as

Python code
a = inner(grad(u), grad(v))*dx + p*u*xv+ds(0)
L = fxvxdx - g*v+ds(l) + pxq*xv+ds(0)

For the ds(0) and ds(1) symbols to work we must obviously connect them (or a and L) to the
mesh function marking parts of the boundary. This is done by a certain keyword argument to the
assemble function:

Python code

A = assemble(a, exterior_facet_domains=boundary_parts)
b = assemble(L, exterior_facet domains=boundary_parts)

Then essential boundary conditions are enforced, and the system can be solved in the usual way:

Python code

for condition in bc: condition.apply(A, b)
u = Function(V)
solve(A, u.vector(), b)

At the time of this writing, it is not possible to perform integrals over different parts of the domain
or boundary using the assemble_system function or the VariationalProblem object.

2.7 More examples

Many more topics could be treated in a FEniCS tutorial, e.g., how to solve systems of PDEs, how
to work with mixed finite element methods, how to create more complicated meshes and mark
boundaries, and how to create more advanced visualizations. However, to limit the size of this
tutorial, the examples end here. There are, fortunately, a rich set of examples coming with the
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DOLFIN source code. Go to dolfin/demo. The subdirectory pde contains many examples on
solving PDEs:

¢ the advection-diffusion equation (advection-diffusion),

¢ the Cahn-Hilliard equation (cahn-hilliard),

e the equation of linear elasticity (elasticity) and hyperelasticity (hyperelasticity),
e the Poisson equation with a variable tensor coefficient (tensor-weighted-poisson),
* mixed finite elements for the Poisson equation (mixed-poisson),

¢ the Stokes problem of fluid flow (stokes),

* an eigenvalue problem arising from electromagnetic waveguide problem with Nédélec
elements.

Moreover, the dg subdirectory contains demonstrations of applying discontinuous Galerkin meth-
ods to the advection-diffusion, Poisson, and Biharmonic equations. There also exists an example
on how to compute functionals over subsets of the mesh (lift-drag).

The demo/mesh directory contains examples on moving a mesh (ale), computing intersections
(intersection), mesh refinement (refinement), and creating separate subdomain meshes from a
common parent mesh (submesh).

The cbc. solve suite of applications is under development and will contain Navier-Stokes solvers
and large-strain elasticity solvers. The cbc. rans suite will in particular contain several Navier—
Stokes solvers in combination with a range of PDEs arising in various turbulence models.

2.8 Miscellaneous topics

2.8.1  Glossary
Below we explain some key terms used in this tutorial.

FEniCS: name of a software suite composed of many individual software components (see
fenicsproject.org). Some components are DOLFIN and Viper, explicitly referred to in this
tutorial. Others are FFC and FIAT, heavily used by the programs appearing in this tutorial, but
never explicitly used from the programs.

DOLFIN: a FEniCS component, more precisely a C++ library, with a Python interface, for per-
forming important actions in finite element programs. DOLFIN makes use of many other FEniCS
components and many external software packages.

Viper: a FEniCS component for quick visualization of finite element meshes and solutions.

UFL: a FEniCS component implementing the unified form language for specifying finite element
forms in FEniCS programs. The definition of the forms, typically called a and L in this tutorial,
must have legal UFL syntax. The same applies to the definition of functionals (see Section 2.1.7).

Class (Python): a programming construction for creating objects containing a set of variables and
functions. Most types of FEniCS objects are defined through the class concept.

Instance (Python): an object of a particular type, where the type is implemented as a class. For
instance, mesh = UnitInterval(10) creates an instance of class UnitInterval, which is reached
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by the name mesh. (Class UnitInterval is actually just an interface to a corresponding C++ class
in the DOLFIN C++ library.)

Class method (Python): a function in a class, reached by dot notation: instance_name.method_name

self parameter (Python): required first parameter in class methods, representing a particular
object of the class. Used in method definitions, but never in calls to a method. For example, if
method(self, x) is the definition of method in a class Y, method is called as y.method(x), where y
is an instance of class X. In a call like y.method (x), method is invoked with self=y.

Class attribute (Python): a variable in a class, reached by dot notation: instance_name.attribute_name

2.8.2  Overview of objects and functions

Most classes in FEniCS have an explanation of the purpose and usage that can be seen by using
the general documentation command pydoc for Python objects. You can type

Output
pydoc dolfin.X

to look up documentation of a Python class X from the DOLFIN library (X can be UnitSquare,
Function, Viper, etc.). Below is an overview of the most important classes and functions in FEniCS
programs, in the order they typically appear within programs.

UnitSquare(nx, ny): generate mesh over the unit square [0,1] x [0,1] using nx divisions in x
direction and ny divisions in y direction. Each of the nx*ny squares are divided into two cells of
triangular shape.

UnitInterval, UnitCube, UnitCircle, UnitSphere, Interval, Rectangle, and Box: generate mesh
over domains of simple geometric shape, see Section 2.5.

FunctionSpace(mesh, element_type, degree): a function space defined over a mesh, with a
given element type (e.g., "CG" or "DG"), with basis functions as polynomials of a specified degree.

Expression(formula): a scalar- or vector-valued function, given as a mathematical expression
formula (string) written in C++ syntax.

Function(V): a scalar- or vector-valued finite element field in the function space V. If V is a
FunctionSpace object, Function (V) becomes a scalar field, and with V as a VectorFunctionSpace
object, Function(V) becomes a vector field.

SubDomain: class for defining a subdomain, either a part of the boundary, an internal boundary, or
a part of the domain. The programmer must subclass SubDomain and implement the inside(self,
x, on_boundary) function (see Section 2.1.3) for telling whether a point x is inside the subdomain
or not.

Mesh: class for representing a finite element mesh, consisting of cells, vertices, and optionally faces,
edges, and facets.

MeshFunction: tool for marking parts of the domain or the boundary. Used for variable coefficients
(“material properties”, see Section 2.6.1) or for boundary conditions (see Section 2.6.3).

DirichletBC(V, value, where): specification of Dirichlet (essential) boundary conditions via a
function space V, a function value(x) for computing the value of the condition at a point x, and
a specification where of the boundary, either as a SubDomain subclass instance, a plain function,
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or as a MeshFunction instance. In the latter case, a 4th argument is provided to describe which
subdomain number that describes the relevant boundary.

TrialFunction(V): define a trial function on a space V to be used in a variational form to represent
the unknown in a finite element problem.

TestFunction(V): define a test function on a space V to be used in a variational form.

assemble(X): assemble a matrix, a right-hand side, or a functional, given a from X written with
UFL syntax.

assemble_system(a, L, bc): assemble the matrix and the right-hand side from a bilinear (a) and
linear (L) form written with UFL syntax. The bc parameter holds one or more DirichletBC objects.

VariationalProblem(a, L, bc): define and solve a variational problem, given a bilinear (a) and
linear (L) form, written with UFL syntax, and one or more DirichletBC objects stored in bc. A 4th
argument, nonlinear=True, can be given to define and solve nonlinear variational problems (see
Section 2.2.4).

solve(A, U, b): solve a linear system with A as coefficient matrix (Matrix object), U as unknown
(Vector object), and b as right-hand side (Vector object). Usually, U is replaced by u.vector(),
where u is a Function object representing the unknown finite element function of the problem,
while A and b are computed by calls to assemble or assemble_system.

plot(q): quick visualization of a mesh, function, or mesh function q, using the Viper component
in FEniCS.

interpolate(func, V): interpolate a formula or finite element function func onto the function
space V.

project(func, V): project a formula or finite element function func onto the function space V.

2.8.3 Installing FEniCS

The FEniCS software components are available for Linux, Windows and Mac OS X platforms.
Detailed information on how to get FEniCS running on such machines are available at the
fenicsproject.org website. Here are just some quick descriptions and recommendations by the
author.

To make the installation of FEniCS as painless and reliable as possible, the reader is strongly
recommended to use Ubuntu Linux®. Any standard PC can easily be equipped with Ubuntu
Linux, which may live side by side with either Windows or Mac OS X or another Linux installation.
Basically, you download Ubuntu from http://www.ubuntu.com/getubuntu/download, burn the file
on a CD, reboot the machine with the CD, and answer some usually straightforward questions
(if necessary). The graphical user interface (GUI) of Ubuntu is quite similar to both Windows 7
and Mac OS X, but to be efficient when doing science with FEniCS this author recommends to
run programs in a terminal window and write them in a text editor like Emacs or Vim. You can
employ integrated development environment such as Eclipse, but intensive FEniCS developers
and users tend to find terminal windows and plain text editors more user friendly.

Instead of making it possible to boot your machine with the Linux Ubuntu operating system, you
can run Ubuntu in a separate window in your existing operation system. On Mac, you can use
the VirtualBox software available from http://www.virtualbox.org to run Ubuntu. On Windows,

9Even though Mac users now can get FEniCS by a one-click install, I recommend using Ubuntu on Mac, unless you have
high Unix competence and much experience with compiling and linking C++ libraries on Mac OS X.
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Wubi makes a tool that automatically installs Ubuntu on the machine. Just give a user name and
password for the Ubuntu installation, and Wubi performs the rest. You can also use VirtualBox on
Windows machines.

Once the Ubuntu window is up and running, FEniCS is painlessly installed by

Bash code

sudo apt-get install fenics

Sometimes the FEniCS software in a standard Ubuntu installation lacks some recent features and
bug fixes. Visiting fenicsproject.org and copying just five Unix commands is all you have to do
to install a newer version of the software.

2.8.4 Books on the finite element method

There are a large number of books on the finite element method. The books typically fall in either
of two categories: the abstract mathematical version of the method and the engineering “structural
analysis” formulation. FEniCS builds heavily on concepts in the abstract mathematical exposition.
An easy-to-read book, which provides a good general background for using FEniCS, is

[ ]. The book [ ] has a similar style, but aims at readers with interest in
fluid flow problems. [ ] is also highly recommended, especially for those interested in
solid mechanics and heat transfer applications.

Readers with background in the engineering “structural analysis” version of the finite element
method may find [ ] as an attractive bridge over to the abstract mathematical formula-
tion that FEniCS builds upon. Those who have a weak background in differential equations in
general should consult a more fundamental book, and [ ] is a very good choice.
On the other hand, FEniCS users with a strong background in mathematics and interest in the
mathematical properties of the finite element method, will appreciate the texts

[2008], [2007], [2004], [2008], or [2002].

2.8.5  Books on Python

Two very popular introductory books on Python are “Learning Python” [ , ] and “Practical
Python” [ , ]. More advanced and comprehensive books include “Programming
Python” [ , ], and “Python Cookbook” [ , ] and “Python in
a Nutshell” [ , ]. The web page http://wiki.python.org/moin/PythonBooks lists
numerous additional books. Very few texts teach Python in a mathematical and numerical context,
but the references [ , ], [ ] are exceptions.

2.8.6  User-defined functions
When defining a function in terms of a mathematical expression inside a string formula, e.g.,

Python code

myfunc = Expression("sin(x[0])*cos(x[1])")

the expression contained in the first argument will be turned into a C++ function and compiled
to gain efficiency. Therefore, the syntax used in the expression must be valid C++ syntax. Most
Python syntax for mathematical expressions are also valid C++ syntax, but power expressions make
an exception: p+*a must be written as pow(p,a) in C++ (this is also an alternative Python syntax).
The following mathematical functions can be used directly in C++ expressions when defining
Expression objects: cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, exp, frexp, ldexp,
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log, logl0, modf, pow, sqrt, ceil, fabs, floor, and fmod. Moreover, the number 7 is available as
the symbol pi. All the listed functions are taken from the cmath C++ header file, and one may
hence consult documentation of cmath for more information on the various functions.
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3 The finite element method

By Robert C. Kirby and Anders Logg

The finite element method has emerged as a universal method for the solution of differential
equations. Much of the success of the finite element method can be attributed to its generality and
elegance, allowing a wide range of differential equations from all areas of science to be analyzed
and solved within a common framework. Another contributing factor to the success of the finite
element method is the flexibility of formulation, allowing the properties of the discretization to be
controlled by the choice of approximating finite element spaces.

In this chapter, we review the finite element method and summarize some basic concepts and
notation used throughout this book. In the coming chapters, we discuss these concepts in more
detail, with a particular focus on the implementation and automation of the finite element method
as part of the FEniCS project.

3.1 A simple model problem

In 1813, Siméon Denis Poisson published in Bulletin de la société philomatique his famous equation
as a correction of an equation published earlier by Pierre-Simon Laplace. Poisson’s equation
is a second-order partial differential equation stating that the negative Laplacian —Au of some
unknown field u = u(x) is equal to a given function f = f(x) on a domain Q C R¥, possibly
amended by a set of boundary conditions for the solution # on the boundary 9Q2 of Q):

—-Au = f inQ,
u = uy onlp CaQ, (3.1)
—dyu = g onlyCoQ.

The Dirichlet boundary condition u# = u signifies a prescribed value for the unknown u on a
subset I'p of the boundary, and the Neumann boundary condition —d,u = g signifies a prescribed
value for the (negative) normal derivative of 1 on the remaining boundary I'y = 9Q \ I'p. Poisson’s
equation is a simple model for gravity, electromagnetism, heat transfer, fluid flow, and many other
physical processes. It also appears as the basic building block in a large number of more complex
physical models, including the Navier-Stokes equations which we return to in Chapters 22, 21, 22,
23, 24, 25, 26, 27, 28, and 29.

To derive Poisson’s equation (3.1), we may consider a model for the temperature u in a body
occupying a domain () subject to a heat source f. Letting ¢ = ¢(x) denote heat flux, it follows
by conservation of energy that the outflow of energy over the boundary dw of any test volume

75
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Figure 3.1: Poisson’s equation is a sim-
ple consequence of balance of energy
in an arbitrary test volume w C Q.

w C Q) must be balanced by the energy emitted by the heat source f:

/awmnds:/wfdx. (3.2)

Integrating by parts, we find that

/w V.ody = /ﬁ;}fdx. (3.3)

Since (3.3) holds for all test volumes w C (), it follows that V - o = f throughout () (with suitable
regularity assumptions on ¢ and f). If we now make the assumption that the heat flux o is
proportional to the negative gradient of the temperature u (Fourier’s law),

o= —Kvu, (3‘4)
we arrive at the following system of equations:

V.o = f inQ,

c+Vu = 0 inQ, (3-5)

where we have assumed that the heat conductivity is ¥ = 1. Replacing ¢ in the first of these
equations by —Vu, we arrive at Poisson’s equation (3.1). Note that one may as well arrive at
the system of first-order equations (3.5) by introducing o = —Vu as an auxiliary variable in the
second-order equation (3.1). We also note that the Dirichlet and Neumann boundary conditions
in (3.1) correspond to prescribed values for the temperature and heat flux respectively.
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3.2 Finite element discretization

3.2.1 Discretizing Poisson’s equation

To discretize Poisson’s equation (3.1) by the finite element method, we first multiply by a test
function v and integrate by parts to obtain

/Vu‘Vvdx—/ anuvds:/ fodx. (3.6)
0 20 0

Letting the test function v vanish on the Dirichlet boundary I'p where the solution u is known, we
arrive at the following classical variational problem: find u € V such that

/Vu~Vvdx:/fvdx—/ gvds YoeV. (3.7)
Q Q I'nv

The test space V is defined by
V={veH{(Q):v=00nTp}, (3.8)
and the trial space V contains members of V shifted by the Dirichlet condition:

V={ve H(Q):v=ugonTp}. (3.9)

We may now discretize Poisson’s equation by restricting the variational problem (3.7) to a pair of
discrete spaces: find uj, € Vj;, C V such that

/Vuh-Vde:/fvdx—/ gvds YoeV,cV. (3.10)
o) 0 In

We note here that the Dirichlet condition u = uy on I'p enters directly into the definition of the
trial space Vj, (it is an essential boundary condition), whereas the Neumann condition —d,u = g
on I'y enters into the variational problem (it is a natural boundary condition).

To solve the discrete variational problem (3.10), we must construct a suitable pair of discrete trial
and test spaces V}, and Vj,. We return to this issue below, but assume for now that we have a basis
{@}}i | for V, and a basis {¢;})¥, for V. Here, N denotes the dimension of the space V},. We may
then make an Ansatz for u;, in terms of the basis functions of the trial space,

N
up(x) =Y Uigj(x), (3.11)
=

where U € RY is the vector of degrees of freedom to be computed. Inserting this into (3.10) and
varying the test function v over the basis functions of the discrete test space V},, we obtain

N
Zujfﬂwj.v@dx:/Qfgaidx—/mgqsids, i=12,...,N. (3.12)
=

We may thus compute the finite element solution u; = Zjlil U;¢; by solving the linear system

AU =D, (3.13)
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where
Aij = /Q V(P] . V(IA)l dx,

bi :/Qﬂf’idx*/r. g¢;ds. (3-14)

3.2.2  Discretizing the first-order system

We may similarly discretize the first-order system (3.5) by multiplying the first equation by a test
function v and the second equation by a test function 7. Summing up and integrating by parts, we
find that

/.(V'O')UJrO"T*MV'TdX+/ uTonds:/fvdx Y (v,7)€V. (3.15)
Ja 20 0

The normal flux ¢ - n = g is known on the Neumann boundary I'y so we may take 7-n = 0 on I'y.
Inserting the value for u on the Dirichlet boundary I'p, we arrive at the following variational
problem: find (u,0) € V such that

/Q(V-U)v—i-a-r—uV~de:/vadx—/ upt-nds Y (v, 7)€ V. (3.16)
r

D

A suitable choice of trial and test spaces is

V={(v,1):veL*Q),T € H(div,Q),T-n=gon Ty},

X ) _ (3.17)
V={(v,7):v e L(Q), Tt € Hiv,Q),T-n=0o0nI'y}.

Note that the variational problem (3.16) differs from the variational problem (3.7) in that the
Dirichlet condition u = ug on I'p enters into the variational formulation (it is now a natural
boundary condition), whereas the Neumann condition ¢ - n = g on I'y enters into the definition of
the trial space V (it is now an essential boundary condition).

As above, we restrict the variational problem to a pair of discrete trial and test spaces V;, C V and
V, € V and make an Ansatz for the finite element solution of the form

N

(up,on) = Y Uj(Pj, 7). (3.18)

j=1

where {(¢;, ¢;)} ]Zi | is a basis for the trial space Vj,. Typically, either ¢; or ¢; will vanish, so that the

basis is really the tensor product of a basis for the L? space with a basis for the H(div) space. We
thus obtain a linear system for the degrees of freedom U € RN by solving a linear system AU = b,
where now

Ajj = /Q(V'¢j)$i+¢j'lﬁi—¢jv'¢idx,

(3.19)
biI./Qf(i)idX*/rDuol]}i'ndS.

The finite element discretization (3.19) is an example of a mixed method. Such formulations require
some care in selecting spaces that discretize the different function spaces, here L? and H(div),
in a compatible way. Stable discretizations must satisfy the so-called inf-sup or Ladyzhenskaya—
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Babuska-Brezzi (LBB) conditions. This theory explains why many of the finite element spaces for
mixed methods seem complicated compared to those for standard methods. In Chapter 4 below,
we give several examples of such finite element spaces.

3.3 Finite element abstract formalism

3.3.1 Linear problems

We saw above that the finite element solution of Poisson’s equation (3.1) or (3.5) can be obtained
by restricting an infinite-dimensional (continuous) variational problem to a finite-dimensional
(discrete) variational problem and solving a linear system.

To formalize this, we consider a general linear variational problem written in the following
canonical form: find u € V such that

a(u,v) = L(v) VYoveV, (3.20)

where V is the trial space and V is the test space. We thus express the variational problem in terms
of a bilinear form a and a linear form (functional) L:

a:VxVoR,

N .21
L:V =R (5-21)

As above, we discretize the variational problem (3.20) by restricting to a pair of discrete trial and
test spaces: find uj, € V;, C V such that

a(uy,v) = L(v) YoeV,CV. (3.22)

To solve the discrete variational problem (3.22), we make an Ansatz of the form
N
Up = 2 U](P]/ (323)
j=1

and take v = gf)i fori=1,2,...,N. As before, {¢j }]Z\i 1 is a basis for the discrete trial space V}, and
{$:}Y | is a basis for the discrete test space V. It follows that

N
2 U]a((P]’(i)l) = L(‘i)l)/ i=12,...,N. (324)
j=

The degrees of freedom U of the finite element solution 1, may then be computed by solving a
linear system AU = b, where

Ajj = a((pj,4>i), i,j=12,...,N, (3.25)
bl - L((ﬁi)'

3.3.2  Nonlinear problems

We also consider nonlinear variational problems written in the following canonical form: find
u € V such that
F(u;v) =0 VYoeV, (3.26)
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where now F : V x V — R is a semilinear form, linear in the argument(s) subsequent to the
semicolon. As above, we discretize the variational problem (3.26) by restricting to a pair of discrete
trial and test spaces: find u;, € Vj, C V such that

Flup;v) =0 YoveV,CV. (3.27)

The finite element solution u;, = Z}il U;j¢; may then be computed by solving a nonlinear system
of equations,
b(U) =0, (3.28)

where b : RN — RN and
b;(U) = F(up; ¢i), i=12,...,N. (3-29)

To solve the nonlinear system (3.28) by Newton’s method or some variant of Newton’s method, we
compute the Jacobian A = b’. We note that if the semilinear form F is differentiable in u, then the
entries of the Jacobian A are given by

ab; (U d " ’ ~\ 0 / A _ 2
Ajj(uy) = al(l]) = Tlljp(uh;fpi) = F'(up; $1) a%g = F'(up; ¢i) ¢; = F (un; ¢j, $i)- (3-30)

In each Newton iteration, we must then evaluate (assemble) the matrix A and the vector b, and
update the solution vector U by

ukt = uk—suf, k=0,1,..., (3.31)
where SUF solves the linear system
A(uy) OU* = b(u). (3:32)

We note that for each fixed uy,, a = F/(uy;-,-) is a bilinear form and L = F(uy;-) is a linear form.
In each Newton iteration, we thus solve a linear variational problem of the canonical form (3.20):
find du € Vj, o such that

F'(up; 6u,0) = F(up;0) Vo eV, (3-33)

where V0 = {v —w : v,w € V}}. Discretizing (3.33) as in Section 3.3.1, we recover the linear
system (3.32).

Example 3.1 (Nonlinear Poisson equation) As an example, consider the following nonlinear Poisson
equation:

V- (1+u)Vu)=f inQ,

u=0 onoQ. (5:34)
Multiplying (3.34) with a test function v and integrating by parts, we obtain
/Q((l—l—u)Vu) -Vodx = /vadx, (3-35)

which is a nonlinear variational problem of the form (3.26), with

F(u;0) :/()((l+u)Vu)~Vvdx—/vadx. (3.36)
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Figure 3.2: Examples of finite element
cells in one, two and three space di-
mensions.

Linearizing the semilinear form F around u = uy,, we obtain
F'(uy; 6u,v) = /Q((SuVuh) -Vodx + /Q((l +uy)Vou) - Vodx. (3-37)

We may thus compute the entries of the Jacobian matrix A(uy,) by

Aglm) = F wigy ) = [ (0;Vm)- Voidr+ [ (1+m)V¢)-Vidr.  (:39)

3.4 Finite element function spaces

In the above discussion, we assumed that we could construct discrete subspaces V;, C V of infinite-
dimensional function spaces. A central aspect of the finite element method is the construction of
such subspaces by patching together local function spaces defined by a set of finite elements. We
here give a general overview of the construction of finite element function spaces and return in
Chapters 4 and 5 to the construction of specific function spaces as subsets of H!, H(curl), H(div)
and 2.

3.4.1 The mesh

To define V), we first partition the domain () into a finite set of cells 7, = {T} with disjoint
interiors such that

Urer, T = Q. (3-39)

Together, these cells form a mesh of the domain (). The cells are typically simple polygonal shapes
like intervals, triangles, quadrilaterals, tetrahedra or hexahedra as shown in Figure 3.2. But other
shapes are possible, in particular curved cells to capture the boundary of a non-polygonal domain
correctly as shown in Figure 3.3.

3.4.2  The finite element definition

Once a domain () has been partitioned into cells, one may define a local function space V on
each cell T and use these local function spaces to build the global function space V. A cell T
together with a local function space V and a set of rules for describing the functions in V is called
a finite element. This definition was first formalized by Ciarlet [1976] and it remains the standard
formulation today [Brenner and Scott, 2008]. The formal definition reads as follows: a finite
element is a triple (T, V, L), where
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Figure 3.3: A straight triangular cell
(left) and curved triangular cell (right).

Figure 3.4: The degrees of freedom of
the linear Lagrange (Courant) triangle
are given by point evaluation at the
three vertices of the triangle.

¢ the domain T is a bounded, closed subset of R? (for d =1,2,3,...) with nonempty interior
and piecewise smooth boundary;

e the space V = V(T) is a finite dimensional function space on T of dimension #;

e the set of degrees of freedom (nodes) £ = {{1,¢5,...,¢,} is a basis for the dual space V’; that
is, the space of bounded linear functionals on V.

As an example, consider the standard linear Lagrange finite element on the triangle in Figure 3.4.
The cell T is given by the triangle and the space V is given by the space of first degree polynomials
on T (a space of dimension three). As a basis for V’, we may take point evaluation at the three
vertices of T; that is,

EiZV—)]R,

o) = o(), 04
for i = 1,2,3 where x' is the coordinate of the ith vertex. To check that this is indeed a finite
element, we need to verify that £ is a basis for V'. This is equivalent to the unisolvence of £; that
is, if v € V and ¢;(v) = 0 for all ¢;, then v = 0 [Brenner and Scott, 2008]. For the linear Lagrange
triangle, we note that if v is zero at each vertex, then v must be zero everywhere, since a plane is
uniquely determined by its values at three non-collinear points. It follows that the linear Lagrange
triangle is indeed a finite element. In general, determining the unisolvence of £ may be non-trivial.
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3.4.3 The nodal basis

Expressing finite element solutions in Vj, in terms of basis functions for the local function spaces V
may be greatly simplified by introducing a nodal basis for V. A nodal basis {¢;}" ; for V is a basis
for V that satisfies

f,((]b]) 251']', i,jz 1,2,...,n. (341)
It follows that any v € V may be expressed by

v=) Li(v)gi (3.42)

In particular, any function v in V for the linear Lagrange triangle is given by v = Y3, v(x')¢;. In
other words, the expansion coefficients of any function v may be obtained by evaluating the linear
functionals in £ at v. We shall therefore interchangeably refer to both the expansion coefficients U
of uy, and the linear functionals of £ as the degrees of freedom.

Example 3.2 (Nodal basis for the linear Lagrange simplices) The nodal basis for the linear Lagrange
interval with vertices at x* = 0 and x> = 1 is given by

p1(x)=1-x, ¢a(x) =1x. (3-43)

The nodal basis for the linear Lagrange triangle with vertices at x* = (0,0), x> = (1,0) and x> = (0,1)
is given by
pr(¥) =1—x1—-x2, ¢a(x) =21, ¢3(x) = x2. (3.44)

The nodal basis for the linear Lagrange tetrahedron with vertices at x! = (0,0,0), x* = (1,0,0), x*> =
(0,1,0) and x* = (0,0, 1) is given by

pr(x) = 1-x1—x2—x3  ¢o(x) = x,

$3(x) = x, Pa(x) = x3. (5-45)

For any finite element (T,V, L), the nodal basis may be computed by solving a linear system
of size n x n. To see this, let {1;}/' ; be any basis (the prime basis) for V. Such a basis is easy
to construct if V is a full polynomial space or may otherwise be computed by a singular-value
decomposition or a Gram—-Schmidt procedure; see [ ]. We may then make an Ansatz for
the nodal basis in terms of the prime basis:

n
qu = Za]kqjk, ]: 1,2,...,1’1. (346)
k=1

Inserting this into (3.41), we find that
n
Yo apli(y) = 8j, i,j=1,2,...,n (3-47)
k=1

In other words, the coefficients a expanding the nodal basis functions in the prime basis may be
computed by solving the linear system
Ba' =1, (3.48)

where Bl] = El(l/J])
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Figure 3.5: Local-to-global mapping
for a simple mesh consisting of two
triangles. The six local degrees of
freedom of the left triangle (T) are
mapped to the global degrees of free-
dom (i) = 1,2,4,9,8,5 for i =
1,2,...,6, and the six local degrees
of freedom of the right triangle (T")
aye mapped to 1 (i) = 2,3,4,7,9,6 for
i=12,...,6

3.4.4 The local-to-global mapping

Now, to define a global function space V, = span{¢;})¥ | on Q from a given set {(T, Vr, L7) }re7;
of finite elements, we also need to specify how the local function spaces are patched together. We
do this by specifying for each cell T € 7}, a local-to-global mapping:

it [1,n7] — [1,N]. (3-49)

This mapping specifies how the local degrees of freedom L1 = {¢T}!T, are mapped to global
degrees of freedom £ = {/;}N ;. More precisely, the global degrees of freedom are defined by

Cory(0) = (Iolr), i=1,2,...,nr, (3.50)

for any v € Vj,. Thus, each local degree of freedom ¢! € L corresponds to a global degree of
freedom ¢, (;) € £ determined by the local-to-global mapping 1. As we shall see, the local-to-
global mapping together with the choice of degrees of freedom determine the continuity of the
global function space V,.

For standard continuous piecewise linears, one may define the local-to-global mapping by simply
mapping each local vertex number i for i = 1,2,3 to the corresponding global vertex number 7 (i).
For continuous piecewise quadratics, one can base the local-to-global mapping on global vertex
and edge numbers as illustrated in Figure 3.5 for a simple mesh consisting of two triangles.

3.4.5 The global function space

One may now define the global function space V}, as the set of functions on () satisfying the
following pair of conditions. We first require that

U|T eVr VT eT,; (3-51)

that is, the restriction of v to each cell T lies in the local function space Vr. Second, we require that
for any pair of cells (T, T') € T, x T, and any pair (i,i") € [1,nr] x [1, ny] satisfying
i (i) = 1o (i), (3.52)

it holds that ,
el (vlr) = £F (v]p). (3.53)

In other words, if two local degrees of freedom ¢; and EiT,, are mapped to the same global degree
of freedom, then they must agree for each function v € V},. Here, v|r denotes (the continuous
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Figure 3.6: Patching together a pair
of quadratic local function spaces on
a pair of cells (T, T’) to form a global
continuous piecewise quadratic func-
tion spaceon Q = TUT'.

extension of the) restriction of v to the interior of T. This is illustrated in Figure 3.6 for the space of
continuous piecewise quadratics obtained by patching together two quadratic Lagrange triangles.

Note that by this construction, the functions in Vj, are undefined on cell boundaries, unless the
constraints (3.53) force the functions in Vj, to be continuous on cell boundaries. However, this is
usually not a problem, since we can perform all operations on the restrictions of functions to the
local cells.

The local-to-global mapping together with the choice of degrees of freedom determine the conti-
nuity of the global function space V. For the linear Lagrange triangle, choosing the degrees of
freedom as point evaluation at the vertices ensures that all functions in V};, must be continuous at
the two vertices of the common edge of any pair of adjacent triangles, and therefore along the entire
common edge. It follows that the functions in Vj, are continuous throughout the domain Q). As a
consequence, the space of piecewise linears generated by the Lagrange triangle is H!-conforming;
that is, V;, C HY(Q).

One may also consider degrees of freedom defined by point evaluation at the midpoint of each
edge. This is the so-called Crouzeix-Raviart triangle. The corresponding global Crouzeix—Raviart
space Vj, is consequently continuous only at edge midpoints. The Crouzeix—Raviart triangle is
an example of an H'-nonconforming element; that is, the function space V}, constructed from a set
of Crouzeix-Raviart elements is not a subspace of H!. Other choices of degrees of freedom may
ensure continuity of normal components, like for the H(div)-conforming Brezzi-Douglas-Marini
elements, or tangential components, as for the H(curl)-conforming Nédélec elements. In Chapter 4,
other examples of elements are given which ensure different kinds of continuity by the choice of
degrees of freedom and local-to-global mapping.

3.4.6 The mapping from the reference element

As we have seen, the global function space Vj, may be described by a mesh 7y, a set of finite
elements {(T, Vr, L) }re7, and a set of local-to-global mappings {i7}rc7,. We may simplify this
description further by introducing a reference finite element (T, v, ﬁ), where £ = {@1, ... ,Zﬁ},
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3 Figure 3.7: The (affine) map Fr from a
reference cell Ttoacell T € Ty,

and a set of invertible mappings {Fr}rc7, that map the reference cell T to the cells of the mesh:
T=F(T) VT €T, (3.54)

This is illustrated in Figure 3.7. Note that T is generally not part of the mesh.

For function spaces discretizing H' as in (3.7), the mapping Fr is typically affine; that is, Fr can
be written in the form Fr(%) = Ar% + by for some matrix At € R9*? and some vector by € RY,
or else isoparametric, in which case the components of Fr are functions in V. For function spaces
discretizing H(div) like in (3.16) or H(curl), the appropriate mappings are the contravariant
and covariant Piola mappings which preserve normal and tangential components respectively;
see Rognes et al. [2009]. For simplicity, we restrict the following discussion to the case when Fr is
affine or isoparametric.

For each cell T € 7}, the mapping Fr generates a function space on T given by

VT:{U:U:@OF_l, 66}’)}; (355)

that is, each function v = v(x) may be expressed as v(x) = 0(F;
beV.

The mapping Fr also generates a set of degrees of freedom L1 on Vr given by

L) = zﬁoFT_l(x) for some

Lr={l;:li(v)="0i(voFr), i=1,2,...,1}. (3.56)

The mappings {FT}TGE thus generate from the reference finite element (T, Y, ﬁ) a set of finite
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elements {(T, Vr, LT) }reT, given by
T = Fr(T),
Vr={v:v=00F1, 9eV}, (3.57)
Lr={l;:li(v)=0i(voFr), i=12,...,A=nr}

By this construction, we also obtain the nodal basis functions {¢! }'", on T from a set of nodal basis
functions {¢;}?_; on the reference element satisfying /;($;) = &;;. To see this, we let ¢] = ¢; o F;.!
fori=1,2,...,nt and find that

tH@]) = Ui(¢] o Fr) = li(§j o Fr ' o Fr) = Ui(§)) = &, (3-58)

so {¢]}!T, is a nodal basis for Vr.

We may therefore define the function space V}, by specifying a mesh 7y, a reference finite element
(T,V, L), a set of local-to-global mappings {ir}re7, and a set of mappings {Fr}re7, from the
reference cell T. Note that in general, the mappings need not be of the same type for all cells
T and not all finite elements need to be generated from the same reference finite element. In
particular, one could employ a different (higher-degree) isoparametric mapping for cells on a
curved boundary.

The above construction is valid for so-called affine-equivalent elements [ , ]
like the family of H'-conforming Lagrange finite elements. A similar construction is possible for
H(div)- and H(curl)-conforming elements, like the Brezzi-Douglas-Marini and Nédélec elements,
where an appropriate Piola mapping must be used to map the basis functions (while an affine map
may still be used to map the geometry). However, not all finite elements may be generated from a
reference finite element using this simple construction. For example, this construction fails for the
family of Hermite finite elements [ P , , ].

3.5 Finite element solvers

Finite elements provide a powerful methodology for discretizing differential equations, but solving
the resulting algebraic systems also presents a challenge, even for linear systems. Good solvers
must handle the sparsity and possible ill-conditioning of the algebraic system, and also scale well
on parallel computers. The linear solve is a fundamental operation not only in linear problems,
but also within each iteration of a nonlinear solve via Newton’s method, an eigenvalue solve, or
time-stepping.

A classical approach that has been revived recently is direct solution, based on Gaussian elimination.
Thanks to techniques enabling parallel scalability and recognizing block structure, packages such
as UMFPACK [ , ] and SuperLU [Li, ] have made direct methods competitive for
quite large problems.

The 1970s and 1980s saw the advent of modern iterative methods. These grew out of classical
iterative methods such as relaxation methods and the conjugate gradient iteration of

[ ]. These techniques can use much less memory than direct methods and are easier to
parallelize.
Multigrid methods [ , g y ] use relaxation techniques on a hierarchy

of meshes to solve elliptic equations, typically for symmetric problems, in nearly linear time.
However, they require a hierarchy of meshes that may not always be available. This motivated the
introduction of algebraic multigrid methods (AMG) that mimic mesh coarsening, working only on
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the matrix entries. Successful AMG distributions include the Hypre package [ ,
] and the ML package distributed as part of Trilinos [ ,
Krylov methods such as conjugate gradients and GMRES [ , ] generate a

sequence of approximations converging to the solution of the linear system. These methods are
based only on the matrix—vector product. The performance of these methods is significantly
improved by use of preconditioners, which transform the linear system

AU =b (3-59)

into
P~AU = P71p, (3.60)

which is known as left preconditioning. The preconditioner P~! may also be applied from the right
by recognizing that AU = (AP~!)(PU) and solving the modified system for the matrix AP~1,
followed by an additional solve to obtain U from the solution PU. To ensure good convergence,
the preconditioner P~! should be a good approximation of A~!. Some preconditioners are strictly
algebraic, meaning they only use information available from the entries of A. Classical relax-
ation methods such as Gauss-Seidel may be used as preconditioners, as can so-called incomplete
factorizations [ , , , , , ]. Multigrid, whether geometric or
algebraic, also can serve as a powerful preconditioner. Other kinds of preconditioners require
special knowledge about the differential equation being solved and may require new matrices
modeling related physical processes. Such methods are sometimes called physics-based precondi-
tioners. An automated system, such as FEniCS, provides an interesting opportunity to assist with
the development and implementation of these powerful but less widely used methods.

Fortunately, many of the methods discussed here are included in modern libraries such as
PETSc [ , ] and Trilinos [ , ]. FEniCS typically interacts with the
solvers discussed here through these packages and so mainly need to be aware of the various
methods at a high level, such as when the various methods are appropriate and how to access
them.

3.6  Finite element error estimation and adaptivity

The error e = u — uy, in a computed finite element solution u;, approximating the exact solution u
of (3.20) may be estimated either a priori or a posteriori. Both types of estimates are based on relating
the size of the error to the size of the (weak) residual  : V — R defined by

r(v) = L(v) — a(uy,v). (3.61)

Note that the weak residual is formally related to the strong residual R € V' by r(v) = (R,v) for all
veV.

A priori error estimates express the error in terms of the regularity of the exact (unknown) solution
and may give useful information about the order of convergence of a finite element method.
A posteriori error estimates express the error in terms of computable quantities like the residual
and (possibly) the solution of an auxiliary dual problem, as described below.
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3.6.1 A priori error analysis
We consider the linear variational problem (3.20). We first assume that the bilinear form a4 and the
linear form L are continuous (bounded); that is, there exists a constant C > 0 such that

a(v,w)
L(v)

< Cllellv v, oy
<Cllely,

for all v,w € V. For simplicity, we assume in this section that V = V is a Hilbert space. For
(3.1), this corresponds to the case of homogeneous Dirichlet boundary conditions and V = H}(Q).
Extensions to the general case V # V are possible; see for example [ ].
We further assume that the bilinear form a is coercive (V-elliptic); that is, there exists a constant
a > 0 such that

a(v,0) > al|ol3, (3.63)

for all v € V. It then follows by the Lax-Milgram theorem [ , ] that there
exists a unique solution u € V to the variational problem (3.20).

To derive an a priori error estimate for the approximate solution u; defined by the discrete
variational problem (3.22), we first note that

a(u —uy,v) =a(u,v) —a(uy,v) = L(v) — L(v) =0 (3.64)

for all v € V}, C V (the Galerkin orthogonality). By the coercivity and continuity of the bilinear
form a, we find that

wlju —upl|3 < a(u—up,u—up) = a(u —up,u—0) +a(uy, —u,v — uy)

a
(3-65)
= a(u —up,u—0) < Cllu—uylly [lu—olly.

for all v € V},. It follows that
C
lu=uplly < llu—oly Vo eV (3.66)

The estimate (3.66) is referred to as Cea’s lemma. We note that when the bilinear form a is
symmetric, it is also an inner product. We may then take ||v||y = \/a(v,v) and C = a = 1. In this
case, uy, is the a-projection onto Vj, and Cea’s lemma states that

[ =upllv < flu=olly VoeVy (3:67)

that is, uy, is the best possible solution of the variational problem (3.20) in the subspace V},. This is
illustrated in Figure 3.8.

Cea’s lemma together with a suitable interpolation estimate now yields an a priori error estimate
for uy,. By choosing v = 7,1, where 71, : V — Vj, is an interpolation operator into V},, we find that

CG;
44

C
e = wlly < —llu = mpully < == DT ull2, (3.68)
where C; is an interpolation constant and the values of p and g depend on the accuracy of
interpolation and the definition of || - ||y. For the solution of Poisson’s equation in V = H}, we
haveC=a=1landp=g=1
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Figure 3.8: If the bilinear form a is u
symmetric, then the finite element so-

lution u;, € Vj, C V is the a-projection

of u € V onto the subspace V}, and is U —up
consequently the best possible approx-
imation of u in the subspace V}, (in the
norm defined by the bilinear form a).
This follows by the Galerkin orthogo-
nality (u —uy,v)q = a(u —uy,v) =0

forallv € V. / / / / / II, *

Up

T
T\
[ [ [ [T ] ]] | WA

3.6.2 A posteriori error analysis

Energy norm error estimates. The continuity and coercivity of the bilinear form a also allow the
derivation of an a posteriori error estimate. In fact, it follows that the V-norm of the error ¢ = u — uy,
is equivalent to the V'-norm of the residual r. To see this, note that by the continuity of the bilinear
form a, we have

r(v) = L(v) = a(uy, ) = a(u,v) = a(uy,v) = a(u —uy,0) < Cllu —wy|lv [[oflv- (3.69)
Furthermore, by coercivity, we find that

al|u —uh||%/ <alu—up,u—uy) =a(u,u—uy)—aluy,u—uy) = L(u—uy) —a(uy, u—uy) =r(u—uy).
(3.70)
It follows that
allu —uplly < [Irllv < Cllu—uplv, (3.71)

where [|r[|y: = sup,cy 2 7(v)/[|o]|v-
The estimates (3.68) and (3.71) are sometimes referred to as energy norm error estimates. This is the

case when the bilinear form a is symmetric and thus defines an inner product. One may then take
llollv = v/a(v,v) and C = a = 1. In this case, it follows that

1= llellv = lrllv (3.72)

The term energy norm refers to a(v, v) corresponding to physical energy in many applications.

Goal-oriented error estimates. The classical a priori and a posteriori error estimates (3.68) and (3.71)
relate the V-norm of the error e = u — uy, to the regularity of the exact solution u and the residual
r = L(v) — a(uy,v) of the finite element solution uy,, respectively. However, in applications it is
often necessary to control the error in a certain output functional M : V — R of the computed
solution to within some given tolerance € > 0. Typical functionals are average values of the
computed solution, such as the lift or drag of an object immersed in a flow field. In these situations,
one would ideally like to choose the finite element space V;, C V such that the finite element
solution u;, satisfies

n=[Mu)— M(u,)| <e (3.73)
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with minimal computational work. We assume here that both the output functional and the
variational problem are linear, but the analysis may be easily extended to the full nonlinear
case [ , , p I
To estimate the error in the output functional M, we introduce an auxiliary dual problem: find
z € V* such that

a*(z,0) = M(v) VYoeV* (3.74)
We note here that the functional M enters as data in the dual problem. The dual (adjoint) bilinear
form a* : V* x V* — R is defined by

a*(v,w) = a(w,0) VY (v,w) € V*x V*. (3.75)

The dual trial and test spaces are given by

N

vr=Y,

N .76
Vi=Vy={v—w:o,weV} (3.76)

that is, the dual trial space is the primal test space and the dual test space is the primal trial space
modulo boundary conditions. In particular, if V = ug+ V and Vj, = ug + V}, then V* = V* =V,
and both the dual test and trial functions vanish at Dirichlet boundaries. The definition of the dual
problem leads us to the following representation of the error:

M(u) = M(uy) = M(u — uy)
=a*(z,u—uy)
=a(u—up,z) (3-77)
= L(z) —a(uy, z)
= r(z).

We find that the error is exactly represented by the residual of the dual solution:

M(u) = M(uy) = r(2). (3:78)

3.6.3 Adaptivity

As seen above, one may estimate the error in a computed finite element solution uy, in the V-norm
or an output functional by estimating the size of the residual r. This may be done in several
different ways. The estimate typically involves integration by parts to recover the strong element-
wise residual of the original PDE, possibly in combination with the solution of local problems over
cells or patches of cells. In the case of the standard piecewise linear finite element approximation
of Poisson’s equation (3.1), one may obtain the following estimate:

1/2
Ju —uplly = [ Ve[| < C ( Y hZTIIRI%+hTII[8nuh]II§T> / (3-79)
TeT,

where R|r = f|r + Auy|r is the strong residual, it denotes the mesh size (the diameter of the
smallest circumscribed sphere around each cell T) and [0,u,] denotes the jump of the normal
derivative across mesh facets. For a derivation of this estimate, see for example [ ]
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Figure 3.9: A sequence of adaptively
refined meshes obtained by successive
refinement of an original coarse mesh.

Letting 7% = h%||R||3 + hr||[0,us] |5, we obtain the estimate

1/2
lu—wuylly <y =C <Z’7%> : (3-80)
T

An adaptive algorithm seeks to determine a mesh size h = h(x) such that 1, < €. Starting from
an initial coarse mesh, the mesh is successively refined in those cells where the error indicator #r
is large. Several strategies are available, such as refining the top fraction of all cells where 77 is
large, say the first 20% of all cells ordered by 5. Other strategies include refining all cells where
17 is above a certain fraction of maxre7, 777, or refining a top fraction of all cells such that the sum
of their error indicators account for a significant fraction of 7, (so-called Dérfler marking [Dorfler,

1996]).

Once the mesh has been refined, a new solution and new error indicators can be computed. The
process is then repeated until either #;, < € (the stopping criterion) or the available resources (CPU
time and memory) have been exhausted. The adaptive algorithm yields a sequence of successively
refined meshes as illustrated in Figure 3.9. For time-dependent problems, an adaptive algorithm
needs to decide both on the local mesh size and the size of the (local) time step as functions
of space and time. Ideally, the error estimate 7, is close to the actual error, as measured by the
efficiency index 1y, /1 which should be close to and bounded below by one.
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3.7 Automating the finite element method

The FEniCS project seeks to automate the solution of differential equations. This is a formidable
task, but it may be approached by an automation of the finite element method. In particular, this
automation relies on the following key steps:

(i) automation of discretization,
(ii) automation of discrete solution,
(iii) automation of error control.

Since its inception in 2003, the FEniCS project has been concerned mainly with the automation of
discretization, resulting in the development of the form compilers FFC and SyFi/SFC, the code
generation interface UFC, the form language UFL, and a generic assembler implemented as part of
DOLFIN. As a result, variational problems for a large class of partial differential equations may
now be automatically discretized by the finite element method using FEniCS. For the automation
of discrete solution; that is, the solution of linear and nonlinear systems arising from the automated
discretization of variational problems, interfaces to state-of-the-art libraries for linear algebra have
been implemented as part of DOLFIN. Ongoing work is now seeking to automate error control by
automated error estimation and adaptivity. In the following chapters, we return to specific aspects
of the automation of the finite element method developed as part of the FEniCS Project.

3.8 Historical notes

In 1915, Boris Grigoryevich Galerkin formulated a general method for solving differential equa-
tions [ , ]. A similar approach was presented sometime earlier by Bubnov. Galerkin’s
method, or the Bubnov—Galerkin method, was originally formulated with global polynomials
and goes back to the variational principles of Leibniz, Euler, Lagrange, Dirichlet, Hamilton, Cas-
tigliano [ , ], Rayleigh [ , ] and Ritz [ , ]. Galerkin’s method
with piecewise polynomial spaces (V},, V) is known as the finite element method. The finite element
method was introduced by engineers for structural analysis in the 1950s and was independently
proposed by Courant [ , ]. The exploitation of the finite element method among engi-
neers and mathematicians exploded in the 1960s. Since then, the machinery of the finite element
method has been expanded and refined into a comprehensive framework for the design and
analysis of numerical methods for differential equations; see [ 1

[1973], [1976], [1981], [1987], [2008]. Recently,
the quest for compatible (stable) discretizations of mixed variational problems has led to the
development of finite element exterior calculus [ , ].
Work on a posteriori error analysis of finite element methods dates back to the pioneering work
of [ ]. Important references include the works by

[1985], [1987], [1991, 1 ,

<l [ I [ ] and the reviews papers [ ,

7 4 7 7 7 7 7 ]'






4 Common and unusual finite elements

By Robert C. Kirby, Anders Logg, Marie E. Rognes and Andy R. Terrel

This chapter provides a glimpse of the considerable range of finite elements in the literature. Many
of the elements presented here are implemented as part of the FEniCS project already; some are
future work.

The universe of finite elements extends far beyond what we consider here. In particular, we consider
only simplicial, polynomial-based elements. We thus bypass elements defined on quadrilaterals
and hexahedra, composite and macro-element techniques, as well as XFEM-type methods. Even
among polynomial-based elements on simplices, the list of elements can be extended. Nonetheless,
this chapter presents a comprehensive collection of some the most common, and some more
unusual, finite elements.

4.1 The finite element definition

The Ciarlet definition of a finite element was first introduced in a set of lecture notes by

[ ] and became popular after his 1978 book [ , ]. It remains the standard definition
today, see for example [ ]. The definition, which was also presented in
Chapter 3, reads as follows:

Definition 4.1 (Finite element [ , D) A finite element is defined by a triple (T,V, L), where

o the domain T is a bounded, closed subset of R? (for d = 1,2,3,...) with nonempty interior and
piecewise smooth boundary;

* the space V = V(T) is a finite dimensional function space on T of dimension n;

* the set of degrees of freedom (nodes) L = {{1,4a,...,0n} is a basis for the dual space V'; that is, the
space of bounded linear functionals on V.

Similar ideas were introduced earlier in [ ]*, in which unisolvence® of a
set of interpolation points {x'}; was discussed. This is closely related to the unisolvence of £
when the degrees of freedom are given by by /;(v) = v(x'). Conditions for uniquely determining
a polynomial based on interpolation of function values and derivatives at a set of points was also
discussed in [ ], although the term unisolvence was not used.

*The Ciarlet triple was originally written as (K, P, ) with K denoting T and X denoting L.
2To check whether a given set of linear functionals is a basis for V', one may check whether it is unisolvent for V; that is,
forveV, {i(v) =0fori=1,...,nifand only if v = 0.

95
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For any finite element, one may define a local basis for V that is dual to the degrees of freedom.
Such a basis {¢],¢7 ..., ¢TI} satisfies éi(cpjT) = g;j for 1 <i,j < n and is called the nodal basis. It is
typically this basis that is used in finite element computations.

Also associated with a finite element is a local interpolation operator, sometimes called a nodal
interpolant. Given some function f on T, the nodal interpolant is defined by

n

r(f) = Y t(f)e], (4-1)

i=1

assuming that f is smooth enough for all of the degrees of freedom acting on it to be well-defined.
Once a local finite element space is defined, it is relatively straightforward to define a global finite
element space over a tessellation 7;,. One defines the global space to consist of functions whose
restrictions to each T € 7}, lie in the local space V(T) and that also satisfy any required continuity
requirements. Typically, the degrees of freedom for each local element are chosen such that if
the degrees of freedom on a common interface between two adjacent cells T and T’ agree, then a
function will satisfy the required continuity condition.

When constructing a global finite element space, it is common to construct a single reference
finite element (T,V, L) and map it to each cell in the mesh. As we are dealing with a simplicial
geometry, the mapping between T and each T € 7}, will be affine. Originally defined for the
purpose of error estimation, but also useful for computation, is the notion of affine equivalence. Let
Fr: T — T denote this affine map. Let v € V. The pullback associated with the affine map is given
by F*(v)(%) = v(Fr(%)) for all £ € T. Given a functional Z € V', its pushforward acts on a function
inv € Vby Fi(0)(v) = U(F*(v)).

Definition 4.2 (Affine equivalence) Let (T, v, ﬁ) and (T,V, L) be finite elements and Fr : T — Tbe
a non-degenerate affine map. The finite elements are affine equivalent if F*(V) = V and F.(L) = L.

One consequence of affine equivalence is that only a single nodal basis needs to be constructed, and
then it can be mapped to each cell in a mesh. Moreover, this idea of equivalence can be extended
to some vector-valued elements when certain kinds of Piola mappings are used. In this case, the
affine map is the same, but the pull-back and push-forward are appropriately modified. It is also
worth stating that not all finite elements generate affine equivalent or Piola-equivalent families.
The Lagrange elements are affine equivalent in H', but the Hermite and Argyris elements are
not. The Raviart-Thomas elements are Piola-equivalent in H(div), while the Mardal-Tai-Winther
elements are not.

A dictionary of the finite elements discussed in this chapter is presented in Table 4.1.

4.2 Notation

e The space of polynomials of degree up to and including g on a domain T C R? is denoted
by P;(T) and the corresponding d-vector fields by [P, (T)]“.

¢ A finite element space E is called V-conforming if E C V. If not, it is called (V-) nonconform-
ing.

¢ The elements of £ are usually referred to as the degrees of freedom of the element (T,V, L).
When describing finite element families, it is usual to illustrate the degrees of freedom with a
certain schematic notation. We summarize the notation used here in the list below and in
Figure 4.1.



4.2. NOTATION

Finite element

| Short name | Sobolev space | Conforming |

(Quintic) Argyris ARG H? Yes
Arnold-Winther AW H(div;S) Yes
Brezzi-Douglas—Marini BDM H(div) Yes
Crouzeix—Raviart CR H! No
Discontinuous Lagrange DG L? Yes
(Cubic) Hermite HER H? No
Lagrange CG H! Yes
Mardal-Tai-Winther MTW H'/H(div) No/Yes
(Quadratic) Morley MOR H? No
Nédélec first kind NED! H(curl) Yes
Nédélec second kind NED? H(curl) Yes
Raviart-Thomas RT H(div) Yes

Table 4.1: A dictionary of the finite elements discussed in this chapter, including full name and the respective
(highest order) Sobolev space to which the elements are conforming/nonconforming.

Point evaluation. A black sphere (disc) at a point x denotes point evaluation of the function
v at that point:

t(v) = v(x). (4-2)

For a vector valued function v with d components, a black sphere denotes evaluation of
all components and thus corresponds to d degrees of freedom.

Evaluation of all first derivatives. A dark gray, slightly larger sphere (disc) at a point x
denotes point evaluation of all first derivatives of the function v at that point:

dv(x)

li(v) = o i=1,...,4d, (4-3)
1

thus corresponding to d degrees of freedom.

Evaluation of all second derivatives. A light gray, even larger sphere (disc) at a point x
denotes point evaluation of all second derivatives of the function v at that point:

9%v(x .

thus corresponding to d(d + 1) /2 degrees of freedom.

Evaluation of directional component. An arrow at a point x in a direction n denotes evalu-
ation of the vector-valued function v in the direction 7 at the point x:

£(0) = o(x) - n. (45)

The direction n is typically the normal direction of a facet, or a tangent direction of
a facet or edge. We will sometimes use an arrow at a point to denote a moment
(integration against a weight function) of a component of the function over a facet or
edge.

Evaluation of directional derivative. A black line at a point x in a direction n denotes
evaluation of the directional derivative of the scalar function v in the direction n at the
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® | point evaluation Figure 4.1: Summary of notation used
for degrees of freedom. In this exam-
i o ple, the three concentric spheres indi-
evaluation of all second derivatives cate a set of three degrees of freedom

/| evaluation of directional component defined by interior moments.
~ | evaluation of directional derivative

evaluation of all first derivatives
P

O evaluation of interior moments

point x:

l(v) = Vo(x) - n. (4.6)

Evaluation of interior moments. A set of concentric spheres (discs) denotes interior moment
degrees of freedom; that is, degrees of freedom defined by integration against a weight
function over the interior of the domain T. The spheres are colored white-black-white
etc.

We note that, for some of the finite elements presented below, the literature will use different
notation and numbering schemes, so that our presentation may be quite different from the original
presentation of the elements. In particular, the families of Raviart-Thomas and Nédélec spaces of
the first kind are traditionally numbered from 0, while we have followed the more recent scheme
from the finite element exterior calculus of numbering from 1.

4.3 H! finite elements

The space H! is fundamental in the analysis and discretization of weak forms for second-order
elliptic problems, and finite element subspaces of H' give rise to some of the best-known finite
elements. Typically, these elements use C’ approximating spaces, since a piecewise smooth function
on a bounded domain is H' if and only if it is continuous [ , , Theorem 5.2]. We consider
the classic Lagrange element, as well as a nonconforming example, the Crouzeix—Raviart space. It
is worth noting that the Hermite element considered later is technically only an H' element, but
can be used as a nonconforming element for smoother spaces. Also, smoother elements such as
Argyris may be used to discretize H!, although this is less common in practice.

4.3.1 The Lagrange element

The best-known and most widely used finite element is the 7; Lagrange element. This lowest-
degree triangle is sometimes called the Courant triangle, after the seminal paper by [ ]
in which variational techniques are used with the P triangle to derive a finite difference method.
Sometimes this is viewed as “the” finite element method, but in fact there is a whole family of
elements parametrized by polynomial degree that generalize the univariate Lagrange interpolating
polynomials to simplices, boxes, and other shapes. The Lagrange elements of higher degree offer
higher order approximation properties. Moreover, these can alleviate locking phenomena observed
when using linear elements or give improved discrete stability properties; see

[1973], [1985].
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Figure 4.2: The linear Lagrange inter-
val, triangle and tetrahedron.

Definition 4.3 (Lagrange element) The Lagrange element (CG) is defined for q = 1,2,... by

T € {interval, triangle, tetrahedron}, (4.7)
V =Py(T), (4-8)
ti(v) =o(x"), i=1,...,n(q), (4-9)

where {xi}:’z(z) is an enumeration of points in T defined by

i/q, 0<i<yg, T interval,
X = (i/q,i/9), 0<i+j<g, T triangle, (4.10)
(i/q,j/9,k/q), 0<i+j+k<g, T tetrahedron.

The dimension of the Lagrange finite element thus corresponds to the dimension of the complete
polynomials of degree g on T and is

q+1, T interval,
n(g) =< 3qa+1)(g+2), T triangle, (4.11)
(q+1)(qg+2)(q+3), T tetrahedron.

The definition above presents one choice for the set of points {x'}. However, this is not the only
possible choice. In general, it suffices that the set of points {x'} is unisolvent and that the boundary
points are located so as to allow C° assembly. The point set must include the vertices, g — 1
points on each edge, w points per face, and so forth. The boundary points should be
placed symmetrically so that the points on adjacent cells match. While numerical conditioning
and interpolation properties can be dramatically improved by choosing these points in a clever
way [Warburton, 2005], for the purposes of this chapter the points may be assumed to lie on an
equispaced lattice; see Figures 4.2, 4.3 and 4.4.

Letting H’% denote the interpolant defined by the above degrees of freedom of the Lagrange
element of degree g, we have from Brenner and Scott [2008] that

+1
||M—H3~M||H1(T) <Cth|u|H,,+1(T), ||M—Hun||L2(T) gCh% |u|H’7+1(T)‘ (4.12)

where, here and throughout, C denotes a generic positive constant not depending on ht but
depending on the degree g and the aspect ratio of the simplex, and u is a sufficiently regular
function (or vector-field).
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h
N

Figure 4.3: The Lagrange CG, triangle
forg=1,2,3,4,5,6.

i
B



4.3. H' FINITE ELEMENTS 101

Figure 4.4: The Lagrange CG, tetrahe-
dron forg =1,2,3,4,5,6.
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Figure 4.5: Illustration of the Crouzeix—
Raviart elements on triangles and tetra-
hedra. The degrees of freedom are
point evaluation at the midpoint of
each facet.

Vector-valued or tensor-valued Lagrange elements are usually constructed by using a Lagrange
element for each component.

4.3.2  The Crouzeix—Raviart element

The Crouzeix—Raviart element was introduced in Crouzeix and Raviart [1973] as a technique
for solving the stationary Stokes equations. The global element space consists of piecewise
linear polynomials, as for the linear Lagrange element. However, in contrast to the Lagrange
element, the global basis functions are not required to be continuous at all points; continuity
is only imposed at the midpoint of facets. The element is hence not H'-conforming, but it is
typically used for nonconforming approximations of H! functions (and vector fields). Other
applications of the Crouzeix—Raviart element includes linear elasticity [[Hansbo and Larson, 2003]
and Reissner-Mindlin plates [Arnold and Falk, 1989].

Definition 4.4 (Crouzeix—Raviart element) The (linear) Crouzeix—Raviart element (CR) is defined by

T € {triangle, tetrahedron}, (4.13)
V="P(T), (4.14)
ti(v) =0o(x'), i=1,...,n (4.15)

where {x'} are the barycenters (midpoints) of each facet of the domain T.
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The dimension of the Crouzeix—Raviart element on T C R? is thus

n=d+1 (4.16)
ford =2,3.
Letting It denote the interpolation operator defined by the degrees of freedom, the Crouzeix—
Raviart element interpolates as the linear Lagrange element [ , , Chapter 3.1]:
| = Torul | gy < Chrlulper),  ||u—Trul|p2ry < CHE[ul ). (4-17)

Vector-valued Crouzeix—Raviart elements can be defined by using a Crouzeix—Raviart element for
each component, or by using facet normal and facet tangential components at the midpoints of
each facet as degrees of freedom. The Crouzeix—Raviart element can be extended to higher odd
degrees (3 =3,5,7 ...) [ , ].

4.4 H(div) finite elements

The Sobolev space H(div) consists of vector fields for which the components and the weak
divergence are square-integrable. This is a weaker requirement than for a d-vector field to be in
[H']? (for d > 2). This space naturally occurs in connection with mixed formulations of second-
order elliptic problems, porous media flow, and elasticity equations. For a finite element family to
be H(div)-conforming, each component need not be continuous, but the normal component must
be continuous. In order to ensure such continuity, the degrees of freedom of H(div)-conforming
elements usually include normal components on element facets.

The two main families of H(div)-conforming elements are the Raviart-Thomas and Brezzi-Douglas—
Marini elements. These two families are described below. In addition, the Arnold-Winther element
discretizing the space of symmetric tensor fields with square-integrable row-wise divergence and
the Mardal-Tai-Winther element are included.

4.4.1  The Raviart-Thomas element

The Raviart-Thomas element was introduced by [ ]. It was the first
element to discretize the mixed form of second-order elliptic equations on triangles. Its element
space V is designed so that it is the smallest polynomial space V C P;(T), for g = 1,2,..., from
which the divergence maps onto P;_1(T). Shortly thereafter, it was extended to tetrahedra and
boxes by [ ]. It is therefore sometimes referred to as the Raviart-Thomas—Nédélec
element. Here, we label both the two- and three-dimensional versions as the Raviart-Thomas
element.

The definition given below is based on the one presented by [ ] (and

[ ]). The original Raviart-Thomas paper used a slightly different form. Moreover, Raviart and
Thomas originally started counting at 4 = 0. Hence, the lowest degree element is traditionally
called the RTj element. For the sake of consistency, such that a finite element of polynomial degree
q is included in P;(T), we here label the lowest degree elements by g = 1 instead (as did also
Nédélec).

Definition 4.5 (Raviart-Thomas element) The Raviart-Thomas element (RT,) is defined forq = 1,2,...
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Figure 4.6: Illustration of the degrees

of freedom for the first, second and

third degree Raviart-Thomas elements

on triangles and tetrahedra. The de-
pr—

grees of freedom are moments of the

— .

normal component against Pq_l on

facets (edges and faces, respectively)

and, for the higher degree elements,

interior moments against [P, _,]4. Al-
ternatively, as indicated in this illustra-

tion, the moments of normal compo-
ne.nts may be replaced by point evalu-
ation of normal components.

pram—

— @

T € {triangle, tetrahedron}, (4.18)
V= [Pq—l(T)]d +xPy-1(T), (4.19)

ro { ff v-npds, forasetof basis functions p € Py_1(f) for each facet f,

Jrv-pdx,  foraset of basis functions p € [Py_o(T)]* for q > 2. (4-20)

As an example, the lowest degree Raviart-Thomas space on triangles is a three-dimensional space
and consists of vector fields of the form

v(x) = a+ Bx, (4.21)

where « is a vector-valued constant, and B is a scalar constant.
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The dimension of RTj is

_ (g+2), T triangle,
n(g) = { 39(q+1)(9+3), T tetrahedron. (422)
Letting H% denote the interpolation operator defined by the degrees of freedom above for g =
1,2,..., we have that | , , Chapter IIL3]
[ =TTl | aivyry < CHEJul oy, |1 — T2y < Chful o). (4-23)
(T) (T)

4.4.2  The Brezzi—-Douglas—Marini element

The Brezzi-Douglas—Marini element was introduced by Brezzi, Douglas and Marini in two di-
mensions (for triangles) in [ ]. The element can be viewed as an alternative
to the Raviart-Thomas element using a complete polynomial space. It was later extended to
three dimensions (tetrahedra, prisms and cubes) in [ ] and [ ]. The
definition given here is based on that of [ ]

The Brezzi-Douglas-Marini element was introduced for mixed formulations of second-order
elliptic equations. However, it is also useful for weakly symmetric discretizations of the elastic
stress tensor; see [ 1, [ ].

Definition 4.6 (Brezzi-Douglas-Marini element) The Brezzi-Douglas—Marini element (BDM,) is de-
fined forq =1,2,... by

T € {triangle, tetrahedron}, (4-24)
V= [Py(T)]", (4-25)

- { / Fu-np ds,  for a set of basis functions p € Py(f) for each facet f,

Jrv-pdx,  foraset of basis functions p € NED;_l(T) forg > 2. (4.26)

where NED! refers to the Nédélec H(curl) elements of the first kind, defined below in Section 4.5.1.

The dimension of BDM, is

[ (g+1)(g+2), T triangle,
n(g) = { 1(q+1)(g+2)(qg+3), T tetrahedron. 4-27)
Letting IT}. denote the interpolation operator defined by the degrees of freedom for g = 1,2,...,
we have that [ , , Chapter I11.3]
1
|| = T03 gy ry < CHElutlggriry, = Thullairy < CHE Julggin(ry: (4:28)

A slight modification of the Brezzi-Douglas—Marini element constrains the element space V by
only allowing normal components on the boundary of polynomial degree 4 — 1 (rather than the
full polynomial degree g). Such an element was suggested on rectangles by [ 1
and the triangular analogue was given in [ ]. In similar spirit, elements with
differing degrees on the boundary suitable for varying the polynomial degree between triangles
were derived in [ 1.
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Figure 4.7: Illustration of the first, sec-
ond and third degree Brezzi-Douglas-
Marini elements on triangles and
tetrahedra. The degrees of freedom
are moments of the normal compo-
nent against P; on facets (edges and
faces, respectively) and, for the higher
degree elements, interior moments
against NED! ;. Alternatively, as in-
dicated in this illustration, the mo-
ments of normal components may be
replaced by point evaluation of normal
components.



4.4. H(DIV) FINITE ELEMENTS 107

Figure 4.8: Illustration of the Mardal-
Tai-Winther element. The degrees of
freedom are two moments of the nor-
mal component on each facet and one
moment of the tangential component e
on each facet. In this figure, the mo-
ments of normal components are illus-
trated by point evaluation of normal 4_'

components.

1F 1
4.4.3 The Mardal-Tai-Winther element

The Mardal-Tai-Winther element was introduced in [ ] as a finite element suitable
for the velocity space for both Darcy and Stokes flow in two dimensions. In the Darcy flow
equations, the velocity space only requires H(div)-regularity. Moreover, discretizations based
on H'-conforming finite elements are typically not stable. On the other hand, for the Stokes
equations, the velocity space does stipulate H'-regularity. The Mardal-Tai-Winther element is
H(div)-conforming, but H'-nonconforming. The element was extended to three dimensions in

[ ], but we only present the two-dimensional case here.

Definition 4.7 (Mardal-Tai-Winther element) The Mardal-Tai—Winther element (MTW) is defined

by
T = triangle, (4.29)
V = {v € [P3(T))?, such that divo € Py(T) and v - n|¢ € P1(T) for each facet f}, (4-30)
£ / fgoonp ds, for a set of basis functions p € P1(f) for each facet f,
N ff v-tds,  for each facet f. 4-31)

The dimension of MTW is
n=09. (4.32)

Letting I17 denote the interpolation operator defined by the degrees of freedom, we have that

H”—HT”HHl(T) < ChT|u|H2(T)' [t = TIru [ aiv) (1) < ChT|”|H2(T)r ||”—HT“HL2(T) < Ch2T|“|H2(T)-
(4-33)

4.4.4 The Arnold—Winther element

The Arnold-Winther element was introduced by [ ]. This paper presented
the first stable mixed (non-composite) finite element for the stress-displacement formulation
of linear elasticity. The finite element used for the stress space is what is presented as the
Arnold-Winther element here. This finite element is a symmetric tensor element that is row-wise
H(div)-conforming. The finite element was introduced for a hierarchy of polynomial degrees and
extended to three-dimensions in [ ] and [ ], but we only
present the lowest degree two-dimensional case here.
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Figure 4.9: Illustration of the Arnold-
Winther element. The 24 degrees of
freedom are point evaluation at the
vertices, the two first moments of the
normal component of each row of the
tensor field on each facet, and three
interior moments.

Definition 4.8 (Arnold-Winther element) The (lowest degree) Arnold—Winther element (AW) is de-

fined by
T = triangle, (4.34)
V = {v e P3(T;9) : dive € P;(T;R?)}, (4.35)
v(xk)ijr for 1 < i< j<2at each vertex x*
L= ff 212:1 vinjpds, fora set of basis functions p € Py (f), oneach facetf, 1 <i <2, (4.36)
Jrvijdx, for1<i<j<2

The dimension of AW is
n =24 (4-37)

Letting I'I7 denote the interpolation operator defined by the degrees of freedom, we have that

||t = Tzl | aivy () < CHElulpsery, M —Trul2ery < Chglulps - (4.38)

4.5 H(curl) finite elements

The Sobolev space H(curl) arises frequently in problems associated with electromagnetism. The
Nédélec elements, also colloquially referred to as edge elements, are much used for such problems,
and stand as a premier example of the power of “nonstandard” (meaning not lowest-degree
Lagrange) finite elements [ , , ]. For a piecewise polynomial to be H(curl)-
conforming, the tangential component must be continuous. Therefore, the degrees of freedom for
H (curl)-conforming finite elements typically include tangential components.

There are four families of finite element spaces due to Nédélec, introduced in the papers

[ ] and [ ]. The first (1980) paper introduced two families of finite element spaces
on tetrahedra, cubes and prisms: one H(div)-conforming family and one H(curl)-conforming
family. These families are known as Nédélec H(div) elements of the first kind and Nédélec H(curl)
elements of the first kind, respectively. The H(div) elements can be viewed as the three-dimensional
extension of the Raviart-Thomas elements. (These are therefore presented as Raviart-Thomas
elements above.) The first kind Nédélec H(curl) elements are presented below.

The second (1986) paper introduced two more families of finite element spaces: again, one H(div)-
conforming family and one H(curl)-conforming family. These families are known as Nédélec
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H(div) elements of the second kind and Nédélec H(curl) elements of the second kind, respectively.
The H(div) elements can be viewed as the three-dimensional extension of the Brezzi-Douglas—
Marini elements. (These are therefore presented as Brezzi-Douglas-Marini elements above.) The
second kind Nédélec H(curl) elements are presented below.

In his two classic papers, Nédélec considered only the three-dimensional case. However, one
can also define a two-dimensional curl, and two-dimensional H(curl)-conforming finite element
spaces. We present such elements as Nédélec elements on triangles here. Although attributing
these elements to Nédélec may be dubious, we include them for the sake of completeness.

In many ways, Nédélec’s work anticipates the recently introduced finite element exterior calculus
presented in [ |, where the first kind spaces appear as P, AF spaces and the

second kind as Pqu. Moreover, the use of a differential operator (the elastic strain) in
[ ] to characterize the function space foreshadows the use of differential complexes in

[ I.

4.5.1 The Nédélec H(curl) element of the first kind
Definition 4.9 (Nédélec H(curl) element of the first kind) For g =1,2,..., define the space
So(T) ={s € [P4(T))" : s(x)-x=0 VxeT} (4-39)

The Nédélec element of the first kind (NED;) is defined for g = 1,2,... in two dimensions by

T = triangle, (4.40)

V = [Pya(T))? + 84(T), (4-41)

r— J,v-tpds, forasetof basis functions p € Py_1(e) for each edge e, (4.42)
“\ Jyo-pdx,  foraset of basis functions p € [Py—o(T)]?, forq > 2, 44

where t is the edge tangent; and in three dimensions by

T = tetrahedron, (4-43)
V= [qul(T)]s + Sq(T), (4.44)
v-tpdl, or a set of basis functions p € P,_1(e) for each edge e
e UCEP pEry 8!

L= ff vxn-pds, forasetof basis functions p € [Py_o(f)]? for each face f, forq > 2, (4.45)
Jrv-pdyx, for a set of basis functions p € [Py_3]>, for q = 3.

The dimension of NED}7 is

_f q(g+2), T triangle,
n(g) = { 3q(qg+2)(q+3), T tetrahedron. (4-46)

Letting IT]. denote the interpolation operator defined by the degrees of freedom above, we have
that [ , , Theorem 2]

[ = T | curyr) < Chplulpgerry, | —T0ull2(ry < ChT |l o). (4-47)
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AN
b b

Figure 4.10: Illustration of first, sec-
ond and third degree Nédélec H(curl)
elements of the first kind on trian-
gles and tetrahedra. Note that these
elements may be viewed as rotated
Raviart-Thomas elements. For the first
degree Nédélec elements, the degrees
of freedom are the average value over
edges or, alternatively, the value of the
tangential component at the midpoint
of edges. Hence the term “edge ele-
ments”.
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Figure 4.11: Illustration of first, sec-
ond and third degree Nédélec H(curl)
elements of the second kind on trian-
gles. Note that these elements may
be viewed as rotated Brezzi-Douglas—
Marini elements.

4.5.2  The H(curl) Nédélec element of the second kind

111

Definition 4.10 (Nédélec H(curl) element of the second kind) The Nédélec element of the second

kind ( NED%) is defined for g = 1,2,... in two dimensions by

T = triangle,

V=[Py(T)%,

o J,v-tpds, foraset of basis functions p € Py(e) for each edge e,
| Jpv-pdx,  foraset of basis functions p € RT;_1(T), for q > 2.

where t is the edge tangent, and in three dimensions by

T = tetrahedron,
V= [Py(T)P,

{ J,v-tpdl,  foraset of basis functions p € Py(e) for each edge e,
E =

J FU pds,  fora set of basis functions p € RT,_1(f) for each face f, for q > 2

Jrv-pdx,  foraset of basis functions p € RT,_»(T), for q > 3.
The dimension of NED2q is

n(q) = (a+1)(q+2), T triangle,
Hg+1)(q+2)(q+3), T tetrahedron.

(448)
(4-49)

(4.50)

(4.51)
(4.52)

(4-53)

(4-54)

Letting HqT denote the interpolation operator defined by the degrees of freedom above, we have

that [Nédélec, 1986, Proposition 3]

+1
[Ju — HunHH(curl)(T) < Ch‘%|“|Hq+l(T): [Ju — H%“HLZ(T) < Ch% |”|Hq+1(T)-

(4-55)
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Figure 4.12: Illustration of the first de-
gree Nédélec H(curl) elements of the
second kind on tetrahedra.

4.6 L? elements

By L? elements, one usually refers to finite element spaces where the elements are not in C°.
Such elements naturally occur in mixed formulations of the Poisson equation, Stokes flow, and
elasticity. Alternatively, such elements can be used for nonconforming methods imposing the
desired continuity weakly instead of directly. The discontinuous Galerkin (DG) methods provide a
typical example. In this case, the numerical flux of element facets is assembled as part of the weak
form; numerous variants of DG methods have been defined with different numerical fluxes. DG
methods were originally developed for hyperbolic problems but have been successfully applied
to many elliptic and parabolic problems. Moreover, the decoupling of each individual element
provides an increased opportunity for parallelism and hp-adaptivity.

4.6.1  Discontinuous Lagrange

Definition 4.11 (Discontinuous Lagrange element) The discontinuous Lagrange element (DG,) is
defined for ¢ =0,1,2,... by

T € {interval, triangle, tetrahedron}, (4.56)
V= Py(T), (4-57)
li(v) = v(xh), (4-58)

where {x"}:.l:(ql) is an enumeration of points in T defined by

i/q, 0<i<y, T interval,
x=2 (i/q,j/9) 0<i+j<yg T triangle, (4-59)
(i/q,j/q9,k/q) 0<i+j+k<g, T tetrahedron.

The dimension of DG is

1)(g+2), T triangle, (4.60)

qg+1, T interval,

1

2

: 1)(g+2)(g+3), T tetrahedron.
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Figure 4.13: Illustration of the zeroth,
first, second and third degree discon-
tinuous Lagrange elements on trian-
gles and tetrahedra. The degrees of
freedom may be chosen arbitrarily as
long as they span the dual space V'.
Here, the degrees of freedom have
been chosen to be identical to those of
the standard Lagrange finite element,
with the difference that the degrees of
freedom are viewed as internal to the
element.

Figure 4.14: All degrees of freedom
of a discontinuous Lagrange finite
element are internal to the element,
which means that no global continu-
ity is imposed by these elements. This
is illustrated here for discontinuous
quadratic Lagrange elements.

113
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Letting H‘% denote the interpolation operator defined by the degrees of freedom above, the
interpolation properties of the DG, elements of degree g are:

1
||M - H%”HLZ(T) < Ch%—i_ ‘ulHq‘*l(T)‘ (461)

4.7 H? finite elements

The H? elements are commonly used in the approximation of fourth-order problems, or for other
spaces requiring at least C! continuity. Due to the restrictive nature of the continuity requirement,
conforming elements are often of a high polynomial degree, but lower degree nonconforming
elements have proven to be successful. Therefore, we here consider the conforming Argyris element
and the nonconforming Hermite and Morley elements.

4.7.1  The Argyris element

The Argyris element [ , , , ] is based on the space Ps(T) of quintic
polynomials over some triangle T. It can be pieced together with full C! continuity between
elements and C? continuity at the vertices of a triangulation.

Definition 4.12 (Argyris element) The (quintic) Argyris element (ARGs) is defined by

T = triangle, (4.62)

V=P, (4.63)
o(x'), for each vertex x',

r— grad v(x") ir for each vertex x', and each component j, (064)

~ | D*u(x!) ks for each vertex x, and each component jk,j < k, 4-64

grado(m') -n,  for each edge midpoint m'.

The dimension of ARGs is
n =21. (4.65)

Letting IlT denote the interpolation operator defined by the degrees of freedom above, the
interpolation properties of the (quintic) Argyris elements are [ , , Chapter I1.6]:

| = Tlrul [y < Chilulger),  u—TIrul gy < Chilulger), ||u—Trul|p2r) < ChéT(|“|61g;(T)-

4.
The normal derivatives in the dual basis for the Argyris element prevent it from being affine-
interpolation equivalent. This prevents the nodal basis from being constructed on a reference cell
and affinely mapped. Recent work by [2008] develops a transformation that
corrects this issue and requires less computational effort than directly forming the basis on each
cell in a mesh. The Argyris element can be generalized to polynomial degrees higher than quintic,
still giving C! continuity with C? continuity at the vertices [ ,

4.7.2  The Hermite element

The Hermite element generalizes the classic cubic Hermite interpolating polynomials on the line
segment [ , ]. Hermite-type elements appear in the finite element literature almost from
the beginning, appearing at least as early as the classic paper by [ ]. They
have long been known as useful Cl—nonconforming elements [ , , , ]. Under
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Figure 4.15: The quintic Argyris trian-
gle. The degrees of freedom are point
evaluation, point evaluation of both
first derivatives and point evaluation
of all three second derivatives at the
vertices of the triangle, and evaluation
of the normal derivative at the mid-
point of each edge.

affine mapping, the Hermite elements form affine-interpolation equivalent families [

, 2008].
On the triangle, the space of cubic polynomials is ten-dimensional, and the ten degrees of freedom
for the Hermite element are point evaluation at the triangle vertices and barycenter, together
with the components of the gradient evaluated at the vertices. The generalization to tetrahedra is
analogous.

Definition 4.13 (Hermite element) The (cubic) Hermite element (HER) is defined by

T € {interval, triangle, tetrahedron}, (4.67)

V = P4(T), (4-68)
o(x'), for each vertex x’:,

L=< grad v(xi) j,  for each vertex x', and each component j, (4.69)
v(b), for the barycenter b (of the faces in 3D).

The dimension of HER is

10, T triangle,
= { 8 (4.70)

“ | 20, T tetrahedron.

Letting IlT denote the interpolation operator defined by the degrees of freedom above, the
interpolation properties of the (cubic) Hermite elements are:

||t = Thrul | py < Chplulpgsry, [ = Trul|2ep) < Ch[ulgar)- (4-71)

Unlike the cubic Hermite functions on a line segment, the cubic Hermite triangle and tetrahedron
cannot be patched together in a fully C! fashion. The cubic Hermite element can be extended to
higher degree [ / ]

4.7.3 The Morley element

The Morley triangle defined in [ ] is a simple H2-nonconforming quadratic element
that is used in fourth-degree problems. The function space V is simply P, (T), the six-dimensional
space of quadratics. The degrees of freedom consist of pointwise evaluation at each vertex and the
normal derivative at each edge midpoint. It is interesting to note that the Morley triangle is neither
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Figure 4.16: The cubic Hermite trian-
gle and tetrahedron. The degrees of
freedom are point evaluation at the
vertices and the barycenter, and eval-
uation of both first derivatives at the
vertices.
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Figure 4.17: The quadratic Morley tri-
angle. The degrees of freedom are
point evaluation at the vertices and
evaluation of the normal derivative at
the midpoint on each edge.

C! nor even CY, yet it is suitable for fourth-order problems, and is the simplest known element for
this purpose.

The Morley element was first introduced to the engineering literature by [ , ]. In
the mathematical literature, [ ] considered it in the context of the patch test
in a study of plate-bending elements. Recent applications of the Morley element include

[2008], [2006].

Definition 4.14 (Morley element) The (quadratic) Morley element (MOR) is defined by

T = triangle, (4.72)

V =Py(T), (4-73)
_ v(xi), for each vertex Xt

L= { gradv(m') -n, for each edge midpoint m'. 474)

The dimension of the Morley element is

n=6. (4.75)
Letting Il7 denote the interpolation operator defined by the degrees of freedom above, the
interpolation properties of the (quadratic) Morley elements are:

| _HTuHHl(T) < Ch2T|”|H3(T)r [|u _HTMHLZ(T) < ChBT\“|H3(T)- (4.76)

4.8 Enriching finite elements
If U, V are linear spaces, one can define a new linear space W by
W={w=u+v:uecl,veV} (4.77)

Here, we choose to call such a space W an enriched space.

The enrichment of a finite element space can lead to improved stability properties, especially
for mixed finite element methods. Examples include the enrichment of the Lagrange element
with bubble functions for use with Stokes equations or enriching the Raviart-Thomas element for
linear elasticity [ , ,b]. Bubble functions have since been used for many different
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applications. We here define a bubble element for easy reference. Notable examples of the use of a
bubble element include:

or the Stokes equations. In the lowest degree case, the linear vector Lagrange element is enriched with the cubic
vector bubble element for the velocity approximation [ , I

imetric linear elasticity. Each row of the stress tensor is approximated by the lowest degree Raviart-Thomas element
enriched by the curl of the cubic bubble element [ , ].

Definition 4.15 (Bubble element) The bubble element (By) is defined for g > (d + 1) by

T € {interval, triangle, tetrahedron}, (4.78)
V ={vePyT) : vlor =0}, (4-79)
li(v) =o(x"), i=1,...,n(q). (4.80)

where {x"}?:('? is an enumeration of the points3 in T defined by

(i+1)/q, 0<i<qg—2, T interval,
x={ ((+1)/0,G+1)/q), 0<itj<q-3  Tiangle 481)
((i+1)/9,(G+1)/q,(k+1)/q), 0<i+j+k<qg—4, T tetrahedron.

The dimension of the Bubble element is

qg—1, T interval,
n(q) = %(q -2)(g—1), T triangle, (4.82)
5(0—3)(g—2)(g—1), T tetrahedron.

4.9 Finite element exterior calculus

It has recently been demonstrated that many of the finite elements that have been discovered or
invented over the years can be formulated and analyzed in a common unifying framework as
special cases of a more general class of finite elements. This new framework is known as finite
element exterior calculus and is summarized in [ ]. In finite element exterior
calculus, two finite element spaces P, AF(T) and Py AKX(T) are defined for general simplices T of

dimension 4 > 1. The element Pqu(T) is the space of polynomial differential k-forms* on T with
degrees of freedom chosen to ensure continuity of the trace on facets. When these elements are
interpreted as regular elements, by a suitable identification between differential k-forms and scalar-
or vector-valued functions, one obtains a series of well-known elements for 0 < k < d < 3. In
Table 4.2, we summarize the relation between these elements and the elements presented above in
this chapter®.

3 Any other basis for the dual space of V will work just as well.

4A differential k-form w on a domain () maps each point x € () to an alternating k-form w, on the tangent space
T+ (Q)) of O at the point x. One can show that for d = 3, the differential k-forms correspond to scalar-, vector-, vector-,
and scalar-valued functions for k = 0,1,2,3 respectively. Thus, we may identify for example both P;A! and P;A% on a
tetrahedron with the vector-valued polynomials of degree at most g on the tetrahedron.

5The finite elements Pqu(T) and Pq’ Ak(T) have been implemented for general values of k, gand d =1,2,3,4,... as
part of the FEniCS Exterior package available from http://launchpad.net/exterior.
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k G
Py Py A
k|d=1 d=2 d=3 k| d=1 d=2 d=3
0] CGq CGy CG, 0] CGq CGyq CG,
1| DG, NEDz' NEDZ®" 1| DG,y NED}™ NEDp!
2| — DG, BDM, 2| — DG,_1 RT,
3 - — DGq 3 - - DGqfl

Table 4.2: Relationships between the finite elements Pq/\k and P; AF defined by finite element exterior
calculus and their more traditional counterparts using the numbering and labeling of this chapter.

4.10 Summary

In the table below, we summarize the list of elements discussed in this chapter. For brevity, we
include element degrees only up to and including g = 3. For higher degree elements, we refer to
the script dolfin-plot available as part of FEniCS, which can be used to easily plot the degrees of
freedom for a wide range of elements:

Bash code
$ dolfin-plot BDM tetrahedron 3
$ dolfin-plot Nlcurl triangle 4
$ dolfin-plot CG tetrahedron 5
Elements indicated with at (*) in the table below are fully supported by FEniCS.
Element family Notation Mlustration Dimension  Description

Ps (scalar); 3 point values,
3 x 2 derivatives, 3 x 3

intic) A i ARGs (2D
(Quintic) Argyris 5 (2D) second derivatives, 3 di-
rectional derivatives
P3(T;S) (matrix) with lin-
ear divergence; 3 X 3
Arnold-Winther AW (2D) point values, 12 normal

components, 3 interior
moments

Brezzi-Douglas—-Marini () BDM; (2D) components

[P2]? (vector); 9 normal
components, 3 interior
moments

Brezzi-Douglas—Marini () BDM,; (2D)

b& n=21
# n=24
m n==6 [P1]? (vector); 6 normal
jéﬁé n=12
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[P3]? (vector); 12 normal

Brezzi-Douglas—Marini () BDM3 (2D) Q n=20 components, 8 interior

moments

3 .

Brezzi-Douglas-Marini (x) BDM; (3D) ;&; n=12 [P1]° (vector); 12 normal

components

[P2]® (vector); 24 normal
Brezzi-Douglas—Marini () BDM; (3D) n =230 components, 6 interior

moments

[P3]® (vector); 40 normal
BreZZi—Douglas—Marini (*) BDM3 (3D) n =60 Components/ 20 interior

moments
Crouzeix-Raviart (x) CR; (2D) k n=23 Py (scalar); 3 point values
Crouzeix-Raviart (x) CR; (3D) ‘ n=4 Py (scalar); 4 point values
Discontinuous Lagrange () DGy (2D) k n=1 Py (scalar); 1 point value
Discontinuous Lagrange () DG; (2D) L n=3 Py (scalar); 3 point values
Discontinuous Lagrange () DG; (2D) L n==6 P, (scalar); 6 point values
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P53 (scalar); 10 point val-

Discontinuous Lagrange () DG3; (2D) L n =10 s

Discontinuous Lagrange () DGy (3D) ‘ n=1 Py (scalar); 1 point value

Discontinuous Lagrange () DG; (3D) ‘ n=4 ‘P1 (scalar); 4 point values
Discontinuous Lagrange () DG; (3D) ‘ n =10 erS (scalar); 10 point val-
Discontinuous Lagrange () DG3 (3D) ‘ n =20 fss (scalar); 20 point val-
(Cubic) Hermite HER (2D) [A n=10 :?i (;Cgiri:atsg;nt values,
e Hermie HHeeD b =2 et
Lagrange (x) CGy (2D) B n=3 Py (scalar); 3 point values
Lagrange (x) CG, (2D) & n==6 P, (scalar); 6 point values
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Lagrange (x)

CG; (2D)

P53 (scalar); 10 point val-
ues

Lagrange (x)

CG; (3D)

P1 (scalar); 4 point values

Lagrange (x)

CG2 (3D)

P> (scalar); 10 point val-
ues

Lagrange (x)

CGs (3D)

P> (scalar); 20 point val-
ues

Mardal-Tai-Winther

MTW (2D)

[P2]? (vector); with con-
stant divergence and lin-
ear normal components; 6
moments of normal com-
ponents, 3 moments of
tangential components

(Quadratic) Morley

MOR (2D)

P, (scalar); 3 point values,
3 directional derivatives

Nédélec 1st kind H(curl) (*)

NED! (2D)

[Po]? + S1 (vector); 3 tan-
gential components

Nédélec 1st kind H(curl) (*)

NED} (2D)

[771]2 + Sy (vector); 6 tan-
gential components, 2 in-
terior moments

Nédélec 1st kind H(curl) (x)

NED} (2D)

dAd4 E XA L4 4

[P2]? + S3 (vector); 9 tan-
gential components, 6 in-
terior moments
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[730]3 + S1 (vector); 6 tan-

terior moments

Nédélec 1st kind H(curl) (x)  NED} (3D) ‘ n==6 .
gential components
3 .
Nédélec 1st kind H(curl) (x)  NED} (3D) ‘ n =20 [P1] i =+ S (vector); 20 tan-
gential components
/ _ ) [P2]3 + S5 (vector); 42 tan-
Nédélec 1st kind H(curl) (*)  NEDj (3D) n =45 gential components, 3 in-
terior moments
2 . :
Nédélec 2nd kind H(curl) (+)  NED? (2D) k n==6 [P1]* (vector); 6 tangential
components
- . , [P2]? (vector); 9 tangen-
Nédélec 2nd kind H(curl) (x)  NEDj (2D) n=12 tial components, 3 interior
moments
- . , [P3]? (vector); 12 tangen-
Nédélec 2nd kind H(curl) (x)  NEDj (2D) n =20 tial components, 8 interior
moments
3 .
Nédélec 2nd kind H(curl) ()  NED? (3D) n=12 [Pl] (vector); 12 tangen-
tial components
2 i
Raviart-Thomas (x) RT; (2D) ‘D; n=23 [Po)” + xPy_(vector); 3
normal components
Pi]? + xP; (vector); 6
| 7]
Raviart-Thomas () RT; (2D) n=38 normal components, 2 in-
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Raviart-Thomas ()

RT; (2D)

[P2]> + xP> (vector); 9
normal components, 6 in-
terior moments

Raviart-Thomas ()

RT; (3D)

[Po]® + xPy (vector); 4
normal components

Raviart-Thomas ()

RT> (3D)

[P1]® + xP; (vector); 12
normal components, 3 in-
terior moments

Raviart-Thomas ()

RT; (3D)

n=15
n==4
n=15
n =36

[P2]3 + xP, (vector); 24
normal components, 12
interior moments




5 Constructing general reference finite elements

By Robert C. Kirby and Kent-Andre Mardal

This chapter describes the mathematical framework for constructing a general class of finite
elements on reference domains. This framework is used by both the FIAT and SyFi projects, see
the Chapters 14 and 16, respectively. Our goal is to provide a framework by which simplicial finite
elements with very complicated bases can be constructed automatically. We work from the classic
Ciarlet definition of the finite element and its “nodal” basis (an abstract notion far more general
and powerful than standard node-oriented Lagrange polynomials).
To date, our methodology does not include spline-type spaces such as are becoming widely popular
in isogeometric analysis [ , ], nor does it entirely address XFEM [ ,
] or hp-type methods [ , ]. However, in isogeometric analysis, the basis functions
are readily defined by simple recurrence relations from the theory of splines, so a tool like FIAT
or SyFi is not necessary. XFEM typically works by enriching existing finite element spaces with
special basis functions to capture singular behavior — our approach can provide the regular basis
but not the “extra” functions. Finally, handling the constraints imposed in hp methods is possible,
but unwieldy, with our methodology, but tetrahedral hip bases are available [ ,
]. We return to some of these issues later.

5.1 Background

The finite element literature contains a huge collection of approximating spaces and degrees of
freedom, many of which are surveyed in Chapter 4. Some applications, such as Cahn-Hilliard
and other fourth-order problems, can benefit from very smooth finite element bases, while porous
media flow requires vector fields discretized by piecewise polynomial functions with only normal
components continuous across cell boundaries. Many problems in electromagnetism call for

the tangentially continuous vector fields obtained by using Nédélec elements [ , ,
]. Many elements are carefully designed to satisfy an inf-sup condition [ ,
, , ], originally developed to explain stability of discretizations of

incompressible flow problems. Additionally, some problems call for low-order discretizations,
while others are effectively solved with high-order polynomials.

While the automatic generation of computer programs for finite element methods requires one to
confront the panoply of finite element families found in the literature, it also provides a pathway
for wider employment of Raviart-Thomas, Nédélec, and other difficult-to-program elements.
Ideally, one would like to describe the diverse finite element spaces at an abstract level, whence a
computer code discerns how to evaluate and differentiate their basis functions. Such goals are in
large part accomplished by the FIAT and SyFi projects, whose implementations are described in
the chapters 14 and 16.
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Projects like FIAT and SyFi may ultimately remain mysterious to the end user of a finite element
system, as interactions with finite element bases are typically mediated through tools that construct
the global finite element operators. The end user will typically be satisfied if two conditions are
met. First, a finite element system should support the common elements used in the application
area of interest. Second, it should provide flexibility with respect to order of approximation.

It is entirely possible to satisfy many users by a priori enumerating a list of finite elements and
implement only those. At certain times, this would even seem ideal. For example, after the rash of
research that led to elements such as the Raviart-Thomas-Nédélec and Brezzi-Douglas—Marini
families, development of new families slowed considerably. Then, more recent work lead forth
by Arnold, Falk, and Winther in the context of exterior calculus has not only led to improved
understanding of existing element families, but has also brought a new wave of elements with
improved properties, see [ ] for an overview. A generative system for finite
element bases can far more readily assimilate these and future developments. Automation also
provides generality with respect to the order of approximation that standard libraries might not
otherwise provide. Finally, the end-user might even easily define his own new element and test its
numerical properties before analyzing it mathematically.

In the present chapter, we describe the mathematical formulation underlying such projects as
FIAT, SyFi and Exterior [ , ]. This formulation starts from definitions of finite
elements as given classically by [ ]. It then uses basic linear algebra to construct the
appropriate basis for an abstract finite element in terms of polynomials that are easy to implement
and well-behaved in floating point arithmetic. We focus on constructing nodal bases for a single,
fixed reference element. As we will see in the Chapters 16 and 12, form compilers such as FFC
and SFC will work in terms of this single reference element.

Other approaches exist in the literature, such as the hierarchical bases studied by [ ]
and extended to H(curl) and H(div) spaces in work such as [ ]. These
approaches can provide greater flexibility for refining the mesh and polynomial degree in finite
element methods, but they also require more care during assembly and are typically constructed
on a case-by-case basis for each element family. When they are available, they may be cheaper to
construct than using the technique studied here, but this present technique is easier to apply to an
“arbitrary” finite element and so is considered in the context of automatic software.

5.2 Preliminaries

Both FIAT and SyFi work with a slightly modified version of the abstract definition of a finite
element introduced by Ciarlet.

Definition 5.1 (Finite element [ , 1) A finite element is defined by a triple (T, V, L), where

o the domain T is a bounded, closed subset of R? (for d = 1,2,3,...) with nonempty interior and
piecewise smooth boundary;

e the space V = V(T) is a finite dimensional function space on T of dimension n;
e the set of degrees of freedom (nodes) L = {l1,0y,...,Ln} is a basis for the dual space V'; that is, the

space of bounded linear functionals on V.

In this definition, the term “finite element” refers not only to a particular cell in a mesh, but also
to the associate function space and degrees of freedom. Typically, the domain T is some simple
polygonal or polyhedral shape and the function space V consists of polynomials.
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Given a finite element, a concrete basis, often called the nodal basis, for this element can be
computed by using the following definition.

Definition 5.2 The nodal basis for a finite element (T,V, L) is the set of functions {¢;}_, such that for
all1 <i,j<n,

li(¢) = dij, (5.1)

where b;; denotes the Kronecker delta function.

The main issue at hand in this chapter is the construction of this nodal basis. For any given finite
element, one may construct the nodal basis explicitly with elementary algebra. However, this
becomes tedious as we consider many different families of elements and want arbitrary order
instances of each family. Hence, we present a new paradigm here that undergirds computer
programs for automating the construction of nodal bases.

In addition to the construction of the nodal base we need to keep in mind that finite elements are
patched together to form a piecewise polynomial field over a mesh. The fitness (or stability) of a
particular finite element method for a particular problem relies on the continuity requirements
of the problem. The degrees of freedom of a particular element are often chosen such that these
continuity requirements are fulfilled.

Hence, in addition to computing the nodal basis, the framework developed here simplifies software
for the following tasks:

1. Evaluate the basis functions and their derivatives at points.

2. Associate the basis functions (or degrees of freedom) with topological facets of T such as its
vertices, edges and its placement on the edges.

3. Associate each basis function with additional meta-data that describes the mapping that
should be used for the evaluation of the basis functions and their derivatives.

4. Provide rules for evaluating the degrees of freedom applied to arbitrary functions (needed
for Dirichlet boundary conditions).

The first of these is relatively simple in the framework of symbolic computation (SyFi), but they
require more care if an implementation uses numerical arithmetic (FIAT). The middle two encode
the necessary information for a client code to transform the reference basis and assemble global
degrees of freedom when the finite element is either less or more than C’ continuous. The final
task may take the form of a point at which data is evaluated or differentiated or more generally as
the form of a sum over points and weights, much like a quadrature rule.

5.3 Mathematical framework

5.3.1  Change of basis

The fundamental idea in constructing a nodal basis is from elementary linear algebra: one
constructs the desired (nodal) basis as a linear combination of another available basis. We will start

with some basis {1;};_; that spans V. From this, we construct each nodal basis function ¢; as

¢j =Y i, (5.2)
k=1
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The task is to compute the matrix a. Each fixed ¢; must satisfy

ti(¢j) = dij, (5:3)
and using the above expansion for ¢;, we obtain
n
6ij = Y Lilajpy) = Z ajili(r)- (5-4)

k=1

So, for a fixed j, we have a system of n equations

n
Y Bixjr = &, (5.5)
k=1
where
Bix = €i(yx) (5.6)
is a kind of generalized Vandermonde matrix. Of course, (5.5) can be written as
Ba' =1, (5.7)
and we obtain
x=B"T. (5.8)

In practice, this supposes that one has an implementation of the original basis for which the actions
of the degrees of freedom may be readily computed. The degrees of freedom typically involves
point evaluation, differentiation, integration, and so on.

5.3.2  Polynomial spaces

In Definition 5.1 we defined the finite element in terms of a finite dimensional function space V.
Although it is not strictly necessary, the functions used in finite elements are typically polynomials.
While our general strategy will in principle accommodate non-polynomial bases, we only deal
with polynomials in this chapter. The most common space is P4, the space of polynomials of
degree g in R?. There are many different ways to represent Pg. We will discuss the power and
Bernstein bases, and orthogonal bases such as Dubiner, Jacobi, and Legendre. Each of these bases
has explicit representations or recurrence relations making them easy to evaluate and differentiate.
In contrast, most finite element bases are determined by solving the linear system in Definition 5.2.
In addition to 77,‘7’1 we will also for some elements need 7—[3, the space of homogeneous polynomials
of degree g in d variables.

Typically, the techniques developed here are used on simplices, where polynomials do not have a

nice tensor-product structure. SyFi does, however, have support for rectangular domains, while
FIAT does not.

Power basis. On a line segment, the monomial or power basis {x'}/ i—o Spans 733, so that any
(VS 73; can be written as

Y =ay+ayx—+. lquq Z a; X, (5.9)
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In 2D on triangles, 733 is spanned by functions on the form {x'y/} , with a similar definition in

i+j<q
i,j=0
three dimensions.

This basis is quite easy to evaluate, differentiate, and integrate. But the basis is very ill-conditioned
in numerical calculations. For instance, the condition number of the mass matrix using the power
basis in P}, gives a condition number of 5 - 10!4, while corresponding condition numbers are 4 - 10°
and 2 - 10° for the Bernstein and Lagrange polynomials, respectively.

Legendre basis. A popular polynomial basis for polygons that are either intervals, rectangles or
boxes are the Legendre polynomials. This polynomial basis is also usable to represent polynomials
of high degree. The basis is defined on the interval [—1, 1], as

1 d P
wi(x):ﬂﬁ(xz—l)l, i=0,1,..., (5.10)

A nice feature with these polynomials is that they are orthogonal with respect to the L, inner
product; that is,

1 2 i,
/_1 ¥i(x)pj(x) dX—{ 210+,1i75j, (5.11)

The Legendre polynomials can be extended to rectangular domains in any dimensions by tensor—
products. For instance, in 2D the basis reads,

$ij(xy) = i()yi(y), i,j<gq. (5.12)

Recurrence relations for these polynomials can be found in [ I

Jacobi basis.  The Jacobi polynomials Pl-“’ﬁ (x) generalize the Legendre polynomials, giving orthogo-
nality with respect to a weighted inner product. In particular, | _11(1 — x)*(14x)PP] b P;"ﬂ dx =0
unless i = j. The polynomials are given by

Py =1
o [3 1 (513)
Pt = E(a—/%+(a+,3+2)x),
with a three-term recurrence for i > 1:
PR () = (af P+ 0P )PP () — PP (). (5.14)

General Jacobi polynomials are used in 1d and tensor-product domains far less frequently than
Legendre polynomials, but they play an important role in constructing orthogonal bases on the
simplex, to which we now turn.

Dubiner basis. Orthogonal polynomials in simplicial domains are also known, although they lack
some of the rotational symmetry of the Legendre polynomials. The Dubiner basis, frequently used
in simplicial spectral elements [ , ], is known under many names in the literature. It is
an L?-orthogonal basis that can be constructed by mapping particular tensor products of Jacobi

polynomials on a square by a singular coordinate change to a fixed triangle. Let P # denote the
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Figure 5.1: Reference triangular and
square domains with collapsed coordi-
nate transformation.

RN

-1,1) -1,1) 1,1)

- L.

(-1,-1) 1,-1) (-1,-1) 1,-1)

nth Jacobi polynomial with weights «, 8. Then, define the new coordinates

1+x
ne2(i) -
1-y (5.15)

=Y

which map the triangle with vertices (—1,—1),(—1,1), (1, —1) to the square [—1,1]? as shown in
Figure 5.1. This is the natural domain for defining the Dubiner polynomials, but they may easily
be mapped to other domains like the triangle with vertices (0,0), (0,1), (1,0) by an affine mapping.
Then, one defines

Pij(x,y) = P (m) (1_2772) PE (1), (5.16)

Though it is not obvious from the definition, ¥;;(x,y) is a polynomial in x and y of degree i + j.
Moreover, for (i,j) # (p,q), ;; is L?-orthogonal to 1.

While this basis is more complicated than the power basis, it is very well-conditioned for numerical
calculations even with high degree polynomials. The polynomials can also be ordered hierarchically
so that {;}" , forms a basis for P,_; for each n > 1. As a possible disadvantage, the basis lacks
rotational symmetry that can be found in other bases.

Bernstein basis. The Bernstein basis is another well-conditioned basis that can be used in generating
finite element bases. In 1D, the basis functions in P, take the form,

p! = (‘Z) X(1—x)171, i=0,...,4, (5.17)
and then P is spanned by {y/ ?:0.

Notice that the Bernstein basis consists of powers of x and 1 — x, which are the barycentric
coordinates for [0, 1], an observation that makes it easy to extend the basis to simplices in higher
dimensions. Let by, by, and b3 be the barycentric coordinates for the reference triangle; that is,
b1 =1—x—y, bp = x, and b3 = y. Then the basis is of the form,

Lo o
¢?jk:i!7!k!bllb]2bk, fori+j+k=gq, (5.18)
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Figure 5.2: Lagrange elements of order
one and two.

and a basis for P, is simply.

q it+j+k=q
{¢ijk k=0 - (5.19)

The Bernstein polynomials on the tetrahedron and even higher dimensional simplices are com-
pletely analogous.

These polynomials, though less common in the finite element community, are well-known in
graphics and splines. They have rotational symmetry and are nonnegative and so give positive
mass matrices, though they are not hierarchical. Recently, Kirby [2011, 2010b] has analyzed finite
element operators based on Bernstein polynomials. In these papers, particular properties of the
Bernstein polynomials are exploited to develop algorithms for matrix-free application of finite
element operators with complexity comparable to spectral elements.

Homogeneous polynomials. Another set of polynomials which sometimes is useful is the set of
homogeneous polynomials ;. These are polynomials where all terms have the same degree. H,
is in 2D spanned by polynomials on the form:

{x'y}irj=g (5.20)
with a similar definition in dD.
Vector or tensor-valued polynomials. It is straightforward to generalize the scalar-valued polyno-

mials discussed earlier to vector or tensor-valued polynomials. Let {e;} be canonical basis in R?.
Then a basis for the vector-valued polynomials is

Pij = Pjei, (5.21)

with a similar definition extending the basis to tensors.

5.4 Examples of elements

We include some standard finite elements to illustrate the concepts. We refer the reader to Chapter 4
for a more thorough review of elements and their properties.

Example 5.1 The Lagrange Element

The Lagrange element shown in Figure 5.2 is the most common element. The degrees of freedom are
represented by black dots, which represent point evaluation. The first order element is shown in the leftmost
triangle, its degrees of freedom consist of a point evaluation in each of the vertices. That is, the degrees of
freedom £; :'V — R are

Li(v) = /Tvéxi dx = v(x;), (5.22)
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Figure 5.3: Hermite elements of order
3.

Figure 5.4: Triangular Raviart-Thomas
elements of order one.

where x; are the vertices (0,0), (1,0), (0,1) and 6 is the Dirac delta function. The corresponding basis
functions are 1 — x —y, x, and y. The second order element is shown in right triangle. It has six degrees
of freedom, three at the vertices and three at the edges, all are point evaluations. The Lagrange element
produces piecewise continuous polynomials and they are therefore well suited for approximation in H'. The
Lagrange element of order q spans P, on simplices in any dimension.

Example 5.2 The Hermite Element

In Figure 5.3 we show the Hermite element on the reference triangle in 2D. The black dots mean point
evaluation, while the white circles mean evaluation of derivatives in both x and y direction. That is, the
degrees of freedom {; :V — R associated with the vertex x; are,

£, (0) = [ 08 dx = o(x), (523)
ov )

li,(v) = T ox Ox; dx = gv(xi), (5.24)
v 0

b (0) = [ 52 00dr = So(). (5.25)

In addition, there is one internal point evaluation, which in total gives ten degrees of freedom, which is the
same number of degrees of freedom as in ‘P3. One feature of the Hermite element is that it has continuous
derivatives at the vertices (it will however not necessarily result in a H2-conforming approximation).

Example 5.3 The Raviart-Thomas Element

In Figure 5.4 we illustrate the lowest order Raviart—Thomas element. In contrast to the previous elements,
this element has a vector-valued function space. The arrows represent normal vectors; that is, the degrees
of freedom £; : V — R are

4i(v) :/Tv~nl-dx, (5.26)

where n; is the outward normal vector on edge i. The Raviart—Thomas element is a vector space with
three degrees of freedom. Hence, the standard basis (73,? ) is not a suitable starting point and we use
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V = (P2)? & xH, instead. The Raviart-Thomas element is typically used for approximations in H(div).
We remark that this element may also be defined in terms of point evaluations of normal components.

5.4.1 Bases for other polynomial spaces

The basis presented above are suitable for constructing many finite elements, but as we have just
seen, they do not work in all cases. The Raviart-Thomas function space in 2D is spanned by

(73,3)2@ ( ; ) 12, (5.27)

Hence, this element requires a basis for vectors of polynomials (P2)? enriched with ( § ) H2.
y

On the other hand, the Brezzi-Douglas-Fortin-Marini on triangle is defined as
{we @AM iu-neP) (E), Ec&T)}, (5.28)

where £(T) denotes the facets of T.

Hence, this element requires that some functions are removed from P2(T). The removal is
expressed by the constraint u -n € P} (E;).

Obtaining a basis for this space is somewhat more subtle. FIAT and SyFi have developed different
but mathematically equivalent solutions. In SyFi, since it uses a symbolic representation, the
polynomial may be easily expressed in the power basis and the coefficients corresponding to
second order polynomials normal to the edges are set to zero. In a similar fashion, FIAT utilizes
the orthogonality of the Legendre polynomials to express the constraints the edges. That is, on the
edge E; the following constraints apply:

) = [ w-m =0, (529)

where 1/, is the second order Legendre polynomial on the edge ;.
In general, assume that we have m constraints and n — m degrees of freedom. Let

Vi=tli(¢), 1<i<n—m 1<j<n, (5.30)
Vé:ff(%), n-m<i<n 1<j<n. (5:31)

and ,
V= ( gl ) (5-32)

Consider now the matrix equation
Val =1, (5:33)

where [""~" denotes the n x n — m identity matrix. As before, the columns of « still contain the

expansion coefficients of the nodal basis functions ¢; in terms of {¢;}. Moreover, Voa = 0, which

implies that the nodal basis functions fulfill the constraint.

Other examples than the Brezzi-Douglas-Fortin-Marini element that are defined in terms of con-

strained polynomials are the Nédélec [ , ], Arnold-Winther [ , B

Mardal-Tai-Winther [ , ], Tai-Winther [ , ], and Bell [
] element families.

7
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5.5  Operations on the polynomial spaces

Here, we show how various important operations may be cast in terms of linear algebra operations,
supposing that the operations may be performed on the original basis {1;}" ;.

5.5.1  Evaluation
In order to evaluate the nodal basis {¢;} ; at a given point x € T, one simply computes the vector
¥i = i(x) (5:34)

followed by the product
$i(x) = D; =) w;j'¥;. (5.35)
j

Generally, the nodal basis functions are required at an array of points {xj};”:1 C T. For performance

reasons, performing matrix-matrix products may be advantageous. So, define ¥;; = ¥;(x;) and
®;; = ®;(x;). Then all of the nodal basis functions may be evaluated by the product

O =) ap Yy (5.36)
k

5.5.2  Differentiation

Differentiation is more complicated and presents more options. Let & = (w1, 00,...04) be a
multi-index so that

D — olal (5.37)
oxyloxy? .. oxyt >37
where |a| = Z?:l «; and we want to compute the array
®ff = D¢i(x) (538)
for some x € T.
One obvious option is to differentiate the original basis functions {¢;} to produce an array
¥i = D"i(x), (539)
whence
Of = Zocij‘{’?‘i. (5.40)
]

This presupposes that one may conveniently compute all derivatives of the {i;}. This is typically
true in symbolic computation or when using the power basis. For the Bernstein, Jacobi, and

Legendre polynomials recurrence relations are available, see [ 1
[ ]. The Dubiner basis, as typically formulated, contains a coordinate singularity that
prevents automatic differentiation from working at the top vertex. Recent work by [ ]

has reformulated recurrence relations to allow for this possibility.

If one prefers (or is required by the particular starting basis), one may also compute matrices that
encode first derivatives acting on the {¢;} and construct higher derivatives than these. For each
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coordinate direction x;, a matrix D is constructed so that

a .
a% — D¢y (5.41)

How to do this depends on which bases are chosen. For particular details on the Dubiner basis,
see [ ].

5.5.3 Integration

Integration of basis functions over the reference domain, including products of basis functions
and/or their derivatives, may be performed numerically, symbolically, or exactly with some known
formula. In general, quadrature is easily performed. Quadrature rules for a variety of reference
elements may be obtained from for example [ , , , , , 1.

5.5.4 Association with facets

As we saw in the definition of for instance the Brezzi-Douglas—Marini element, it is necessary to
have polynomials that can be associated with the facets of a polygonal domain. The Bernstein
polynomials are expressed via barycentric coordinates and are therefore naturally associated
with the facets. The Legendre and Jacobi polynomials are also easy to associated to 1D facets in
barycentric coordinates.

5.5.5 Linear functionals

Linear functionals are usually cast in terms of linear combinations of integration, pointwise
evaluation and differentiation.

5.5.6 The mapping of the reference element

A common practice, employed throughout the FEniCS software and in many other finite element
codes, is to map the nodal basis functions from the reference cell to each cell in a mesh. Sometimes,
this is as simple as an affine change of coordinates; in other cases it is more complicated. For
completeness, we briefly describe the basics of creating the global finite elements in terms of
a mapped reference element. Let therefore T be a global polygon in the mesh and T be the
corresponding reference polygon. Between the coordinates x € T and £ € T we use the mapping

x = Fr(®) = At (%) + xo, (5-42)
The Jacobian of this mapping is:
s ox - aAT(J’f)
J(#) =55 = 55 (5.43)

Currently, FEniCS only supports affine maps between T and T, which means that x = Fr(%) =
AT+ xp and | = Ar. For isoparametric elements, a basis function is defined in terms of the
corresponding basis function on the reference element as

~

P(x) = (%) (5-44)

The integral can then be performed on the reference polygon,

[ o dx = [ 4@ det) d, (545)
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Figure 5.5: Patching together a pair

quadratic local function spaces on

a pair of cells to form a global con-

B tinuous piecewise quadratic function
space.

and the spatial derivatives are defined by the derivatives on the reference element and the geometry
mapping by using the chain rule,

9P _ - 0 9%

E)Tcl- = - 8732] aixl (5.46)

The above mapping of basis functions is common for approximations in H!. For approximations
in H(div) or H(curl) it is necessary to use the Piola mapping, where the mapping for the basis
functions differs from the geometry mapping. That is, for H(div) elements, the Piola mapping

reads 1
P(x) = Wﬁp(f), (5.47)

When using the numbering of mesh entities used by UFC, see Chapter 17, it is advantageous to use
%t] instead of ﬁ since the sign of the determinant relates to the sign of the normal vector, see

[ ] for more details on the Piola mapping and its implementation in FFC. Some
elements like the Rannacher-Turek element [ , , , ] has far better
properties when defined globally compared to its analogous definition in terms of a reference

element.

5.5.7 Local to global mapping of degrees of freedom

As shown in Figure 5.5, finite elements are patched together with a continuity depending on
the degrees of freedom. To obtain the desired patching, the elements should provide identifiers
that determine whether the degrees of freedom of some neighboring elements should be shared
or not. One alternative is to relate each degree of freedom on the reference cell to a point in
the reference cell. The geometry mapping then gives a global point in the mesh, by (5.42), that
identifies the degree of freedom; that is, the degrees of freedom in different elements are shared
if they correspond to the same global point in the mesh. Alternatively, each degree of freedom
may be related to a local mesh entity, like a vertex, edge or face, on the reference element. After
mapping the element, the degree of freedom will then be related to the corresponding mesh entity
in the global mesh. This alternative requires that the corresponding mesh entities are numbered.



6 Finite element variational forms

By Robert C. Kirby and Anders Logg

Much of the FEniCS software is devoted to the formulation of variational forms (UFL), the
discretization of variational forms (FIAT, FFC, SyFi) and the assembly of the corresponding discrete
operators (UFC, DOLFIN). This chapter summarizes the notation for variational forms used
throughout FEniCS.

6.1 Background

In Chapter 3, we introduced the following canonical variational problem: Find u € V such that
a(u,v) = L(v) YoV, (6.1)
where V is a given trial space and V is a given test space. The bilinear form
a:VxV->R (6.2)

maps a pair of trial and test functions to a real number and is linear in both arguments. Similarly,
the linear form L : V — R maps a given test function to a real number. We also considered the
discretization of nonlinear variational problems: Find u € V such that

F(u;0) =0 VYoeV. (6.3)

Here, F: V x V — R again maps a pair of functions to a real number. The semilinear form F is
nonlinear in the function u but linear in the test function v. Alternatively, we may consider the
mapping

L,=F(u;-): V>R, (6.4)

and note that L, is a linear form on V for any fixed value of u. In Chapter 3, we also considered the

estimation of the error in a given functional M : V — R. Here, the possibly nonlinear functional
M maps a given function u to a real number M (u).

In all these examples, the central concept is that of a form that maps a given tuple of functions to
a real number. We shall refer to these as multilinear forms. Below, we formalize the concept of a
multilinear form, discuss the discretization of multilinear forms, and related concepts such as the
action, derivative and adjoint of a multilinear form.
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6.2 Multilinear forms

A form is a mapping from the product of a given sequence {Vj};;l of function spaces to a real

number,
a:Vpx--xVpxV; =R (6.5)

If the form a is linear in each of its arguments, we say that the form is multilinear. The number of
arguments p of the form is the arity of the form. Note that the spaces are numbered from right to
left. As we shall see below in Section 6.3, this is practical when we consider the discretization of
multilinear forms.

Forms may often be parametrized over one or more coefficients. A typical example is the right-hand
side L of the canonical variational problem (6.1), which is a linear form parametrized over a given
coefficient f. We shall use the notation a(f;v) = L¢(v) = L(v) and refer to the test function v as
an argument and to the function f as a coefficient. In general, we shall refer to forms which are
linear in each argument (but possibly nonlinear in its coefficients) as multilinear forms. Such a
multilinear form is a mapping from the product of a sequence of argument spaces and coefficient
spaces:

a: Wy X Wox--- X Wy X Vpx---xVpx V] =R, 66)
a— a(wy, wo, ..., Wy;0p,...,02,01); ’

The argument spaces {V]}f:1 and coefficient spaces {W;}7__; may all be the same space but they
typically differ, such as when Dirichlet boundary conditions are imposed on one or more of the
spaces, or when the multilinear form arises from the discretization of a mixed problem such as in
Section 3.2.2.

In finite element applications, the arity of a form is typically p = 2, in which case the form is said
to be bilinear, or p = 1, in which case the form is said to be linear. In the special case of p = 0, we
shall refer to the multilinear form as a functional. It may sometimes also be of interest to consider
forms of higher arity (o > 2). Below, we give examples of some multilinear forms of different arity.

6.2.1  Examples
Poisson’s equation. Consider Poisson’s equation with variable conductivity x = x(x),
=V - (xVu) = f. (6.7)

Assuming Dirichlet boundary conditions on the boundary d(), the corresponding canonical
variational problem is defined in terms of a pair of multilinear forms, a(x; u,v) = fQ kVu-Vodx
and L(v) = fQ fvdx. Here, a is a bilinear form (o = 2) and L is a linear form (p = 1). Both forms
have one coefficient (n = 1) and the coefficients are x and f respectively:

a=a(x;u,v),
L=L(f;v).

We usually drop the coefficients from the notation and use the short-hand notation a = a(u, v) and
L = L(v).

(6.8)
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The incompressible Navier—Stokes equations. The incompressible Navier—Stokes equations for the
velocity u and pressure p of an incompressible fluid read:

p(i+Vuu)—V-o(u,p) =f,
B (6.9)
V-u=0,
where the stress tensor ¢ is given by o(u, p) = 2ue(u) — pl, € is the symmetric gradient, that
is, e(u) = 3(Vu+ (Vu)"), p is the fluid density and f is a body force. Consider here the form
obtained by integrating the nonlinear term Vu, u against a test function v:

a(u;v) = /Q Vuu-vdx. (6.10)

This is a linear form (p = 1) with one coefficient (n = 1). We may linearize around a fixed velocity #
to obtain
a(u;v) = a(it;v) + a' (#;0)ou + O(6u?), (6.11)

where u = 1 + éu. The linearized operator 4’ is here given by
a'(i;6u,v) = a' (v; 1) 6u = /Q Véu-ii-v+ Vii-du-vdx. (6.12)
This is a bilinear form (o0 = 2) with one coefficient (n = 1). We may also consider the trilinear form
a(w,u,v) = /Q Vu,w-vdx. (6.13)

This trilinear form may be assembled into a rank three tensor and applied to a given vector of
expansion coefficients for w to obtain a rank two tensor (a matrix) corresponding to the bilinear
form a(w;u,v). This may be useful in an iterative fixed point method for the solution of the
Navier-Stokes equations, in which case w is a given (frozen) value for the convective velocity
obtained from a previous iteration. This is rarely done in practice due to the cost of assembling the
global rank three tensor. However, the corresponding local rank three tensor may be contracted
with the local expansion coefficients for w on each local cell to compute the matrix corresponding
to a(w; u,v).

Lift and drag. When solving the Navier—Stokes equations, it may be of interest to compute the
lift and drag of some object immersed in the fluid. The lift and drag are given by the z- and
x-components of the force generated on the object (for a flow in the x-direction):

Lyg(u, p; ) = /ra(u, p)n-e.ds,

(6.14)

Larag (4, p;) = /ra(u, p)n - exds.
Here, T’ is the boundary of the body, # is the outward unit normal of I' and ey, e, are unit vectors
in the x- and z-directions respectively. The arity of both forms is p = 0 and both forms have two
coefficients.
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A 5 Figure 6.1: The lift and drag of an ob-
ject, here a NACA 63A409 airfoil, are
the integrals of the vertical and hori-
zontal components respectively of the
n stress ¢ - n over the surface I' of the
object. At each point, the product of
the stress tensor ¢ and the outward
unit normal vector n gives the force
per unit area acting on the surface.

6.2.2  Canonical form

FEniCS automatically handles the representation and evaluation of a large class of multilinear
forms, but not all. FEniCS is currently limited to forms that may be expressed as a sum of integrals
over the cells (the domain), the exterior facets (the boundary) and the interior facets of a given
mesh. In particular, FEniCS handles forms that may be expressed as the following canonical form:

0
ne ny iy
a(wy, wy, ..., W;Vp,...,02,01) = Z/ I dx + Z/ I,{ds—i— Z /0 I]{’OdS. (6.15)
k=17 k=1"Tk k=1"T%

Here, each () denotes a union of mesh cells covering a subset of the computational domain Q.
Similarly, each I'y denotes a subset of the facets on the boundary of the mesh, and 1"2 denotes a
subset of the interior facets of the mesh. The latter is of particular interest for the formulation of
discontinuous Galerkin methods that typically involve integrals across cell boundaries (interior
facets). The contribution from each subset is an integral over the subset of some integrand. Thus,
the contribution from the kth subset of cells is an integral over () of the integrand I} etc.

One may consider extensions of (6.15) that involve point values or integrals over subsets of
individual cells (cut cells) or facets. Such extensions are currently not supported by FEniCS but
may be added in the future.

6.3 Discretizing multilinear forms

As we saw in Chapter 3, one may obtain the finite element approximation uj = Zjli 1Uj¢; =~ u of
the canonical variational problem (6.1) by solving a linear system AU = b, where

Ajj = a(ej, i), i,j=12,...,N,

. . (6.16)
bi:L((l)l'), 1:1,2,...,N.

Here, A and b are the discrete operators corresponding to the bilinear and linear forms a and L
for the given bases of the trial and test spaces. Note that the discrete operator is defined as the
transpose of the multilinear form applied to the basis functions to account for the fact that in a
bilinear form a(u, v), the trial function u is associated with the the columns of the matrix A, while
the test function v is associated with the rows (the equations) of the matrix A.
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Figure 6.2: The cell tensor Ar, exte-
rior facet tensor Ag, and interior facet
tensor Agg on a mesh are obtained
by discretizing the local contribution
to a multilinear form on a cell, exte-
rior facet or interior facet respectively.
By assembling the local contributions
from all cell and facet tensors, one ob-
tains the global discrete operator A 4 —
that discretizes the multilinear form.

In general, we may discretize a multilinear form a of arity p to obtain a tensor A of rank p. The
discrete operator A is defined by

Al-:a(wl,wz,...,wn;(pf;,...,cpizz,gi)}l), (6.17)

where i = (i1,iy,...,ip) is a multi-index of length p and {¢}},”, is a basis for Vin CVj, j=
1,2,...,p. The discrete operator is a typically sparse tensor of rank p and dimension Nj X N X
... x N,

b-

The discrete operator A may be computed efficiently using an algorithm known as assembly, which
is the topic of the next chapter. As we shall see then, an important tool is the cell tensor obtained
as the discretization of the bilinear form on a local cell of the mesh. In particular, consider the
discretization of a multilinear form that may be expressed as a sum of local contributions from
each cell T of a mesh 7, = {T},

a(wy, wa, ..., Wy;Vp,...,02,01) = Z ar(wy, wa, ..., Wn;Vp, ..., 02,01). (6.18)
TeTy,

Discretizing aT using the local finite element basis {(])kT g }Z]: sonTforj=1,2,...,0, we obtain the
cell tensor .
y T2 T
AT = aT(wl,wz,...,wn;qbipp,. ""Piz ,(/)l.l ). (6.19)

The cell tensor At is a typically dense tensor of rank p and dimension 1y x 13 x - -+ x n,. The
discrete operator A may be obtained by appropriately summing the contributions from each cell
tensor Ar. We return to this in detail below in Chapter 7.

If O C ), the discrete operator A may be obtained by summing the contributions only from the
cells covered by (). One may similarly define the exterior and interior facet tensors Ag and Ag
as the contributions from a facet on the boundary or in the interior of the mesh. The exterior
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facet tensor Ag is defined as in (6.19) by replacing the domain of integration T by a facet S. The
dimension of Ag is generally the same as that of Ar. The interior facet tensor Agy is defined
slightly differently by considering the basis on a macro element consisting of the two elements
sharing the common facet S as depicted in Figure 6.2. For details, we refer to [ I

6.4 The action of a multilinear form

Consider the bilinear form
a(u,v) = / Vu-Vodx, (6.20)
Q

obtained from the discretization of the left-hand side of Poisson’s equation. Here, u# and v are a
pair of trial and test functions. Alternatively, we may consider v to be a test function and u to be a
given solution to obtain a linear form parametrized over the coefficient u,

(Aa)(u;v) = /Q Vu-Vodx. (6.21)

We refer to the linear form .Aa as the action of the bilinear form a. In general, the action of a p-linear
form with n coefficients is a (p — 1)-linear form with n + 1 coefficients. In particular, the action of
a bilinear form is a linear form, and the action of a linear form is a functional.

The action of a bilinear form plays an important role in the definition of matrix-free methods for
solving differential equations. Consider the solution of a variational problem of the canonical
form (6.1) by a Krylov subspace method such as GMRES (Generalized Minimal RESidual method)
[ , ] or CG (Conjugate Gradient method) [ , ]. Krylov
methods approximate the solution U € RN of the linear system AU = b by finding an approxi-
mation for U in the subspace of RN spanned by the vectors b, Ab, A%b, ..., A¥b for some k < N.
These vectors may be computed by repeated application of the discrete operator A defined as
above by

Ajj = a(<p]2, ob). (6.22)
For any given vector U € RV, it follows that

N N

N
(AU); = ) Ayl =} a(¢7,¢)Uj=a (Z U]fwaP}) = a(uy, ¢}) = (Aa)(;9}),  (6:23)
=1

j=1 j=1
where uy, = Z]-I\Ll quyjz is the finite element approximation corresponding to the coefficient vector U.

In other words, the application of the matrix A on a given vector U is given by the action of the
bilinear form evaluated at the corresponding finite element approximation:

(AU); = (Aa) (uy; ¢}). (6.24)

The variational problem (6.1) may thus be solved by repeated evaluation (assembly) of a linear
form (the action Az of the bilinear form a) as an alternative to first computing (assembling) the
matrix A and then repeatedly computing matrix—vector products with A. Which approach is more
efficient depends on how efficiently the action may be computed compared to matrix assembly, as
well as on available preconditioners. For a further discussion on the action of multilinear forms,
we refer to [ 1.

Computing the action of a multilinear form is supported by the UFL form language by calling the
action function:
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Python code
inner(grad(u), grad(v))=*dx
action(a)

6.5 The derivative of a multilinear form

When discretizing nonlinear variational problems, it may be of interest to compute the derivative of
a multilinear form with respect to one or more of its coefficients. Consider the nonlinear variational
problem to find u € V such that

a(u;0) =0 YoeV. (6.25)

To solve this problem by Newton’s method, we linearize around a fixed value 7 to obtain
0 = a(u;v) ~ a(it;v) + a' (#;0)ou. (6.26)

Given an approximate solution i of the nonlinear variational problem (6.25), we may then hope to
improve the approximation by solving the following linear variational problem: Find du € V such
that

a'(;0u,v) = a'(i;0)0u = —a(i;v) YoeV. (6.27)

Here, a’ is a bilinear form with two arguments du and v, and one coefficient i1, and —a is a linear
form with one argument v and one coefficient .

When there is more than one coefficient, we use the notation D, to denote the derivative with
respect to a specific coefficient w. In general, the derivative D of a p-linear form with n > 0
coefficients is a (p + 1)-linear form with n coefficients. To solve the variational problem (6.25)
using a matrix-free Newton method, we would thus need to repeatedly evaluate the linear form
(ADya) (i, Suy; v) for a given finite element approximation if;, and increment duy,.

Note that one may equivalently consider the application of Newton’s method to the nonlinear
discrete system of equations obtained by a direct application of the finite element method to the
variational problem (6.25) as discussed in Chapter 3.

Computing the derivative of a multilinear form is supported by the UFL form language by calling
the derivative function:

Python code
inner(grad(u)=*u, v)=*dx
derivative(a, u)

o
Q
non

6.6  The adjoint of a bilinear form
The adjoint a* of a bilinear form a is the form obtained by interchanging the two arguments,
a*(v,w) = a(w,0) Yoe V! Vwe V2 (6.28)

The adjoint of a bilinear form plays an important role in the error analysis of finite element methods
as we saw in Chapter 3 and as will be discussed further in Chapter 25 where we consider the
linearized adjoint problem (the dual problem) of the general nonlinear variational problem (6.25).
The dual problem takes the form

(Dya)*(u;z,v) = DyM(u;v) VoevV, (6.29)
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or simply
a*(z,v) = M'(v) VoveV, (6.30)

where (Dya)* is a bilinear form, D, M is a linear form (the derivative of the functional M), and z
is the solution of the dual problem.

Computing the adjoint of a multilinear form is supported by the UFL form language by calling the
adjoint function:

Python code
a = div(u)*p*dx
a_star = adjoint(a)

6.7 A note on the order of trial and test functions

It is common in the literature to consider bilinear forms where the trial function u is the first
argument, and the test function v is the second argument:

a=a(u,v). (6.31)
With this notation, one is lead to define the discrete operator A as

Aij = a(¢j, ¢i), (6.32)

that is, a transpose must be introduced to account for the fact that the order of trial and test
functions does not match the order of rows and columns in a matrix. Alternatively, one may
change the order of trial and test functions and write 2 = a(v, u) and avoid taking the transpose
in the definition of the discrete operator A;; = a(¢;, ¢;). This is practical in the definition and
implementation of software systems such as FEniCS for the general treatment of variational forms.
In this book and throughout the code and documentation of the FEniCS Project, we have adopted
the following compromise. Variational forms are expressed using the conventional order of trial
and test functions, that is,

a=a(u,v), (6.33)

but using an unconventional numbering of trial and test functions. Thus, v is the first argument of
the bilinear form and u is the second argument. This ensures that one may express finite element
variational problems in the conventional notation, but at the same time allows the implementation
to use a more practical numbering scheme.



7  Finite element assembly

By Anders Logg, Kent-Andre Mardal and Garth N. Wells

The finite element method may be viewed as a method for forming a discrete linear system AU = b
or nonlinear system b(U) = 0 corresponding to the discretization of the variational form of a
differential equation. A central part of the implementation of finite element methods is therefore
the computation of matrices and vectors from variational forms. In this chapter, we describe the
standard algorithm for computing the discrete operator (tensor) A defined in Chapter 6. This
algorithm is known as finite element assembly. We also discuss efficiency aspects of the standard
algorithm and extensions to matrix-free methods.

7.1 Assembly algorithm

As seen in Chapter 6, the discrete operator of a multilinear form a : V, x - -+ x Vo x V; — R of
arity p is the rank p tensor A defined by

Ar=a(¢y, ... 91, 91), (7:1)

where I = (I, I,...,I,) is a multi-index of length p and {cpi}fil is a basis for V;, C Vj, j =
1,2,...,p. The discrete operator is a typically sparse tensor of rank p and dimension Nj X Ny X
-+ % N,.

A straightforward algorithm to compute the tensor A is to iterate over all its entries and compute
them one by one as outlined in Algorithm 1. This algorithm has two major drawbacks and is rarely
used in practice. First, it does not take into account that most entries of the sparse tensor A may
be zero. Second, it does not take into account that each entry is typically a sum of contributions
(integrals) from the set of cells that form the support of the basis functions 4)}1, 4)%2, ceey qb‘;p. As a
result, each cell of the mesh must be visited multiple times when computing the local contribution
to different entries of the tensor A. For this reason, the tensor A is usually computed by iterating
over the cells of the mesh and adding the contribution from each local cell to the global tensor A.
To see how the tensor A can be decomposed as a sum of local contributions, we recall the definition
of the cell tensor At from Chapter 6:

T, T2 ,T1
AT,i = ﬂT(CPiPP, cee ’¢i2 r¢i1 )/ (72)

where Ar; is the ith multi-index of the rank p tensor Ar, ar is the local contribution to the

multilinear form from a cell T € 7;, and {cka’] }:]: 1 is the local finite element basis for V;;, on T. We
assume here that the multilinear form is expressed as an integral over the domain () so that it
may be naturally decomposed as a sum of local contributions. If the form contains contributions

145
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from facet or boundary integrals, one may similarly decompose the multilinear form into local
contributions from facets.

Algorithm 1 Straightforward (naive) “assembly” algorithm.
for1 =1,2,...,N;
for 12 = 1,2,...,N2
for ...
Al = a(qbfp,. 07, 01)

To formulate the general assembly algorithm, let L]% : [1,nj] — [1,N;] denote the local-to-global
mapping introduced in Chapter 3 for each discrete function space Vj;, j =1,2,...,p, and define
for each T € 7T}, the collective local-to-global mapping i1 : Zr — 7 by

i (i) = (5 (i1), 3(i2), ..., 1l (i) Vi€ I, (7.3)
where Zt is the index set
p
It = H[l,n]-} ={11,...,1),L,1,...,2),...,(n,no,...,np = 1), (my,nz,...,mp) }. (7.4)
=1

That is, (7 maps a tuple of local degrees of freedom to a tuple of global degrees of freedom.
Furthermore, let 7; C 7Tj, denote the subset of cells of the mesh on which {q‘)fj }]F,':1 are all nonzero.

We note that (7 is invertible if T € 7;. We may now compute the tensor A by summing local
contributions from the cells of the mesh:

Ar= ) ar(¢, .- oL 01) = Y ar(¢],- 9%, ¢1,)

TeT, TeT; ( )
_ T,p T2 T1 _ 7-5
= L Oy Py ) = L Ao

This computation may be carried out efficiently by a single iteration over all cells T € 7. On
each cell T, the cell tensor At is computed and then added to the global tensor A as outlined in
Algorithm 2 and illustrated in Figure 7.1.

Algorithm 2 Assembly algorithm
A=0
for T € 7T,

(1) Compute 1

(2) Compute At

(3) Add At to A according to it:
forie Iy
+
Ay = Ari
end for
end for
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Figure 7.1: Adding the entries of the 2(1) 2(2) 2(3) 1 2 3

cell tensor At to the global tensor A
using the local-to-global mapping :r, 1

illustrated here for the assembly of a
rank two tensor (matrix) with piece- 1 (1) . . . 2

wise linear elements on triangles. On
each element T, a 3 x 3 element ma- 3 /

trix Ay is computed and its entries are (1(2)
added to the global matrix. The entries
of the first row are added to row :1(1)
of the global matrix in the columns
given by i2(1), /3(2) and /% (3), respec- . ‘
tively. The entries of the second row 11(3) ‘
are added to row (}%(2) of the global s

matrix etc. N

ATz

Figure 7.2: Actual implementation
(excerpt) of the assembly algorithm
(}\lgoriﬂln1 2) in DOLFIN (from for (CellIterator cell(mesh); !cell.end(); ++cell)
Assembler.cpp in DOLFIN 1.0). {

C++ code

// Get local-to-global dofmap for each dimension
for (uint i = 0; i < form_rank; ++i)
dofs[i] = &(dofmaps[i]->cell_dofs(cell->index()));

// Tabulate cell tensor

integral->tabulate_tensor(ufc.A.get(),
ufc.w,
ufc.cell);

// Add entries to global tensor
A.add(ufc.A.get(), dofs);

7.2 Implementation

In FEniCS, the assembly algorithm (Algorithm 2) is implemented as part of DOLFIN (see Figure ??).
For the steps (1), (2) and (3) of the assembly algorithm, DOLFIN relies on external code. For steps
(1) and (2), DOLFIN calls code generated by a form compiler such as FFC or SyFi. In particular,
DOLFIN calls the two functions tabulate_dofs and tabulate_tensor through the UFC interface
for steps (1) and (2), respectively. Step (3) is carried out through the DOLFIN GenericTensor: :add
interface and maps to the corresponding operation in one of a number of linear algebra backends,
such as MatSetValues for PETSc and SumIntoGlobalValues for Trilinos/Epetra.

In typical assembly implementations, the computation of the cell tensor At is the most costly
operation of the assembly algorithm. For DOLFIN, however, as a result of optimized algorithms
for the computation of At being generated by form compilers (see Chapters 8 and 9), adding
entries of the local tensor At to appropriate positions in the global tensor A often constitutes a
significant portion of the total assembly time. This operation is costly since the addition of a value
to an arbitrary entry of a sparse tensor is not a trivial operation, even when the layout of the sparse
matrix has been initialized. In the standard case when A is a sparse matrix (a rank two tensor),
the linear algebra backend stores the sparse matrix in compressed row storage (CRS) format or some
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other sparse format. For each given entry, the linear algebra backend must search along a row [
to find the position to store the value for a given column J. As a result, the speed of assembly
in FEniCS for sparse matrices is currently limited by the speed of insertion into a sparse linear
algebra data structure for many problems. An additional cost is associated with the initialization
of a sparse matrix, which involves the computation of a sparsity pattern. For most linear algebra
libraries, it is necessary to initialize the layout of a sparse matrix before inserting entries in order
to achieve tolerable insertion speed. Computation of the sparsity pattern is a moderately costly
operation, but which in the case of nonlinear problems is usually amortized over time.
Algorithm 2 may be easily extended to assembly over the facets of a mesh. Assembly over facets
is necessary both for handling variational forms that contain integrals over the boundary of a
mesh (the exterior facets), to account for Neumann boundary conditions, and forms that contain
integrals over the interior facets of a mesh as part of a discontinuous Galerkin formulation. For
this reason, DOLFIN implements three different assembly algorithms. These are assembly over
cells, exterior facets and interior facets.

7.3 Symmetric application of boundary conditions

For symmetric problems, it is useful to be able to apply Dirichlet boundary conditions in a fashion
that preserves the symmetry of the matrix, since that allows the use of solution algorithms which are
limited to symmetric matrices, such as the conjugate gradient method and Cholesky decomposition.
The symmetric application of boundary conditions may be handled by modifying the cell tensors
At before assembling into the global tensor A. Assembly with symmetric application of boundary
conditions is implemented in DOLFIN in the class SystemAssembler.

To explain the symmetric assembly algorithm, consider the global system AU = b and the
corresponding element matrix At and element vector br. If a global index I is associated with a
Dirichlet boundary condition, U; = Dj, then this condition can be enforced by setting A;; =1,
App = 0for I # ], and by = Dj. This approach is applied when calling the DOLFIN function
DirichetBC::apply. However, to preserve symmetry of the matrix, we can perform a partial
Gaussian elimination to obtain Aj; = Aj; = 0 for I # ]. This is achieved by subtracting the Ith
row multiplied by A;j; from the Jth equation, locally. These partial Gaussian eliminations are
performed on the linear systems at the element level. The local linear systems are then added
to the global matrix. As a result, the Dirichlet condition is added multiple times to the global
vector, one time for each cell, which is compensated for by the addition of one multiple times to
the corresponding diagonal entry of A. This is summarized in Algorithm ??. Alternatively, one
may choose to eliminate degrees of freedom corresponding to Dirichlet boundary conditions from
the linear system (since these values are known). The values then end up in the right-hand side of
the linear system. The described algorithm does not eliminate the degrees of freedom associated
with a Dirichlet boundary condition. Instead, these degrees of freedom are retained to preserve the
dimension of the linear system so that it always matches the total number of degrees of freedom
for the solution (including known Dirichlet values).

7.4 Parallel assembly

The assembly algorithms remain unchanged in a distributed’ parallel environment if the linear
algebra backend supports distributed matrices and insertion for both on- and off-process matrix
entries, and if the mesh data structure supports distributed meshes. Both PETSc [ ,

!By distributed assembly, we refer here to assembly in parallel on a distributed memory parallel architecture, running
multiple processes that cannot access the same memory, but must pass data as messages between processes.
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Algorithm 3 Symmetric assembly algorithm (o = 2)

A=0andb=0
for T € 7T,
(1) Compute l‘% and tl}
(2) Compute At and br
(3) Apply Dirichlet boundary conditions to At and bt
(4) Perform partial Gaussian elimination on At and bt to preserve symmetry
(5) Add A and br to A and b according to 14 and /%, respectively:
for (i,j) € 74
A7)
end for
fori € It

+
= Arj

+
by = b/

end for
end for

, ] and Trilinos/Epetra [ , ] support distributed matrices and vectors.
Efficient parallel assembly relies on appropriately partitioned meshes and properly distributed
degree-of-freedom maps to minimize inter-process communication. It is not generally possible
to produce an effective degree-of-freedom map using only a form compiler, since the degree-of-
freedom map should reflect the partitioning of the mesh. Instead, one may use a degree-of-freedom
map generated by a form compiler to construct a suitable map at run-time. DOLFIN supports
distributes meshes and computes distributed degree of freedom maps for distributed assembly.
Multi-threaded® assembly is outwardly simpler than distributed assembly and is attractive given
the rapid growth in multi-core architectures. The assembly code can be easily modified, using for
example OpenMP, to parallelize the assembly loop over cells. Multi-threaded assembly requires
extra care so that multiple threads don’t write to the same memory location (when multiple
threads attempt to write to the same memory location, this is know as race condition. Multi-
threaded assembly has recently been implemented in DOLFIN (from version 1.0) based on coloring
the cells of the mesh so that no two neighboring cells (cells that share a common vertex in the case
of Lagrange elements) have the same color. One may then iterate over the colors of the mesh, and
for each color use OpenMP to parallelize the assembly loop. This ensures that no two cells will
write data from the same location (in the mesh), or write data to the same location (in the global
tensor).

7.5 Matrix-free methods

A feature of Krylov subspace methods and some other iterative methods for linear systems of
the form AU = b is that they rely only on the action of the matrix operator A on vectors and do
not require direct manipulation of A. This is in contrast with direct linear solvers. Therefore,
if the action of A on an arbitrary vector v can be computed, then a Krylov solver can be used
to solve the system AU = b without needing to assemble A. This matrix-free approach may be
attractive for problem types that are well-suited to Krylov solvers and for which the assembly of

2By multi-threaded assembly, we refer here to assembly in parallel on a shared memory parallel architecture, running
multiple threads that may access the same memory.
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A is costly (in terms of CPU time and/or memory). A disadvantage of matrix-free methods is
that the preconditioners that are most commonly used to improve the convergence properties and
robustness of Krylov solvers do involve manipulations of A; hence these cannot be applied in a
matrix-free approach. For the purpose of assembly, a matrix-free approach replaces the assembly
of the matrix A with repeated assembly of a vector Av, which is the action of A on the given
vector v. A key element in the efficient application of such methods is the rapid assembly of
vectors. The cost of insertion into a dense vectors is relatively low, compared to insertion into a
sparse matrix. The computation of the cell tensor is therefore the dominant cost. Assembly of the
action of a linear or linearized operator is supported in FEniCS.



8 Quadrature representation of finite element vari-
ational forms

By Kristian B. Qlgaard and Garth N. Wells

This chapter addresses the conventional runtime quadrature approach for the numerical integra-
tion of local element tensors associated with finite element variational forms, and in particular
automated optimizations that can be performed to reduce the number of floating point operations.
An alternative to the runtime quadrature approach is the tensor representation presented in
Chapter 9. Both the quadrature and tensor approaches are implemented in FFC (see Chapter 12).
In this chapter we discuss four strategies for optimizing the quadrature representation for runtime
performance of the generated code and show that optimization strategies lead to a dramatic
improvement in runtime performance over a naive implementation. We also examine performance
aspects of the quadrature and tensor approaches for different equations, and this will motivate the
desirability of being able to choose between the two representations.

8.1 Standard quadrature representation

To illustrate the standard quadrature representation and optimizations implemented in FFC we
consider the bilinear form for the weighted Laplace operator —V - (wVu), where u is the unknown
and w is a prescribed coefficient. The bilinear form of the variational problem for this equation
reads

a(u,v) :/QwVwVvdx. (8.1)

The quadrature approach can deal with cases in which not all functions come from a finite element
space, using ‘quadrature functions’ that can be evaluated directly at quadrature points. The tensor
representation approach only supports cases in which all functions come from a finite element
space (using interpolation if necessary). Therefore, to ensure a proper performance comparison
between the representations we assume that all functions in a form, including coefficient functions,
come from a finite element function space. In the case of (8.1), all functions will come from

Vi={veH (Q): olr € B (T)¥T €T}, (8.2)

where P, (T) denotes the space of Lagrange polynomials of degree g on the element T of the
standard triangulation of ), which is denoted by 7. If we let {¢! } denote the local finite element
basis that span the discrete function space Vj, on T, the local element tensor for an element T can
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be computed as

Ar; = /T WVl - Vel dx, 8.3)

where i = (iy,12).

The expression for the local element tensor in (8.3) can be expressed in UFL (see Chapter 18), from
which FFC generates an intermediate representation of the form (see Chapter 12). Assuming a
standard affine mapping Fr : Ty — T from a reference element Tj to a given element T € T, this
intermediate representation reads

Nz 445X, 00; (X7) & 9X,, 0®; (XT)
Ar; = D, (XN w a1 i ay iy
i q:X:lag,Z:l o3 a3 ﬁ;a;l dxg 09Xy, dxg 09Xy,

detE,W7,  (8.4)
le:l

where a change of variables from the reference coordinates X to the real coordinates x = Fr(X) has
been used. In the above equation, N denotes the number of integration points, d is the dimension
of ), n is the number of degrees of freedom for the local basis of w, ®; denotes basis functions
on the reference element, det F} is the determinant of the Jacobian, and W1 is the quadrature
weight at integration point X7. By default, FFC applies a quadrature scheme that will integrate
the variational form exactly. It calls FIAT (see Chapter 14) to compute the quadrature scheme.
FIAT supplies schemes that are based on the Gauss-Legendre—Jacobi rule mapped onto simplices
(see [ ] for details of such schemes).

From the representation in (8.4), code for computing entries of the local element tensor is generated
by FFC. This code is shown in Figure 8.1. Code generated for the quadrature representation is
structured in the following way. First, values of geometric quantities that depend on the current
element T, like the components of the inverse of the Jacobian matrix 9X,, /dx B and 90Xy, / axﬁ, are
computed and assigned to the variables like K_01 in the code (this code is not shown as it is not
important for understanding the nature of the quadrature representation). Next, values of basis
functions and their derivatives at integration points on the reference element, like ®,,(X7) and
0®; (X7)/0X,, are tabulated. Finite element basis functions are computed by FIAT. Basis functions
and their derivatives on a reference element are independent of the current element T and are
therefore tabulated at compile time and stored in the tables Psi_w, Psi_vu_D@1 and Psi_vu_D10 in
Figure 8.1. After the tabulation of basis functions values, the loop over integration points begins.
In the example we are considering linear elements, and only one integration point is necessary for
exact integration. The loop over integration points has therefore been omitted. The first task inside
a loop over integration points is to compute the values of coefficients at the current integration
point. For the considered problem, this involves computing the value of the coefficient w. The
code for evaluating F0 in Figure 8.1 is an exact translation of the representation Y.y, _; Py (X7)Was-
The last part of the code in Figure 8.1 is the loop over the basis function indices iy and i;, where
the contribution to each entry in the local element tensor, A, from the current integration point is
added.

To generate code using the quadrature representation the FFC command-line option -r quadrature
should be used.

8.2 Quadrature optimizations

We now address optimizations for improving the runtime performance of the generated code. The
underlying philosophy of the optimization strategies implemented in FFC is to manipulate the
representation in such a way that the number of operations to compute the local element tensor
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Figure 8.1: Part of the generated code
for the bilinear form associated with
the weighted Laplacian using linear
elements in two dimensions. The vari-
ables like K_00 are components of the
inverse of the Jacobian matrix and det
is the determinant of the Jacobian. The
code to compute these variables is not
shown. A holds the values of the local
element tensor and w contains nodal
values of the weighting function w.

virtual void tabulate_tensor(doublex A,

C++ code

const double * const * w,
const ufc::cell& c) const

// Quadrature weight.
static const double W1l = 0.5;

// Tabulated basis functions at quadrature points.

static const double Psi_w[1][3] =\

{{0.33333333333333, 0.33333333333333,
0.33333333333333}};

static const double Psi_vu_D01[1][3]

{{-1.0, 0.0, 1.0}};

static const double Psi_vu_D10[1][3]

{{-1.0, 1.0, 0.0}};

// Compute coefficient value.

double FO = 0.0;

for (unsigned int r = 0; r < 3; r++)
FO += Psi w[O][rl+w[O][r];

// Loop basis functions.
for (unsigned int j = 0; j < 3; j++)
{
for (unsigned int k = 0; k < 3; k++)
{
Alj*3 + k] +=\

((K_00+Psi_vu_D10[0O][j] + K_10*Psi_vu_DOL[O][]])*\
(K_00+Psi_vu_D10[0][k] + K_10*Psi_vu_DO1[0][k]) +

\

(K_01+Psi_vu_D10[0][j] + K_11%Psi_vu_DO1[O][]])*\
(K_01#Psi_vu_D10[0] [k] + K_11%Psi_vu_DO1[0][k])\

) «FO+W1lxdet;
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decreases. Each strategy described in the following sections, with the exception of eliminating
operations on zero terms, share some common features which can be categorized as:

Loop invariant code motion In short, this procedure seeks to identify terms that are independent
of one or more of the summation indices and to move them outside the loop over those
particular indices. For instance, in (8.4) the terms regarding the coefficient w, the quadrature
weight W7 and the determinant det F}. are all independent of the basis function indices iy
and i; and therefore only need to be computed once for each integration point. A generic
discussion of this technique, which is also known as ‘loop hoisting’, can be found in

[1986].

Reuse common terms Terms that appear multiple times in an expression can be identified, com-
puted once, stored as temporary values and then reused in all occurrences in the expression.
This can have a great impact on the operation count since the expression to compute an entry
in Ar is located inside loops over the basis function indices as shown in the code for the
standard quadrature representation in Figure 8.1.

To switch on optimization the command-line option -0 should be used in addition to any of the
FFC optimization options presented in the following sections.

8.2.1 Eliminate operations on zeros

Some basis functions and derivatives of basis functions may be zero-valued at all integration
points for a particular problem. Since these values are tabulated at compile time, the columns
containing non-zero values can be identified. This enables a reduction in the loop dimension for
indices concerning these tables. However, a consequence of reducing the tables is that a mapping
of indices must be created in order to access values correctly. The mapping results in memory not
being accessed contiguously at runtime and can lead to a decrease in runtime performance.

This optimization is switched on by using the command-line option -f eliminate_zeros. Code
for the weighted Laplace equation generated with this option is shown in Figure 8.2. For brevity,
only code different from that in Figure 8.1 has been included.

Although the elimination of zeros has lead to a decrease of the loop dimension for the loops
involving the indices j and k from three to two, the number of operations has increased. The
reason is that the mapping causes four entries to be computed at the same time inside the loop,
and the code to compute each entry has not been reduced significantly if compared to the code
in Figure 8.1. In fact, using this optimization strategy by itself is usually not recommended,
but in combination with the strategies outlined in the following sections it can improve runtime
performance significantly. This effect is particularly pronounced when forms contain mixed
elements in which many of the values in the basis function tables are zero. Another reason for
being careful when applying this strategy is that the increase in the number of terms might prevent
FFC compilation due to hardware limitations.

8.2.2  Simplify expressions

The expressions to evaluate an entry in the local element tensor can become very complex. Since
such expressions are typically located inside loops, a reduction in complexity can reduce the total
operation count significantly. The approach can be illustrated by the expression x(y + z) + 2xy,
which after expansion of the first term, grouping common terms and simplification can be reduced
to x(3y + z), which involves a reduction from five to three operations. An additional benefit of
this strategy is that the expansion of expressions, which take place before the simplification, will
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Figure 8.2: Part of the generated
code for the weighted Laplacian us-
ing linear elements in two dimen- // Tabulated basis functions.

C++ code

sions with optimization option -f static const double Psivu[1][2] =\
. {{-1.0, 1.0}};
eliminate_zeros. The arrays nzc@
and '?ZC1_ contain the nor.l-zero col- // Arrays of non-zero columns.
umn indices for the mapping of val- static const unsigned int nzc@[2] = {0, 2};
ues. Note how eliminating zeros static const unsigned int nzcl[2] = {0, 1};

makes it possible to replace the two ta-
bles with derivatives of basis functions
Psi_vu_DO1 and Psi_vu_D10 from Fig-
ure 8.1 with one table (Psi_vu).

// Loop basis functions.
for (unsigned int j = 0; j < 2; j++)
{
for (unsigned int k = 0; k < 2; k++)
{
AlnzcO[j]*3 + nzcO[k]] +=\
(K_10#Psi_vu[0][j]1*K_10%Psi_vu[O] [k] +\
K_11#Psi_vu[0][j]*K_11+Psi_vu[0][k])*FO+Wlxdet;
AlnzcO[j]*3 + nzcl[k]] +=\
(K_11#Psi_vu[O][j]*K_01+Psi_vu[O][k] +\
K 10+Psi vu[0][j]+*K_00+Psi vu[0][k])*FO+Wlxdet;
Alnzcl[j]*3 + nzcO[k]] +=\
(K_00+Psi_vu[0][j]*K 10+Psi_vu[0][k] +\
K_01+Psi_vu[0][j1+K_11+Psi_vu[0][k])*FO+Wlxdet;
Alnzcl[j]*3 + nzcl[k]] +=\
(K_01+Psi_vu[0][j]1+K_01+Psi_vu[0] [k] +\
K_00+Psi_vu[0][j]+*K_00+Psi_vu[0][k])*FO+Wlxdet;
}
}

typically allow more terms to be precomputed and hoisted outside loops, as explained in the
beginning of this section. For the weighted Laplace equation, the terms

i i 90Xy, 09, Z 09Xy, 0P, (XT) 65)
AT 9% E)Xa1 o1 0xp  0Xe, ’

will be expanded into

4, 9Xa; 91Xy, 0P; (X7) 00y, (X1)
axﬁ axlg aXal E)X,XZ !

(8.6)

L3
ﬁ:1 o =1 :
where (0Xy, /9xg) (0X4,/dxp) is independent of the indices i and i, and can therefore be moved
outside these loops.

The FFC command-line option -f simplify_expressions should be used to generate code with
this optimization enabled. Code generated by this option for the representation in (8.4) is presented
in Figure 8.3, where again only code different from that in Figure 8.1 has been included.

(Editor note: Explain what FE@ etc. mean in Figure 8.3! ]

Due to expansion of the expression, many terms related to the geometry have been moved outside
of the loops over the basis function indices j and k and stored in the array G. Also, note how the
expressions to compute the values in G have been simplified by moving the variables det and W1
outside the parentheses. Similarly, terms that depend only on the integration point are hoisted and
stored in the array I. The number of operations has decreased compared to the code in Figure 8.1
for the standard quadrature representation. An improvement in runtime performance can therefore
be expected.
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Figure 8.3: Part of the generated
code for the weighted Laplacian us-
// Geometry constants. ing linear elements in two dimen-
double G[31; sions with optimization option -f

C++ code

G[O] = Wldet* (K 00+K_00 + K _01+K _01); noLif X
G[1] = Wlxdetx(K_00+K_10 + K_01+K_11); SlmpllTy_expressions.
G[2] = Wlxdet*(K_10+K_10 + K_11+K_11);

// Integration point constants.

double I[3];

I[0] = FO+G[O];
I[1] = FO*G[1];
I[2] = FO*G[2];

// Loop basis functions.
for (unsigned int j = 0; j < 3; j++)
{
for (unsigned int k = 0; k < 3; k++)
{

A[j*3 + k] += (FEO_D10[0][j]*FEO_D1O[O][K]+I[O] +\
FEO_D10[0][j]+FEO_DOL[O] [K]*I[1] +\
FEO_DO1[O][j]+FEO_D1O[O][K]*I[1] +\
FEO_DO1[0O][j]+FEO_DOL[O][K]+I[2]);

The optimization described above is the most expensive of the quadrature optimizations to perform
in terms of FFC code generation time and memory consumption as it involves creating new terms
when expanding the expressions. The procedure does not scale well for complex expressions, but
it is in many cases the most effective approach in terms of reducing the number of operations.
This particular optimization strategy, in combination with the elimination of zeros outlined in the
previous section, was the first to be implemented in FFC. It has been investigated and compared to
the tensor representation in [ ], to which the reader is referred for further
details.

8.2.3 Precompute integration point constants

The optimizations described in the previous section are performed at the expense of increased
code generation time. In order to reduce the generation time while achieving a reduction in the
operation count, another approach can be taken involving hoisting expressions that are constant
with respect to integration points without expanding the expression first.

To generate code with this optimization the FFC command-line option -f precompute_ip_const
should be used. Code generated by this method for the representation in (8.4) can be seen in
Figure 8.4.

It is clear from the generated code that this strategy will not lead to a significant reduction in
the number of operations for this particular form. However, for more complex forms, with many
coefficients, the number of terms that can be hoisted will increase significantly, leading to improved
runtime performance.

8.2.4 Precompute basis constants

This optimization strategy is an extension of the strategy described in the previous section. In
addition to hoisting terms related to the geometry and the integration points, values that depends
on the basis indices are precomputed inside the loops. This will result in a reduction in operations
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Figure 8.4: Part of the generated
code for the weighted Laplacian us-
ing linear elements in two dimen- // Geometry constants.
sions with optimization option -f double G[11;

. G[0] = Wlxdet;
precompute_ip_const.

C++ code

// Integration point constants.
double I[1];
I[0] = FOxG[O];

// Loop basis functions.
for (unsigned int j = 0; j < 3; j++)

{
for (unsigned int k = 0; k < 3; k++)
{

A[j*3 + k] +=\

((Psi_vu_DO1[O][j]*K_ 10 + Psi_vu_D10[0][]j]*K_00)=*\
(Psi_vu_D01[0][k]*K_10 + Psi_vu_D10[0][k]*K_00) +\
(Psi_vu_DO1[0][j]1«K_11 + Psi_vu_D10[0][j]+K_01)=\
(Psi_vu_D01[0][k]*K_11 + Psi_vu_D10[0][k]+K_01)

)*I[0];

}
}

for cases in which some terms appear frequently inside the loop such that a given value can be
reused once computed.

To generate code with this optimization, the FFC command-line option -f precompute_basis_const
should be used. Code generated by this method for the representation in (8.4) can be seen in
Figure 8.5, where only code that differs from that in Figure 8.4 has been included.

In this particular case, no additional reduction in operations has been achieved, if compared to the
previous method, since no terms can be reused inside the loop over the indices j and k.

8.2.5 Future optimizations

Preliminary investigations suggest that the performance of the quadrature representation can be
improved by applying two additional optimizations. Looking at the code in Figure 8.5, we see
that about half of the temporary values in the array B only depend on the loop index j, and they
can therefore be hoisted, as we have done for other terms in previous sections. Another approach
is to unroll the loops with respect to j and k in the generated code. This will lead to a dramatic
increase in the number of values that can be reused, and the approach can be readily combined
with all of the other optimization strategies. However, the total number of temporary values will
also increase. Therefore, this optimization strategy might not be feasible for all forms.

FFC uses a Gauss—-Legendre—Jacobi quadrature scheme mapped onto simplices for the numerical
integration of variational forms. This means that for exact integration of a second-order polynomial,
FFC will use two quadrature points in each spatial direction that is, 23 = 8 points per cell in three
dimensions. A further optimization of the quadrature representation can thus be achieved by
implementing more efficient quadrature schemes for simplices since a reduction in the number
of integration points will yield improved runtime performance. FFC does, however, provide
an option for a user to specify the quadrature degree of a variational form thereby permitting
inexact quadrature. To set the quadrature degree equal to one, the command-line option -f
quadrature_degree=1 should be used.
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Figure 8.5: Part of the generated
code for the weighted Laplacian us-
for (unsigned int j = 0; j < 3; j++) ing linear elements in two dimen-

C++ code

for (unsigned int k = 0; k < 3; Kk+) sions with optl.m1zat10n option -f
{ precompute_basis_const. The array
double B[16]; B contain precomputed values that de-
B[O] = Psi_vu_DOL[0][j]+K 10; pend on indices j and k.
B[1] = Psi_vu_D10[0][j]1+K_00;
B[2] = (B[@] + B[1]);
B[3] = Psi_vu_D01[0][k]+K_10;
B[4] = Psi_vu_D10[0][k]+K_00;
B[5] = (B[3] + B[4]);
B[6] = B[2]*B[5];
B[7] = Psi_vu_DO1[0][j]+K 11;
B[8] = Psi_vu_D10[0][j]1+K_01;
B[9] = (B[7] + B[8]);
B[10] = Psi_vu_DO1[0][k]*K 11;
B[11] = Psi_vu_D10[0][k]*K_01;
B[12] = (B[10] + B[11]);
B[13] = B[12]+B[9];
B[14] = (B[13] + B[6]);
B[15] = B[14]+I[0];
A[j*3 + k] += B[15];
}
}

8.3 Performance comparisons

In this section we investigate the impact of the optimization strategies outlined in the previous
section on the runtime performance. The point is not to present a rigorous analysis of the
optimizations, but to provide indications as to when the different strategies will be most effective.
We also compare the runtime performance of quadrature representation to the tensor representation,
which is described in Chapter 9, to illustrate the strengths and weaknesses of the two approaches.

8.3.1 Performance of quadrature optimizations

The performance of the quadrature optimizations will be investigated using two forms, namely the
bilinear form for the weighted Laplace equation (8.1) and the bilinear form for the hyperelasticity
model presented in Chapter 18, equation (18.6). In both cases quadratic Lagrange finite elements
will be used.

All tests were performed on an Intel Pentium M CPU at 1.7GHz with 1.0GB of RAM running
Ubuntu 10.04 with Linux kernel 2.6.32. We used Python version 2.6.5 and NumPy version 1.3.0
(both pertinent to FFC), and g++ version 4.4.3 to compile the UFC version 1.4 compliant C++ code.
The two forms are compiled with the different FFC optimizations, and the number of floating
point operations (flops) to compute the local element tensor is determined. We define the number
of flops as the sum of all appearances of the operators ‘+” and “+” in the code. The ratio between the
number of flops of the current FFC optimization and the standard quadrature representation, ‘0/q’
is also computed. The generated code is then compiled with g++ using four different optimization
options and the time needed to compute the element tensor N times is measured. In the following,
we will use -zeros as shorthand for the -f eliminate_zeros option, -simplify as shorthand for
the -f simplify_expressions option, -ip as shorthand for the -f precompute_ip_const option
and -basis as shorthand for the -f precompute_basis_const option.

The operation counts for the weighted Laplace equation with different FFC optimizations can be
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FFC

optimization flops o/q
None 6264 1.00
-zeros 10008  1.60
-simplify 4062  0.65
-simplify -zeros 2874 0.45
-ip 5634 0.90
-ip -zeros 6432 1.03
-basis 5634 0.90
-basis -zeros 5532 0.88

Table 8.1: Operation counts for the weighted Laplace equation.

Figure 8.6: Runtime performance for
the weighted Laplace equation for dif-

10%

ferent compiler options. The x-axis ‘ ‘ ‘ ‘ ‘ = o0
shows the FFC compiler options, and = - ettt
the colors denote the g++ compiler op- - o

tions.

102

time [s]

10t

seen in Table 8.1, while Figure 8.3.1 shows the runtime performance for different compiler options
for N = 1 x 107. The FFC compiler options can be seen on the x-axis in the figure and the four
g++ compiler options are shown with different colors.

[Editor note: Very hard to read legends and axes in Figure , please fix! ]

The FFC and g++ compile times were less than one second for all optimization options. It is
clear from Figure 8.3.1 that runtime performance is greatly influenced by the g++ optimizations.
Compared to the case where no g++ optimizations are used (the -00 flag), the runtime for the
standard quadrature code improves by a factor of 3.15 when using the -02 option and 5.40 when
using the -02 -funroll-loops option. The -03 option does not appear to improve the runtime
noticeably beyond the improvement observed for the -02 -funroll-1loops option. Using the FFC
optimization option -zeros alone for this form does not improve runtime performance. In fact,
using this option in combination with any of the other optimization options increases the runtime,
even when combining with the option -simplify, which has a significant lower operation count
compared to the standard quadrature representation. A curious point to note is that without
g++ optimization there is a significant difference in runtime for the -ip and -basis options, even
though they involve the same number of flops. When g++ optimizations are switched on, this
difference is eliminated completely and the runtime for the two FFC optimizations are identical.
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FFC FFC time

optimization [s1 o/q flops  o/q
None 8.1 1.00 | 136531980 1.000
-zeros 8.3 1.02 60586218  0.444
-simplify 223 275 5950646  0.044
-simplify -zeros | 212 2.62 356084 0.003
-ip 15.2  1.88 90146710  0.660
-ip -zeros 17.9 221 14797360  0.108
-basis 152 1.88 7429510  0.054
-basis -zeros 17.8  2.20 1973521 0.014

Table 8.2: FFC compile times and operation counts for the hyperelasticity example.

Figure 8.7: Runtime performance for
the hyperelasticity example for dif-
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This suggests that it is not possible to predict runtime performance from the operation count alone
since the type of FFC optimization must be taken into account as well as the intended use of g++
compiler options. The optimal combination of optimizations for this form is FFC option -ip or
-basis combined with g++ option -02 -funroll-loops, in which case the runtime has improved
by a factor of 7.23 compared to standard quadrature code with no g++ optimizations.

The operation counts and FFC compile time for the bilinear form for hyperelasticity with different
FFC optimizations are presented in Table 8.2, while Figure 8.7 shows the runtime performance for
different compiler options for N = 1 x 10%.

Comparing the number of flops involved to compute the element tensor to the weighted Laplace
example, it is clear that this problem is considerably more complex. The FFC compile times in
Table 8.2 show that the -simplify optimization, as anticipated, is the most expensive to perform.
The g++ compile times for all test cases were in the range two to six seconds for all optimization
options. A point to note is that the scope for reducing the flop count is considerably greater for
this problem than for the weighted Laplace problem, with a difference in the number of flops
spanning several orders of magnitude between the different FFC optimizations. This compares to
a difference in flops of roughly a factor two between the non-optimized and the most effective
optimization strategy for the weighted Laplace problem. In the case where no g++ optimization
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is used the runtime performance for the hyperelastic problem can be directly related to the
number of floating point operations. When the g++ optimization -02 is switched on, this effect
becomes less pronounced. Another point to note, in connection with the g++ optimizations, is
that switching on additional optimizations beyond -02 does not seem to provide any further
improvements in run-time. For the hyperelasticity example, the option -zeros has a positive effect
on the performance, not only when used alone but in particular when combined with the other
FFC optimizations. This is in contrast with the weighted Laplace equation. The reason is that the
test and trial functions are vector valued rather than scalar valued, which allows more zeros to be
eliminated. Finally, it is noted that the -simplify option performs particularly well for this example
compared to the weighted Laplace problem. The reason is that the nature of the hyperelasticity
form results in a relatively complex expression to compute the entries in the local element tensor.
However, this expression only consists of a few different variables (components of the inverse of
the Jacobian and basis function values) which makes the -simplify option very efficient since
many terms are common and can be precomputed and hoisted. For the hyperelasticity form,
the optimal combination of optimizations is FFC option -simplify -zeros and g++ option -02
-funroll-loops which improves the runtime performance of the code by a factor of 3149 when
compared to the case where no optimization is used by either FFC or g++.

For the considered examples, it is clear that no single optimization strategy is the best for all
cases. Furthermore, the generation phase optimizations that one can best use depends on which
optimizations are performed by the g++ compiler. It is also very likely that different C++ compilers
will give different results for the test cases presented above. The general recommendation for
selecting the appropriate optimization for production code will therefore be that the choice should
be based on a benchmark program for the specific problem.

8.3.2  Relative performance of the quadrature and tensor representations

As demonstrated in the previous section, a given type of optimization may be effective for one class
of forms, and be less effective for another class of forms. Similarly, differences can be observed
between the quadrature and tensor representations for different equations. A detailed study on this
issue was carried out in [ ]. For convenience we reproduce here the main
conclusions along with Table 8.3, which has been reproduced from the paper. The results shown in
this section pertain to an elasticity-like bilinear form in two dimensions that is premultiplied by a
number of scalar coefficients f;:

a(u,v) = /Q(fofl,...,fnf) Veu : Vivdx, 8.7)

where 71y is the number of premultiplying coefficients. The test and trial functions are denoted by
v,u € V, with

Vi, = {v € [H (Q)2: vl € [P, (T)]2YT € T} (8.8)

and the coefficient functions f; € W, with

Wy={feH (Q): flreP(T)VT T}, (8.9)

where g and p denote the polynomial order of the Lagrange basis functions. The number of
coefficients and the polynomial orders are varied and the number of flops needed to compute the
local element tensor is recorded for both tensor and quadrature representations. The results were
obtained by using the optimization options -f eliminate_zeros -f simplify_expressions for
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1’lf =1 ﬂf =2 1’lf =3
flops q/t flops q/t flops q/t
=1,9= 888 0.3 3060 0.36 10224 0.11
=1,9= 3564 1.42 11400 1.01 35748 0.33

10988  3.23 34904 1.82 100388 0.63
26232 577 82548 2.87 254304 0.93
888 1.20 8220 0.31 54684 0.09
7176  1.59 41712 0.49 284232  0.11
22568 2.80 139472 0.71 856736  0.17
54300 4.36 337692  1.01 2058876  0.23
3044 0.36 30236 0.16 379964  0.02
12488 0.92 126368 0.26 1370576  0.03
36664 1.73 | 391552 0.37 | 4034704 0.05
92828 2.55 950012  0.49 9566012  0.06
3660 0.68 73236 0.11 1275624  0.01
17652  1.16 296712 0.16 4628460 0.02
57860 1.71 903752 0.22 | 13716836 0.02

138984 2.46 | 2133972 0.29 | 32289984 0.03
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Table 8.3: The number of operations and the ratio between number of operations for the two representations
for the elasticity-like tensor in two dimensions as a function of different polynomial orders and numbers of
functions (taken from [ ].

the quadrature representation. In Table 8.3 the flops for the tensor representation is presented
together with the ratio given by the flops for quadrature representation divided by the flops for
tensor representation, denoted by q/¢. In terms of flops, a ratio 4/t > 1 indicates that the tensor
representation is more efficient while 4/t < 1 indicates that the quadrature representation is more
efficient. It was found that when comparing the runtime performance of the two representations
for this problem that the number of flops is a good indicator of performance. However, as we
have shown in the previous section, the quadrature code with the lowest number of flops does
not always perform best for a given form. Furthermore, the runtime performance even depends
on which g++ options are used. This begs the question of whether or not it is possible to make
a sound selection between representations based only on an estimation of flops, as suggested
in [ ].

Nevertheless, some general trends can still be read from the table. Increasing the number of coeffi-
cient functions 7y in the form clearly works in favor of quadrature representation. For ny = 3 the
quadrature representation can be expected to perform best for all values of g and p. Increasing the
polynomial order of the coefficients, p, also works in favor of quadrature representation although
the effect is less pronounced compared to the effect of increasing the number of coefficients. The
tensor representation appears to perform better when the polynomial order of the test and trial
functions, g, is increased although the effect is most pronounced when the number of coefficients
is low.

8.4 Automatic selection of representation

We have illustrated how the runtime performance of the generated code for variational forms
can be improved by using various optimization options for the FFC and g++ compilers, and by
changing the representation of the form. Choosing the combination of form representation and
optimization options that leads to optimal performance will inevitably require a benchmark study
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of the specific problem. However, very often many variational forms of varying complexity are
needed to solve more complex problems. Setting up benchmarks for all of them is cumbersome
and time consuming. Additionally, during the model development stage runtime performance is
of minor importance compared to rapid prototyping of variational forms as long as the generated
code performs reasonably well.

The default behavior of FFC is, therefore, to automatically determine which form representation
should be used based on a measure for the cost of using the tensor representation. In short, the
cost is simply computed as the maximum value of the sum of the number of coefficients and
derivatives present in the monomials representing the form. If this cost is larger than a specified
threshold, currently set to three, the quadrature representation is selected. Recall from Table 8.3
that when 1y = 3 the flops for quadrature representation was significantly lower for virtually
all the test cases. Although this approach may seem ad hoc, it will work well for those situations
where the difference in runtime performance is significant. It is important to remember that
the generated code is only concerned with the evaluation of the local element tensor and that
the time needed to insert the values into a sparse matrix and to solve the system of equations
will reduce any difference, particularly for simple forms. Therefore, making a correct choice of
representation is less important for forms where the difference in runtime performance is small. A
future improvement could be to devise a strategy for also letting the system select the optimization
strategy for the quadrature representation automatically.






9 Tensor representation of finite element variational
forms

By Robert C. Kirby and Anders Logg

In Chapter 7, we saw that an important step in the assembly of matrices and vectors for the
discretization of finite element variational problems is the evaluation of the cell (element) tensor
Ar defined by

T, T2 ,T1
Ar; = aT(¢ipp""’(Piz '4)1'1 ). (9.1)

Here, a7 is the local contribution to a multilinear form a : V, x --- x Vo x Vi, i = (i, 1p,...,1p) is a

multi-index of length p, and {(ka i }Z’: 1 is a basis for the local finite element space of V;;, C V; on a
local cell T for j =1,2,...,p. In this chapter, we describe how the cell tensor At can be computed
efficiently by an approach referred to as tensor representation.

9.1 Tensor representation for Poisson equation

We first describe how one may express the cell tensor for Poisson’s equation as a special tensor
contraction and explain below how this may be generalized to other variational forms. For
Poisson’s equation, the cell tensor (matrix) At is defined by

;!
AI/V“VTde/ v 30 .
T ¢ ¢, " dx r & o axﬁ dx. (9-2)

Let Fr : T — T be an affine map from a reference cell T to the current cell T as illustrated in
Figure 9.1. Using this affine map, we make a change of variables to obtain

/ ax"‘l OB, - oty 0 det Fj d. 9.3)
T

o M ) 9xp 9%y 5= OXp Ofn,

Here, ([J (]) T Fr denotes the basis function on the reference cell T corresponding to the basis

function cp on the current cell T. Since Fr is affine, the derivatives 0%/dx and the determi-
nant det F’ are constant. We thus obtain

Ar; = detF] f f iaf“l Oy [ 00, 4’1sz f fAQ & (9.4)
Ti— T axﬁ Bxﬁ BJCal aXDcz i =T o4

0(1:1 0(2:1 ﬁ:l Dél:l Déz:l
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x3 Figure 9.1: TheA (affine) map Fr from a
reference cell Ttoacell T € Ty,

£ =(0,0) %2 = (1,0)

where

A1 22
A?IX :/ a?il a?iz dz,
T 0%y, 0%y,
5 _ detF, i Py Oy .
T — T .
ﬁ:1 ax/g axﬁ

We refer to the tensor A° as the reference tensor and to the tensor Gt as the geometry tensor. We may
thus express the computation of the cell tensor At for Poisson’s equation as the tensor contraction

Ar = A% : Gr. (9.6)

This tensor contraction may be computed efficiently by precomputing the entries of the reference
tensor A’. This is possible since the reference tensor is constant and does not depend on the
cell T or the mesh 7, = {T}. On each cell T € T}, the cell tensor may thus be computed by first
computing the geometry tensor Gt and then contracting it with the precomputed reference tensor.
In Chapter 12, we describe the FEniCS Form Compiler (FFC) which precomputes the reference
tensor A® at compile-time and generates code for computing the tensor contraction.

For Poisson’s equation in two space dimensions, the tensor contraction involves contracting the
2 x 2 geometry tensor Gt with each corresponding block of the 3 x 3 x 2 x 2 reference tensor A° to
form the entries of the 3 x 3 cell tensor AT. Each of these entries may thus be computed in only four
multiply-add pairs (plus the cost of computing the geometry tensor). This brings a considerable
speedup compared to evaluation by run-time quadrature, in particular for higher-order elements.
In Chapter 10, we discuss how this may be improved further by examining the structure of the
reference tensor A to find a reduced-arithmetic computation for the tensor contraction.
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[a(u,v) = (u,0) | rank |
A = [ 43}1 431.22 dt | |in] =2
Gy = detF} la| =0

Table 9.1: Tensor representation At = A : Gt of the cell tensor At for the bilinear form associated with a
mass matrix.

9.2 A representation theorem

In [ ], it was proved that the cell tensor for any affinely mapped monomial
multilinear form may be expressed as a tensor contraction A = A® : Gr, that is,
Ari = L ARGH (97)
o

More precisely, the cell tensor may be expressed as a sum of tensor contractions:

Ar =Y A% Gry. (9.8)
k

By a monomial multilinear form, we here mean a multilinear form that can be expressed as a sum
of monomials, where each monomial is a product of coefficients, trial/test functions and their
derivatives. This class covers all forms that may be expressed by addition, multiplication and
differentiation. Early versions of the form compiler FFC implemented a simple form language that
was limited to these three operations. This simple form language is now replaced by the new and
more expressive UFL form language

The representation theorem was later extended to Piola-mapped elements in [ I
and in [ ] it was demonstrated how the tensor representation may be computed
for discontinuous Galerkin methods.

The ranks of the reference and geometry tensors are determined by the multilinear form g, in
particular by the number of coefficients and derivatives of the form. Since the rank of the cell
tensor Ar is equal to the arity p of the multilinear form a, the rank of the reference tensor A°
must be |ix| = p + |a|, where || is the rank of the geometry tensor. For Poisson’s equation, we
have |ix| = 4 and || = 2. In Tables 9.1 and 9.2, we demonstrate how the tensor representation
may be computed for the bilinear forms a(u,v) = (1, v) (mass matrix) and a(w; u,v) = (w - Vu,v)
(advection).

[a(w;u,v) = (w-Vu,0) | rank |
997, B) P o | s

AY = Tpor Jr kBl [Bld2 | lia| =5

G} = wzldetF}gﬁz la| =3

Table 9.2: Tensor representation At = A0 : Gt of the cell tensor A7 for the bilinear form associated with
advection w - Vu. It is assumed that the velocity field w may be interpolated into a local finite element
space with expansion coefficients w? . Note that w is a vector-valued function, the components of which are
referenced by w[p].
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9.3 Extensions and limitations

The tensor contraction (9.8) assumes that the map Fr from the reference cell is affine, allowing
the transforms d£/0dx and the determinant det Fj to be pulled out of the integral. If the map is
non-affine (sometimes called a “higher-order” map), one may expand it in the basis functions of
the corresponding finite element space and pull the coefficients outside the integral, as done for
the advection term from Table 9.2. Alternatively, one may evaluate the cell tensor by quadrature
and express the summation over quadrature points as a tensor contraction as explained in

[ ]. As noted above, the tensor contraction readily extends to basis functions mapped
by Piola transforms.
One limitation of this approach is it requires each basis function on a cell T to be the image of a
single reference element basis function under an affine Piola transformation. While this covers
a wide range of commonly used elements, it does not include certain kinds of elements with
derivative-based degrees of freedom such as the Hermite and Argyris elements. Let Fr be the
mapping of the reference element function space to the function space over the cell T, such as the
affine map or Piola transform. Then the physical element basis functions can be expressed as a
linear combination of the transformed reference element basis functions,

¢! =Y Mr;Fr($;). (9-9)

j=1

The structure of this matrix Mt depends on the kinds of degrees freedom, and the values typically
vary for each T based on the cell geometry. Frequently, the matrix Mr is sparse. Given Mr, the
tensor-contraction framework may be extended to handle these more general elements. As before,
one may compute the reference tensor A” by mapping the reference element basis functions. But
in addition, the tensor contraction A” : Gt must be corrected by acting on it with the matrix Mr.
This is currently not implemented in the form compiler FFC and thus FEniCS does not support
Hermite and Argyris elements.

For many simple variational forms, such as those for Poisson’s equation, the mass matrix and
the advection term discussed above, the tensor contraction (9.8) leads to significant speedups
over numerical quadrature, sometimes as much as several orders of magnitude. However, as the
complexity of a form increases, the relative efficiency of quadrature also increases. In simple
terms, the complexity of a form can be measured as the number of derivatives and the number
of coefficients appearing in a form. For each derivative and coefficient, the rank of the reference
tensor AY increases by one. Thus, for Poisson’s equation, the rank is 2 + 2 = 4 since the form has
two derivatives and for the mass matrix, the rank is 2 + 0 since there are neither derivatives nor
coefficients. For the advection term, the rank is 2 4+ 2 + 1 = 5 since the form has one derivative,
one coefficient, and also an inner product w - V. Since the size of the reference tensor A? grows
exponentially with its rank, the tensor contraction may become very costly for forms of high
complexity. In these cases, quadrature is more efficient. Quadrature may sometimes also be the
only available option as the tensor contraction is not directly applicable to forms that are not
expressed as simple sums of products of coefficients, trial/test functions and their derivatives. For
this reason, it is important to be able to choose between both approaches; tensor representation
may sometimes be the most efficient approach whereas in other cases quadrature is more efficient
or even the only possible alternative. Such trade-offs are discussed in Chapter 8 and Chapter 13.



10 Discrete optimization of finite element matrix
evaluation

By Robert C. Kirby, Matthew G. Knepley, Anders Logg, L. Ridgway Scott and
Andy R. Terrel

The tensor contraction structure for the computation of the element tensor At obtained in Chapter 9,
enables not only the construction of a compiler for variational forms, but an optimizing compiler.
For typical variational forms, the reference tensor A° has significant structure that allows the
element tensor At to be computed on an arbitrary cell T at a lower computational cost. Reducing
the number of operations by making use of this structure, leads naturally to several problems
in discrete mathematics. This chapter introduces some of the optimizations that are possible,
and discusses compile-time combinatorial optimization problems that form the core of the FErari
project [ , , ; , , 1, which is the subject of
Chapter 13.

We consider two basic kinds of optimizations in this chapter. First, we consider relations between
pairs of rows in the reference tensor. This naturally leads to a graph that models proximity among
these pairs. If two rows are “close” together, then one may reuse results computed with the first
row to compute a desired quantity with the second. The proximity of two such rows is computed
using a Hamming distance and linearity relations. This approach gives rise to a weighted graph
that is (almost) a metric space, so we designate such optimizations as “topological”. Second, we
consider relations between more than two rows of the reference tensor. Such relations typically
rely on sets of rows, considered as vectors in Euclidean space. Because we are using planes and
hyperplanes to reduce the amount of computation, we describe these optimizations as “geometric”.
For comparison, we briefly discuss optimizations using more traditional optimized dense linear
algebra packages.

10.1  Optimization framework

The tensor paradigm developed in Chapter 9 arrives at the representation

Ar;= Y AVG} VieT, (10.1)
aeA
or simply
Ar = A: Gy, (10.2)

where 7 is the set of admissible multi-indices for the element tensor At and A is the set of
admissible multi-indices for the geometry tensor Gr. The reference tensor A° can be computed

169
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at compile-time, and may then be contracted with a Gt to obtain the element tensor At for each
cell T in the finite element mesh at run-time. The case of computing local finite element stiffness
matrices of size ny x nr corresponds to Z consisting of |Z| = n% multi-indices of length two, where
nr is the dimension of the local finite element space on T.

It is convenient to recast (10.2) in terms of a matrix—vector product:

AY: Gr & A% (10.3)

Here, the matrix A lies in RIZI*I4|, and the vector §r lies in RMI. The resulting matrix-vector
product can then be reshaped into the element tensor Ar. As this computation must occur for each
cell T in a finite element mesh, it makes sense to try to make this operation as efficient as possible.
In the following, we will drop the subscripts and superscripts of (10.3) and consider the problem
of computing a general matrix—vector product

y = Ax, (10.4)

efficiently, where A = AV is a constant matrix known a priori, and x = §ris an arbitrary vector. We
will study structure of A that allows for a reduction in the number of arithmetic operations required
to form these products. With this structure, we are able to produce a routine that computes the
action of the system in less operations than would be performed using general sparse or dense
linear algebra routines.

Before proceeding with the mathematical formulation, we give an example of a matrix A that we
would like to optimize. In (10.5), we display the reference tensor A? for computing a standard
stiffness matrix discretizing a two—dimensional Laplacian with quadratic Lagrange elements on
triangles. The rank four tensor is depicted here as a 6 x 6 matrix of 2 X 2 matrices. Full analysis
would use a corresponding flattened 36 x 4 matrix A.

3 0l0 =11 1 |-4 —4]0 4]0 o0

0o olo olo oo o|o0o oo o

0 0/l0 0]0 0]0 0]0 00 o0

1 0/0 3|1 1|0 0|4 0]|-4 —4

1 0/0 1|3 3|-4 0[]0 0]0 -4

0 1 0lo 1|3 3|-4 00 o]0 -4
A=|l—r 00 01-2 48 20 4]0 1 (10.5)

4 0/0 0|0 0|4 8|—-4 -84 0

0 0/0 40 0] 0 —4]|8 4 |-8 —4

4 0/0 0|0 0|-4 -84 8 |-4 0

0 0|0 -4/ 0 0] 0 4|-8 —48 4

0 0/0 —4|—4 —4| 4 0|-4 0] 4 8

10.2 Topological optimization

It is possible to apply the matrix A, corresponding to the reference tensor AY depicted in (10.5),
to an arbitrary vector x in fewer operations than the 144 multiply-add pairs required by a
standard matrix-vector multiplication. This requires offline analysis of A and special-purpose code
generation that applies the particular A to a generic x. For A € RM*N let {a! f\i , € RN denote
the rows of A. The vector y = Ax may then be computed by M dot products of the form y; = a'x.
Below, we investigate relationships among the rows of A to find an optimized computation of the
matrix—vector product.
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For the purpose of illustration, we consider the following subset of (10.5), which would only cost
40 multiply-add pairs but contains all the relations we use to optimize the larger version:

al < A}, 1 1 0 o0
a? < A}, 4 4 0 0
@ < AYg o 0 1 1
aé “ Ag,g, 3 3 3 3
_| #e A _ 0 4 4 0
A=1 weo Agj | 8 4 4 8 (106)
o AY 0 —4 —4 -8
B o Ag,6 -8 -4 —4 0
2 o A, 0 0 0 0
al0 ¢ AU 8 4 4 8

Inspection of (10.6) shows that a” is zero; therefore, it does not need to be multiplied by the entries
of x. In particular, if z entries of a’ are zero, then the dot product a’x requires N — z multiply-add
pairs rather than N.

If a = a/ for some i # j, as seen in the sixth and tenth rows of A, then it follows that y; = yj, and
only one dot product needs to be performed instead of two. A similar case is where aa’ = a/ for
some number «, as in the first and second rows of A. This means that after y; has been computed,
Yyj = ay; may be computed with a single multiplication.

In addition to equality and collinearity discussed above, one may also consider other relations
between the rows of A. Further inspection of A in (10.6) reveals rows that have some entries in
common but are neither equal nor collinear. Such rows have a small Hamming distance, that is, the
number of entries in which the two rows differ is small. This occurs frequently, as seen in, for
example, rows five and six . We can write a/ = a’ + (a/ — a'), where @/ — a' has dy < N nonzero
entries and where dy is the Hamming distance between a' and @/. Once y; has been computed,
one may thus compute yj as

Yi=Yi+ (a7 — ai) X, (10.7)

which requires only dy additional multiply-add pairs. If dp is small compared to N, the savings
are considerable.

In [ ], these binary relations are extended to include the partial collinearity
of two vectors. For example, the sixth and seventh rows have parts that are collinear, namely

a§, = —a’.,. This allows y; to be computed via:

— j
Yji = ‘X(.l/i - yi,nonmatching) + anonmatching X, (10.8)

where the subscript indicates non-matching portions of the vectors padded with zeroes. Such
relationships reduce the computation of y; to the subtraction of the non-matching contributions, a
scaling of the result computed with i/, and then an additional multiplication with the non-matching
entries in a/.

All of these examples of structure relate to either a single row of A or a pair of rows of A. Such
binary relations between pairs of rows are amenable to the formulation of graph-theoretic structures,
as is developed in Section 10.3. Higher-order relations also occur between the rows of A. For
example, the first and third rows may be added and scaled to make the fourth row. In this case,
once a'x and a3x are known, the results may be used to compute a*x using one addition and one
multiplication, compared to four multiplications and three additions for direct evaluation of the
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Figure 10.1: Minimum spanning tree

gz‘i%% (forest) for the vectors in (10.6). The
2 dashed edges represent edges that do

not reduce the number of operations

(relative to N — z) and thus disconnect
the graph.

dot product a*x.

10.3 A graph problem

If we restrict consideration to binary relations between the rows of A, we are led naturally to
a weighted, undirected graph whose vertices are the rows a' of A. An edge between a' and a/
with weight d indicates that if a'x is known, then that result may be used to compute a/x with d
multiply-add pairs. In practice, such edges also need to be labeled with information indicating the
kind of relationship such as equality, collinearity or a low Hamming distance.

To find the optimal computation through the graph, we use Prim’s algorithm [ , ] for
computing a minimum-spanning tree. A minimum spanning tree is a tree that connects all the
vertices of the graph and has minimum total edge weight. In [ ], it is demonstrated
that, under a given set of relationships between rows, a minimum spanning tree in fact encodes an
algorithm that optimally reduces the number of arithmetic operations required. This discussion
assumes that the initial graph is connected. In principle, every a’ is no more than a distance of N
away from any a/. In practice, however, only edges with d < N — z are included in a graph since
N is the cost of computing y; without reference to y;. This often makes the graph unconnected
and thus one must construct a minimum spanning forest instead of a tree (a set of disjoint trees
that together touch all the vertices of the graph). An example of a minimum spanning tree using
the binary relations is shown in Figure 10.1.

Such a forest may then be used to determine an efficient algorithm for evaluating Ax as follows.
Start with some a' and compute y' = a’x directly in at most N multiply-add pairs. The number of
multiply-add pairs may be less than N if one or more entries of al are zero. Then, if al is a nearest
neighbor of a’ in the forest, use the relationship between a/ and a' to compute y/ = a/x. After this,
take a nearest neighbor of @/, and continue until all the entries of y have been computed.
Additional improvements may be obtained by recognizing that the input tensor Gr < x is
symmetric for certain operators like the Laplacian. In two spatial dimensions, Gt for the Laplacian
is 2 x 2 with only 3 unique entries, and in three spatial dimensions it is 3 X 3 with only 6 unique
entries. This fact may be used to construct a modified reference tensor A? with fewer columns. For
other operators, it might have symmetry along some but not all of the axes.

Heath and Wolf proposed a slight variation on this algorithm. Rather than picking an arbitrary
starting row a’, they enrich the graph with an extra vertex labeled IP for “inner product.” Each
a' is a distance N — z from IP, where z is the number of vanishing entries in a’. The IP vertex is
always selected as the root of the minimum spanning tree. It allows for a more robust treatment of
unary relations such as sparsity, and detection of partial collinearity relations.

10.4 Geometric optimization

When relations between more than two rows are considered, the optimization problem may no
longer be phrased in terms of a graph, but requires some other structure. In these cases, proving
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Figure 10.2: Generating graph for the g:—@—@.@s
vectors in (10.6). E :

that one has found an optimal solution is typically difficult, and it is suspected that the associated
combinatorial problems are N P-hard.

As a first attempt, one can work purely from linear dependencies among the data as follows. Let
B = {b'}; C {a'}Y, be a maximal set of nonzero rows of A, such that no two rows are collinear.
Then enumerate all triples which are linearly dependent,

S = {{bi,bj, bk} C B:3aq,a0,a3 # 0: b’ + aobl + azb* = 0}. (10.9)

The idea is now to identify some subset C of B that may be used to recursively construct the rest
of the rows in B using the relationships in S.

Given some C C B, we may define the closure of C, denoted by C, as follows. First of all, if b € C,
then b € C. Second, if b € B and there exist ¢,d € C such that {b,c,d} € S, then b € C as well. If
C = B, we say that C is a generator for B or that C generates B.

The recursive definition suggests a greedy process for constructing the closure of any set C. Each
vector in B is put in a priority queue with an initial value of the cost to compute independent of
other vectors. While C # B, a vector from B\C with the minimum cost to compute is added to C
and the priorities of B are updated according to S. This process constructs a directed, acyclic graph
that indicates the linear dependence being used. Each b € C will have no out-neighbors, while
each b € C\C will point to two other members of C. This graph is called a generating graph. Using
(10.6), we have the following sets B, S, and C, with the generating graph shown in Figure 10.2:

B = {ﬂl, az,ay,0s,4a6,4a7, 618}
S = {(a1,a3,a4),(ay,as5,a6),(as,a7,a8)} (10.10)
C = {a3/ aq,as, a7}

If C generates B, then the generating graph indicates an optimized (but perhaps not optimal)
process for computing {y’ = b'x};. Take a topological ordering of the vectors b according to
this graph. Then, for each b’ in the topological ordering, if b’ has no out-neighbors, then bix is
computed explicitly. Otherwise, b will point to two other vectors b/ and b* for which the dot
products with x will already be known. Since the generating graph has been built from the set of
linearly dependent triples S, there must exist some B, 8 such that b’ = B1b/ + B,b*. We may thus
compute y' by

vl = bix = Biblx + BobFx, (10.11)

which requires only two multiply-add pairs instead of N.

To make best use of the linear dependence information, one would like to find a generator C that
has as few members as possible. We say that a generator C is minimal for B if no C' C C also
generates B. A stronger requirement is for a generator to be minimum. A generator C is minimum
if no other generator C’ has lower cardinality. More complete details and heuristics for constructing
minimal generators are considered in [ ]; it is not currently known whether
such heuristics construct minimum generators or how hard the problem of finding minimum
generators is.

Given a minimal generator C for B, one may consider searching for higher order linear relations
among the elements of C, such as sets of four items that have a three-dimensional span. The
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triangles
[ degree [M N MN | MAPs |
1 6 3 18 9

2 21 3 63 17
3 55 3 165 | 46

tetrahedra
[ degree | M N MN | MAPs |
1 10 6 60 27

2 55 6 330 101
3 210 6 1260 370

Table 10.1: Number of multiply—add pairs for graph-optimized Laplace operator (MAPS) compared to the
basic number of multiply-add pairs (MN).

| degree | topological | geometric |

2 101 105
3 370 327
4 1118 1072

Table 10.2: Comparison of topological and geometric optimizations for the Laplace operator on tetrahedra
using polynomial degrees two through four. In each case, the final number of MAPs for the optimized
algorithm is reported. The case g = 1 is not reported since then both strategies yield the same number of
operations.

discussion of generating graphs and their utilization is the same in this case.

In [ ], a combination of the binary and higher-order relations between the
rows of A in a hypergraph model is studied. While greedy algorithms provide optimal solutions
for a graph model, it is demonstrated that the obvious generalizations to hypergraphs can be
suboptimal. While the hypergraph problems are most likely very hard, heuristics perform well
and provide additional optimizations beyond the graph models. So, even if a non-optimal solution
is found, it still provides an improved reduction in arithmetic requirements.

In Table ??, topological and geometric optimization are compared for the Laplacian using quadratic
through quartic polynomials on tetrahedra. In the geometric case, the vectors a’ were filtered for
unique direction; that is, only one vector for each class of collinear vectors was retained. Then,
a generating graph was constructed for the remaining vectors using pairwise linear dependence.
The generator for this set was then searched for linear dependence among sets of four vectors,
and a generating graph constructed. Perhaps surprisingly, the geometric optimization found flop
reductions comparable to or better than graph-based binary relations. These are shown in Table ??2.

10.5 Optimization by dense linear algebra

As an alternative to optimizations that try to find a reduced arithmetic for computing the element
tensor Ar, one may consider computing the element tensor by efficient dense linear algebra. As
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above, we note that the entries of the element tensor At may be computed by the matrix-vector
product A°¢r. Although zeros may appear in AY, this is typically a dense matrix and so the
matrix—vector product may be computed efficiently with Level 2 BLAS, in particular using a call
to dgemv. There exist a number of optimized implementations of BLAS, including hand-optimized
vendor implementations, empirically and automatically tuned libraries [ , ] and
formal methods for automatic derivation of algorithms [ I

The computation of the element tensor AT may be optimized further by recognizing that one may
compute the element tensor for a batch of elements {T;}; C T in one matrix-matrix multiplication:

[An Agn ] =Rl g o] (1012

This matrix-matrix product may be computed efficiently using a single Level 3 BLAS call (dgemm)
instead of a sequence of Level 2 BLAS calls, and typically leads to better floating-point performance.

10.6 Notes on implementation

A subset of the optimizations discussed in this chapter are available as part of the FErari Python
module. FErari (0.2.0) implements optimization based on finding binary relations between the
entries of the element tensor. With optimizations turned on, FFC calls FErari at compile-time to gen-
erate optimized code. Optimization for FFC can be turned on either by the -0 parameter when FFC
is called from the command-line, or by setting parameters["form_compiler"]["optimization"]
= True when FFC is called as a just-in-time compiler from the DOLFIN Python interface. Note that
the FErari optimizations are only used when FFC generates code based on the tensor representation
described in Chapter 9. When FFC generates code based on quadrature, optimization is handled
differently, as described in Chapter 8. Improved run-times for several problems are detailed in

[2008].
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11 DOLFIN: A C++/Python finite element library

By Anders Logg, Garth N. Wells and Johan Hake

DOLFIN is a C++/Python library that functions as the main user interface of FEniCS. In this
chapter, we review the functionality of DOLFIN. We also discuss the implementation of some
key features of DOLFIN in detail. For a general discussion on the design and implementation of
DOLFIN, we refer to [ ].

11.1 Overview

A large part of the functionality of FEniCS is implemented as part of DOLFIN. It provides a problem
solving environment for models based on partial differential equations and implements core parts
of the functionality of FEniCS, including data structures and algorithms for computational meshes
and finite element assembly. To provide a simple and consistent user interface, DOLFIN wraps the
functionality of other FEniCS components and external software, and handles the communication
between these components.

Figure 11.1 presents an overview of the relationships between the components of FEniCS and
external software. The software map presented in the figure shows a user application implemented
on top of the DOLFIN user interface, either in C++ or in Python. User applications may also be
developed using FEniCS Apps, a collection of solvers implemented on top of FEniCS/DOLFIN.
DOLFIN itself functions as both a user interface and a core component of FEniCS. All communica-
tion between a user program, other core components of FEniCS and external software is routed
through wrapper layers that are implemented as part of the DOLFIN user interface. In particular,
variational forms expressed in the UFL form language (Chapter 18) are passed to the form compiler
FEC (Chapter 12) or SFC (Chapter 16) to generate UFC code (Chapter 17), which can then be used
by DOLFIN to assemble linear systems. In the case of FFC, this code generation depends on the
finite element backend FIAT (Chapter 14), the just-in-time compilation utility Instant (Chapter 15)
and the optional optimizing backend FErari (Chapter 13). Finally, the plotting capabilities provided
by DOLFIN are implemented by . Some of this communication is exposed to users of the
DOLFIN C++ interface, which requires a user to explicitly generate UFC code from a UFL form
file by calling a form compiler on the command-line.

DOLFIN also relies on external software for important functionality such as the linear algebra
libraries , , and , and the mesh partitioning libraries and
SCOTCH [ I
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11.2  User interfaces

DOLFIN provides two user interfaces. One interface is implemented as a traditional C++ library,
and another interface is implemented as a standard Python module. The two interfaces are near-
identical, but in some cases particular language features of either C++ or Python require variations
in the interfaces. In particular, the Python interface adds an additional level of automation
by employing run-time (just-in-time) code generation. Below, we comment on the design and
implementation of the two user interfaces of DOLFIN.

11.2.1  C++ interface

The DOLFIN C++ interface is designed as a standard object-oriented C++ library. It provides
classes such as Matrix, Vector, Mesh, FiniteElement, FunctionSpace and Function, which model
important concepts for finite element computing (see Figure 11.2). It also provides a small number
of free functions (a function that is not a member function of a class), most notably assemble and
solve, which can be used in conjunction with DOLFIN class objects to implement finite element
solvers. The interface is designed to be as simple as possible, and without compromising on
generality. When external software is wrapped, a simple and consistent user interface is provided
to allow the rapid development of solvers without needing to deal with differences in the interfaces
of external libraries. However, DOLFIN has been designed to interact flexibly with external
software. In particular, in cases where DOLFIN provides wrappers for external libraries, such as
the Matrix and Vector classes which wrap data structures from linear algebra libraries like PETSc
and Trilinos, advanced users may, if necessary, access the underlying data structures in order to
use native functionality from the wrapped external libraries.
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Figure 11.2: Schematic overview of [ functions |
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To solve partial differential equations using the DOLFIN C++ interface, users must express finite
element variational problems in the UFL form language. This is accomplished by entering the
forms into separate .ufl files and compiling those files using a form compiler to generate UFC-
compliant C++ code. The generated code may then be included in a DOLFIN C++ program. We
return to this issue in Section 11.3.

To use DOLFIN from C++, users need to include one or more header files from the DOLFIN C++
library. In the simplest case, one includes the header file dolfin.h, which in turn includes all other
DOLFIN header files:

C++ code
#include <dolfin.h>

using namespace dolfin;

int main()

{

return 0;

}

11.2.2  Python interface

Over the last decade, Python has emerged as an attractive choice for the rapid development of
simulation codes for scientific computing. Python brings the benefits of a high-level scripting
language, the strength of an object-oriented language and a wealth of libraries for numerical
computation.

The bulk of the DOLFIN Python interface is automatically generated from the C++ interface using
SWIG [ , , ]. Since the functionality of both the C++ and Python interfaces are
implemented as part of the DOLFIN C++ library, DOLFIN is equally efficient via the C++ and
Python interfaces for most operations.
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The DOLFIN Python interface offers some functionality that is not available from the C++ interface.
In particular, the UFL form language is seamlessly integrated into the Python interface and code
generation is automatically handled at run-time. To use DOLFIN from Python, users need to
import functionality from the DOLFIN Python module. In the simplest case, one includes all
functionality from the Python module named dolfin:

Python code

from dolfin import =

11.3 Functionality

DOLFIN is organized as a collection of libraries (modules), with each covering a certain area
of functionality. We review here these areas and explain the purpose and usage of the most
commonly used classes and functions. The review is bottom-up; that is, we start by describing
the core low-level functionality of DOLFIN (linear algebra and meshes) and then move upwards
to describe higher level functionality. For further details, we refer to the DOLFIN Programmer’s
Reference on the FEniCS Project web page and to [ I

11.3.1 Linear algebra

DOLFIN provides a range of linear algebra objects and functionality, including vectors, dense
and sparse matrices, direct and iterative linear solvers and eigenvalues solvers, and does so
via a simple and consistent interface. For the bulk of underlying functionality, DOLFIN relies
on third-party libraries such as PETSc and Trilinos. DOLFIN defines the abstract base classes
GenericTensor, GenericMatrix and GenericVector, and these are used extensively throughout
the library. Implementations of these generic interfaces for a number of backends are provided in
DOLFIN, thereby achieving a common interface for different backends. Users can also wrap other
linear algebra backends by implementing the generic interfaces.

Matrices and vectors. The simplest way to create matrices and vectors is via the classes Matrix and
Vector. In general, Matrix and Vector represent distributed linear algebra objects that may be
stored across (MPI) processes when running in parallel. Consistent with the most common usage
in a finite element library, a Vector uses dense storage and a Matrix uses sparse storage. A Vector
can be created as follows:

C++ code

Vector x;

Python code

x = Vector()

and a matrix can be created by:

C++ code
Matrix A;

Python code
A = Matrix()
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In most applications, a user may need to create a matrix or a vector, but most operations on the
linear algebra objects, including resizing, will take place inside the library and a user will not have
to operate on the objects directly.

The following code illustrates how to create a vector of size 100:

C++ code
Vector x(100);

Python code
x = Vector(100)

A number of backends support distributed linear algebra for parallel computation, in which case
the vector x will have global size 100, and DOLFIN will partition the vector across processes in
(near) equal-sized portions.

Creating a Matrix of a given size is more involved as the matrix is sparse and in general needs to
be initialized (data structures allocated) based on the structure of the sparse matrix (its sparsity
pattern). Initialization of sparse matrices is handled by DOLFIN when required.

While DOLFIN supports distributed linear algebra objects for parallel computation, it is rare that a
user is exposed to details at the level of parallel data layouts. The distribution of objects across
processes is handled automatically by the library.

Solving linear systems. The simplest approach to solving the linear system Ax = b is to use

C++ code
solve(A, X, b);

Python code
solve(A, X, b)

DOLFIN will use a default method to solve the system of equations. Using the function solve
is straightforward, but it offers little control over details of the solution process. For many
applications, it is desirable to exercise a degree of control over the solution process. It is possible in
DOLFIN to select the solver type (direct or iterative) and to control details of the solution method,
and this is expanded upon below.

The linear system Ax = b can be solved using LU decomposition (a direct method) as follows:

C++ code

LUSolver solver(A);
solver.solve(x, b);

Python code

solver = LUSolver(A)
solver.solve(x, b)

Alternatively, the operator A associated with the linear solver can be set post-construction:

C++ code

LUSolver solver;
solver.set_operator(A);
solver.solve(x, b);
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C++ code

solver = LUSolver()
solver.set_operator(A)
solver.solve(x, b)

This can be useful when passing a linear solver via a function interface and setting the operator
inside a function.

In some cases, the system Ax = b may be solved a number of times for a given A, or for different
A but with the same nonzero structure. If the nonzero structure of A does not change, then some
efficiency gains for repeated solves can be achieved by informing the LU solver of this fact:

C++ code

solver.parameters|["same_nonzero_pattern"] = true;

Python code

solver.parameters["same_nonzero_pattern"] = True

In the case that A does not change, the solution time for subsequent solves can be reduced
dramatically by re-using the LU factorization of A. Re-use of the factorization is controlled by the
parameter "reuse_factorization".

It is possible for some backends to prescribe the specific LU solver to be used. This depends on the
backend, which solvers that have been configured by DOLFIN and how third-party linear algebra
backends have been configured.

The system of equations Ax = b can be solved using a preconditioned Krylov solver by:

C++ code

KrylovSolver solver(A);
solver.solve(x, b);

Python code
solver = KrylovSolver(A)
solver.solve(x, b)

The above will use a default preconditioner and solver, and default parameters. If a KrylovSolver
is constructed without a matrix operator A, the operator can be set post-construction:

C++ code

KrylovSolver solver;
solver.set_operator(A);

Python code
solver = KrylovSolver()
solver.set_operator(A)

In some cases, it may be useful to use a preconditioner matrix P that differs from A:

C++ code

KrylovSolver solver;
solver.set_operators(A, P)
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Python code
solver = KrylovSolver()
solver.set_operators(A, P)

Various parameters for Krylov solvers can be set. Some common parameters are:

Python code

solver = KrylovSolver()

solver.parameters["relative tolerance"] = 1.0e-6
solver.parameters["absolute_tolerance"] = 1.0e-15
solver.parameters["divergence limit"] = 1.0e4
solver.parameters["maximum_iterations"] = 1.0e4
solver.parameters["error_on_nonconvergence"] = True
solver.parameters["nonzero_initial guess"] = False

The parameters may be set similarly from C++. Printing a summary of the convergence of a
KrylovSolver and printing details of the convergence history can be controlled via parameters:

C++ code
KrylovSolver solver;
solver.parameters["report"] = true;
solver.parameters["monitor_convergence"] = true;

Python code
solver = KrylovSolver()
solver.parameters["report"] = True
solver.parameters["monitor_convergence"] = True

The specific Krylov solver and preconditioner to be used can be set at construction of a solver object.
The simplest approach is to set the Krylov method and the preconditioner via string descriptions.
For example:

C++ code

KrylovSolver solver("gmres", "ilu");

Python code

solver = KrylovSolver("gmres", "ilu")

The above specifies the Generalized Minimum Residual (GMRES) method as a solver, and in-
complete LU (ILU) preconditioning. The available methods and preconditioners depend on the
configured backends, but common methods, such as GMRES ("gmres"), the Conjugate Gradient
method ("cg") and ILU preconditioning ("ilu") are available for all backends.

When backends such as PETSc and Trilinos are configured, a wide range of Krylov methods and
preconditioners can be applied, and a large number of solver and preconditioner parameters can
be set. In addition to what is described here, DOLFIN provides more advanced interfaces which
permit finer control of the solution process. It is also possible for users to provide their own
preconditioners.

Solving eigenvalue problems. DOLFIN uses the library SLEPc, which builds on PETSc, to solve
eigenvalue problems. The SLEPc interface works only with PETSc-based linear algebra objects.
Therefore it is necessary to use PETSc-based objects, or to set the default linear algebra backend to
PETSc and downcast objects (as explained in the next section). The following code illustrates the
solution of the eigenvalue problem Ax = Ax:
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C++ code

// Create matrix
PETScMatrix A;

// Code omitted for setting the entries of A

// Create eigensolver
SLEPcEigenSolver eigensolver(A);

// Compute all eigenvalues of A
eigensolver.solve();

// Get first eigenpair

double lambda_real, lambda_complex;

PETScVector x_real, x_complex;

eigensolver.get_eigenpair(lambda_real, lambda_complex, x_real, x_complex, 0);

Python code
# Create matrix
A = PETScMatrix()

# Code omitted for setting the entries of A

# Create eigensolver
eigensolver = SLEPcEigenSolver(A)

# Compute all eigenvalues of A
eigensolver.solve()

# Get first eigenpair
lambda_r, lambda_c, x_real, x_complex = eigensolver.get_eigenpair(0)

The real and complex components of the eigenvalue are returned in lambda_real and lambda_complex,
respectively, and the real and complex components of the eigenvector are returned in x_real and
x_complex, respectively.

To create a solver for the generalized eigenvalue problem Ax = AMzx, the eigensolver can be
constructed using A and M:

C++ code

PETScMatrix A;
PETScMatrix M;

// Code omitted for setting the entries of A and M

SLEPcEigenSolver eigensolver(A, M);

Python code

>
Il

PETScMatrix()
PETScMatrix()

=
]

# Code omitted for setting the entries of A and M
eigensolver = SLEPcEigenSolver(A, M)

There are many options that a user can set via the parameter system to control the eigenproblem
solution process. To print a list of available parameters, call info(eigensolver.parameters, true)
and info(eigensolver.parameters, True) from C++ and Python, respectively.
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Selecting a linear algebra backend. The Matrix, Vector, LUSolver and KrylovSolver objects are all
based on a specific linear algebra backend. The default backend depends on which backends
are enabled when DOLFIN is configured. The backend can be set via the global parameter
"linear_algebra_backend". To use PETSc as the linear algebra backend:

C++ code

parameters["linear_algebra_backend"] = "PETSc";

Python code
parameters["linear_algebra_backend"] = "PETSc"

This parameter should be set before creating linear algebra objects. To use Epetra from the Trilinos
collection, the parameter "linear_algebra_backend" should be set to "Epetra". For uBLAS, the
parameter should be set to "uBLAS" and for MTLg4, the parameter should be set to "MTL4".

Users can explicitly create linear algebra objects that use a particular backend. Generally, such
objects are prefixed with the name of the backend. For example, a PETSc-based vector and LU
solver are created by:

C++ code

PETScVector x;
PETScLUSolver solver;

Python code

x = PETScVector()
solver = PETScLUSolver()

Solving nonlinear systems. DOLFIN provides a Newton solver in the form of the class NewtonSolver
for solving nonlinear systems of equations of the form

F(x) =0, (11.1)

where x € R” and F : R" — R". To solve such a problem using the DOLFIN Newton solver, a
user needs to provide a subclass of NonlinearProblem. The purpose of a NonlinearProblem object
is to evaluate F and the Jacobian of F, which will be denoted by | : R" — R" x R". An outline of
a user-provided MyNonlinearProblem class for solving a nonlinear differential equation is shown
below.

C++ code

class MyNonlinearProblem : public NonlinearProblem

{
public:

// Constructor
MyNonlinearProblem(const Form& L, const Form& a,
const BoundaryCondition& bc) : L(L), a(a), bc(bc) {}

// User-defined residual vector F
void F(GenericVector& b, const GenericVector& x)
{
assemble(b, L);
bc.apply(b, x);
}
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// User-defined Jacobian matrix J
void J(GenericMatrix& A, const GenericVector& x)
{
assemble(A, a);
bc.apply(A);
}

private:

const Form& L;
const Form& a;
const BoundaryCondition& bc;

}:

A MyNonlinearProblem object is constructed using a linear form L, that when assembled corre-
sponds to F, and a bilinear form a, that when assembled corresponds to J. The classes Form
and BoundaryCondition used in the example are discussed in more detail later. The same
MyNonlinearProblem class can be defined in Python:

Python code
class MyNonlinearProblem(NonlinearProblem) :
def __init__(self, L, a, bc):
NonlinearProblem._ _init _(self)

self.L = L
self.a = a
self.bc = bc

def F(self, b, x):
assemble(self.L, tensor=b)
self.bc.apply(b, x)

def J(self, A, x):
assemble(self.a, tensor=A)
self.bc.apply(A)

Once a nonlinear problem class has been defined, a NewtonSolver object can be created and the
Newton solver can be used to compute the solution vector x to the nonlinear problem:

C++ code
MyNonlinearProblem problem(L, a, bc);
NewtonSolver newton_solver;
Vector x;
newton_solver.solve(problem, x);
Python code

problem = MyNonlinearProblem(L, a, bc)
newton_solver = NewtonSolver()

X = Vector()
newton_solver.solve(problem, x)

A number of parameters can be set for a NewtonSolver. Some parameters that determine the
behavior of the Newton solver are:

Python code
newton_solver = NewtonSolver()
newton_solver.parameter["maximum_iterations"] = 20
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newton_solver.parameter["relative_tolerance"] = 1.0e-6
newton_solver.parameter|["absolute tolerance"] = 1.0e-10
newton_solver.parameter["error_on_nonconvergence"] = False

The parameters may be set similarly from C++. When testing for convergence, usually a norm
of the residual F is checked. Sometimes it is useful instead to check a norm of the iterative
correction dx. This is controlled by the parameter "convergence_criterion", which can be set to
"residual®, for checking the size of the residual F, or "incremental", for checking the size of the
increment dx.

For more advanced usage, a NewtonSolver can be constructed with arguments that specify the
linear solver and preconditioner to be used in the solution process.

11.3.2 Meshes

A central part of DOLFIN is its mesh library and the Mesh class. The mesh library provides
data structures and algorithms for computational meshes, including the computation of mesh
connectivity (incidence relations), mesh refinement, mesh partitioning and mesh intersection.
The mesh library is implemented in C++ and has been optimized to minimize storage requirements
and to enable efficient access to mesh data. In particular, a DOLFIN mesh is stored in a small
number of contiguous arrays, on top of which a light-weight object-oriented layer provides a view
to the underlying data. For a detailed discussion on the design and implementation of the mesh
library, we refer to [ ].

Creating a mesh. DOLFIN provides functionality for creating simple meshes, such as meshes of
unit squares and unit cubes, spheres, rectangles and boxes. The following code demonstrates how
to create a 16 x 16 triangular mesh of the unit square (consisting of 2 x 16 x 16 = 512 triangles)
and a 16 x 16 x 16 tetrahedral mesh of the unit cube (consisting of 6 x 16 x 16 x 16 = 24,576
tetrahedra).

C++ code

UnitSquare unit_square(16, 16);
UnitCube unit_cube(16, 16, 16);

Python code
unit_square = UnitSquare(16, 16)
unit_cube = UnitCube(16, 16, 16)

Simplicial meshes (meshes consisting of intervals, triangles or tetrahedra) may be constructed
explicitly by specifying the cells and vertices of the mesh. An interface for creating simplicial
meshes is provided by the class MeshEditor. The following code demonstrates how to create a
mesh consisting of two triangles covering the unit square.

C++ code

Mesh mesh;

MeshEditor editor;
editor.open(mesh, 2, 2);
editor.init_vertices(4);
editor.init_cells(2);
editor.add_vertex(0, 0.0, 0
editor.add_vertex(1, 1.0, 0.
editor.add_vertex(2, 1.0, 1
editor.add_vertex(3, 0.0, 1
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editor.add_cell(0, 0, 1,
editor.add_cell(1, 0, 2, 3);

editor.close();

mesh = Mesh();

editor = MeshEditor();
editor.open(mesh, 2, 2)
editor.init_vertices(4)
editor.init_cells(2)

editor.add_vertex(0,
editor.add_vertex(
editor.add_vertex(
editor.add_vertex(

1,
2,
3

’

’

’

[l N o)
[l ool o]

’

editor.add_cell(o, 0, 1,
editor.add_cell(1l, 0, 2,

editor.close()

Reading a mesh from file.

2);
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Python code

Although the built-in classes UnitSquare and UnitCube are useful for

testing, a typical application will need to read from file a mesh that has been generated by an
external mesh generator. To read a mesh from file, simply supply the filename to the constructor

of the Mesh class:

Mesh mesh("mesh.xml");

mesh = Mesh("mesh.xml")

C++ code

Python code

Meshes must be stored in the DOLFIN XML format. The following example illustrates the XML
format for a 2 x 2 mesh of the unit square:

<?xml version="1.0" encoding="UTF-8"?7>

<dolfin xmlns:dolfin="http://www.fenicsproject.org">

<mesh celltype="triangle" dim="2">
<vertices size="9">
<vertex index="0" x="0" y="0"/>
<vertex index="1" x="0.5" y="0"/>
<vertex index="2" x="1" y="0"/>
<vertex index="3" x="0" y="0.5"/>
<vertex index="4" x="0.5" y="0.5"/>
<vertex index="5" x="1" y="0.5"/>
<vertex index="6" x="0" y="1"/>
<vertex index="7" x="0.5" y="1"/>
<vertex index="8" x="1" y="1"/>

</vertices>

<cells size="8">

<triangle
<triangle
<triangle
<triangle
<triangle
<triangle
<triangle

index="0"
index="1"
index="2"
index="3"
index="4"
index="5"
index="6"

ve="0"
ve="0"
ve="1"
ve="1"
ve="3"
ve="3"
ve="4"

vl="1" v2="4"/>
v1="3" v2="4"/>
v1="2" v2="5"/>
v1="4" v2="5"/>
v1="4" v2="7"/>
vl="6" v2="7"/>
v1="5" v2="8"/>

XML code
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Figure 11.3: Each entity of a mesh is
identified by a pair (d,i) which spec-
ifies the topological dimension d and
a unique index i for the entity within
the set of entities of dimension d.

<triangle index="7" v0="4" v1="7" v2="8"/>
</cells>
</mesh>
</dolfin>

Meshes stored in other data formats may be converted to the DOLFIN XML format using the
command dolfin-convert, as explained in more detail below.

Mesh entities. Conceptually, a mesh (modeled by the class Mesh), consists of a collection of mesh
entities. A mesh entity is a pair (d,i), where d is the topological dimension of the mesh entity
and i is a unique index of the mesh entity. Mesh entities are numbered within each topological
dimension from 0 to n; — 1, where n; is the number of mesh entities of topological dimension d.
For convenience, mesh entities of topological dimension 0 are referred to as vertices, entities of
dimension 1 as edges, entities of dimension 2 as faces. Entities of codimension 1 are referred to as
facets and entities of codimension 0 as cells. These concepts are summarized in Figure 11.3 and
Table ??. We note that a triangular mesh consists of vertices, edges and cells, and that the edges
may alternatively be referred to as facets and the cells as faces. We further note that a tetrahedral
mesh consists of vertices, edges, faces and cells, and that the faces may alternatively be referred to
as facets. These concepts are implemented by the classes MeshEntity, Vertex, Edge, Face, Facet
and Cell. These classes do not store any data. Instead, they are light-weight objects that provide
views of the underlying mesh data. A MeshEntity may be created from a Mesh, a topological
dimension and an index. The following code demonstrates how to create various entities on a
mesh.

C++ code
MeshEntity entity(mesh, 0, 33); // vertex number 33
Vertex vertex(mesh, 33); // vertex number 33
Cell cell(mesh, 25); // cell number 25

Python code
entity = MeshEntity(mesh, 0, 33) # vertex number 33
vertex = Vertex(mesh, 33) # vertex number 33
cell = Cell(mesh, 25) # cell number 25
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Entity Dimension Codimension

Vertex 0 D
Edge 1 D-1
Face 2 D—-2
Facet D—-1 1
Cell D 0

Table 11.1: Mesh entities and their dimensions/codimensions. The codimension of an entity is D — d where
D is the maximal dimension and d is the dimension.

Mesh topology and geometry. The topology of a mesh is stored separately from its geometry. The
topology of a mesh is a description of the relations between the various entities of the mesh, while
the geometry describes how those entities are embedded in R¥.

Users are rarely confronted with the MeshTopology and MeshGeometry classes directly since most
algorithms on meshes can be expressed in terms of mesh iterators. However, users may sometimes
need to access the dimension of a Mesh, which involves accessing either the MeshTopology or
MeshGeometry, which are stored as part of the Mesh, as illustrated in the following code examples:

C++ code
uint gdim = mesh.topology().dim();

uint tdim = mesh.geometry().dim();

Python code

gdim = mesh.topology().dim()
tdim = mesh.geometry().dim()

It should be noted that the topological and geometric dimensions may differ. This is the case
in particular for the boundary of a mesh, which is typically a mesh of topological dimension D
embedded in RP*!. That is, the geometry dimension is D + 1.

Mesh connectivity. The topology of a Mesh is represented by the connectivity (incidence relations)
of the mesh, which is a complete description of which entities of the mesh are connected to which
entities. Such connectivity is stored in DOLFIN by the MeshConnectivity class. One such data
set is stored as part of the class MeshTopology for each pair of topological dimensions d — d’ for
d,d =0,1,...,D, where D is the topological dimension.

When a Mesh is created, a minimal MeshTopology is created. Only the connectivity from cells
(dimension D) to vertices (dimension 0) is stored (MeshConnectivity D — 0). When a certain
connectivity is requested, such as for example the connectivity 1 — 1 (connectivity from edges
to edges), DOLFIN automatically computes any other connectivities required for computing the
requested connectivity. This is illustrated in Table 11.2, where we indicate which connectivities are
required to compute the 1 — 1 connectivity. The following code demonstrates how to initialize
various kinds of mesh connectivity for a tetrahedral mesh (D = 3).

C++ code

mesh.init(2); // Compute faces
mesh.init(@, 0); // Compute vertex neighbors for each vertex
mesh.init(1, 1); // Compute edge neighbors for each edge
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o 1 2 3
ol - X - X
1| X X - -
> | - - - =
30X X = X

Table 11.2: DOLFIN computes the connectivity d — d’ of a mesh for any pair d,d’ = 0,1,...,D. The table
indicates which connectivity pairs (indicated by x) have been computed in order to compute the connectivity
1 — 1 (edge—edge connectivity) for a tetrahedral mesh.

Python code

mesh.init(2) # Compute faces
mesh.init(0, 0) # Compute vertex neighbors for each vertex
mesh.init(1, 1) # Compute edge neighbors for each edge

Mesh iterators. Algorithms operating on a mesh can often be expressed in terms of iterators.
The mesh library provides the general iterator MeshEntityIterator for iteration over mesh en-
tities, as well as the specialized mesh iterators VertexIterator, EdgeIterator, Facelterator,
FacetIterator and CelllIterator.

The following code illustrates how to iterate over all incident (connected) vertices of all vertex
neighbors of all cells of a given mesh. The code implies that two vertices are considered as
neighbors if they both belong to the same cell. For simplex meshes, this is equivalent to an edge
connecting the two vertices.

C++ code

for (CelllIterator c(mesh); !c.end(); ++c)
for (VertexIterator vO(xc); !vO.end(); ++vO)
for (VertexIterator v1(xv0); !'vl.end(); ++vl)
cout << xvl << endl;

Python code
for ¢ in cells(mesh):
for vO in vertices(c):
for vl in vertices(v0):
print vl

This may alternatively be implemented using the general iterator MeshEntityIterator as follows:

C++ code

uint D = mesh.topology().dim();
for (MeshEntityIterator c(mesh, D); !c.end(); ++c)
for (MeshEntityIterator vO(xc, 0); !v0.end(); ++vO)
for (MeshEntityIterator v1(xv0, 0); !vl.end(); ++vl)
cout << xvl << endl;

Python code
D = mesh.topology().dim()
for ¢ in entities(mesh, D):
for v0 in entities(c, 0):
for vl in entities(v0O, 0):
print vl



194 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

Mesh functions. A useful class for storing data associated with a Mesh is the MeshFunction class.
This makes it simple to store, for example, material parameters, subdomain indicators, refinement
markers on the Cells of a Mesh or boundary markers on the Facets of a Mesh. A MeshFunctionis a
discrete function that takes a value on each mesh entity of a given topological dimension d. The
number of values stored in a MeshFunction is equal to the number of entities n; of dimension d. A
MeshFunction is templated over the value type and may thus be used to store values of any type.
For convenience, named MeshFunctions are provided by the classes VertexFunction, EdgeFunction,
FaceFunction, FacetFunction and CellFunction. The following code illustrates how to create a
pair of MeshFunctions, one for storing subdomain indicators on Cells and one for storing boundary
markers on Facets.

C++ code

CellFunction<uint> sub_domains(mesh);
sub_domains.set_all(0);
for (CellIterator cell(mesh); 'cell.end(); ++cell)
{

Point p = cell.midpoint();

if (p.x() > 0.5)

sub_domains[cell] = 1;

}

FacetFunction<uint> boundary_markers(mesh);
boundary_markers.set_all(0);
for (FacetIterator facet(mesh); !facet.end(); ++facet)
{
Point p = facet.midpoint();
if (near(p.y(), 0.0) || near(p.y(), 1.0))
boundary_markers|[facet] = 1;

Python code
sub_domains = CellFunction("uint", mesh)
sub_domains.set_all(0)
for cell in cells(mesh):
p = cell.midpoint()
if p.x() > 0.5:
sub_domains[cell] =1

boundary_markers = FacetFunction("uint", mesh)
boundary_markers.set_all(0)
for facet in facets(mesh):
p = facet.midpoint()
if near(p.y(), 0.0) or near(p.y(), 1.0):
boundary_markers|[facet] =1

Mesh data. The MeshData class provides a simple way to associate data with a Mesh. It allows
arbitrary MeshFunctions (and other quantities) to be associated with a Mesh. The following code
illustrates how to attach and retrieve a MeshFunction named "sub_domains" to/from a Mesh.

C++ code

MeshFunction<uint>* sub_domains = mesh.data().create_mesh_function("sub_domains");
sub_domains = mesh.data().mesh_function("sub_domains");

Python code
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sub_domains
sub_domains

mesh.data().create_mesh_function("sub_domains")
mesh.data().mesh_function("sub_domains")

DOLFIN uses MeshData internally to store various data associated with a Mesh. To list data
that is associated with a given Mesh, issue the command info(mesh.data(), true) in C++ or
info(mesh.data(), True) in Python.

Mesh refinement. A Mesh may be refined, by either uniform or local refinement, by calling the
refine function, as illustrated in the code examples below.

C++ code

// Uniform refinement
mesh = refine(mesh);

// Local refinement
CellFunction<bool> cell_markers(mesh);
cell_markers.set_all(false);
Point origin(0.0, 0.0, 0.0);
for (CellIterator cell(mesh); 'cell.end(); ++cell)
{

Point p = cell.midpoint();

if (p.distance(origin) < 0.1)

cell_markers[cell] = true;

}

mesh = refine(mesh, cell_markers);

Python code
# Uniform refinement
mesh = refine(mesh)

# Local refinement
cell_markers = CellFunction("bool", mesh)
cell_markers.set_all(False)
origin = Point(0.0, 0.0, 0.0)
for cell in cells(mesh):
p = cell.midpoint()
if p.distance(origin) < 0.1:
cell_markers[cell] = True
mesh = refine(mesh, cell_markers)

Currently, local refinement defaults to recursive refinement by edge bisection [ , , ]
An example of a locally refined mesh obtained by a repeated marking of the cells close to one of
the corners of the unit cube is shown in Figure 11.4.

Parallel meshes. When running a program in parallel on a distributed memory architecture (using
MPI by invoking the program with the mpirun wrapper), DOLFIN automatically partitions and
distributes meshes. Each process then stores a portion of the global mesh as a standard Mesh object.
In addition, it stores auxiliary data needed for correctly computing local-to-global maps on each
process and for communicating data to neighboring regions. Parallel computing with DOLFIN is
discussed in Section 11.4.
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Figure 11.4: A locally refined mesh
obtained by repeated marking of the
cells close to one of the corners of the
unit cube.

11.3.3 Finite elements

The concept of a finite element as discussed in Chapters 3 and 4 (the Ciarlet definition) is
implemented by the DOLFIN FiniteElement class. This class is implemented differently in the
C++ and Python interfaces.

The C++ implementation of the FiniteElement class relies on code generated by a form com-
piler such as FFC or SFC, which are discussed in Chapters 12 and 16, respectively. The class
FiniteElement is essentially a wrapper class for the UFC class ufc::finite_element. A C++
FiniteElement provides all the functionality of a ufc::finite_element. Users of the DOLFIN C++
interface will typically not use the FiniteElement class directly, but it is an important building
block for the FunctionSpace class, which is discussed below. However, users developing advanced
algorithms that require run-time evaluation of finite element basis function will need to familiarize
themselves with the FiniteElement interface. For details, we refer to the DOLFIN Programmer’s
Reference.

The Python interface also provides a FiniteElement class. The Python FiniteElement class is
imported directly from the UFL Python module (see Chapter 18). As such, it is just a label for a
particular finite element that can be used to define variational problems. Variational problems are
more conveniently defined in terms of the DOLFIN FunctionSpace class, so users of the Python
interface are rarely confronted with the FiniteElement class. However, advanced users who wish
to develop algorithms in Python that require functionality defined in the UFC interface, such as
run-time evaluation of basis functions, can access such functionality by explicitly generating code
from within the Python interface. This can be accomplished by a call to the DOLFIN jit function
(just-in-time compilation), which takes as input a UFL FiniteElement and returns a pair containing
aufc::finite_element and a ufc::dofmap. The returned objects are created by first generating
the corresponding C++ code, then compiling and wrapping that C++ code into a Python module.
The returned objects are therefore directly usable from within Python.

The degrees of freedom of a FiniteElement can be plotted directly from the Python interface by a
call to plot(element). This will draw a picture of the shape of the finite element, along with a
graphical representation of its degrees of freedom in accordance with the notation described in
Chapter 4.
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Name Symbol
Argyris ARG
Arnold—Winther AW
Brezzi-Douglas—-Marini BDM
Crouzeix—Raviart CR
Discontinuous Lagrange DG
Hermite HER
Lagrange CG
Mardal-Tai-Winther MTW
Morley MOR
Nédélec 1st kind H(curl)  Nzcurl
Nédélec 2nd kind H(curl) Na2curl
Raviart-Thomas RT

Table 11.3: List of finite elements supported by DOLFIN 1.0. Elements in grey italics are partly supported in
FEniCS but not throughout the entire tool-chain.

Table 11.3 lists the finite elements currently supported by DOLFIN (and the tool-chain FIAT-UFL-
FFC/SFC-UFC). A FiniteElement may be specified (from Python) using either its full name or its
short symbol, as illustrated in the code example below:

UFL code

element = FiniteElement("Lagrange", tetrahedron, 5)
element = FiniteElement("CG", tetrahedron, 5)

element = FiniteElement("Brezzi-Douglas-Marini", triangle, 3)
element = FiniteElement("BDM", triangle, 3)

element = FiniteElement("Nedelec 1st kind H(curl)", tetrahedron, 2)
element = FiniteElement("Nlcurl", tetrahedron, 2)

11.3.4 Function spaces

The DOLFIN FunctionSpace class represents a finite element function space V}, as defined in
Chapter 3. The data of a FunctionSpace is represented in terms of a triplet consisting of a Mesh, a
DofMap and a FiniteElement:

FunctionSpace = (Mesh, DofMap, FiniteElement).

The Mesh defines the computational domain and its discretization. The DofMap defines how the
degrees of freedom of the function space are distributed. In particular, the DofMap provides the
function tabulate_dofs which maps the local degrees of freedom on any given cell of the Mesh to
global degrees of freedom. The DofMap plays a role in defining the global regularity of the finite
element function space. The FiniteElement defines the local function space on any given cell
of the Mesh. Note that if two or more FunctionSpaces are created on the same Mesh, that Mesh is
shared between the two FunctionSpaces.

Creating function spaces. ~As for the FiniteElement class, FunctionSpaces are handled differently
in the C++ and Python interfaces. In C++, the instantiation of a FunctionSpace relies on generated
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code. As an example, we consider here the creation of a FunctionSpace representing continuous
piecewise linear Lagrange polynomials on triangles. First, the corresponding finite element must
be defined in the UFL form language. We do this by entering the following code into a file named
Lagrange.ufl:

UFL code

element = FiniteElement("Lagrange", triangle, 1)

We may then generate C++ code using a form compiler such as FFC:

Bash code
ffc -1 dolfin Lagrange.ufl

This generates a file named Lagrange.h that we may include in our C++ program to instantiate a
FunctionSpace on a given Mesh:

C++ code

#include <dolfin.h>
#include "Lagrange.h"

using namespace dolfin;

int main()

{
UnitSquare mesh(8, 8);
Lagrange: :FunctionSpace V(mesh);

;ééurn 0;
}
In typical applications, a FunctionSpace is not generated through a separate .ufl file, but is
instead generated as part of the code generation for a variational problem.
From the Python interface, one may create a FunctionSpace directly, as illustrated by the following

code which creates the same function space as the above example (piecewise linear Lagrange
polynomials on triangles):

Python code
mesh = UnitSquare(8, 8)
V = FunctionSpace(mesh, "Lagrange", 1)

Mixed spaces. Mixed function spaces may be created from arbitrary combinations of function
spaces. As an example, we consider here the creation of the Taylor—-Hood function space for the
discretization of the Stokes or incompressible Navier—Stokes equations. This mixed function space
is the tensor product of a vector-valued continuous piecewise quadratic function space for the
velocity field and a scalar continuous piecewise linear function space for the pressure field. This
may be easily defined in either a UFL form file (for code generation and subsequent inclusion in a
C++ program) or directly in a Python script as illustrated in the following code examples:

UFL code
V = VectorElement("CG", triangle, 2)
FiniteElement("CG", triangle, 1)
W = VxQ

o
I
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Python code
V = VectorFunctionSpace("CG", triangle, 2)
Q = FunctionSpace("CG", triangle, 1)
W = VxQ

DOLFIN allows the generation of arbitrarily nested mixed function spaces. A mixed function
space can be used as a building block in the construction of a larger mixed space. When a mixed
function space is created from more than two function spaces (nested on the same level), then one
must use the MixedElement constructor (in UFL/C++) or the MixedFunctionSpace constructor (in
Python). This is because Python will interpret the expression VxQ+P as (V*Q)*P, which will create
a mixed function space consisting of two subspaces: the mixed space V*Q and the space P. If that is
not the intention, one must instead define the mixed function space using MixedElement([V, Q,
P1) in UFL/C++ or MixedFunctionSpace([V, Q, P]) in Python.

Subspaces. For a mixed function space, one may access its subspaces. These subspaces differ,
in general, from the function spaces that were used to create the mixed space in their degree of
freedom maps (DofMap objects). Subspaces are particularly useful for applying boundary conditions
to components of a mixed element. We return to this issue below.

11.3.5 Functions

The Function class represents a finite element function u;, in a finite element space V}, as defined
in Chapter 3:

N
up(x) = ) Uigj(x), (11.2)
=1

where U € RV is the vector of degrees of freedom for the function u;, and {(i)]-}jli 1 is a basis for Vj,.
A Function is represented in terms of a FunctionSpace and a GenericVector:

Function = (FunctionSpace, GenericVector).

The FunctionSpace defines the function space Vj, and the GenericVector holds the vector U of
degrees of freedom; see Figure 11.5. When running in parallel on a distributed memory architecture,
the FunctionSpace and the GenericVector are distributed across the processes.

Creating functions. 'To create a Function on a FunctionSpace, one simply calls the constructor of
the Function class with the FunctionSpace as the argument, as illustrated in the following code
examples:

C++ code

Function u(V);

Python code

u = Function(V)

If two or more Functions are created on the same FunctionSpace, the FunctionSpace is shared
between the Functions.

A Function is typically used to hold the computed solution to a partial differential equation. One
may then obtain the degrees of freedom U by solving a system of equations, as illustrated in the
following code examples:
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Figure 11.5: A piecewise linear finite
element function u;, on a mesh consist-

Up ing of triangular elements. The vector
degrees of freedom U is given by
he values of 1, at the mesh vertices.
Th

C++ code
Function u(V);
solve(A, u.vector(), b);

C++ code
u = Function(V)
solve(A, u.vector(), b)

The process of assembling and solving a linear system is handled automatically by the class
VariationalProblem, which will be discussed in more detail below.

Function evaluation. A Function may be evaluated at arbitrary points inside the computational
domain’. The value of a Function is computed by first locating the cell of the mesh containing the
given point, and then evaluating the linear combination of basis functions on that cell. Finding the
cell exploits an efficient search tree algorithm that is implemented as part of

The following code examples illustrate function evaluation in the C++ and Python interfaces for
scalar- and vector-valued functions:

C++ code

# Evaluation of scalar function
double scalar = u(0.1, 0.2, 0.3);

# Evaluation of vector-valued function
Array<double> vector(3);
u(vector, 0.1, 0.2, 0.3);

'One may also evaluate a Function outside of the computational domain by setting the global parameter value
"allow_extrapolation" to true. This may sometimes be necessary when evaluating a Function on the boundary of a
domain since round-off errors may result in points slightly outside of the domain.
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Python code
# Evaluation of scalar function
scalar = u(0.1, 0.2, 0.3)

# Evaluation of vector-valued function
vector = u(0.1, 0.2, 0.3)

When running in parallel with a distributed mesh, functions can only be evaluated at points
located in the portion of the mesh that is stored by the local process.

Subfunctions. For Functions constructed on a mixed FunctionSpace, subfunctions (components)
of the Function can be accessed, for example to plot the solution components of a mixed system.
Subfunctions may be accessed as either shallow or deep copies. By default, subfunctions are accessed
as shallow copies, which means that the subfunctions share data with their parent functions. They
provide views to the data of the parent function. Sometimes, it may also be desirable to access
subfunctions as deep copies. A deep copied subfunction does not share its data (namely, the
vector holding the degrees of freedom) with the parent Function. Both shallow and deep copies
of Function objects are themselves Function objects and may (with some exceptions) be used as
regular Function objects.

Creating shallow and deep copies of subfunctions is done differently in C++ and Python, as
illustrated by the following code examples:

C++ code

Function w(W);

// Create shallow copies
Function& u = w[0O];
Function& p = w[1l];

// Create deep copies
Function uu = w[0];
Function pp = w[1];

Python code

w = Function(W)

# Create shallow copies
u, p = w.split()

# Create deep copies
uu, pp = w.split(deepcopy=True)

Note that component access, such as w[0], from the Python interface does not create a new
Function object as in the C++ interface. Instead, it creates a UFL expression that denotes a
component of the original Function.

11.3.6 Expressions

The Expression class is closely related to the Function class in that it represents a function that
can be evaluated on a finite element space. However, where a Function must be defined in terms
of a vector of degrees of freedom, an Expression may be freely defined in terms of, for example,
coordinate values, other geometric entities, or a table lookup.
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An Expression may be defined in both C++ and Python by subclassing the Expression class and
overloading the eval function, as illustrated in the following code examples which define the
function f(x,y) = sinx cosy as an Expression:

C++ code

class MyExpression : public Expression

{

void eval(Array<double>& values, const Array<double>& x) const
{
values[0] = sin(x[0])*cos(x[1]);
}
b

MyExpression f;

Python code

class MyExpression(Expression):
def eval(self, values, x):
values[0] = sin(x[0])+*cos(x[1])

f = MyExpression()

For vector-valued (or tensor-valued) Expressions, one must also specify the value shape of the
Expression. The following code examples demonstrate how to implement the vector-valued
function g(x,y) = (sinx, cosy). The value shape is defined slightly differently in C++ and Python.

C++ code
class MyExpression : public Expression
{
void eval(Array<double>& values, const Array<double>& x) const
{
values[0] = sin(x[0]);
values[1l] = cos(x[1]);
}
uint value_rank() const
{
return 1;
}
uint value_dimension(uint i) const
{
return 2;
}
b

MyExpression g;

Python code

class MyExpression(Expression):

def eval(self, values, x):
values[0] = sin(x[0])
values[1l] = cos(x[1])

def value_shape(self):
return (2,)
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g = MyExpression()

The above functor construct for the definition of expressions is powerful and allows a user to define
complex expressions, the evaluation of which may involve arbitrary operations as part of the eval
function. For simple expressions like f(x,y) = sinx cosy and g(x,y) = (sinx, cosy), users of the
Python interface may, alternatively, use a simpler syntax:

Python code
£
9

Expression("sin(x[0])*cos(x[1])")
Expression(("sin(x[0])", "cos(x[1]1)"))

The above code will automatically generate subclasses of the DOLFIN C++ Expression class that
overload the eval function. This has the advantage of being more efficient, since the callback to
the eval function takes place in C++ rather than in Python.

A feature that can be used to implement a time-dependent Expression in the Python interface is
to use a variable name in an Expression string. For example, one may use the variable t to denote
time:

Python code

h = Expression("t*sin(x[0])x*cos(x[1])")

while t < T:
h.t =t
t += dt

The t variable has here been used to create a time-dependent Expression. Arbitrary variable
names may be used as long as they do not conflict with the names of built-in functions, such as
sin or exp.

In addition to the above examples, the Python interface allows the direct definition of (more
complex) subclasses of the C++ Expression class by supplying C++ code for their definition. For
more information, we refer to the DOLFIN Programmer’s Reference.

11.3.7 Variational forms

DOLFIN relies on the FEniCS tool-chain FIAT-UFL-FFC /SFC-UFC for the evaluation of finite
element variational forms. Variational forms expressed in the UFL form language (Chapter 18) are
compiled using one of the form compilers FFC or SFC (Chapters 12 and 16), and the generated
UFC code (Chapter 17) is used by DOLFIN to evaluate (assemble) variational forms.

The UFL form language allows a wide range of variational forms to be expressed in a language
close to the mathematical notation, as exemplified by the following expressions defining (in part)
the bilinear and linear forms for the discretization of a linear elastic problem:

UFL code
a = inner(sigma(u), epsilon(v))x*dx
L = dot(f, v)=*dx
This should be compared to the corresponding mathematical notation:
a(u,v) = / o(u) : e(v)dx, (11.3)
o)

L(v) = /Qf-vdx. (11.4)
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Here, €(v) = (Vo + (Vo)T)/2 denotes the symmetric gradient and o (v) = 2ue(v) + Atre(v)1 is
the stress tensor. For a detailed presentation of the UFL form language, we refer to Chapter 18.
The code generation process must be handled explicitly by users of the C++ interface by calling a
form compiler on the command-line. To solve the linear elastic problem above for a specific choice
of parameter values (the Lamé constants p and A), a user may enter the following code in a file
named Elasticity.ufl?:

UFL code

V = VectorElement("Lagrange", tetrahedron, 1)

u = TrialFunction(V)
v = TestFunction(V)
f = Coefficient(V)

E = 10.0
nu = 0.3
mu = E/(2.0%(1.0 + nu))

Imbda

E+nu/((1.0 + nu)*(1.0 - 2.0%nu))

def sigma(v):
return 2.0+mussym(grad(v)) + lmbdaxtr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))*dx
L dot(f, v)=*dx

This code may be compiled using a UFL/UFC compliant form compiler to generate UFC C++ code.
For example, using FFC:

Bash code
ffc -1 dolfin Elasticity.ufl

This generates a C++ header file (including implementation) named Elasticity.h which may be
included in a C++ program and used to instantiate the two forms a and L:

C++ code

#include <dolfin.h>
#include "Elasticity.h"

using namespace dolfin;

int main()
{
UnitSquare mesh(8, 8);
Elasticity::FunctionSpace V(mesh);
Elasticity::BilinearForm a(V, V);
Elasticity::LinearForm L(V);
MyExpression f; // code for the definition of MyExpression omitted
Lo 2 i3

return 0;

}

The instantiation of the forms involves the instantiation of the FunctionSpace on which the forms
are defined. Any coefficients appearing in the definition of the forms (here the right-hand side f)
must be attached after the creation of the forms.

2Note that ‘lambda’ has been deliberately misspelled since it is a reserved keyword in Python.
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Python users may rely on automated code generation, and define variational forms directly as part
of a Python script:

Python code

from dolfin import *

mesh = UnitSquare(8, 8)
V = VectorElement("Lagrange", tetrahedron, 1)

u = TrialFunction(V)
v = TestFunction(V)
f MyExpression() # code emitted for the definition of f

E = 10.0

nu = 0.3

mu = E/(2.0%(1.0 + nu))

lmbda = E+nu/((1.0 + nu)*(1.0 - 2.0*nu))

def sigma(v):
return 2.0+muxsym(grad(v)) + lmbda*xtr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))x*dx
dot(f, v)=dx

-
Il

This script will trigger automatic code generation for the definition of the FunctionSpace V. Code
generation of the two forms a and L is postponed until the point when the corresponding discrete
operators (the matrix and vector) are assembled.

11.3.8 Finite element assembly

A core functionality of DOLFIN is the assembly of finite element variational forms. Given a
variational form (a), DOLFIN assembles the corresponding discrete operator (A). The assembly of
the discrete operator follows the general algorithm described in Chapter 7. The following code
illustrates how to assemble a scalar (m), a vector (b) and a matrix (A) from a functional (M), a linear
form (L) and a bilinear form (a), respectively:

C++ code

Vector b;
Matrix A;

double m = assemble(M);
assemble(b, L);
assemble(A, a);

Python code
m = assemble(M)
= assemble(L)
assemble(a)

> T
|

The assembly of variational forms from the Python interface automatically triggers code generation,
compilation and linking at run-time. The generated code is automatically instantiated and sent
to the DOLFIN C++ compiler. As a result, finite element assembly from the Python interface is
equally efficient as assembly from the C++ interface, with only a small overhead for handling the
automatic code generation. The generated code is cached for later reuse, hence repeated assembly
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of the same form or running the same program twice does not re-trigger code generation. Instead,
the previously generated code is automatically loaded.

DOLFIN provides a common assembly algorithm for the assembly of tensors of any rank (scalars,
vectors, matrices, ...) for any form. This is possible since the assembly algorithm relies on
the GenericTensor interface, portions of the assembly algorithm that depend on the variational
form and its particular discretization are generated prior to assembly, and the mesh interface
is dimension-independent. The assembly algorithm accepts a number of optional arguments
that control whether the sparsity of the assembled tensor should be reset before assembly and
whether the tensor should be zeroed before assembly. Arguments may also be supplied to specify
subdomains of the Mesh if the form is defined over particular subdomains (using dx(0), dx(1)
etc.).

In addition to the assemble function, DOLFIN provides the assemble_system function which
assembles a pair of forms consisting of a bilinear and a linear form and applies essential boundary
conditions during the assembly process. The application of boundary conditions as part of the call
to assemble_system preserves symmetry of the matrix being assembled (see Chapter 7).

The assembly algorithms have been parallelized for both distributed memory architectures (clusters)
using MPI and shared memory architectures (multi-core) using OpenMP. This is discussed in more
detail in Section 11.4.

11.3.9 Boundary conditions

DOLFIN handles the application of both Neumann (natural) and Dirichlet (essential) boundary
conditions.?> Natural boundary conditions are usually applied via the variational statement of
a problem, whereas essential boundary conditions are usually applied to the discrete system of
equations.

Natural boundary conditions. Natural boundary conditions typically appear as boundary terms
as the result of integrating by parts a partial differential equation multiplied by a test function.
As a simple example, we consider the linear elastic variational problem. The partial differential
equation governing the displacement of an elastic body may be expressed as

—V.o(u) = f inQ,
on = g onlyCdQ, (11.5)
u = ug onlpCaQ,

where u is the unknown displacement field to be computed, o(u) is the stress tensor, f is a given
body force, g is a given traction on a portion I'y of the boundary, and u is a given displacement
on a portion I'p of the boundary. Multiplying by a test function v and integrating by parts, we
obtain

/Qa(u):e(v)dx—/aQUn-vds:/Qf~vdx, (11.6)

where we have used the symmetry of o(u) to replace Vv by the symmetric gradient e(v). Since
the displacement u is known on the Dirichlet boundary I'p, we let v = 0 on I'p. Furthermore, we
replace on by the given traction g on the remaining (Neumann) portion of the boundary I'y to
obtain

/QU(u):e(v)dx:/()f-vdx—b-/rNg-vds. (11.7)

3As noted in Chapter 3, Dirichlet boundary conditions may sometimes be natural and Neumann boundary conditions
may sometimes be essential.
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The following code demonstrates how to implement this variational problem in the UFL form
language, either as part of a .ufl file or as part of a Python script:

UFL code

Q
|

= inner(sigma(u), sym(grad(v)))=dx
dot(f, v)=*dx + dot(g, v)=ds

-
1]

To specify that the boundary integral dot (g, v)*ds should only be evaluated along the Neumann
boundary I'y, one must specify which part of the boundary is included in the ds integral. An easy
way to accomplish this is to specify g in such a way that it is zero on the Neumann boundary. In
cases where this is not convenient, one must instead specify the Neumann boundary in terms of a
FacetFunction. This FacetFunction must specify for each facet of the Mesh to which part of the
boundary it belongs. For the current example, an appropriate strategy is to mark each facet on
the Neumann boundary by 0 and all other facets (including facets internal to the domain) by 1.
This can be accomplished in a number of different ways. One simple way to do this is to use the
program and graphically mark the facets of the Mesh. Another option is through the
DOLFIN class SubDomain. The following code illustrates how to mark all boundary facets to the
left of x = 0.5 as the Neumann boundary. Note the use of the on_boundary argument supplied
by DOLFIN to the inside function. This argument informs whether a point is located on the
boundary dQ) of (), and this allows us to mark only facets that are on the boundary and to the left
of x = 0.5. Also note the use of DOLFIN_EPS which makes sure that we include points that, as a
result of finite precision arithmetic, may be located just to the right of x = 0.5.

C++ code

class NeumannBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{
return x[0] < 0.5 + DOLFIN_EPS && on_boundary;

}
};

NeumannBoundary neumann_boundary;
FacetFunction<uint> exterior_facet_domains(mesh);
exterior_facet_domains.set_all(1l);
neumann_boundary.mark(exterior_facet_domains, 0);

Python code

class NeumannBoundary(SubDomain) :
def inside(self, x, on_boundary):
return x[0] < 0.5 + DOLFIN_EPS and on_boundary

neumann_boundary = NeumannBoundary ()
exterior_facet_domains = FacetFunction("uint", mesh)
exterior_facet_domains.set_all(1)
neumann_boundary.mark(exterior_facet_domains, 0)

The correct specification of boundaries is a common error source. For debugging the specification
of boundary conditions, it can be helpful to plot the FacetFunction that specifies the boundary
markers by writing the FacetFunction to a VTK file (see the file I/O section) or using the plot
command. When using the plot command, the plot shows the facet values interpolated to the
vertices of the Mesh. As a result, care must be taken to interpret the plot close to domain boundaries
(corners) in this case. The issue is not present in the VIK output.
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In the above example, we mark the Neumann boundary by 0. This is appropriate since in the UFL
form language, ds is the same as ds(0). The default domain of integration is the domain marked
by 0. One could also have used ds (1) and marked the Neumann boundary by 1.

Essential boundary conditions. The application of essential boundary conditions is handled by the
class DirichletBC. Using this class, one may specify a Dirichlet boundary condition in terms of a
FunctionSpace, a Function or an Expression, and a subdomain. The subdomain may be specified
either in terms of a SubDomain object or in terms of a FacetFunction. A DirichletBC specifies that
the solution should be equal to the given value on the given subdomain.

The following code examples illustrates how to define the Dirichlet condition u(x) = ug(x) = sinx
on the Dirichlet boundary I'p (assumed here to be the part of the boundary to the right of x = 0.5)
for the elasticity problem (11.5) using the SubDomain class. Alternatively, the subdomain may be
specified using a FacetFunction.

C++ code

class DirichletValue : public Expression
{

void eval(Array<double>& values, const Array<double>& x) const
{
values[0] = sin(x[0]);
}
}

class DirichletBoundary : public SubDomain

{
bool inside(const Array<double>& x, bool on_boundary) const

{
return x[0] > 0.5 - DOLFIN_EPS && on_boundary;

}
i

DirichletValue u_0;
DirichletBoundary Gamma_D;

DirichletBC bc(V, u_0, Gamma_D);

Python code

class DirichletValue(Expression):
def eval(self, value, x):
values[0] = sin(x[0])

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

return x[0] > 0.5 - DOLFIN_EPS and on_boundary

u_0 = DirichletValue()
Gamma_D = DirichletBoundary()

bc = DirichletBC(V, u_0, Gamma_D)

Python users may also use the following compact syntax:

Python code
u_0 = Expression("sin(x[0])")
bc = DirichletBC(V, u_0, "x[0] > 0.5 and on_boundary")
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To speed up the application of Dirichlet boundary conditions, users of the Python interface may also
use the function compile_subdomains. For details of this, we refer to the DOLFIN Programmer’s
Reference.

A Dirichlet boundary condition can be applied to a linear system or to a vector of degrees of
freedom associated with a Function, as illustrated by the following code examples:

C++ code

bc.apply(A, b);
bc.apply(u.vector());

Python code
bc.apply(A, b)
bc.apply(u.vector())

The application of a Dirichlet boundary condition to a linear system will identify all degrees of
freedom that should be set to the given value and modify the linear system such that its solution
respects the boundary condition. This is accomplished by zeroing and inserting 1 on the diagonal
of the rows of the matrix corresponding to Dirichlet values, and inserting the Dirichlet value in
the corresponding entry of the right-hand side vector. This application of boundary conditions
does not preserve symmetry. If symmetry is required, one may alternatively consider using the
assemble_system function which applies Dirichlet boundary conditions symmetrically as part of
the assembly process.

Multiple boundary conditions may be applied to a single system or vector. If two different
boundary conditions are applied to the same degree of freedom, the last applied value will
overwrite any previously set values.

11.3.10 Variational problems

Variational problems (finite element discretizations of partial differential equations) can be eas-
ily solved in DOLFIN using the class VariationalProblem. This is done by first specifying a
VariationalProblem in terms of a pair of forms and (possibly) boundary conditions, and then
calling the solve member function.

Both linear and nonlinear problems can be solved. A linear problem must be expressed in the
following canonical form: find u € V such that

a(u,v) = L(v) VoeV. (11.8)
A nonlinear problem must be expressed in the following canonical form: find u € V such that
F(u;0) =0 VoeV. (11.9)

In the case of a linear variational problem specified in terms of a bilinear form a and a linear
form L, the solution is computed by assembling the matrix A and vector b of the corresponding
linear system, then applying boundary conditions to the system, and finally solving the linear
system. In the case of a nonlinear variational problem specified in terms of a linear form F and a
bilinear form dF (the derivative or Jacobian of F), the solution is computed by Newton’s method.
DOLFIN determines whether a problem is linear or nonlinear based on the given forms; if a pair
of bilinear and linear forms (a and L) are given, then the problem is assumed to be linear, and if a
pair of linear and bilinear forms (F and dF) are given, then the problem is assumed to be nonlinear.



210 CHAPTER 11. DOLFIN: A C++/PYTHON FINITE ELEMENT LIBRARY

The code examples below demonstrate how to solve a linear variational problem specified in
terms of a bilinear form a, a linear form L and a list of Dirichlet boundary conditions given as
DirichletBC objects:

C++ code

std::vector<const BoundaryCondition*> bcs;
bcs.push_back(&bco) ;
bcs.push_back(&bcl);
bcs.push_back(&bc2);

VariationalProblem problem(a, L, bcs);
Function u(V);
problem.solve(u);

Python code
bcs = [bcO, bcl, bc2]

problem = VariationalProblem(a, L, bcs)
u = problem.solve()

To solve a nonlinear variational problem, one must supply both a linear form F and its derivative dF,
which is a bilinear form. In many cases, the derivative can be easily computed using the function
derivative, either in a .ufl form file or as part of a Python script. We here demonstrate how a
nonlinear problem may be solved using the Python interface:

Python code
u = Function(V)
du = TrialFunction(V)
TestFunction(V)
inner((1l + ux*2)*grad(u), grad(v))*dx - f*vxdx
dF = derivative(F, u, du)

m <
1}

problem = VariationalProblem(F, dF, bcs)
problem.solve(u)

A VariationalProblem provides a range of parameters that can be adjusted to control the solution
process. To view the list of available parameters for a VariationalProblem object problem, issue
the command info(problem, true) from C++ or info(problem, True) from Python.

11.3.11 File I/O and visualization

Preprocessing. DOLFIN has capabilities for mesh generation only in the form of the built-in
meshes UnitSquare, UnitCube, etc. External software must be used to generate more complicated
meshes. To simplify this process, DOLFIN provides a simple script dolfin-convert to convert
meshes from other formats to the DOLFIN XML format. Currently supported file formats are
listed in Table 11.4. The following code illustrates how to convert a mesh from the Gmsh format
(suffix .msh or .gmsh) to the DOLFIN XML format:

Bash code

dolfin-convert mesh.msh mesh.xml

Once a mesh has been converted to the DOLFIN XML file format, it can be read into a program, as
illustrated by the following code examples:

C++ code
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Suffix File format

.xml DOLFIN XML format

.ele / .node Triangle file format

.mesh Medit format, generated by TetGen with option -g
.msh / .gmsh Gmsh version 2.0 format

.grid Diffpack tetrahedral grid format

.inp Abaqus tetrahedral grid format

.e / .exo Sandia Exodus II file format

.ncdf ncdump’ed Exodus II file format

vrt/.cell Star-CD tetrahedral grid format

Table 11.4: List of file formats supported by the dolfin-convert script.

Figure 11.6: Plotting a mesh us-
ing the DOLFIN plot command,
here the mesh dolfin-1.xml.gz dis-

tributed with DOLFIN.

[
‘Mesh mesh("mesh.xml");
L

Python code

‘mesh = Mesh("mesh.xml")

Postprocessing.  To visualize a solution (Function), a Mesh or a MeshFunction, the plot command*
can be issued, from either C++ or Python:

C++ code
plot(u);
plot(mesh);
plot(mesh_function);
Python code

plot(u)
plot(mesh)
plot(mesh_function)

Example plots generated using the plot command are presented in Figures 11.6 and 11.7.
From Python, one can also plot expressions and finite elements:

4The plot command requires a working installation of the viper Python module. Plotting finite elements requires access

to the ffc plotting module.
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Figure 11.7: Plotting a scalar and

: _~~-a vector-valued function using the
o b

OLFIN plot command, here the

; \ pressure (left) and velocity (right) from
==~=3a solution of the Stokes equations on

—the mesh from Figure 11.6.

Python code

plot(u)
plot(grad(u))
plot(uxu)

element = FiniteElement("BDM", tetrahedron, 3)
plot(element)

To enable interaction with a plot window (rotate, zoom) from Python, call the function interactive,
or add an optional argument interactive=True to the plot command.

The plot command provides rudimentary plotting, and advanced postprocessing is better handled
by external software such as ParaView and MayaViz. This is easily accomplished by storing the
solution (a Function object) to file in PVD format (ParaView Data, an XML-based format). This
can be done in both C++ and Python by writing to a file with the .pvd extension, as illustrated in
the following code examples:

C++ code

File file("solution.pvd");
file << u;

Python code

file = File("solution.pvd")
file << u

The standard PVD format is ASCII based, hence the file size can become very large for large data
sets. To use a compressed binary format, a string "compressed" can be used when creating a
PVD-based File object:

C++ code

[
‘File file("solution.pvd", "compressed");
L |

If multiple Functions are written to the same file (by repeated use of <<), then the data is interpreted
as a time series, which may then be animated in ParaView or MayaViz2. Each frame of the time
series is stored as a .vtu (VTK unstructured data) file, with references to these files stored in the
.pvd file. When writing time-dependent data, it can be useful to store the time t of each snapshot.
This is done as illustrated below:

C++ code

[

\File file("solution.pvd", "compressed");

\file << std::make_pair<const Function*, double>(&u, t);
L
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Python code
file = File("solution.pvd", "compressed");
file << (u, t)

Storing the time is particularly useful when animating simulations that use a varying time step.
The PVD format supports parallel post-processing. When running in parallel, a single . pvd file is
created and a .vtu file is created for the data on each partition. Results computed in parallel can
be viewed seamlessly using ParaView.

DOLFIN XML format. DOLFIN XML is the native format of DOLFIN. An advantage of XML
is that it is a robust and human-readable format. If the files are compressed, there is also little
overhead in terms of file size compared to a binary format.

Many of the classes in DOLFIN can be written to and from DOLFIN XML files using the standard
stream operators << and >>, as illustrated in the following code examples:

C++ code

File vector_file("vector.xml");
vector_file << vector;
vector_file >> vector;

File matrix_file("matrix.xml");
matrix_file << matrix;
matrix_file >> matrix;

File mesh_file("mesh.xml");
mesh_file << mesh;
mesh_file >> mesh;

File parameters_file("parameters.xml");
parameters_file << parameters;
parameters_file >> parameters;

Python code
vector_file = File("vector.xml")
vector_file << vector
vector_file >> vector

matrix_file = File("matrix.xml")
matrix_file << matrix
matrix_file >> matrix

mesh_file = File("mesh.xml")
mesh_file << mesh
mesh_file >> mesh

parameters_file = File("parameters.xml")
parameters_file << parameters
parameters_file >> parameters

One cannot read /write Function and FunctionSpace objects since the representation of a FunctionSpace

(and thereby the representation of a Function) relies on generated code.
DOLFIN automatically handles reading of gzipped XML files. Thus, one may save space by storing
meshes and other data in gzipped XML files (with suffix .xml.gz).
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Time series. For time-dependent problems, it may be useful to store a sequence of solutions or
meshes in a format that enables fast reading/writing of data. For this purpose, DOLFIN provides
the TimeSeries class. This enables the storage of a series of Vectors (of degrees of freedom) and/or
Meshes. The following code illustrates how to store a series of Vectors and Meshes to a TimeSeries:

C++ code

TimeSeries time_series("simulation_data");

while (t < T)
{

time_series.store(u.vector(), t);
time_series.store(mesh, t);
t += dt;

}

Python code

time_series = TimeSeries("simulation_data")
while t < T:

time_series.store(u.vector(), t)
time_series.store(mesh, t)
t += dt

Data in a TimeSeries are stored in a binary format with one file for each stored dataset (Vector
or Mesh) and a common index. Data may be retrieved from a TimeSeries by calling the retrieve
member function as illustrated in the code examples below. If a dataset is not stored at the
requested time, then the values are interpolated linearly for Vectors. For Meshes, the closest data
point will be used.

C++ code

time_series.retrieve(u.vector(), t);
time_series.retrieve(mesh, t);

Python code

time_series.retrieve(u.vector(), t);
time_series.retrieve(mesh, t);

11.3.12 Logging / diagnostics

DOLFIN provides a simple interface for the uniform handling of log messages, including warnings
and errors. All messages are collected to a single stream, which allows the destination and
formatting of the output from an entire program, including the DOLFIN library, to be controlled
by the user.

Printing messages. Informational messages from DOLFIN are normally printed using the info
command. This command takes a string argument and an optional list of variables to be formatted,
much like the standard C printf command. Note that the info command automatically appends a
newline to the given string. Alternatively, C++ users may use the dolfin::cout and dolfin::endl
object for C++ style formatting of messages as illustrated below.
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C++ code

info("Assembling system of size %d x %d.", M, N);
cout << "Assembling system of size " << M << " x " << N << "." << endl;

Python code

info("Assembling system of size %d x %d." % (M, N))

The info command and the dolfin::cout/endl objects differ from the standard C printf com-
mand and the C++ std::cout/endl objects in that the output is directed into a special stream,
the output of which may be redirected to destinations other than standard output. In particular,
one may completely disable output from DOLFIN, or select the verbosity of printed messages, as
explained below.

Warnings and errors. In addition to the info command, DOLFIN provides the commands warning
and error that can be used to issue warnings and errors, respectively. These two commands work
in much the same way as the info command. However, the warning command will prepend the
given message with "Warning: " and the error command will raise an exception that can be
caught, from both C++ and Python. Both commands will also print the message at a log level
higher than messages printed using info.

Setting the log level. The DOLFIN log level determines which messages routed through the logging
system will be printed. Only messages on a level higher than or equal to the current log level are
printed. The log level of DOLFIN may be set using the function set_log_level. This function
expects an integer value that specifies the log level. To simplify the specification of the log level, one
may use one of a number of predefined log levels as listed in the table below. The default log level is
INFO. Log messages may be switched off entirely by calling the command set_log_active(false)
from C++ and set_log_active(False) from Python. For technical reasons, the log level for
debugging messages is named DBG in C++ and DEBUG in Python.

Log level  value

ERROR 40
WARNING 30
INFO 20

DBG / DEBUG 10

To print messages at an arbitrary log level, one may specify the log level to the info command, as
illustrated in the code examples below.

C++ code
info("Test message"); // will be printed
cout << "Test message" << endl; // will be printed
info(DBG, "Test message"); // will not be printed
info(15, "Test message"); // will not be printed

set_log_level(DBG);

info("Test message"); // will be printed
cout << "Test message" << endl; // will be printed
info(DBG, "Test message"); // will be printed

info(15, "Test message"); // will be printed
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set_log_level (WARNING) ;

info("Test message"); // will not be printed
cout << "Test message" << endl; // will not be printed
warning("Test message"); // will be printed

std::cout << "Test message" << std::endl; // will be printed!

Python code
info("Test message") # will be printed
info(DEBUG, "Test message") will not be printed
info(15, "Test message") # will not be printed

H*

set_log_level (DEBUG)

info("Test message") # will be printed
info(DEBUG, "Test message") # will be printed
info(15, "Test message") # will be printed

set_log_level (WARNING)

info("Test message") # will not be printed
warning("Test message") will be printed
print "Test message" # will be printed!

HH*

Printing objects. Many of the standard DOLFIN objects can be printed using the info command,
as illustrated in the code examples below.

C++ code

info(vector);
info(matrix);
info(solver);
info(mesh);
info(mesh_function);
info(function);
info(function_space);
info(parameters);

Python code
info(vector)
info(matrix)
info(solver)
info(mesh)
info(mesh_function)
info(function)
info(function_space)
info(parameters)

The above commands will print short informational messages. For example, the command
info(mesh) may result in the following output:

Generated code
<Mesh of topological dimension 2 (triangles) with 25 vertices and 32 cells, ordered>

In the Python interface, the same short informal message can be printed by calling print mesh. To
print more detailed data, one may set the verbosity argument of the info function to true (defaults
to false), which will print a detailed summary of the object.
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C++ code

info(mesh, true);

Python code

info(mesh, True)

The detailed output for some objects may be very lengthy.

Tasks and progress bars. In addition to basic commands for printing messages, DOLFIN provides a
number of commands for organizing the diagnostic output from a simulation program. Two such
commands are begin and end. These commands can be used to nest the output from a program;
each call to begin increases the indentation level by one unit (two spaces), while each call to end
decreases the indentation level by one unit.

Another way to provide feedback is via progress bars. DOLFIN provides the Progress class for
this purpose. Although an effort has been made to minimize the overhead of updating the progress
bar, it should be used with care. If only a small amount of work is performed in each iteration of a
loop, the relative overhead of using a progress bar may be substantial. The code examples below
illustrate the use of the begin/end commands and the progress bar.

C++ code

begin("Starting nonlinear iteration.");
info("Updating velocity.");
info("Updating pressure.");
info("Computing residual.");

end();
Progress p("Iterating over all cells.", mesh.num_cells());
for (CelllIterator cell(mesh); !'cell.end(); ++cell)
{
ptt;
}

Progress q("Time-stepping");
while (t < T)
{

t += dt;
q=t/T;
}

Python code
begin("Starting nonlinear iteration.")
info("Updating velocity.")
info("Updating pressure.")
info("Computing residual.")
end()

p = Progress("Iterating over all cells.", mesh.num_cells())
for cell in cells(mesh):

p+=1

q = Progress q("Time-stepping")
while t < T:
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t += dt
g.update(t / T)

Setting timers. Timing can be accomplished using the Timer class. A Timer is automatically started
when it is created, and automatically stopped when it goes out of scope. Creating a Timer at the
start of a function is therefore a convenient way to time that function, as illustrated in the code
examples below.

C++ code

void solve(const Matrix& A, Vector& x, const Vector& b)
{

Timer timer("Linear solve");

Python code

def solve(A, b):
timer = Timer("Linear solve")

return x
One may explicitly call the start and stop member functions of a Timer. To directly access the

value of a timer, the value member function can be called. A summary of the values of all timers
created during the execution of a program can be printed by calling the summary function.

11.3.13 Parameters

DOLFIN keeps a global database of parameters that control the behavior of its various components.
Parameters are controlled via a uniform type-independent interface that allows the retrieval of
parameter values, modification of parameter values, and the addition of new parameters to the
database. Different components (classes) of DOLFIN also rely on parameters that are local to each
instance of the class. This permits different parameter values to be set for different objects of a
class.

Parameter values can be either integer-valued, real-valued (standard double or extended precision),
string-valued, or boolean-valued. Parameter names must not contain spaces.

Accessing parameters. Global parameters can be accessed through the global variable parameters.
The below code illustrates how to print the values of all parameters in the global parameter
database, and how to access and change parameter values.

C++ code

info(parameters, True);

uint num_threads = parameters|["num_threads"];

bool allow_extrapolation = parameters["allow_extrapolation"];
parameters["num_threads"] = 8;
parameters|["allow_extrapolation"] = true;

Python code
info(parameters, True)
num_threads = parameters|["num_threads"]
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allow_extrapolation = parameters|["allow_extrapolation"]
parameters|["num_threads"] = 8
parameters["allow_extrapolation"] = True

Parameters that are local to specific components of DOLFIN can be controlled by accessing the
member variable named parameters. The following code illustrates how to set some parameters
for a Krylov solver.

C++ code
KrylovSolver solver;
solver.parameters["absolute_tolerance"] = le-6;
solver.parameters["report"] = true;
solver.parameters("gmres")["restart"] = 50;
solver.parameters("preconditioner")["reuse"] = true;

Python code

solver = KrylovSolver()

solver.parameters["absolute tolerance"] = le-6
solver.parameters["report"] = True
solver.parameters["gmres"]["restart"] = 50
solver.parameters["preconditioner"]["reuse"] = True

The above example accesses the nested parameter databases "gmres" and "preconditioner".
DOLFIN parameters may be nested to arbitrary depths, which helps with organizing parameters
into different categories. Note the subtle difference in accessing nested parameters in the two
interfaces. In the C++ interface, nested parameters are accessed by brackets ("..."), and in the
Python interface are they accessed by square brackets ["..."]. The parameters that are available
for a certain component can be viewed by using the info function.

Adding parameters. Parameters can be added to an existing parameter database using the add
member function which takes the name of the new parameter and its default value. It is also
simple to create new parameter databases by creating a new instance of the Parameters class. The
following code demonstrates how to create a new parameter database and adding to it a pair of
integer-valued and floating-point valued parameters.

C++ code

Parameters parameters("my_parameters");
my_parameters.add("foo", 3);
my_parameters.add("bar", 0.1);

Python code
my_parameters = Parameters("my_parameters")
my_parameters.add("foo", 3)
my_parameters.add("bar", 0.1)

A parameter database resembles the dict class in the Python interface. A user can iterate over the
keys, values and items:

Python code
for key, value in parameters.items():

print key, value

A Python dict can also be used to update a Parameter database:
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Python code
d = dict(num_threads=4, krylov_solver=dict(absolute_tolerance=1e-6))
parameters.update(d)

A parameter database can also be created in more compact way in the Python interface:

Python code

my_parameters = Parameters("my_parameters", foo=3, bar=0.1,
nested=Parameters("nested", baz=True))

Parsing command-line parameters. Command-line parameters may be parsed into the global pa-
rameter database or into any other parameter database. The following code illustrates how to
parse command-line parameters in C++ and Python, and how to pass command-line parameters
to the program.

C++ code

int main(int argc, char* argv[])

{

parameters.parse(argc, argv);

Python code

parameters.parse()

Bash code

python myprogram.py --num_threads 8 --allow_extrapolation true

Storing parameters to file. It can be useful to store parameter values to file, for example to document
which parameter values were used to run a simulation or to reuse a set of parameter values from a
previous run. The following code illustrates how to write and then read back parameter values
to/from a DOLFIN XML file.

Python code

File file("parameters.xml");
file << parameters;
file >> parameters;

C++ code

file = File("parameters.xml")
file << parameters
file >> parameters

11.4 Implementation notes

In this section, we comment on specific aspects of the implementation of DOLFIN, including
parallel computing, the generation of the Python interface, and just-in-time compilation.
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Figure 11.8: A mesh that is (a) colored
based on facet connectivity such that
cells that share a common facet have
different colors and (b) partitioned
into 12 parts, with each partition in-
dicated by a color.

11.4.1 Parallel computing

DOLFIN supports parallel computing on multi-core workstations through to massively parallel
supercomputers. It is designed such that users can perform parallel simulations using the same
code that is used for serial computations.

Two paradigms for parallel simulation are supported. The first paradigm is multithreading
for shared memory machines. The second paradigm is fully distributed parallelization for dis-
tributed memory machines. For both paradigms, special preprocessing of a mesh is required. For
multithreaded parallelization, a so-called coloring approach is used (see Figure 11.8a), and for
distributed parallelization a mesh partitioning approach is used (see Figure 11.8b). Aspects of
these two approaches are discussed below. It also possible to combine the approaches, thereby
yielding hybrid approaches to leverage the power of modern clusters of multi-core processors.

Shared memory parallel computing. Multithreaded assembly for finite element matrices and vectors
on shared memory machines is supported using OpenMP. It is activated by setting the number of
threads to use via the parameter system. For example, the code

C++ code

parameters|["num_threads"] = 6;

instructs DOLFIN to use six threads in the assembly process. During assembly, DOLFIN loops
over the cells or cell facets in a mesh, and computes local contributions to the global matrix or
vector, which are then added to the global matrix or vector. When using multithreaded assembly,
each thread is assigned a collection of cells or facets for which it is responsible. This is transparent
to the user.

The use of multithreading requires design care to avoid race conditions, which occur if multiple
threads attempt to write to the same memory location at the same time. Race conditions will
typically result in unpredictable behavior of a program. To avoid race conditions during assembly,
which would occur if two threads were to add values to a global matrix or vector at almost the
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same time, DOLFIN uses a graph coloring approach. Before assembly, the mesh on a given process
is ‘colored” such that each cell is assigned a color (which in practice is an integer) and such that
no two neighboring cells have the same color. The sense in which cells are neighbors for a given
problem depends on the type of finite element being used. In most cases, cells that share a vertex
are considered neighbors, but in other cases cells that share edges or facets may be considered
neighbors. During assembly, cells are assembled by color. All cells of the first color are shared
among the threads and assembled, and this is followed by the next color. Since cells of the same
color are not neighbors, and therefore do not share entries in the global matrix or vector, race
conditions will not occur during assembly. The coloring of a mesh is performed in DOLFIN using
either the interface to the Boost Graph Library or the interface to Zoltan (which is part of the
Trilinos project). Figure 11.8a shows a mesh that has been colored such that no two neighboring
cells (in the sense of a shared facet) are of the same color.

Multithreaded support in third-party linear algebra libraries is limited at the present time, but is
an area of active development. The LU solver , which can be accessed via the PETSc linear
algebra backend, supports multithreaded parallelism.

Distributed parallel computing. Fully distributed parallel computing is supported using the Mes-
sage Passing Interface (MPI). To perform parallel simulations, DOLFIN should be compiled with
MPI and a parallel linear algebra backend (such as PETSc or Trilinos) enabled. To execute a parallel
simulation, a DOLFIN program should be launched using mpirun (the name of the program to
launch MPI programs may differ on some computers). A C++ program using 16 processes can be
executed using:

Bash code

mpirun -n 16 ./myprogram

and for Python:

Bash code
mpirun -n 16 python myprogram.py

DOLFIN supports fully distributed parallel meshes, which means that each processor has a copy
of only the portion of the mesh for which it is responsible. This approach is scalable since no
processor is required to hold a copy of the full mesh. An important step in a parallel simulation is
the partitioning of the mesh. DOLFIN can perform mesh partitioning in parallel using the libraries

and SCOTCH [ ]. The library to be used for mesh partitioning can be specified
via the parameter system, e.g., to use SCOTCH:

C++ code
parameters["mesh_partitioner"] = "SCOTCH";
or to use ParMETIS:
Python code
parameters["mesh_partitioner"] = "ParMETIS"

Figure 11.8b shows a mesh that has been partitioned in parallel into 12 domains. One process
would take responsibility for each domain.

If a parallel program is launched using MPI and a parallel linear algebra backend is enabled,
then linear algebra operations will be performed in parallel. In most applications, this will be
transparent to the user. Parallel output for postprocessing is supported through the PVD output
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format, and is used in the same way as for serial output. Each process writes an output file, and
the single main output file points to the files produced by the different processes.

11.4.2 Implementation and generation of the Python interface

The DOLFIN C++ library is wrapped to Python using the Simplified Wrapper and Interface
Generator SWIG [ , , ] (see Chapter 20 for more details). The wrapped C++ library
is accessible in a Python module named cpp residing inside the main do1fin module of DOLFIN.
This means that the compiled module, with all its functions and classes, can be accessed directly

by:

Python code
from dolfin import cpp
Function = cpp.Function
assemble = cpp.assemble

The classes and functions in the cpp module have the same functionality as the corresponding
classes and functions in the C++ interface. In addition to the wrapper layer automatically generated
by SWIG, the DOLFIN Python interface relies on a number of components implemented directly
in Python. Both are imported into the Python module named dolfin. In the following sections,
the key customizations to the DOLFIN interface that facilitate this integration are presented. The
Python interface also integrates well with the NumPy and SciPy toolkits, which is also discussed
below.

11.4.3 UFL integration and just-in-time compilation

In the Python interface, the UFL form language has been integrated with the Python wrapped
DOLFIN C++ module. When explaining the integration, we use in this section the notation
dolfin::Foo or dolfin::bar to denote a C++ class or function in DOLFIN. The corresponding
SWIG-wrapped classes or functions will be referred to as cpp.Foo and cpp.bar. A class in UFL
will be referred to as ufl.Foo and a class in UFC as ufc: : foo (note lower case). The Python classes
and functions in the added Python layer on top of the wrapped C++ library, will be referred to
as dolfin.Foo or dolfin.bar. The prefixes of the classes and functions are sometimes skipped
for convenience. Most of the code snippets presented in this section are pseudo code. Their
purpose is to illustrate the logic of a particular method or function. Parts of the actual code may
be intentionally excluded. A reader can examine particular classes or functions in the code for a
full understanding of the implementation.

Construction of function spaces. In the Python interface, ufl.FiniteElement and dolfin: :FunctionSpace
are integrated. The declaration of a FunctionSpace is similar to that of a ufl.FiniteElement, but
instead of a cell type (for example, triangle) the FunctionSpace constructor takes a cpp.Mesh
(dolfin.Mesh):

Python code
mesh = UnitSquare(8, 8)
V = FunctionSpace(mesh, "Lagrange", 1)

In the Python constructor of FunctionSpace, a ufl.FiniteElement is instantiated. The FiniteElement
is passed to a just-in-time (JIT) compiler, which returns compiled and Python-wrapped ufc objects:
aufc::finite_element and a ufc: :dofmap. These two objects, together with the mesh, are used
to instantiate a cpp.FunctionSpace. The following pseudo code illustrates the instantiation of a
FunctionSpace from the Python interface:
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Python code
class FunctionSpace(cpp.FunctionSpace):
def __init__(self, mesh, family, degree):
# Figure out the domain from the mesh topology
if mesh.topology().dim() ==
domain = ufl.triangle
else:
domain = ufl.tetrahedron

# Create the UFL FiniteElement
self.ufl_element = ufl.FiniteElement(family, domain, degree)

# JIT compile and instantiate the UFC classes
ufc_element, ufc_dofmap = jit(self.ufl_element)

# Instantiate DOLFIN classes and finally the FunctionSpace
dolfin_element = cpp.FiniteElement(ufc_element)

dolfin_dofmap = cpp.DofMap(ufc_dofmap, mesh)
cpp.FunctionSpace. _init _(self, mesh, dolfin_element, dolfin_dofmap)

Constructing arguments (trial and test functions). The ufl.Argument class (the base class of ufl.TrialFunction
and ufl.TestFunction)is subclassed in the Python interface. Instead of using a ufl.FiniteElement
to instantiate the classes, a DOLFIN FunctionSpace is used:

Python code
u = TrialFunction(V)
v = TestFunction(V)

The ufl.Argument base class is instantiated in the subclassed constructor by extracting the
ufl.FiniteElement from the passed FunctionSpace, which is illustrated by the following pseudo
code:

Python code
class Argument(ufl.Argument):
def __init__(self, V, index=None):
ufl.Argument.__init__(self, V.ufl_element, index)
self.v =V

The TrialFunction and TestFunction are then defined using the subclassed Argument class:

Python code
def TrialFunction(V):
return Argument(V, -1)

def TestFunction(V):
return Argument(V, -2)

Coefficients, functions and expressions. When a UFL form is defined using a Coefficient, a user
must associate with the form either a discrete finite element Function or a user-defined Expression
before the form is assembled. In the C++ interface of DOLFIN, a user needs to explicitly carry
out this association (L.f = f). In the Python interface of DOLFIN, the ufl.Coefficient class
is combined with the DOLFIN Function and Expression classes, and the association between
the coefficient as a symbol in the form expression (Coefficient) and its value (Function or
Expression) is automatic. A user can therefore assemble a form defined using instances of these
combined classes directly:
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Python code

class Source(Expression):
def eval(self, values, x):

values[0] = sin(x[0])
v = TestFunction(V)
f = Source()
L = fxvxdx
b = assemble(L)

The Function class in the Python interface inherits from both ufl.Coefficient and cpp.Function,
as illustrated by the following pseudo code:

Python code

class Function(ufl.Coefficient, cpp.Function):
def __init__(self, V):
ufl.Coefficient.__init__(self, V.ufl_element)
cpp.Function().__init__(self, V)

The actual constructor also includes logic to instantiate a Function from other objects. A more
elaborate logic is also included to handle access to subfunctions.

A user-defined Expression can be created in two different ways: (i) as a pure Python Expression;
or (ii) as a JIT compiled Expression. A pure Python Expression is an object instantiated from a
subclass of Expression in Python. The Source class above is an example of this. Pseudo code for
the constructor of the Expression class is similar to that for the Function class:

Python code

class Expression(ufl.Coefficient, cpp.Expression):
def __init__(self, element=None):
if element is None:
element = auto_select_element(self.value_shape())
ufl.Coefficient._ _init__(self, element)
cpp.Expression(element.value_shape())

If the ufl.FiniteElement is not defined by the user, DOLFIN will automatically choose an element
using the auto_select_element function. The function takes the value shape of the Expression as
argument. This has to be supplied by the user for any vector- or tensor-valued Expressions, by
overloading the value_shape method. The base class cpp.Expression is initialized using the value
shape of the ufl.FiniteElement.

The actual code is considerably more complex than indicated above, as the same class, Expression,
is used to handle both JIT compiled and pure Python Expressions. Also note that the actual
subclass is eventually generated by a metaclass in Python, which makes it possible to include sanity
checks for the declared subclass.

The cpp.Expression class is wrapped by a so-called director class in the SWIG-generated C++ layer.
This means that the whole Python class is wrapped by a C++ subclass of dolfin: :Expression.
Each virtual method of the C++ base class is implemented by the SWIG-generated subclass in C++.
These methods call the Python version of the method, which the user eventually implements by
subclassing cpp.Expression in Python.

Just-in-time compilation of expressions. The performance of a pure Python Expression may be
suboptimal because of the callback from C++ to Python each time the Expression is evaluated. To
circumvent this, a user can instead subclass the C++ version of Expression using a JIT compiled
Expression. Because the subclass is implemented in C++, it will not involve any callbacks to
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Python, and can therefore be significantly faster than a pure Python Expression. A JIT compiled
Expression is generated by passing a string of C++ code to the Expression constructor:

Python code
e = Expression("sin(x[0])")

The passed string is used to generate a subclass of dolfin: :Expression in C++, where it is inlined
into an overloaded eval method. The final code is JIT compiled and wrapped to Python using
Instant (see Chapter 15). The generated Python class is then imported into Python. The class is not
yet instantiated, as the final JIT compiled Expression also needs to inherit from ufl.Coefficient.
To accomplish this, we dynamically create a class which inherits from both the generated class and
ufl.Coefficient.

Classes in Python can be created during run-time by using the type function. The logic of
creating a class and returning an instance of that class is handled in the __new__ method of
dolfin.Expression, as illustrated by the following pseudo code:

Python code
class Expression(object):
def __new__(cls, cppcode=None):
if cls.__name__ != "Expression":
return object.__new__(cls)
cpp_base = compile_expressions(cppcode)
def __init__(self, cppcode):

generated_class = type("CompiledExpression",
(Expression, ufl.Coefficient, cpp_base),
{"__init__": __init__})

return generated_class()

The __new__ method is called when a JIT compiled Expression is instantiated. However, it will
also be called when a pure Python subclass of Expression is instantiated during initialization of
the base-class. We handle the two different cases by checking the name of the instantiated class.
If the name of the class is not "Expression", then the call originates from the instantiation of a
subclass of Expression. When a pure Python Expression is instantiated, like the Source instance
in the code example above, the __new__ method of object is called and the instantiated object is
returned. In the other case, when a JIT compiled Expression is instantiated, we need to generate
the JIT compiled base class from the passed Python string, as explained above. This is done by
calling the function compile_expressions. Before type is called to generate the final class, an
__init__ method for the class is defined. This method initiates the new object by automatically
selecting the element type and setting dimensions for the created Expression. This procedure is
similar to what is done for the Python derived Expression class. Finally, we construct the new
class which inherits the JIT compiled class and ufl.Coefficient by calling type.

The type function takes three arguments: the name of the class ("CompiledExpression"), the
bases of the class (Expression, ufl.Coefficient, cpp_base), and a dict defining the interface
(methods and attributes) of the class. The only new method or attribute we provide to the
generated class is the __init__ method. After the class is generated, we instantiate it and the
object is returned to the user.

Assembly of UFL forms. The assemble function in the Python interface of DOLFIN enables a user
to directly assemble a declared UFL form:

Python code
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mesh = UnitSquare(8, 8)

= FunctionSpace("CG", mesh, 1)
= TrialFunction(V)
= TestFunction(V)
= Expression("sin(x[0])")
= cxdot(grad(u), grad(v))*dx
= assemble(a)

> o n < <

The assemble function is a thin wrapper layer around the wrapped cpp.assemble function. The
following pseudo code illustrates what happens in this layer:

Python code
def assemble(form, tensor=None, mesh=None):

dolfin_form = Form(form)
if tensor is None:

tensor = create_tensor(dolfin_form.rank())
if mesh is not None:

dolfin_form.set_mesh(mesh)
cpp.assemble(dolfin_form, tensor)
return tensor

Here, formis a ufl.Form, which is used to generate a dolfin.Form, as explained below. In addition
to the form argument, a user can choose to provide a tensor and/or a mesh. If a tensor is not
provided, one will automatically be generated by the create_tensor function. The optional mesh
is needed if the form does not contain any Arguments, or Functions; for example when a functional
containing only Expressions is assembled. Note that the length of the above signature has been
shortened. Other arguments to the assemble function exist but are skipped here for clarity.

The following pseudo code demonstrates what happens in the constructor of dolfin.Form, where
the base class cpp.Form is initialized from a ufl.Form:

Python code
class Form(cpp.Form):
def __init__(self, form):
compiled_form, form_data = jit(form)
function_spaces = extract_function_spaces(form_data)
coefficients = extract_coefficients(form_data)
cpp.Form.__init _(self, compiled_form, function_spaces, coefficients)

The form is first passed to the dolfin.jit function, which calls the registered form compiler to
generate code and JIT compile it. There are presently two form compilers that can be chosen:
"ffc" and "sfc" (see Chapters 12 and 16). Each one of these form compilers defines its own jit
function, which eventually will receive the call. The form compiler can be chosen by setting:

Python code

parameters["form_compiler"]["name"] = "sfc"

The default form compiler is "ffc". The jit function of the form compiler returns the JIT compiled
ufc::form together with a ufl.FormData object. The latter is a data structure containing meta data
for the ufl.form, which is used to extract the function spaces and coefficients that are needed to
instantiate a cpp.Form. The extraction of these data is handled by the extract_function_spaces
and the extract_coefficients functions.

11.4.4 NumPy and SciPy integration

The values of the Matrix and Vector classes in the Python interface of DOLFIN can be viewed as
NumPy arrays. This is done by calling the array method of the vector or matrix:
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Python code
A = assemble(a)
AA = A.array()

Here, A is a matrix assembled from the form a. The NumPy array AA is a dense structure and all
values are copied from the original data. The array function can be called on a distributed matrix
or vector, in which case it will return the locally stored values.

Direct access to linear algebra data. Direct access to the underlying data is possible for the uBLAS
and MTL4 linear algebra backends. A NumPy array view into the data will be returned by the
method data:

Python code

parameters|["linear_algebra_backend"] = "uBLAS"
b = assemble(L)
bb = b.data()

Here, b is a uBLAS vector and bb is a NumPy view into the data of b. Any changes to bb will
directly affect b. A similar method exists for matrices:

Python code
parameters["linear_algebra_backend"] = "MTL4"
A = assemble(a)
rows, columns, values = A.data()

The data is returned in a compressed row storage format as the three NumPy arrays rows, columns,
and values. These are also views of the data that represent A. Any changes in values will directly
result in a corresponding change in A.

Sparse matrix and SciPy integration. The rows, columns, and values data structures can be used to
instantiate a csr_matrix from the scipy.sparse module [ , ]:

Python code
from scipy.sparse import csr_matrix
rows, columns, values = A.data()
csr = csr_matrix(values, rows, columns)

The csr_matrix can then be used with other Python modules that support sparse matrices, such
as the scipy.sparse module and pyamg, which is an algebraic multigrid solver [ , ].

Slicing vectors. NumPy provides a convenient slicing interface for NumPy arrays. The Python
interface of DOLFIN also provides such an interface for vectors (see Chapter 20 for details of the
implementation). A slice can be used to access and set data in a vector:

Python code
# Create copy of vector

b_copy = b[:]

# Slice assignment (c can be a scalar, a DOLFIN vector or a NumPy array)
b[:] = c

# Set negative values to zero
blb < 0] =0

# Extract every second value
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b2 = b[::2]

A difference between a NumPy slice and a slice of a DOLFIN vector is that a slice of a NumPy
array provides a view into the original array, whereas in DOLFIN we provide a copy. A list/tuple
of integers or a NumPy array can also be used to both access and set data in a vector:

Python code
bl
b2

b[(6, 4, 7, 10)]
blarray((0, 4, 7, 10))]

11.5 Historical notes

The first public version of DOLFIN, version 0.2.0, was released in 2002. At that time, DOLFIN
was a self-contained C++ library with minimal external dependencies. All functionality was then
implemented as part of DOLFIN itself, including linear algebra and finite element form evaluation.
Although only piecewise linear elements were supported, DOLFIN provided rudimentary auto-
mated finite element assembly of variational forms. The form language was implemented by C++
operator overloading. For an overview of the development of the FEniCS form language and an
example of the early form language implemented in DOLFIN, see Chapter 12.

Later, parts of the functionality of DOLFIN have been moved to either external libraries or other
FEniCS components. In 2003, the FEniCS project was born and shortly after, with the release of
version 0.5.0 in 2004, the form evaluation system in DOLFIN was replaced by an automated code
generation system based on FFC and FIAT. In the following year, the linear algebra was replaced
by wrappers for PETSc data structures and solvers. At this time, the DOLFIN Python interface
(PyDOLFIN) was introduced. Since then, the Python interface has developed from a simple
auto-generated wrapper layer for the DOLFIN C++ functionality to a mature problem-solving
environment with support for just-in-time compilation of variational forms and integration with
external Python modules like NumPy.

In 2006, the DOLFIN mesh data structures were simplified and reimplemented to improve efficiency
and expand functionality. The new data structures were based on a light-weight object-oriented
layer on top of an underlying data storage by plain contiguous C/C++ arrays and improved
the efficiency by orders of magnitude over the old implementation, which was based on a fully
object-oriented implementation with local storage of all mesh entities like cells and vertices. The
first release of DOLFIN with the new mesh library was version 0.6.2.

In 2007, the UFC interface was introduced and the FFC form language was integrated with the
DOLFIN Python interface. Just-in-time compilation was also introduced. The following year,
the linear algebra interfaces of DOLFIN were redesigned to allow flexible handling of multiple
linear algebra backends. In 2009, a major milestone was reached when parallel computing was
introduced in DOLFIN.

Over the years, DOLFIN has undergone a large number of changes to its design, interface and
implementation. However, since the release of DOLFIN o0.9.0, which introduced a redesign of the
DOLFIN function classes based on the new function space abstraction, only minor changes have
been made to the interface. Since the release of version 0.9.0, most work has gone into refining
the interface, implementing missing functionality, fixing bugs and improving documentation, in
anticipation of the first stable release of DOLFIN, version 1.0.






12 FFC: the FEniCS form compiler

By Anders Logg, Kristian B. Jlgaard, Marie E. Rognes and Garth N. Wells

One of the key features of FEniCS is automated code generation for the general and efficient
solution of finite element variational problems. This automated code generation relies on a form
compiler for offline or just-in-time compilation of code for individual forms. Two different form
compilers are available as part of FEniCS. This chapter describes the form compiler FFC. The other
form compiler, SFC, is described in Chapter 16.

12.1  Compilation of variational forms

In simple terms, the solution of finite element variational problems is based on two ingredients:
the assembly of linear or nonlinear systems of equations and the solution of those equations. As a
result, many finite element codes are similar in their design and implementation. In particular, a
central part of most finite element codes is the assembly of sparse matrices from finite element
bilinear forms. In Chapter 7, we saw that one may formulate a general algorithm for assembly of
sparse tensors from variational forms. However, this algorithm relies on the computation of the
element tensor At as well as the local-to-global mapping (7. Both At and i7 differ greatly between
different finite elements and different variational forms. Special-purpose code is therefore needed.
As a consequence, the code for computing At and (1t must normally be developed by hand for a
given application. This is both tedious and error-prone.

The issue of having to develop code for At and (1 by hand can be resolved by a form compiler.
A form compiler generates code for computing At and (7. This code may then be called by
a general purpose routine for assembly of finite element matrices and vectors. In addition to
reduced development time, performance may be improved by using code generation since the form
compiler can generate efficient code for the computation of At by using optimization techniques
that are not readily applicable if the code is developed by hand. In Chapters 8, 9 and 10, two
different approaches to the optimized computation of the element tensor At are presented.

From an input describing a finite element variational problem in mathematical notation, the form
compiler FFC generates code for the efficient computation of At and i1, as well as code for
computing related quantities. More specifically, FFC takes as input a variational form specified
in the UFL form language (described in Chapter 18) and generates as output C++ code that
conforms to the UFC interface (described in Chapter 17). This process is illustrated schematically
in Figure 12.1.
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Figure 12.1: The form compiler FFC
UFL F F c UFC enerates C++ code in UFC format
3 3 Erom a given finite element variational

form in UFL format.

12.2  Compiler interfaces

FFC provides three different interfaces: a Python interface, a command-line interface, and a just-in-
time (JIT) compilation interface. The first two are presented here, while the third is discussed below
in Section 12.7. Although FFC provides three different interfaces, many users are never confronted
with any of these interfaces; Python users mostly rely on DOLFIN to handle the communication
with FFC. The command-line interface is familiar for DOLFIN C++ users, who must call FFC
on the command-line to generate code for inclusion in their C++ programs. The JIT interface is
rarely called directly by users, but it is the main interface between DOLFIN and FFC, which allows
DOLFIN to seamlessly generate and compile code when running solver scripts implemented in
Python.

12.2.1  Python interface

The Python interface to FFC takes the form of a standard Python module. There are two main
entry point functions to the functionality of FFC: compile_form and compile_element, to compile
forms and elements, respectively.

The compile_form function provides the main functionality of FFC, which is to generate code for
assembly of matrices and vectors (tensors) from finite element variational forms. The compile_form
function expects a form or a list of forms as input along with a set of optional arguments:

Python code

compile_form(forms,
object_names={},
prefix="Form",
parameters=default_parameters())

The above function generates UFC conforming code for each of the given forms and each of the
finite elements involved in the definition of the forms, as well as their corresponding degree-of-
freedom maps. The prefix argument can be used to control the prefix of the file containing the
generated code; the default is “Form”. The suffix “.h” will be added automatically. The second
optional argument parameters should be a Python dictionary with code generation parameters
and is described further below. The object_names dictionary is an optional argument that specifies
the names of the coefficients that were used to define the form. This is used by the command-line
interface of FFC to allow a user to refer to any coefficients in a form by their names (f, g, etc.).
Sometimes, it may be desirable to compile single elements, which means generating code for
run-time evaluation of basis functions and other entities associated with the definition of a finite
element. The compile_element function expects a finite element or a list of finite elements as its
first argument. In addition, a set of optional arguments can be provided:

Python code
compile_element(elements,
prefix="Element",
parameters=default_parameters())
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Figure 12.2: Compiling a form using

the FFC Python interface. Python code

from ufl import *
from ffc import *

element = FiniteElement("Lagrange", triangle, 1)
u TrialFunction(element)

v = TestFunction(element)

f Coefficient(element)

a
L

inner(grad(u), grad(v))=dx
frvrdx

compile_form([a, L], prefix="Poisson")

The above function generates UFC conforming code for the specified finite element spaces and
their corresponding degree-of-freedom maps. The arguments prefix and parameters play the
same role as for compile_form.

As an illustration, we list in Figure 12.2 the specification and compilation of a variational formula-
tion of Poisson’s equation in two dimensions using the Python interface. The last line calls the
compile_form function. When run, code will be generated for the forms a and L, and the finite
element and degree-of-freedom map associated with the element element, and then written to the
file “Poisson.h”. In Figure 12.3, we list (a part of) the generated C++ code for the input displayed
in Figure 12.2.

In Figure 12.4, we list the specification and compilation of a piecewise continuous quartic finite
element (Lagrange element of degree 4) in three dimensions using the FFC Python interface. The
two first lines import the UFL and FFC modules respectively. The third line specifies the finite
element in the UFL syntax. The last line calls the FFC compile_element function. The generated
code is written to the file P4tet.h, as specified by the argument prefix. In Figure 12.5, we list (a
part of) the generated C++ code for the input displayed in Figure 12.4.

12.2.2  Command-line interface
The command-line interface takes a UFL form file or a list of form files as input:

Bash code
$ ffc FormFile.ufl

The form file should contain the specification of elements and/or forms in the UFL syntax, and is
very similar to the FFC Python interface, as illustrated by the following specification of the same
variational problem as in Figure 12.2:

UFL code
element = FiniteElement("Lagrange", triangle, 1)
u = TrialFunction(element)
v = TestFunction(element)
f = Coefficient(element)

a = inner(grad(u), grad(v))*dx
L = fxvxdx

The contents of each form file are wrapped in a Python script and then executed. Such a script
is simply a copy of the form file that includes the required imports of FFC and UFL and calls
compile_element or compile_form from the FFC Python interface. The variable names a, L and
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C++ code

virtual void tabulate_tensor(doublex A,
const double * const * w,
const ufc::cell& c) const

[oon]

// Extract vertex coordinates
const double * const * X = c.coordinates;

// Compute Jacobian of affine map from reference cell
const double J_00 = x[1][0] - x[0][0];
const double J_01 = x[2][0] - x[0][0];
const double J_10 = x[1][1] - x[0][1];
const double J_11 = x[2][1] - x[0][1];

// Compute determinant of Jacobian
double det] = J_00%J_11 - J_01x]_10;

// Compute inverse of Jacobian

const double K 00 = J_11 / det];
const double K 01 = -J_01 / detJ;
const double K_10 = -J_10 / det];
const double K_.11 = J_00 / detJ;

// Set scale factor
const double det = std::abs(det]);

// Compute geometry tensor
const double GO_0_0 = det*(K_00+xK_00 + K_01xK_01);
const double GO_0_1 detx(K_00xK_10 + K_01xK_11);
+
+

const double GO_1_0 det*x(K_10xK_00 K_11xK_01);
const double GO_1_1 = det*(K_10+K_10 + K_11+K_11);

// Compute element tensor
A[0] = 0.500000000000000+G0O_0_
0.500000000000000+GO_0_
0.500000000000000+G0O_1_
0.500000000000000+G0O_1_1;
A[1l] = -0.500000000000000+G0O_0_0
-0.500000000000000+G0O_1_0;
A[2] = -0.500000000000000+G0O_0_1
-0.500000000000000+G0O_1_1;
A[3] = -0.500000000000000+G0O_0_0
-0.500000000000000+G0O_0_1;
Al4] = 0.500000000000000+GO_0_0;
A[5] = 0.500000000000000+GO_0_1;
A[6] = -0.500000000000000+G0O_1_0
-0.500000000000000+GO_1_1;
A[7] = 0.500000000000000+GO_1_0;
A[8] = 0.500000000000000+GO_1_1;

0
1
0
1

+ + +

’

Python code
from ufl import *
from ffc import *
element = FiniteElement("Lagrange", tetrahedron, 4)
compile_element(element, prefix="P4tet")

FFC: THE FENICS FORM COMPILER

Figure 12.3: Excerpt of the C++ code
generated for the input listed in Fig-
ure 12.2. In this example, the element
tensor is evaluated by computing a
tensor contraction between a reference
tensor A (containing values that are
either zero or 0.5) and the geometry
tensor Gt computed based on geomet-
rical data from the current cell. See
Chapter 9 for further details.

Figure 12.4: Compiling an element us-
ing the FFC Python interface.
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Figure 12.5: Excerpt of the C++ code
generated for the input listed in Fig-
ure 12.4. The evaluation of a basis
function is a complex process that in-
volves mapping the given point back
to a reference cell and evaluating the
given basis function as a linear com-
bination of a special set of basis func-
tions (the “prime basis”) on the refer-
ence cell. The code generated by FFC
is based on information given to FFC
by FIAT at compile-time.

C++ code

virtual void evaluate_basis(unsigned int i,
doublex* values,
const doublex coordinates,
const ufc::cell& c) const

// Extract vertex coordinates
const double * const * x = c.coordinates;

// Compute Jacobian of affine map from reference cell
const double J_00 = x[1][0] - x[0][0];

const double J_01 = x[2]1[0] - x[0]1[0];

const double J_02 = x[3][0] - x[0][0];

const double J_10 = x[1][1] - x[0][1];

const double J_11 = x[2][1] - x[O@][1];

[...1]

// Reset values.
xvalues = 0.000000000000000;

switch (i)
{
case 0:
{
foool
for (unsigned int r = 1; r < 4; r++)
{
re = (r + 1)+((r + 1) + 1)*((r + 1) + 2)/6;
ss = rx(r + 1)=(r + 2)/6;
foaal
}
foool
for (unsigned int r = 0; r < 35; r++)
{
*values += coefficientsO[r]*basisvalues|r];
}

[...]

[...]

virtual void tabulate_dofs(unsigned int* dofs,
const ufc::mesh& m,
const ufc::cell& c) const

unsigned int offset = 0;
dofs[0] = offset + c.entity_indices[0][0];

dofs[1l] = offset + c.entity indices[0][1];
dofs[2] = offset + c.entity_indices[0][2];
dofs[3] = offset + c.entity_indices[0][3];

offset += m.num_entities[0];

235
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element are recognized as a bilinear form, a linear form and a finite element, respectively. In
addition, FFC recognizes the variable name M as a functional.

12.3 Parameters affecting code generation

The code generated by FFC can be controlled by a number of optional parameters. Through the
Python interface, parameters are set in the dictionary parameters which is passed to the compile
functions. The default values for these may be obtained by calling the function default_parameters
from the Python interface. Most parameters can also be set on the command-line. All available
command-line parameters are listed on the FFC manual page (man ffc). We here list some of
the parameters which affect the code generation. We list the dictionary key associated with each
parameter, and the command-line version in parentheses, if available.

"format" (-1) This parameter controls the output format for the generated code. The default
value is “ufc”, which indicates that the code is generated according to the UFC specification.
Alternatively, the value “dolfin” may be used to generate code according to the UFC format
with a small set of additional DOLFIN-specific wrappers.

"representation” (-r) This parameter controls the representation used for the generated element
tensor code. There are three possibilities: “auto” (the default), “quadrature” and “tensor”.
See Section 12.5, and Chapters 8 and 9 for more details on the different representations.
In the case “auto”, either the quadrature or tensor representation is selected by FFC. FFC
attempts to select the representation which will lead to the most efficient code for the given
form.

"split" (-f split) This option controls the output of the generated code into a single or multiple
files. The default is False, in which case the generated code is written to a single file. If set
to True, separate header (.h) and implementation (. cpp) files are generated.

"optimize" (-0) This option controls code optimization features, and the default is False. If set
to True, the code generated for the element tensor is optimized for run-time performance.
The optimization strategy used depends on the chosen representation. In general, this will
increase the time required for FFC to generate code, but should reduce the run-time for the
generated code.

"log_level" This option controls the verbosity level of the compiler. The possible values are, in
order of decreasing verbosity: DEBUG, INFO (default), ERROR and CRITICAL.

12.4 Compiler design

FFC breaks compilation into several stages. The output generated at each stage serves as input
for the following stage, as illustrated in Figure 12.6. We describe each of these stages below. The
individual compiler stages may be accessed through the ffc.compiler module. We consider here
only the stages involved when compiling forms. For compilation of elements a similar (but simpler)
set of stages is used.

Compiler stage o: Language (parsing). In this stage, the user-specified form is interpreted and
stored as a UFL abstract syntax tree (AST). The actual parsing is handled by Python and the
transformation to a UFL form object is implemented by operator overloading in UFL.

Input: Python code or .ufl file
Output:  UFL form
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Figure 12.6: Form compilation bro-

ken into six sequential stages: Lan- Foo.ufl
guage, Analysis, Representation, Opti- [ e e e e e e e e e
mization, Code generation and Code

Formatting. Each stage generates out-

put based on input from the previous Stage 0
stage. The input/output data consist Language

of a UFL form file (in the case of call-

ing FFC from the command-line), a UFL
UFL object, a UFL object and meta-

data computed from the UFL object,

an intermediate representation (IR), an Stage 1
optimized intermediate representation Analysis

(OIR), C++ code and, finally, C++ code
files.
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Compiler stage 1: Analysis. This stage preprocesses the UFL form and extracts form meta data
(FormData), such as which elements were used to define the form, the number of coefficients
and the cell type (intervals, triangles, or tetrahedra). This stage also involves selecting a
suitable representation for the form if that has not been specified by the user (see Section 12.5
below).

Input: UFL form
Output:  preprocessed UFL form and form meta data

Compiler stage 2: Code representation. This stage examines the input and generates all data
needed for the code generation. This includes generation of finite element basis functions,
extraction of data for mapping of degrees of freedom, and possible precomputation of
integrals. Most of the complexity of compilation is handled in this stage.

The intermediate representation is stored as a dictionary, mapping names of UFC func-
tions to the data needed for generation of the corresponding code. In simple cases,
like ufc::form::rank, this data may be a simple number like 2. In other cases, like
ufc::cell_tensor::tabulate_tensor, the data may be a complex data structure that de-
pends on the choice of form representation.

Input:  preprocessed UFL form and form meta data
Output:  intermediate representation (IR)

Compiler stage 3: Optimization. This stage examines the intermediate representation and per-
forms optimizations. Such optimization may involve FErari based optimizations as discussed
in Chapter 13 or symbolic optimization as discussed in Chapter 8. Data stored in the inter-
mediate representation dictionary is then replaced by new data that encode an optimized
version of the function in question.

Input: intermediate representation (IR)
Output: optimized intermediate representation (OIR)

Compiler stage 4: Code generation. This stage examines the optimized intermediate representa-
tion and generates the actual C++ code for the body of each UFC function. The code is stored
as a dictionary, mapping names of UFC functions to strings containing the C++ code. As an
example, the data generated for ufc::form:: rank may be the string “return 2;”.

We emphasize the importance of separating stages 2, 3 and 4. This allows stages 2 and 3 to
focus on algorithmic aspects related to finite elements and variational forms, while stage 4
is concerned only with generating C++ code from a set of instructions prepared in earlier
compilation stages.

Input: optimized intermediate representation (OIR)
Output:  C++ code

Compiler stage 5: Code formatting. This stage examines the generated C++ code and formats it
according to the UFC format, generating as output one or more .h/. cpp files conforming to
the UFC specification. This is where the actual writing of C++ code takes place. This stage
relies on templates for UFC code available as part of the UFC module ufc_utils.

Input: C++ code
Output:  C++ code files
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12.5 Form representation

Two different approaches to code generation are implemented in FFC. One based on traditional
quadrature and another on a special tensor representation. We address these representations here
briefly and refer readers to Chapter 8 for details of the quadrature representation and to Chapter 9
for details of the tensor representation.

12.5.1  Quadrature representation

The quadrature representation in FFC is selected using the option -r quadrature. As the name
suggests, the method to evaluate the local element tensor At involves a loop over integration
points and adding the contribution from each point to A7. To generate code for quadrature, FFC
calls FIAT during code generation to tabulate finite element basis functions and their derivatives
at a suitable set of quadrature points on the reference element. It then goes on to generate code
for computing a weighted average of the integrand defined by the UFL AST at these quadrature
points.

12.5.2 Tensor representation

When FFC is called with the -r tensor option, it attempts to extract a monomial representation
of the given UFL form, that is, rewrite the given form as a sum of products of basis functions
and their derivatives. Such a representation is not always possible, in particular if the form is
expressed using operators other than addition, multiplication and linear differential operators. If
unsuccessful, FFC falls back to using quadrature representation.

If the transformation is successful, FFC computes the tensor representation Ay = A° : Gr, as
described in Chapter 9, by calling FIAT to compute the reference tensor A°. Code is then generated
for computing the element tensor. Each entry of the element tensor is obtained by computing an
inner product between the geometry tensor Gr and a particular slice of the reference tensor. It
should be noted that the entries of the reference tensor are known during code generation, so these
numbers enter directly into the generated code.

12.5.3 Automatic selection of representation

If the user does not specify which representation to use, FFC will try to automatically select
the “best” representation, that is, the representation that is believed to yield the best run-time
performance. As described in Chapter 8, the run-time performance depends on many factors
and it might not be possible to give a precise a priori answer as to which representation will be
best for a particular variational form. In general, the more complex the form (in terms of the
number of derivatives and the number of function products), the more likely quadrature is to
be preferable. See [ ] for a detailed discussion on form complexity and
comparisons between tensor and quadrature representations. In [ ], it was
suggested that the selection should be based on an estimate of the operation count to compute the
element tensor Atr. However, it turns out to be difficult to obtain an estimate which is accurate
enough for this purpose. Therefore, the following crude strategy to select the representation has
been implemented. First, FFC will try to generate the tensor representation and in case it fails,
quadrature representation will be selected. If the tensor representation is generated successfully,
each monomial is investigated and if the number of coefficients plus derivatives is greater than
three, then quadrature representation is selected for the given variational form.
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12.6 Optimization

The optimization stage of FFC is concerned with the run-time efficiency of the generated code for
computing the local finite element tensor. Optimization is available for both quadrature and tensor
representations, and they both operate on the intermediate representation generated in stage two.
The output in both cases is a new set of instructions (an optimized intermediate representation)
for the code generation stage. The goal of the optimization is to reduce the number of operations
needed to compute the element tensor Ar.

Due to the dissimilar nature of the quadrature and tensor representations, the optimizations
applied to the two representations are different. To optimize the tensor representation, FFC
relies on the Python module FErari (see Chapter 13) to perform the optimizations. Optimization
strategies for the quadrature representation are implemented as part of the FFC module itself
and are described in Chapter 8. For both representations, the optimizations come at the expense
of an increased generation time for FFC and for very complicated variational forms, hardware
limitations can make the compilation impossible.

Optimizations are switched on by using the command-line option -0 or through the Python
interface by setting the parameter optimize equal to True. For the quadrature representation, there
exist four optimization strategy options, and these can be selected through the command-line
interface by giving the additional options -f eliminate_zeros, -f simplify_expressions, -f
precompute_ip_const and -f precompute_basis_const, and through the Python interface by set-
ting these parameters equal to True in the options dictionary. The option -f eliminate_zeros can
be combined with any of the other three options. Only one of the optimizations -f simplify_expressions,
-f precompute_ip_const and -f precompute_basis_const can be switched on at one time, and if
two are given -f simplify_expressions takes precedence over -f precompute_ip_const which
in turn takes precedence over the option -f precompute_basis_const. If no specific optimization
options are given, that is, only -0 is specified, the default is to switch on the optimizations -f
eliminate_zeros and -f simplify_expressions.

12.7  Just-in-time compilation

FFC can also be used as a just-in-time (JIT) compiler. In a scripted environment, UFL objects can
be passed to FFC, and FFC will return Python modules. Calling the JIT compiler involves calling
the jit function available as part of the FFC Python module:

Python code

(compiled_object, compiled_module, form_data, prefix) \
= jit(ufl_object, parameters=None, common_cell=None)

where ufl_object is either a UFL form or finite element object, parameters is an optional dictionary
containing form compiler parameters and common_cell is an optional argument. The common_cell
argument may be used to specify the cell (interval, triangle or tetrahedron) when the cell is not
specified as part of the form"’. The jit function returns a tuple, where compiled_formis a Python
object which wraps either ufc::form or ufc::finite_element (depending on the type of UFL
object passed to the form compiler), compiled_module is a Python module which wraps all the
generated UFC code (this includes finite elements, degree of freedom maps, etc.), form_data is a
UFL object that contains form metadata such as the number of coefficient functions in a form, and
prefix is a string identifier for the form.

*This is used by DOLFIN to allow simple specification of expressions such as f = Expression("sin(x[0])") where the
choice of cell type is not specified as part of the expression.
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Figure 12.7: JIT compilation of varia-
tional forms coordinated by DOLFIN, User program (Python)
and relying on UFL, FFC, UFL, SWIG, Form (UFL)
and GCC. l . T
Matrix
Object code DOLFIN (assembler) Python interface

Form (UFL) l

Form compiler (FFC/SFC)

/ Et code (UFC)
C++ compiler (GCC) SWIG

When the JIT compiler is called, internally FFC generates UFC code for the given form or finite
element, compiles the generated code using a C++ compiler, and then wraps the result as a Python
module using SWIG and Instant (see Chapter 15). The returned objects are ready to be used from
Python. The generated and wrapped code is cached by the JIT compiler, so if the JIT compiler is
called twice for the same form or finite element, the cached version is used. The cache directory is
created by Instant, and can be cleaned by running the command instant-clean. The interactions
of various components in the JIT process are illustrated in Figure 12.7.

The Python interface of DOLFIN makes extensive use of JIT compilation. It makes it possible to
combine the performance features of generated C++ code with the ease of a scripted interface.

12.8 Extending FFC

FFC may be extended to add support for other languages, architectures and code generation
techniques. For code that conforms to the UFC interface specification, only compiler stage 4 is
affected. In this stage, the compiler needs to translate the intermediate representation of the form
into actual C++ code that will later be formatted as part of UFC C++ classes and functions. Possible
extensions in this stage of the compilation process can be to replace loops by special-purpose
library calls (like low-level BLAS calls), SSE instructions or code targeted for graphical processing
units (GPU).

Functionality that requires extending the UFC interface is usually handled by adding new experi-
mental virtual (but non-abstract) functions® to the UFC interface, which may later be proposed to
be included in the next stable specification of the UFC interface. Extensions to other languages are
also possible by replacing the UFC code generation templates.

12.9 Historical notes

FFC was first released in 2004 as a research code capable of generating C++ code for simple
variational forms [ , , ]. Ever since its first release, FFC has relied on FIAT
as a backend for computing finite element basis functions. In 2005, the DOLFIN assembler was
redesigned to rely on code generated by FFC at compile-time for evaluation of the element tensor.
Earlier versions of DOLFIN were based on a run-time system for evaluation of variational forms in
C++ via operator overloading, see Figures 12.8-12.10.

2The functions are made virtual, but non-abstract to ensure backwards compatibility with old generated code.
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C++ code
class Poisson : public PDE
{
public:

Poisson(Function& source) : PDE(3)

{

}

add(f, source);

real lhs(const ShapeFunction& u,

{

}

const ShapeFunction& v)

return (grad(u), grad(v))=*dx;

real rhs(const ShapeFunction& v)

{

}

return fxvxdx;

private:

ElementFunction f;

}i
Python code
name = "Poisson"
element = FiniteElement("Lagrange", "triangle", 1)
v = BasisFunction(element)
u = BasisFunction(element)
f = Function(element)
a = v.dx(1i)*u.dx(1i)*dx
L = vsfxdx

UFL code

element = FiniteElement("Lagrange", triangle, 1)

Q
1

TrialFunction(element)
TestFunction(element)
Coefficient(element)

= inner(grad(u), grad(v))=*dx

frvxdx

FFC: THE FENICS FORM COMPILER

Figure 12.8: Implementation of Pois-
son’s equation in DOLFIN o.5.2 using
C++ operator overloading. Note the
use of operator, for inner product.

Figure 12.9: Implementation of Pois-
son’s equation in DOLFIN o.5.3 using
the new FFC form language. Note that
the grad operator was missing in FFC
at this time. It was also at this time that
the test and trial functions changed
places.

Figure 12.10: Implementation of Pois-
son’s equation in DOLFIN 1.0 using
the new UFL form language which
was introduced in FFC 0.6.2. The or-
der of trial and test functions has been
restored.
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Important milestones in the development of FFC include support for mixed elements (2005),
FErari-based optimizations (2006), JIT compilation (2007), discontinuous Galerkin methods (2007)
[ , 1, H(div)/H(curl) elements (2007-2008) [ , ], code generation
based on quadrature (2007) [ , ], the introduction of the UFC interface (2007),
and optimized quadrature code generation (2008). In 2009, the FFC form language was replaced
by the new UFL form language.






13 FErari: an optimizing compiler for variational
forms

By Robert C. Kirby and Anders Logg

In Chapter 9, we presented a framework for efficient evaluation of multilinear forms based on
expressing the multilinear form as a special tensor contraction. This allows generation of efficient
low-level code for assembly of a range of multilinear forms. Moreover, in Chapter 10 it was shown
that the tensor contraction may sometimes possess a special structure that allows the contraction
to be performed in a reduced number of arithmetic operations. This has led to the FErari project
[ , ], which provides an option
within the form compller FFC descrlbed in Chapter 12 to apply graph-based optimizations at
compile-time. In this chapter, we describe the interface between FFC and FErari and present
empirical results indicating the practical effect of the FErari optimizations on run-time evaluation
of variational forms. In particular, we study the effect of optimizations on the run-time cost of
forming the cell tensor A7 defined in Chapter 6.

Before proceeding, it is important to put these optimizations in the proper context. While FErari
does not reduce the overall order of complexity of finite element calculations, it provides a practical
benefit of reducing run-time from a few percent to sometimes tens of percent. Viewed as a
domain-specific compiler optimization, this is quite respectable.

13.1  Optimized form compilation

FFC supports two different modes of code generation depending on how the multilinear form is
represented. A user may select the tensor representation At = A® : Gr discussed in Chapter 9
by supplying the -r tensor option to FFC, or alternatively select quadrature representation by
supplying the -r quadrature option. While running in tensor mode, FFC constructs the reference
tensor A and generates code for contracting it with Gr. Sometimes, the form is expressed as a
sum of tensor contractions. FFC then generates code for computing a sum of tensor contractions.
When optimizations are enabled (using the -0 option), the standard code generator for A? : G
is bypassed. The reference tensor A” is then passed to FErari. Initially, FErari computes a graph
indicating relationships between the elements of At based on the entries of A? as described
in Chapters 10 and 9. The edges are annotated with the cost of the calculation and the type
of dependency such as collinearity or Hamming distance. Then, this graph is sequenced by
topological sorting so that entries of At appear after those upon which they depend. The edge
annotations are then used by FFC to generate straight-line code for evaluating each entry of Ar. In
Figures 13.1 and 13.2, we display the code generated by FFC for evaluation of the cell tensor At
for Poisson’s equation using standard and optimized tensor representation respectively.
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C++ code

/// Tabulate the tensor for the contribution from a

local cell

virtual void tabulate_

[...]

tensor(doublex A,

const double * const * w,
const ufc::cell& c) const

// Extract vertex coordinates
const double * const * X = c.coordinates;

// Compute Jacobian
const double J_00 =
const double J_01 =
const double J_10 =
const double J_11 =

of affine map from

x[1][@] - x[e][0e];
x[2][0] - x[0][0];
x[1]1[1] - x[0][1];
x[2]1[1] - x[0][1];

// Compute determinant of Jacobian
double detd = J_00+J_11 - J_01x]_10;

// Compute inverse of Jacobian

const double K 00
const double K 01
const double K_10
const double K_11

// Set scale factor

J_11 / detJ;
-J_01 / detJ;
-J_10 / detJ;
J_00 / detJ;

const double det = std::abs(det]);

// Compute geometry
const double GO_0_0
const double GO_0_1
const double GO_1_0
const double GO_1_1

tensor

= det*(K_00+xK_00 +

det+(K_00+K_10 +
+
+

= det*(K_10+K_00
= detx(K_10xK_10

// Compute element tensor

A[0] = 0.500000000000000+GO_0_
0.500000000000000+GO_0_
0.500000000000000+G0O_1_
0.500000000000000+GO_1_

0 +
1+
0 +
1 .

’

A[1] = -0.500000000000000+G0O_0_0
-0.500000000000000+GO_1_0;
A[2] = -0.500000000000000+G0O_0_1
-0.500000000000000+GO_1_1;
A[3] = -0.500000000000000+G0O_0_0
-0.500000000000000+G0O_0_1;
Al4] = 0.500000000000000+G0O_0_0;
A[5] = 0.500000000000000+GO_0_1;
A[6] = -0.500000000000000+G0O_1_0
-0.500000000000000+GO_1_1;
A[7] = 0.500000000000000+GO_1_0;
A[8] = 0.500000000000000+GO_1_1;

reference cell

K_01+K_01);
K_01+xK_11);
K_11+K_01);
K_11+K_11);

Figure 13.1: Code generated by FFC
for evaluation of the cell tensor for the
Laplacian using piecewise linears on
triangles (standard tensor representa-
tion). The first part of the code is stan-
dard non-optimized code for comput-
ing the entries of the geometry tensor
based on coordinate data (inverse of
the Jacobian). The second part (com-
puting the cell tensor) is the FFC gener-
ated non-optimized tensor contraction
for the Laplacian.



13.2. PERFORMANCE OF OPTIMIZATIONS 247

Figure 13.2: Code generated by FFC
for evaluation of the cell tensor for the
Laplacian using piecewise linears on
triangles (FErari optimized tensor rep-

C++ code

virtual void tabulate_tensor(doublex A,
const double * const * w,
const ufc::cell& c) const

resentation). {
foool
// ... omitting identical code for geometry tensor
A[1l] = -0.500000000000000+G0O_0_0
-0.500000000000000+G0_1_0;
A[5] = 0.500000000000000+GO_0_1;
A[0] = -A[1] +
0.500000000000000+GO_0_1 +
0.500000000000000+GO_1_1;
A[7] = 0.500000000000000+GO_1_0;
A[6] = -A[7] - 0.500000000000000+GO_1_1;
A[8] = 0.500000000000000+GO_1_1;
A[2] = -A[8] - 0.500000000000000+GO_0_1;
A[4] = 0.500000000000000+GO_0_0;
A[3] = -A[4] - 0.500000000000000+G0O_0_1;
}

13.2  Performance of optimizations

Now, we turn to the practical effect of using these optimizations. Several things are to be observed.
First, running FErari within FFC leads to significantly increased times to generate the C++ code.
Part of this increase results from a naive Python implementation of graph optimizations as part of
FErari. Similar optimizations in [ ] have been implemented in C++ and run
quite fast. Moreover, the code generated by FErari/FFC is itself quite large since one line of code
is generated for each entry of Ar. It is often significantly larger than the code generated using
quadrature, but marginally smaller than the standard tensor-contraction code generated by FFC.
Because the generated C++ source code is quite large, it is also expensive to compile to machine
code, both in terms of memory usage and CPU time. In situations where the source code size and
compile time are paramount, the quadrature mode of FFC is a better choice.

On the other hand, once the code is actually generated and compiled, we find modest improvements
in its execution time. We compare below FErari-optimized code to standard tensor contraction,
which we denote by the corresponding FFC command-line options -r tensor -0and -r tensor
respectively. FFC may also generate code based on quadrature, with and without optimization
as discussed in Chapter 8. These options are denoted by -r quadrature -0 and -r quadrature
respectively. All calculations were performed using FErari 0.2.0 and FFC 0.9.2 on a system running
Ubuntu GNU/Linux 10.04 with an Intel 2.83 GHz quad core processor and 16 GB of RAM. The
benchmarks may be repeated by running the the script bench/bench.py available as part of FFC.
The C++ compiler used was GCC 4.4.3 without any optimization flags. The reported timings are
the CPU time in seconds for computing the cell tensor Ar.

13.2.1 Mass matrix for H'

We consider forming the standard mass matrix on triangles defined by the bilinear form

a(u,v) :/qudx, (13.1)
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Figure 13.3: Speedup results for two-

CPU time Speedup vs '-r quadr%jmfglsional mass matrix using La-
—T—T— T T ——T——————gtrangejpolynomials.
»—x  -r quadrature x—x -r quadrature ‘
107 H{ e—e -r quadrature -O 71 10*H ®—® -rquadrature -Of:.... |
*—+ -r tensor : *— -r tensor :
103 HE T tensor -O s—a -r tensor -O

10

-8 ! ! ! ! ! ! ! -1 ! ! ! ! ! ! !
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.010 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0
degree degree

where we use Lagrange basis functions of orders one through five. The timing results, as well as
speedup relative to non-optimized quadrature, are shown in Figure 13.3. As can be seen, tensor
contraction is to be preferred over quadrature for this form (each cell tensor is a scaled version of
the reference tensor), and FErari optimizations accelerate the calculation over tensor contraction by
up to about 10%.

13.2.2  Stiffness matrix for H'

Next, we consider the stiffness matrix on triangles defined by
a(u,v) = / Vu-Vodx, (13.2)
O

again using Lagrange elements of orders one through five. The speedup results for this case are
shown in Figure 13.4.

Again, we see that tensor contraction is preferred to quadrature for this form. Unlike the mass
matrix, we find that FErari optimizations yield little result in the lowest order cases, but improve
significantly as the degree increases.

13.2.3 Variable coefficient stiffness matrix

We also consider the stiffness matrix with a variable coefficient,
a(w;u,v) = / wVu - Vodx, (13.3)
(@)

where w lies in the same polynomial space as u and v, that is, Lagrange elements of orders one
through five. The speedup results are shown in Figure 13.5.
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Figure 13.4: Speedup results for two-
dimensional stiffness matrix using La-

grange polynomials CPU time Speedup vs '-r quadrature'
»— -rquadrature | = -r quadrature |
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Figure 13.5: Speedup results for two-
dimensional variable coefficient stiff-
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Figure 13.6: Speedup results for the

CPU time Speedup VS -1 quadrigggrglmensmnal convective term in
‘ ‘ ‘ T NavierrStokes using Lagrange poly-
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NavierStokes
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degree degree

The difference between quadrature and tensor methods is smaller than for the bilinear case with
no coefficient, but tensor contraction is still faster. FErari improves the tensor contraction by about
5-20% in each case.

13.2.4 Navier—Stokes convective term

Another problem where a variable coefficient taken from a finite element space naturally arises is
the Navier-Stokes equations. For typical linearizations, one must evaluate the matrix associated
with the form

a(w,p;u,v) = /Tquw~vdx, (13.4)

where w is taken from the same finite element space as 1 and v, namely vector-valued polynomials.
The function p is a scalar-valued polynomial of the same degree as the other functions. Such a
function p will appear when one solves problems with a spatially variable fluid density.

This problem is far more challenging than the previous ones and we only consider up to cubic
functions (not to exhaust system resources). The two coefficient functions w and p tend to make
the quadrature-based methods more competitive with tensor contraction. Still, even for this more
complicated form, FErari delivered on the order of 10% speedup over the tensor-based method
and outperforms quadrature.

13.2.5 Mass matrices for H(div) and H(curl)

Next we consider again the mass matrix (13.1), but for H(div) and H(curl) elements. For a
discussion of the treatment of the required Piola transforms, see [ ]. In these cases,
the Piola transforms make the computational pattern similar to the H! stiffness matrix, but with
different numerical values in the reference tensor and hence potentially different speedup results
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Figure 13.7: Speedup results for two-
dimensional H(div) mass matrix us-
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for FErari. We consider the Brezzi-Douglas-Marini elements of orders one through five for H(div)
and the first kind Nédélec elements for H(curl). The speedup plots are posted in Figures 13.7
and 13.8.

Tensor contraction methods outperform quadrature methods for these forms. For the H(div) case,
speedup of FErari over standard tensor contraction ranges from a few percent to nearly a factor of
two. However, for H(curl), FErari offers very little speedup.

13.3 Conclusions

We have studied a range of forms of various complexity. In most cases, FErari-based optimizations
provide modest to considerable speedup in the run-time evaluation of variational forms. On
the other hand, they can greatly increase the time FFC requires to generate code and so are less
suitable for a development phase or a just-in-time compilation strategy. As a general guideline,
one may also state that quadrature becomes more efficient relative to tensor contraction when
the complexity of a form increases as measured in the number of coefficients and the number of
differential operators, while the tensor contraction approach is relatively more efficient for simple
forms and high order polynomials. Moreover, the construction of cell tensors is only part of the
overall consideration in making finite element methods efficient.

13.4 Historical notes

Support for FErari optimizations was introduced in FFC version 0.3.2 in 2006 but was lost in a
later rewrite of FFC. Starting with FErari 0.2.0 and FFC 0.9.1, which were released in 2010, FErari
optimizations are again supported in FFC.
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Figure 13.8: Speedup results for two-
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14 FIAT: numerical construction of finite element
basis functions

By Robert C. Kirby

14.1 Introduction

The FIAT project [ , , ] implements the mathematical framework described in
Chapter 5 as a Python package, working mainly in terms of numerical linear algebra. Although
an implementation in floating-point arithmetic presents some challenges relative to symbolic
computation, it can allow greater efficiency in terms of work and memory usage, especially for
high order elements. To obtain efficiency in Python, the compute-intensive operations are expressed
in terms of numerical linear algebra and performed using the widely distributed numpy package.

FIAT is one of the first FEniCS projects, providing the basis function back-end for FFC and enabling
high-order H', H(div) and H(curl) elements. It is widely distributed, with downloads on every
inhabited continent and in over sixty countries, averaging about 100 downloads per month.

This chapter works in the context of a Ciarlet triple (T,V, L) [ , ], where T is a fixed
reference domain, typically a triangle or tetrahedron. V is a finite-dimensional polynomial space,
though perhaps vector- or tensor-valued and not coincident with polynomials of some fixed degree.
L= {61}11‘1 is a set of linear functionals spanning V'. Recalling Chapter 5, the goal is first to

enumerate a convenient basis {471}1‘31 for V and then to form a generalized Vandermonde system
VA =1, (14.1)

where V;; = £;(¢;). Of course, forming this matrix requires some calculations, and we will discuss
this further in a later section. The columns of A = V! store the expansion coefficients of the
nodal basis for (T,V, £) in terms of some basis {¢;}.

14.2  Prime basis: collapsed-coordinate polynomials

High order polynomials in floating-point arithmetic require stable evaluation algorithms. FIAT uses
the so-called collapsed-coordinate polynomials [ , ] on the triangle

and tetrahedra. Let Pz.a’ﬁ (x) denote the Jacobi polynomial of degree i with weights « and . On
the triangle T with vertices (—1,—1), (1,—1), (—1,1) and Cartesian coordinates x and y, the

253
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polynomials are of the form

1— 4
tﬂ%nyw—wﬂwn(zm) P ). (14.2)

Here, 771 and 7, are the Cartesian coordinates on the biunit square, and the so-called collapsed-
coordinate mapping

p+qsn
pg=0
degree n. Moreover, they are orthogonal in the L?(T) inner product. Recently, it has been shown
that these polynomials may be computed directly on the triangle without reference to the singular
mapping [ , ]. This means that no special treatment of the singular point is required,
allowing use of standard automatic differentiation techniques to compute derivatives.

maps from the triangle to the square. The set {D?(x,y)} forms a basis for polynomials of

The recurrences are obtained by rewriting the polynomials as

DP(x,y) = x” (x,y) P (y),

where

XP(x,y) = PO(n) <1 _2’72>p

and 2p+1,0 2p+1,0
YP) =B ) = BT ).

This representation is not separable in 7; and #,, which may seem to be a drawback to readers
familiar with the usage of these polynomials in spectral methods. However, they do still admit sum-
factorization techniques. More importantly for present purposes, each x” is in fact a polynomial
in x and y and may be computed by recurrence. ¥ is just a Jacobi polynomial in y and so has
a well-known three-term recurrence. The recurrences derived in [ ] are presented in
Algorithm 4, where, the coefficients aﬁ’ﬂ , bz’ﬁ ,cf;’ﬁ refer to those used in the Jacobi polynomial
recurrences.

aa,ﬁ_(Zn—|—1+tx+,3)(2n+2+1x+,3)
" 2n+1)(n+1+a+p)

(> - pH(2n+1+a+B)
2m+1)2n+a+B)(n+1+a+p)
B _ (n+a)(n+p)2n+2+a+p)
T+ )(n+1+a+p)2n+a+pB)

o
by =

(14.3)

14.3 Representing polynomials and functionals

Even using recurrence relations and NumPy vectorization for arithmetic, further care is required to
optimize performance. In this section, standard operations on polynomials will be translated into
vector operations, and then batches of such operations cast as matrix multiplication. This helps
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Algorithm 4 Computes all triangular orthogonal polynomials up to degree d by recurrence
1: D%x,y) :=1
2 DW(x,y) := LZZXW
3 forp+1,d—1do

o D (5 (M) D9t - (1) (1) 090

5: end for
6: forp < 0,d —1do
DP(x,y) == DPO(x,y) (F2EEE20 )
8: end for
9 forp < 0,d —1do
10: forg<1,d—p—1do

1 DPAHL(x,y) 1= (agp-‘rl,Oer b5p+1,0) DPA(x, ) — C§p+1,on,q_1(x’y)
12: end for
13: end for

eliminate the interpretive overhead of Python while moving numerical computation into optimized
library routines, since numpy .dot wraps level 3 BLAS and other functions such as numpy . svd wrap
relevant LAPACK routines.

Since polynomials and functionals over polynomials both form vector spaces, it is natural to
represent each of them as vectors representing expansion coefficients in some basis. So, let {¢;} be
the Dubiner polynomials described above, where we have assumed some linear indexing of the
Dubiner polynomials.

Now, any p € V is written as a linear combination of the basis functions {¢;}. Introduce a mapping
R from V into RV by taking the expansion coefficients of p in terms of {¢;}. That is,

p=R(p)iti,

where summation is implied over i.

A polynomial p may then be evaluated at a point x as follows. Let ® be the vector of basis functions
tabulated at x. That is,

D; = ¢i(x). (14.4)
Then, evaluating p follows by a simple dot product:

p(x) = R(p)i®;:. (14.5)

More generally in FIAT, a set of polynomials {p;} will need to be evaluated simultaneously, such
as evaluating all of the members of a finite element basis. The coefficients of the set of polynomials
may be stored in the rows of a matrix C, so that

Cij = R(pi)j-

Tabulating this entire set of polynomials at a point x is simply obtained by matrix-vector multipli-
cation. Let ®; be as in (14.4). Then,
pi(x) = Cjj®;.

The basis functions are typically needed at a set of points, such as those of a quadrature rule. Let
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{x;} now be a collection of points in T and let
Dij = ¢i(x;),

where the rows of ® run over the basis functions and the columns over the collection of points. As
before, the set of polynomials may be tabulated at all the points by

pi(x;) = CixDy;,

which is just the matrix product C® and may be efficiently carried out by a library operation, such
as the numpy.dot wrapper to level 3 BLAS.

Finite element computation also requires the evaluation of derivatives of polynomials. In a
symbolic context, differentiation presents no particular difficulty, but working in a numerical
context requires some special care.

For some differential operator o, the derivatives d¢; are computed at a point x, any polynomial
p = R(p)i¢; may be differentiated at x by

ap(x) = R(p)i(9¢:),

which is exactly analogous to (14.5). By analogy, sets of polynomials may be differentiated at sets
of points just like evaluation.

The formulae in Algorithm 4 and their tetrahedral counterpart are fairly easy to differentiate, but
derivatives may also be obtained through automatic differentiation. Some experimental support
for this using the AD tools in Scientific Python has been developed in an unreleased version of
FIAT.

The released version of FIAT currently evaluates derivatives in terms of linear operators, which
allows the coordinate singularity in the standard recurrence relations to be avoided. For each
Cartesian partial derivative %, a matrix oF is calculated such that

P\ _ )
® (o), = R0

Then, derivatives of sets of polynomials may be tabulated by premultiplying the coefficient matrix
C with such a 9* matrix. These matrices are constructed by tabulating the partial derivatives of
the Dubiner bases at a lattice of points and then multiplying by a Vandermonde-type matrix that
converts the lattice point values to the expansion coefficients back in the Dubiner basis.

This paradigm may also be extended to vector- and tensor-valued polynomials, making use of the
multidimensional arrays implemented in numpy. Let P be a space of scalar-valued polynomials and
m > 0 an integer. Then, a member of (P)", a vector with m components in P, may be represented
as a two-dimensional array. Let p € (P)" and p/ be the j™ component of p. Then p/ = R(p) jx¢x,
so that R(p)jx is the coefficient of ¢ for p/.

The previous discussion of tabulating collections of functions at collections of points is naturally
extended to this context. If {p;} is a set of members of (P)™, then their coefficients may be stored
in an array C;j;, where C; is the two-dimensional array R(p); of coefficients for p;. As before,
®;; = ¢;(x;) contains the values of the basis functions at a set of points. Then, the jM component
of p at the point x; is naturally given by a three-dimensional array

pi(xx) = Cijig-
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If Cjj; is stored contiguously in generalized row-major format, this is just a matrix product and no
data motion is required to use a library call.

Returning for the moment to scalar-valued polynomials, linear functionals may also be represented
as Euclidean vectors. Let £ : P — R be a linear functional. Then, for any p € P,

p) = UR(p)ig1) = R(p)C@),
so that ¢ acting on p is determined entirely by its action on the basis {¢;}. As with R, define
R’ :P' — Rl by
R (0); = (i),
so that
Up) = RI(OR(p):
Note that the inverse of R’ is the Banach-space adjoint of R.

Just as with evaluation, sets of linear functionals can be applied to sets of functions via matrix
multiplication. Let {¢;}, C P’ and {p;}, C P. The functionals are represented by a matrix

Ly = R'(6:);
and the functions by
Cij = R(pi);

Then, evaluating all of the functionals on all of the functions is computed by the matrix product
Ajj = LyCj, (14.6)

or A = LC". This is especially useful in the setting of the next section, where the basis for the
finite element space needs to be expressed as a linear combination of orthogonal polynomials.

Also, the formalism of R’ may be generalized to functionals over vector-valued spaces. As before,
let P be a polynomial space of degree n with basis {sz‘}El and to each v € (P)™ associate the
representation o' = R(v);;¢;. In this notation, v' = R(v);;¢; is the vector indexed over i. For any
functional ¢ € ((P)" ) a representation R'(¢);; must be defined such that

£(v) = R'(€)iR(v)ij,

with summation implied over i and j. To determine the representation of R’(¢), let ¢/ be the
canonical basis vector with (e/); = ¢;; and write

t(v) = L(Rij¢;)
= Z(R( )z] ik€ (P])
(14.7)
= Z(R( )z]e ‘P])
= R(v);il(e'P;)-
From this, it is seen that R’(¢);; = £(e'¢;).
[Editor note: Something is wrong in (14.7). ]

Now, let {v;} | be a set of vector-valued polynomials and {¢;}M, a set of linear functionals acting
on them. The polynomials may be stored by a coefficient tensor C;jx = R(v;)j- The functionals
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may be represented by a tensor Lijx = R'({;)jx- The matrix A;; = £;(v;) is readily computed by the
contraction
Ajj = LigCj-

Despite having three indices, this calculation may still be performed by matrix multiplication.
Since numpy stores arrays in row-major format, a simple reshaping may be performed without
data motion so that A = LC", for L and C reshaped to two-dimensional arrays by combining the
second and third axes.

14.4 Other polynomial spaces

Besides polynomial spaces of some fixed, complete degree, FIAT is motived by more complicated
spaces. Once some basis for such spaces is obtained, the preceding techniques apply directly. Most
finite element polynomial spaces may described either by adding a few basis functions to some
polynomials of complete degree or else by constraining such a space by some linear functionals.
We describe such techniques in this section.

14.4.1  Supplemented polynomial spaces

A classic example of the first case is the Raviart-Thomas element, where the function space of
order g is
d ~
RT; = (P;-1(T))" @ (P;-1(T)) x,

where x € R? is the coordinate vector and P, is the space of homogeneous polynomials of degree g.
Given any basis {¢;} for P,(T) such as the Dubiner basis, it is easy to obtain a basis for (P,(T))“
by taking vectors where one component is some ¢; and the rest are zero. The issue is obtaining a
basis for the entire space.

Consider the case d = 2 (triangles). While monomials of the form xy7~/ span the space of
homogeneous polynomials, they are subject to ill-conditioning in numerical computations. On the

other hand, the Dubiner basis of order g, {(,bl-}y:"l‘ may be ordered so that the last g + 1 functions,

{4),'}1‘.7:)"7%'711, have degree exactly q. While they do not span P;, the span of {xcpi}yj;)q‘iq

with a basis for (P;(T))? does span RT,_;.

So, this gives a basis for the Raviart-Thomas space that can be evaluated and differentiated using
the recurrence relations in Algorithm 4. A similar technique may be used to construct elements
that consist of standard elements augmented with some kind of bubble function, such as the
PEERS element of elasticity or MINI element for Stokes flow.

together

14.4.2  Constrained polynomial spaces

An example of the second case is the Brezzi-Douglas—Fortin-Marini element [ ,
]. Let £(T) be the set of facets of T (edges in 2d, faces in 3d). Then the function space is

BDFM,(T) = {u € (Pg(T))* 1 u-nly € Py_a(v), 7€ E(T)}

This space is naturally interpreted as taking a function space, (P;(T))?, and imposing linear
constraints. For the case d = 2, there are exactly three such constraints. For ¢ € &£(T), let u”
be the Legendre polynomial of degree 4 mapped to <. Then, if a function u € (P4(T))?, it is in
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Figure 14.1: The reference triangle, 2
with vertices, edges, and the face num-
bered.

BDFM,(T) if and only if
/(u-n);ﬂds =0
7

for each y € £(T).
Number the edges by {7;}?_, and introduce linear functionals ¢;(u) = | 7}(u -n)ui ds. Then,

BDFM,(T) = N;_;null(¢)).

This may naturally be cast into linear algebra and so evaluated with LAPACK. Following the
techniques for constructing Vandermonde matrices, a constraint matrix may be constructed. Let
{¢:} be a basis for (P;(T))?. Define the 3 x |(P;)|* matrix

Cij = Li(¢))-

Then, a basis for the null space of this matrix is constructed using the singular value decomposi-
tion [Golub and Van Loan, 1996]. The vectors of this null-space basis are readily seen to contain the
expansion coefficients of a basis for BDF M, in terms of a basis for Pq(T)z. With this basis in hand,
the nodal basis for BDFM;(T) is obtained by constructing the generalized Vandermonde matrix.
This technique may be generalized to three dimensions, and it also applies to Nédélec [Nédélec,
1980], Arnold-Winther [Arnold and Winther, 2002], Mardal-Tai-Winther [Mardal et al., 2002], and
many other elements.

14.5 Conveying topological information to clients

Most of this chapter has provided techniques for constructing finite element bases and evaluating
and differentiating them. FIAT must also indicate which degrees of freedom are associated with
which entities of the reference element. This information is required when local-global mappings
are generated by a form compiler such as FFC.

The topological information is provided by a “graded incidence relation” [Kirby, 2006b, Knepley
and Karpeev, 2009] and is similar to the presentation of finite element meshes in L.ogg [2009]. Each
entity in the reference element is labeled by its topological dimension (e.g. o for vertices and 1 for
edges), and then the entities of the same dimension are ordered by some convention. To each entity,
a list of the local nodes is associated. For example, the reference triangle with entities labeled is
shown in Figure ??, and the cubic Lagrange triangle with nodes in the dual basis labeled is shown
in Figure ??.

For this example, the graded incidence relation is stored as
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2 Figure 14.2: The cubic Lagrange trian-
gle, with nodes in the dual basis la-
belled. Note that the labels in this fig-
ure correspond to the FIAT reference
element numbering which is different
from the numbering imposed by the
UFC ordering convention explained in
Chapter 17.

{o0: {O:[0],
1. 011,
2: [ 211},
1: {e:[3,41],
1: [ 5,61,
2: [ 7,811,
2: {06: 19111}

14.6 Functional evaluation

In order to construct nodal interpolants or strongly enforce boundary conditions, FIAT also
provides information to numerically evaluate linear functionals. These rules are typically exact for
a certain degree polynomial and only approximate on general functions. For scalar functions, these
rules may be represented by a collection of points and corresponding weights {x;}, {w;} so that

0(f) = wif (x;).

For example, pointwise evaluation at a point x is simply represented by the coordinates of x
together with a weight of one. If the functional is an integral moment, such as

«f) = | sfax,

then the points {x;} will be those of some quadrature rule and the weights will be w; = w;g(x;),
where the w; are the quadrature weights.

This framework is extended to support vector- and tensor-valued function spaces, by including a
component corresponding to each point and weight. If v is a vector-valued function and v, is its
component, then functionals are written in the form

L(v) = wjvg, (xi),

so that the sets of weights, components, and points must be conveyed to the client.

This framework may also support derivative-based degrees of freedom by including a multi-index
at each point corresponding to a particular partial derivative.
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14.7 Overview of fundamental class structure

Many FEniCS users will never directly use FIAT; for them, interaction will be moderated through a
form compiler such as FFC. Others will want to use the FIAT basis functions in other contexts. At a
basic level, a user will access FIAT through top-level classes such as Lagrange and RaviartThomas
that implement the elements. Typically, the class constructors accept the reference element and
order of function space as arguments. This gives an interface that is parametrized by dimension
and degree. The classes such as Lagrange derive from a base class FiniteElement that provides
access to the three components of the Ciarlet triple.

The function space P is modelled by the base class PolynomialSet, which contains a rule for
constructing the base polynomials ¢; (e.g. the Dubiner basis) and a multidimensional array of
expansion coefficients for the basis of P. Special subclasses of this provide (possibly array-valued)
orthogonal bases as well as the rules for constructing supplemented and constrained bases. These
classes provide mechanisms for tabulating and differentiating the polynomials at input points as
well as basic queries such as the dimension of the space.

The set of finite element nodes is similarly modeled by a class DualBasis. This provides the
functionals of the dual basis as well as their connection to the reference element facets. The
functionals are modeled by a FunctionalSet object, which is a collection of Functional objects.
Each Functional object contains a reference to the PolynomialSet over which it is defined and the
array of coefficients representing it and owns a FunctionalType class providing the information
described in the previous section. The FunctionalSet class batches these coefficients together in a
single large array.

The constructor for the FiniteElement class takes a PolynomialSet modeling the starting basis
and a DualBasis defined over this basis and constructs a new PolynomialSet by building and
inverting the generalized Vandermonde matrix.

Beyond this basic finite element structure, FIAT provides quadrature such as Gauss-Jacobi rules in
one dimension and collapsed-coordinate rules in higher dimensions. It also provides routines for
constructing lattices of points on each of the reference element shapes and their facets.

In the future, FIAT will include the developments discussed already (more general reference
element geometry/topology and automatic differentiation). Automatic differentiation will make it
easier to construct finite elements with derivative-type degrees of freedom such as Hermite, Morley,
and Argyris. Additionally, we hope to expand the collection of quadrature rules and provide more
advanced point distributions, such as Warburton’s warp-blend points [ , I

Finally, we may group the classes used in FIAT into several kinds, and the relationship between
these kinds of classes is expressed in Figure 14.3. Top-level classes implement particular finite
elements, such as Lagrange or Raviart-Thomas. These depend on classes that implement the
underlying reference shapes, polynomial sets, and dual bases. The polynomial sets are linear
combinations of orthogonal expansions. Sometimes those linear combinations are constructed via
projection (requiring quadrature) or null spaces of linear functionals. Dual bases are collections of
linear functionals that can act on a polynomial set over some domain.
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Finite Element Classes

Polynomial Sets
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Figure 14.3: General relationship be-
tween the kinds of classes in FIAT.
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15 Instant: just-in-time compilation of C/C++ in
Python

By Ilmar M. Wilbers, Kent-Andre Mardal and Martin S. Alnees

Instant is a small Python module for just-in-time compilation (JIT) (or inlining) of C/C++ code.
Instant accepts plain C/C++ and is therefore conveniently combined with the code generating
tools in DOLFIN, FFC, and SFC.

15.1  Brief overview of Instant and its role in FEniCS

In FEniCS, FFC and SFC are form compilers that generate UFC compliant C++ code based on
the language UFL. Within FFC and SFC, Instant is used to JIT-compile the C++ code to a Python
module. Similarly, Instant is used in DOLFIN to JIT-compile Expressions and SubDomains. See the
Chapters 16, 12 and 20 for more information on these topics.

Instant relies on , [ ] for the generation of wrapper code needed for making
the C/C++ code usable from Python. The code to be inlined, in addition to the wrapper code, is
then compiled into a Python extension module (a shared library with functionality as specified by
the Python C-API) by using Distutils or CMake. To check whether the C/C++ code has changed
since the last execution, Instant computes the SHA1 sum [ ] of the code and
compares it to the SHA1 checksum of the code used in the previous execution. Finally, Instant has
implemented a set of SWIG typemaps, allowing the user to transfer NumPy arrays between the
Python code and the C/C++ code.

15.2 Examples

15.2.1  Hello world
Our first example demonstrates the usage of Instant in a very simple case:

Python code
from instant import inline
c_code = r'’"’
double add(double a, double b)
{
printf("Hello world! C function add is being called...\n");
return a+b;
3
add_func = inline(c_code)
sum = add_func(3, 4.5)
print 'The sum of 3 and 4.5 is’, sum

263



264 CHAPTER 15. INSTANT: JUST-IN-TIME COMPILATION OF C/C++ IN PYTHON

When run, this script produces the following output:

Output

> python exl.py

- Instant: compiling ---
Hello world! C function add is being called...
The sum of 3 and 4.5 is 7.5

Here Instant will wrap the C-function add into a Python extension module by using SWIG and
Distutils. The inlined function is written in standard C. SWIG supports almost all of C and C++,
including classes and templates. The first time the Python script is run, it will use a few second to
compile the C code. The next time, however, the compilation is omitted, given that no changes
have been made to the C source code.

Although Instant notifies the user when it is compiling, it might sometimes be necessary, e.g. when
debugging, to see the details of the Instant internals. We can do this by setting the logging level
before calling any other Instant functions:

Python code
from instant import output
output.set_logging_level(’'DEBUG")

15.2.2  NumPy arrays

One basic problem with wrapping C and C++ code is how to handle dynamically allocated arrays.
Arrays allocated dynamically are typically represented in C/C++ by a pointer to the first element
of an array and a separate integer variable holding the array size. In Python the array variable is
itself an object containing the data array, array size, type information etc. SWIG provides typemaps
to specify mappings between Python and C/C++ types. We will not go into details on typemaps
in this chapter, but the reader should be aware that it is a powerful tool that may greatly enhance
your code, but also lead to mysterious bugs when used wrongly. Typemaps are discussed in
Chapter 20 and at length in the SWIG documentation. In this chapter, it is sufficient to illustrate
how to deal with arrays in Instant using the NumPy module.

To illustrate the use of NumPy arrays with Instant, we introduce a solver for an ordinary differential
equation (ODE) modeling blood pressure by using a Windkessel model. The ODE is as follows:

() = BO() — Ap(r), 1€ (0,1) (15.1)

p(0) = po. (15.2)

Here p(t) is the blood pressure, Q(t) is the volume flux of blood, while A and B are real numbers
representing resistance and compliance, respectively. An explicit scheme is:

pi = pi-1+AH(BQ; 1 — Ap;_1), for i=1,...,N—1, (15.3)
po = po- (15.4)

The scheme can be implemented in Python as follows using NumPy arrays:

Python code
def time_loop_py(p, Q, A, B, dt, N, p0):
pl@] = po
for i in range(1l, N):
pli] = p[i-1] + dt*(B*Q[i-1] - Axp[i-1])
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The corresponding C code is:

C++ code

void time_loop_c(int n, doublex p,
int m, doublex Q,
double A, double B,
double dt, int N, double p0)

{
if (n'=m || N!=m)
{
printf("n, m and N should be equal\n");
return;
}
plo] = po;
for (int i=1; i<n; i++)
{
pli] = pli-1] + dt=(B+Q[i-1] - Axp[i-1]);
}
}

In this example, (int n, doublex p) represents an array of doubles with length n. However, this
can not be determined by the function signature:

C++ code

void time_loop_c(int n, doublex p, int m, doublex Q, ...)

For example, doublex p may be an array of length m or it may simply be output. In Instant you
must therefore specify what the arrays are:

Python code

time_loop_c = inline_with_numpy(c_code,
arrays = [[’
[’

Here, we tell Instant that (int n, doublex p) and (int m, doublex Q) are NumPy arrays (and
Instant then generates the proper typemaps). Notice that the order of the elements in the array
specification is: 1) the length of the array and 2) the array pointer. The order of the arguments in
the C code may differ from the order in the array specification. We may then call the time_loop
function as follows:

Python code
time_loop_c(p, Q, 1.0, 1.0, 1.0/(N-1), N, 1.0)

In Table 15.1 we compare the above mentioned code with pure C code, pure Python, and NumPy.
We obtain a speed-up of about a factor 350 when compared with NumPy, using 10° time steps. The
performance of the code using Instant is actually the same as a pure C program. The comparison
between NumPy and Instant may not be completely fair. NumPy is primarily intended for
algorithms that can be vectorized, which is not the case with ODEs. In fact, utilizing pure Python
lists instead of NumPy arrays, reduces the speed-up to a factor 65. For code that can be vectorized,
the speed-up is about one order of magnitude, when using Instant instead of NumPy [
, ]. The result of solving the ODE can be seen in Figure 15.1.

The complete code for this example can be found in ex2.py.
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Figure 15.1: Plot of pressure and blood
Pressure VS. Flow volume flux computed by solving the
‘ ' Windkessel model.

2.0

time

N 10? 10° 10t 10° 10°
CPU time with NumPy | 3.9e-4 | 3.9e-3 | 3.8e-2 | 3.8e-1 3.8
CPU time with Python | o.7e-4 | 0.7e-3 | o.7e-2 | 0.7e-1 0.7
CPU time with Instant | 5.0e-6 | 1.4e-5 | 1.0e-4 | 1.0e-3 | 1.1e-2
CPU time with C 4.0e-6 | 1.1e-5 | 1.0e-4 | 1.0e-3 | 1.1e-2

Table 15.1: CPU times (in seconds) for solving the ODEs from the Windkessel model using different
implementations.
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15.2.3 NumPy arrays and Open MP

It is easy to speed up code on parallel computers with OpenMP. In the following code preprocessor
directives like "#pragma omp ..." are OpenMP directives and OpenMP functions always start with
omp. In this example, we want to solve a standard 2-dimensional wave equation in a heterogeneous
medium with local wave velocity k:

o%u

Tl V- [kVu]. (15.5)

We set the boundary condition to u = 0 for the whole boundary of a rectangular domain
Q = (0,1) x (0,1). Further, u has the initial value I(x,y) at t = 0 while du/dt = 0. We solve the
wave equation using the following finite difference scheme:

At\?
1 -1
uj; = (Ax) (i j (i — i) =Ky (uij— i )]
At\? -1
+ <Ay> (K ja (i ja = i) =Ky i1 (ugj— i ja) (15.6)

Here, uf-lj represents u at the grid point x; and y; at time level ;, where

x; =iAx,i=0,...,n (15.7)

yi =jAy,j=0,...,mand (15.8)

t = IAL, (15.9)
Also, ki+%,j is short for k(xi+%,yj).

The code for calculating the next time step using OpenMP looks like:

C++ code

void stencil(double dt, double dx, double dy,
int ux, int uy, doublex u,
int umx, int umy, doublex um,
int kx, int ky, doublex k,
int upn, doublex up){
#define index(u, i, j) ul(i)*m + (j)]
int i=0, j=0, m = ux, n = uy;
double hx, hy, k.c, k_ip, k_im, k_jp, k_jm;
hx = pow(dt/dx, 2);
hy = pow(dt/dy, 2);
j =0; for (i=0; i<m; i++) index(up, 1,
j n-1; for (i=0; i<m; i++) index(up, i,
i=0; for (j=0; j<n; j++) index(up, i,
i=m-1; for (j=0; j<n; j++) index(up, i,
#pragma omp for
for (i=1; i<m-1; i++){
for (j=1; j<n-1; j++){
k_c = index(k, i, j);

1]
U}
[clcl ool

k_ip = 0.5«(k_c + index(k, i+1, j));
k_im = 0.5%(k_c + index(k, i-1, j));
k_jp = 0.5%(k_c + index(k, i, j+1));
k_jm = 0.5+(k_c + index(k, i, j-1));

index(up, i, j) = 2*index(u, i, j) - index(um, i, j) +
hxx(k_ipx(index(u, i+1, j) - index(u, i, j)) -
k_im*(index(u, i, j) - index(u, i-1, j))) +
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N 1e+8 | 2e+8
CPU time with Instant 1 CPU | 0.80 | 1.59
CPU time with Instant 2 CPU | 042 | 0.81
CPU time with Instant 3 CPU | 0.37 | 0.75
CPU time with Instant 4 CPU | 0.34 | 0.67

Table 15.2: CPU times (in seconds) for the implementation of the solution of a wave equation using Instant
and OpenMP on different numbers of CPUs/threads.

hy*(k_jp*(index(u, i, j+1) - index(u, i, j)) -
k_jms(index(u, i, j) - index(u, i, j-1)));
}
}
}

We also need to add the OpenMP header omp.h and compile with the flag - fopenmp and link with
the OpenMP shared library, e.g. 1ibgomp.so for Linux (specified with -1gomp). This can be done
as follows:

Python code
instant_ext = \
build_module(code=c_code,
system_headers=[ 'numpy/arrayobject.h’,
"omp.h'],
include_dirs=[numpy.get_include()],
init_code='"import_array();’,

cppargs=["'-fopenmp'],
lddargs=["-lgomp’],
arrays=[['ux’, 'uy’, 'u’l,
["umx”, "umy’, ‘um’],
[kx’, ky’s KT,

["upn’, "up’, 'out’]])

Note that the arguments include_headers, init_code, and the first element of system_headers
could have been omitted if we used inline_module_with_numpy(see below) instead of build_-
module. The complete code can be found in ex3.py.

In Table 15.2 we have compared the timings of running with different numbers of CPUs. The
timings in this table are performed on a quad-core machine with 32GB memory. We see a speed-up
of factor two when doubling the number of CPUs, but further increasing the number of CPUs has
a limited effect. We have not been able to investigate this further, but suspect that the physical
layout of the machine with two dual cores causes this, as the two CPUs on the same core share
some of the resources.

15.3 Errors encountered when using Instant

There are basically three different types of errors you can encounter when using Instant. These are:
1) errors caused by non-compilable C/C++ code, 2) errors caused by wrong usage of SWIG, and 3)
errors related to importing the module from the cache. We will now go briefly through these three
different types of errors.

Let us start by removing a ’;’ in the C++ code of ex2.py, making the C++ compiler unable to
compile the code. We will then get errors on the following form:
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Output
--- Instant: compiling ---
In instant.recompile: The module did not compile,
see '/tmp/tmpZ4M_Z02010-11-9-08-24 instant/instant _module_dff94651124193al[...]
Traceback (most recent call last):
File "test2.py", line 21, in <module>
sum_func = inline_with_numpy(c_code, arrays = [['nl’, 'arrayl’l])
File "/usr/local/lib/python2.6/dist-packages/instant/inlining.py", line 95, in
inline_with_numpy
module = build_module(*xkwargs)
File "/usr/local/lib/python2.6/dist-packages/instant/build.py", line 474, in
build_module
recompile(modulename, module_path, setup_name, new_compilation_checksum)
File "/usr/local/lib/python2.6/dist-packages/instant/build.py", line 100, in recompile
"compile, see '%s’'" % compile_log_filename)
File "/usr/local/lib/python2.6/dist-packages/instant/output.py”, line 49, in
instant_error
raise RuntimeError(text)
RuntimeError: In instant.recompile: The module did not compile,
see '/tmp/tmpZ4M_Z02010-11-9-08-24_instant/instant_module_dff946511241[...]

The error message from the compiler is located in the file compile.log in the temporary directory
/tmp/tmpZ4M_702010-11-9-08-24_instant/instant_module_dff946511241aab327593a2d71105c5fc/.
The compile error message will here refer to line numbers in the wrapper code generated by SWIG.
You should still be able to locate the C++ error, by looking at the error message in compile. log
and the file containing the wrapper code (named *_wrap.cxx) in the temporary directory.

The second type of error occurs when SWIG is not able to parse the code. These errors are easily
identified by the first line in the error message, namely Error: Syntax error in input(1).

Output
instant_module_815d9b7181988c1596a71b62f8al17936a77e5944.1:39: Error: Syntax error in input(1).
running build_ext
building ’'_instant_module_815d9b7181988c1596a71b62f8al7936a77e5944" extension
creating build
creating build/temp.linux-i686-2.6
gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -02 -Wall -Wstrict-prototypes -fPIC

-I/usr/lib/python2.6/dist-packages/numpy/core/include -I/usr/include/python2.6

-c instant_module_815d9b7181988c1596a71b62f8al7936a77e5944 _wrap.cxx

-0 build/temp.linux-1i686-2.6/instant_module_815d9b7181988c1596a71b62f8al[...].0 -02
gcc: instant_module_815d9b7181988c1596a71b62f8al7936a77e5944 wrap.cxx: No such file or directory
gcc: no input files

SWIG reports that it is unable to parse the Instant generated interface file (named *.1) and that
the problem arises at line 39. In this case, you should have a look in the generated interface file in
the temporary directory.

Finally, Python may not be able to import the module from the cache. There might be numerous
reasons for this; the cache may be old and incompatible with the current version of Python,
the cache may be corrupted due to disk failure, some shared libraries might be missing from
$LD_LIBRARY_PATH and so on. Such error messages look like:

Output
In instant.import_module_directly:
Failed to import module ’instant_module_4b41549bc6282877d3f97d54ef664d4’ from
'/home/kent-and/.instant/cache’.
Traceback (most recent call last):
File "test2.py", line 21, in <module>
sum_func = inline_with_numpy(c_code, arrays = [['nl’, 'arrayl’]])
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File "/usr/local/lib/python2.6/dist-packages/instant/inlining.py", line 95, in

inline_with_numpy
module = build_module(**kwargs)
File "/usr/local/lib/python2.6/dist-packages/instant/build.py", line 383, in
module = check_disk_cache(modulename, cache_dir, moduleids)
File "/usr/local/lib/python2.6/dist-packages/instant/cache.py", line 121, in
module = import_and_cache_module(path, modulename, moduleids)
File "/usr/local/lib/python2.6/dist-packages/instant/cache.py", line 67, in
import_and_cache_module
instant_assert(module is not None,
File "/usr/local/lib/python2.6/dist-packages/instant/output.py", line 55, in
raise AssertionError(text)

"Failed to import module found in cache.

build_module

check_disk_cache

instant_assert

In this case it is advantageous to make a local cache in the current working directory, using

cache_dir="test_cache", and go to the local cache to find the error.

15.4 Instant explained

The previous section concentrated on the usage of Instant. In this section we explain what Instant
does. We will again use our first example, but we set the module name explicitly with the keyword

argument modulename to see more clearly what happens:

from instant import inline

code = r'"’

double add(double a, double b)

{
printf("Hello world! C function add is being called...\n");
return a+b;

1

add_func = inline(code, modulename='ex4")

sum = add_func(3, 4.5)

print 'The sum of 3 and 4.5 is’, sum

Python code

After running this code there is a new directory ex4 in our directory. The contents are:

~/instant_doc/code$ cd ex4/
~/instant_doc/code/ex4$ 1s -g

total 224

drwxr-xr-x 4 ilmarw 4096 2009-05-18 16:52 build
-rw-r--r-- 1 ilmarw 844 2009-05-18 16:52 compile.log
-rw-r--r-- 1 ilmarw 183 2009-05-18 16:52 ex4-0.0.0.egg-info
-rw-r--r-- 1 ilmarw 40 2009-05-18 16:52 ex4.checksum
-rw-r--r-- 1 ilmarw 402 2009-05-18 16:53 ex4.i
-rw-r--r-- 1 ilmarw 1866 2009-05-18 16:52 ex4.py
-rw-r--r-- 1 ilmarw 2669 2009-05-18 16:52 ex4.pyc
-rwxr-xr-x 1 ilmarw 82066 2009-05-18 16:52 _ex4.so
-rw-r--r-- 1 ilmarw 94700 2009-05-18 16:52 ex4_wrap.Cxx
-rw-r--r-- 1 ilmarw 23 2009-05-18 16:53 __init__.py
-rw-r--r-- 1 ilmarw 448 2009-05-18 16:53 setup.py

The file ex4. i is the SWIG interface file.

Output

Another central file is the Distutils file setup.py, which

is generated and executed. During execution, setup.py first runs SWIG on the interface file,
producing ex4_wrap.cxx and ex4.py. The first file is then compiled into a shared library _ex4.so
(note the leading underscore). The file ex4-0.0.0.egg-info and the directory build are also
created by Distutils. The output from executing the Distutils file is stored in the file compile. log.
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Finally, a checksum file named ex4.checksum is generated, containing a checksum based on the
files present in the directory. The final step consists of moving the whole directory from its
temporary location to either cache or a user-specified directory. The file __init__.py imports the
module ex4 into Python.

The script instant-clean removes compiled modules from the Instant cache, located in the
directory .instant in the home directory of the user running it. The script instant-showcache
shows the modules located in the Instant cache.

15.4.1 Arrays and typemaps

Instant has support for converting NumPy arrays to C arrays and vice versa. Each array specifica-
tion is a list containing the names of the variables describing that array in the C code. For a 1D
array, this means the names of the variables containing the length of the array (an int), and the
array pointer. The array pointer can have several types, but the default is double. For 2D arrays
we need three strings, two for the length in each dimension, and one for the array pointer. This
following example illustrate the array specification:

Python code

arrays = [['len_a’, 'a’], # a 1D array / vector
["len_bx’', 'len_by’, 'b’], # a matrix
["len_cx’, 'len_cy’, 'len_cz’, 'c']] # a 3D tensor

The variables names specified reflect the variable names in the C function signature. It is important
that the order of the variables in the signature is retained for each array; that is, the signature
should be:

C++ code

double sum (int len_a, doublexa,
int len_bx, int len_by, doublex b,
int len_cx, int len_cy, int_cz, doublex c)

The arrays are assumed to be of type double by default, but several other types are supported.
These types are float, short, int, long, long long, unsigned short, unsigned int, unsigned
long, and unsigned long long. The type can be specified by adding an additional value to the list
describing the array, e.g.

Python code

’

arrays = [['len_a’, 'a’, "long’']]

It is important that there is correspondence between the type of the NumPy array and the type in
the signature of the C function. For arrays that are changed in-place (the arrays are both input and
output) the types have to match exactly. For arrays that are input or output (see next paragraph),
one has to make sure that the implicit casting is done to a type with higher precision. For input
arrays, the C type must be of the same or higher precision as the NumPy array, while for output
arrays the NumPy array type must be of the same or higher precision as the C array. The NumPy
type float32 corresponds to the C type float, while float64 corresponds to double. The NumPy
type float is the same as float64. For integer arrays, the mapping between NumPy types and C
types depends on your system. Using long as the C type will work in most cases.

Instant supports both input, output and in-place (input-output) arrays. The default behavior is to
treat the arrays as in-place arrays, provided that the input are NumPy arrays. Python lists and
sequences are converted to NumPy arrays automatically. The following code shows an example
where we calculate the matrix-vector multiplication x = Ab. The integer matrix A and double
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vector b are marked as input, while the double vector x is output. The code can be found in:
ex5.py.

Python code

c_code = "'’
void dot_c(int Am, int An, longx A, int bn, long* b, int xn, doublex x)
{
for (int i=0; i<Am; i++)
{
x[i] = 0;
for (int j=0; j<An; j++)
{
x[1i] += A[i*Am + j]xb[j];
}
}
}
dot = inline_with_numpy(c_code,
arrays = [["Am’, "An', 'A’, "in’, 'long’],
["bn", 'b’", "in’, "long’],
['xn", 'x", 'out’, 'double’]])

a = arange(9)
a.shape = (3, 3)
b = arange(3)

x1 = dot(a, b, a.shape[l])

Notice that we obtain the desired behavior, namely that b is input and x is output that should have
dimension a.shape[1].

Finally, it is possible to work with arrays that are more than 3-dimensional. However, the typemaps
used for this employ less error checking, and can currently only be used for the C type double. The
list describing the array should contain the variable name for holding the number of dimensions,
the variable name for an integer array holding the size in each dimension, the variable name for
the array, and the argument 'multi’, indicating that it has more than 3 dimensions. The arrays
argument could for example be:

Python code
arrays = [['m’, 'mp’, "arl’, 'multi’],
['n", 'np’, "ar2’, 'multi’]]
In this case, the C function signature should look like:
C++ code

void sum (int m, int* mp, doublex arl, int n,
int+ np, doublex ar2)

15.4.2  Module name, signature, and cache

The Instant cache resides in the directory .instant in the home directory of the user. It is possible
to specify a different directory, but the instant-clean script will not remove these when executed.
The three keyword arguments modulename, signature, and cache_dir are related. If none of them
are given, the default behavior is to create a signature from the contents of the files and arguments
to the build_module function. In this case the resulting name starts with instant_module_ and is
followed by a long checksum. The resulting code is copied to the Instant cache unless cache_dir
is set to a specific directory. Note that changing the arguments, code or compile arguments will
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result in a new directory in the Instant cache. Before compiling a module, Instant will always
check if the module is cached in either the Instant cache or in the current working directory.

If modulename is used, the directory with the resulting code is named accordingly, but not copied
to the Instant cache. Instead, it is stored in the current working directory. Any changes to the
argument or the source files will automatically result in a recompilation. The argument cache_dir
is ignored.

When signature is given as argument, Instant uses the signature instead of computing the
checksum. The resulting directory has the same name if the signature contains less than or equal
to 100 characters (letters, numbers, or underscores). If this is not the case, the module name
is generated based on the checksum of this string, resulting in a module name starting with
instant_module_ followed by the checksum. Because the user specifies the signature herself,
changes in the arguments or source code will not cause a recompilation.

In addition to the disk cache discussed so far, Instant also has a memory cache. All modules used
during the life-time of a program are stored in memory for faster access. The memory cache is
always checked before the disk cache.

15.4.3 Locking

Instant provides file locking functionality for cache modules. If multiple processes are working on
the same module, race conditions could potentially occur, where two or more processes believe
the module is missing from the cache and try to write it simultaneously. To avoid race conditions,
lock files have been introduced. The lock files reside in the Instant cache, and locking is only
enabled for modules that should be cached; that is, where the module name is not given explicitly
as argument to build_module or one of its wrapper functions. The first process to reach the stage
where the module is copied from its temporary location to the Instant cache will acquire a lock,
and other processes cannot access this module while it is being copied.

15.5 Instant API

In this section we will describe the various Instant functions and their arguments. The first six
functions are the core Instant functions. The function build_module is the main function, while the
five next functions are wrappers around this function. Finally, there are also four helper functions
available, intended for using Instant with other applications.

15.5.1 build_module

This function is the most important one in Instant, and for most applications the only one that
developers need to use (together with the wrapper functions). The return argument is the compiled
module, which can be used directly in the calling code.

There are a number of keyword arguments, and we will explain them in detail here. Although
one of the aims of Instant is to minimize the direct interaction with SWIG, some of the keywords
require knowledge of SWIG in order to make sense. In this way, Instant can be used both by
programmers new to the use of extension languages for Python, as well as by experienced SWIG
programmers. The keywords arguments are as follows:

® modulename

— Default: None
- Type: String
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— Comment: The name you want for the module. If specified, the module will not be
cached. If missing, a name will be constructed based on a checksum of the other
arguments, and the module will be placed in the global cache.

® source_directory

— Default: "’

- Type: String

— Comment: The directory where user supplied files reside. The files given in sources,
wrap_headers, and local_headers are expected to exist in this directory.

® code

— Default: ”
- Type: String
— Comment: The C or C++ code to be compiled and wrapped.

e init_code

— Default: ”
- Type: String

— Comment: Code that should be executed when the Instant module is initialized. An
example of initialization code is the call import_array() required for initialization of
NumPy.

e additional_definitions

— Default: ”

- Type: String

— Comment: Additional definitions needed in the interface file. These definitions should
be additional code that is not found elsewhere, but is needed by the wrapper code.
These definitions should be given as triple-quoted strings in the case they span multiple
lines, and are placed both in the initial block for C/C++ code (%{,%}-block), and the
main section of the interface file.

e additional_declarations

- Default: ”
- Type: String

- Comment: Additional declarations needed in the interface file. These declarations
should be declarations of code that is found elsewhere, but is needed to make SWIG
generate wrapper code properly. These declarations should be given as triple-quoted
strings in the case they span multiple lines, and are placed in the main section of the
interface file.

® sources

— Default: []
- Type: List of strings
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— Comment: Source files to compile and link with the module. These files are compiled
together with the SWIG-generated wrapper file into the shared library file. Should
reside in the directory specified in source_directory.

* wrap_headers

— Default: []
- Type: List of strings

— Comment: Local header files that should be wrapped by SWIG. The files specified will
be included both in the initial block for C/C++ code (with a C directive) and in the
main section of the interface file (with a SWIG directive). Should reside in the directory
specified in source_directory.

® local_headers

— Default: []
— Type: List of strings

— Comment: Local header files required to compile the wrapped code. The files specified
will be included in the initial block for C/C++ code (with a C directive). Should reside
in the directory specified in source_directory.

® system_headers
— Default: []
— Type: List of strings

— Comment: System header files required to compile the wrapped code. The files specified
will be included in the initial block for C/C++ code (with a C directive).

¢ include_dirs
— Default: []
- Type: List of strings

— Comment: Directories to search for header files for building the extension module.
Need to be absolute path names.

e library_dirs
— Default: []
- Type: List of strings

— Comment: Directories to search for libraries (-1) for building the extension module.
Need to be absolute paths.

e libraries

- Default: []

— Type: List of strings

— Comment: Libraries needed by the Instant module. The libraries will be linked in from
the shared object file. The initial -1 is added automatically.

® swigargs
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— Default: [’'-c++’, '-fcompact’, '-0', '-I.’, ’-small’]
— Type: List of strings

— Comment: Arguments to swig, e.g. [’'-1lpointers.i’] to include the SWIG library
pointers.i.

® swig_include_dirs

— Default: []

— Type: List of strings

— Comment: Directories to include in the swig command.
® cppargs

— Default: [’-02"]

— Type: List of strings

— Comment: Arguments to the C++ compiler (except include directories) e.g. ['-Wall’,
"-fopenmp’].

* lddargs

— Default: []
— Type: List of strings

— Comment: Arguments to the linker, other than libraries and library directories, e.g.

[I_EI’ I_U!].
® arrays
— Default: []

- Type: List of strings

— Comment: A nested list describing the C arrays to be made from the NumPy arrays.
For 1D arrays, the list should contain strings with the variable names for the length of
the arrays and the array itself. Matrices should contain the names of the dimensions in
the two directions as well as the name of the array, and 3D tensors should contain the
names of the dimensions in the three directions in addition to the name of the array. If
the NumPy array has more than three dimensions, the list should contain strings with
variable names for the number of dimensions, the length in each dimension as a pointer,
and the array itself, respectively.

® generate_interface

— Default: True
- Type: Boolean
— Comment: Indicate whether you want to generate the interface files.

® generate_setup

— Default: True
- Type: Boolean

— Comment: Indicate if you want to generate the setup.py file.
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® signature

— Default: None

— Type: String

— Comment: A signature string to identify the form instead of the source code. See Section
15.4.2.

e cache_dir

— Default: None
- Type: String
— Comment: A directory to look for cached modules and place new ones. If missing,

a default directory is used. Note that the module will not be cached if modulename is
specified.

15.5.2 inline

The function inline returns a compiled function if the input is a valid C/C++ function and a
module if not.

15.5.3 inline_module

The same as inline, but returns the whole module rather than a single function.

15.5.4 Inline_with_numpy

The difference between this function and the inline function is that C arrays can be used. This
means that the necessary arguments (init_code (import_array), system_headers, and include_-
dirs) for converting NumPy arrays to C arrays are set by the function.

15.5.5 1inline_module_with_numpy

The difference between this function and the inline_module function is that C arrays can be used.
This means that the necessary arguments (init_code, system_headers, and include_dirs) for
converting NumPy arrays to C arrays are set by the function.

15.5.6 import_module

This function can be used to import cached modules from the current work directory or the Instant
cache. It has one mandatory argument, moduleid, and one keyword argument cache_dir. If the
latter is given, Instant searches the specified directory instead of the Instant cache, if this directory
exists. If the module is not found, None is returned. The moduleid arguments can be either the
module name, a signature, or an object with a function signature.

Using the module name or signature, assuming the module instant_ext exists in the current
working directory or the Instant cache, we import a module in the following way:

Python code

instant_ext = import_module(’instant_ext’)

An object and a directory can be used as input provided that this object includes a function
signature() and that the module is located in the directory:
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Python code
instant_ext = import_module(object, dir)

If the module is found, the imported module is placed in the memory cache.

15.5.7 header_and_libs_from_pkgconfig

This function returns a list of include files, flags, libraries and library directories obtained from
pkg-config. It takes any number of arguments, one string for every package name. It returns four
or five arguments. Unless the keyword argument returnLinkFlags is given with the value True, it
returns lists with the include directories, the compile flags, the libraries, and the library directories
of the package names given as arguments. If returnLinkFlags is True, the link flags are returned
as a fifth list. It is used as follows:

Python code
inc_dirs, comp_flags, libs, lib_dirs, link_flags = \
header_and_libs_from_pkgconfig(’ufc-1’, ’'libxml-2.0",
"numpy-1',
returnLinkFlags=True)

15.5.8 get_status_output

This function provides a platform-independent way of running processes in the terminal and
extracting the output using the Python module subprocess. The one mandatory argument is the
command we want to run. Further, there are three keyword arguments. The first is input, which
should be a string containing input to the process once it is running. The other two are cwd and
env. We refer to the documentation of subprocess for a more detailed description of these, but in
short the first is the directory in which the process should be executed, while the second is used
for setting the necessary environment variables.

(Editor note: Where is the documentation for subprocess? ]

15.5.9 get_swig_version

The function returns the SWIG version number like '1.3.36".

15.5.10 check_swig_version

Takes a single argument, which should be a string on the same format as the output of get_swig_-
version. Returns True if the version of the installed SWIG is equal to or greater than the version
passed to the function. It also has a keyword argument same for testing whether the two versions
are the same.

15.6  Related work

There exist several packages that are similar to Instant. We mention , , and

Weave, which is part of SciPy, allows inlining of C code directly in Python code. Unlike Instant,
Weave does not require the specification of a function signature. For specific examples of Weave
and the other mentioned packages, we refer to [ , ]. F2PY, which is part of NumPy,
is primarily intended for wrapping Fortran code although it can be used for wrapping C code.
Cython is a rather new project, branched from the . Cython is attractive because of its
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integration with NumPy arrays. Cython differs from the other projects by being a programming
language of its own, which extends Python with static typing. Cython can be used to wrap C code
and to transform Python code to C, and is currently gaining a lot of momentum.






16 SyFi and SFC: symbolic finite elements and
form compilation

By Martin Sandve Alnzes and Kent-Andre Mardal

16.1 Introduction

This chapter concerns the finite element library SyFi and its form compiler SFC. SyFi is a framework
for defining finite elements symbolically, using the C++ library GiNaC [ , ] and its
Python interface Swiginac [ , ]. In many respects, SyFi is the equivalent of
FIAT, Chapter 14, whereas SFC corresponds to FFC, see Chapter 12. SyFi and SFC comes with an
extensive manual [ , ] and can be found on the FEniCS web page. SFC can
be used in FEniCS as a form compiler. Similar to FFC it translates UFL code (see Chapter 18) into
UFC code (see Chapter 17), which can be used by the DOLFIN assembler described in Chapter 7.
The UFC code is JIT-compiled using Instant, see Chapter 15.

This chapter is deliberately short and only gives the reader a taste of the capabilities of SyFi and
SFC. However, most features are covered by the more comprehensive manual. This chapter is
organized as follows: We begin with a short description of GiNaC and Swiginac before we present
how finite elements are used and defined using SyFi. Then, we present how to use SFC in the
DOLFIN environment, and end with a short description of the basic structure of SFC. SyFi is
implemented in C++, but has a Python interface. SFC is implemented in Python because code
generation is much more convenient in this language.

16.2  GiNaC and Swiginac

GiNaC [ , ] is an open source C++ library for symbolic calculations. It contains the
tools for doing basic manipulations of polynomials like algebraic operations, differentiation, and
integration. The following example shows basic usage of the library,

C++ code

// create a polynomial function
symbol x("x");
ex f = xx(1-x);

// evaluate f
ex fvalue = f.subs(x == 0.5);

std::cout << " f(0.5) = " << fvalue << std::endl;

// differentiation

281
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ex dfdx = diff(f,x);
std::cout << " df/dx = " << dfdx << std::endl;

// integration
ex intf = integral(x,0,1,f).eval_integ();
std::cout << " integral of f from 0 to 1 is: " << intf << std::endl;

We will not go deeply into GiNaC here, but refer the reader to the GiNaC tutorial and reference
which can be found on its web page. There are, however, a few issues we need to address to
explain basic GiNaC usage. First of all, GiNaC contains many different types like symbol, matrix,
function, etc. Normally, one does not need to worry about these types since the type ex, which
was used above, can represent any mathematical object (ex is basically a place-holder for the
underlying object). Still, there are mathematical operations that can only be applied to particular
types. For instance, functions can only be differentiated with respect to symbols, as shown above.
Notice also that GiNaC overloads operators like == to enable creation of equations and inequalities,
which may be represented as expressions of type relations (or ex).

Symbolic calculations can be computationally demanding. Therefore, GiNaC separates between
the construction and evaluation of expressions. This is illustrated in the above example by the fact
that we create an integral object using the function integral, but we need to explicitly call the
function eval_integ to compute the integral. In a similar fashion one may use functions like eval,
evalm, expand, simplify, and collect_common_factors etc. to evaluate and simplify expressions.
Finally, GiNaC implements its own memory management system using reference counting. The
complete code can be found at syfi-sfc/ginac.

Swiginac is a Python interface to GiNaC created using SWIG. Swiginac provides a more or less
direct translation of GiNaC to Python, but has features that makes it easy to program in a Pythonic
way. For instance, Swiginac unwraps the ex objects and provides typemaps between Python lists
and GiNaC lists (1st). The following code translates the above C++ example to Python, using
Swiginac:

Python code
from swiginac import *
x = symbol(’'x")
f = xx(1-x)

fvalue = f.subs(x == 0.5)
print "fvalue = ", fvalue

dfdx = diff(f,x)
print "df/dx = ", dfdx

intf = integral(x,0,1,f).eval_integ()
print "integral of f from 0 to 1 is:", intf

16.3  SyFi: symbolic finite elements

GiNaC provides the basic utilities for SyFi in the sense that it provides manipulation of polynomials,
as well as differentiation and integration with respect to one variable. SyFi extends GiNaC with
polynomial spaces and differentiation operators like V, V-, and V x, in addition to integration
over a number of polygonal domains. With these utilities it is easy to define finite elements.

Some elements that have been implemented include: continuous and discontinuous Lagrange
elements, the Crouzeix—Raviart element, the Raviart-Thomas element, various H(div) and H(curl)
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Nédélec elements, and the Hermite elements. See Chapter 4 for a description of the above-
mentioned elements. A complete list of elements can be found in the user manual. The mentioned
elements are defined for arbitrary order, except for the Crouzeix—Raviart and Hermite elements.
Not all of these elements are, however, supported by the form compiler.

The following example illustrates how to use SyFi to do finite element calculations in Python. Here,
we create a Lagrange element of second order and use the basis functions to compute a element
stiffness matrix on a reference triangle. We also print both the integrand and the element matrix
entries to the screen.

Python code

from swiginac import =
from SyFi import x

#initialize SyFi in 2D
initSyFi(2)

# create reference triangle
t = ReferenceTriangle()

# create second order Langrange element
fe = Lagrange(t,2)

for i in range(0, fe.nbf()):
for j in range(0, fe.nbf()):
integrand = inner(grad(fe.N(i)), grad(fe.N(j)))
print "integrand[%d, %d] =%s;" % (i, j, integrand.printc())
integral = t.integrate(integrand)
print "A[%d, %d] =%s;" % (i, j, integral.printc())

The output from executing the above code is:

C++ code
integrand[0, 0] =2.0xpow( 4.0xy+4.0%x-3.0,2.0);
A[0, 0] =1.0;
integrand[0, 1] = -4.0+( 4.0+xy+4.0%x-3.0)*x+-4.0+( y+2.0*%x-1.0)*( 4.0+xy+4.0+x-3.0);
Al0, 1] =-(2.0/3.0);
integrand[0, 2] =( 4.0xy+4.0%x-3.0)*( 4.0%x-1.0);
Al0, 2] =(1.0/6.0);
integrand[0, 3] = -4.0xy*x( 4.0*xy+4.0+x-3.0)+-4.0%( 4.0+xy+4.0%x-3.0)*( 2.0+xy+x-1.0);
Ao, 3] =-(2.0/3.0);

Here, we see that the expressions are printed to the screen as symbolic expressions in C++ syntax.
Hence, the output is very reader—friendly and this can be very useful during debugging. We
remark that also Python and LaTeX output can be generated using the printpython and printlatex
functions.

All elements in SyFi are implemented in C++. Here, however, for simplicity we list a definition
of the Crouzeix—Raviart element in Python. The following code is the complete finite element
definition:

Python code

from swiginac import =
from SyFi import x

class CrouzeixRaviart(object):
"""Python implementation of the Crouzeix-Raviart element."""
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def __init__(self, polygon):
"""Constructor"""
self.Ns = []
self.dofs = []
self.polygon = polygon
self.compute_basis_functions()

def compute_basis_functions(self):
"""Compute the basis functions and degrees of freedom
and put them in Ns and dofs, respectively."""

# create the polynomial space
N, variables, basis = bernstein(1l,self.polygon,"a")

# define the degrees of freedom
for i in range(0,3):
edge = self.polygon.line(i)
dofi = edge.integrate(N)
self.dofs.append(dofi)

# compute and solve the system of linear equations
for i in range(0,3):
equations = []
for j in range(0,3):

equations.append(self.dofs[j] == dirac(i,j))
sub = lsolve(equations, variables)
Ni = N.subs(sub)
self.Ns.append(Ni);

def N(self,i): return self.Ns[i]
def dof(self,i): return self.dofs[i]
def nbf(self): return len(self.Ns)

The process of defining a finite element in SyFi is similar for all elements. As the above code
shows, it resembles the Ciarlet definition closely, see also the Chapters 5 and 4. First, we construct
a polynomial space. In the code above, this is performed by calling the bernstein function. The
bernstein function takes as input a simplex and the order of the Bernstein polynomial. Arbitrary
order polynomials are supported. This function produces a tuple consisting of the polynomial, its
coefficients (or degrees of freedom), and the basis functions representing the polynomial space P:

Python code

In : bernstein(l, triangle, "a")
Out : [-a0_2+(-1l+y+x)+y+a0_0+x*ab_1, [a0_0, a0_1, ab_-2], [y, x, 1l-y-x]]

In the above code, we used a triangle and the order of the polynomial was one. The next task is to
define a set of degrees of freedom; that is, a set of functionals L; : P — R. For the Crouzeix-Raviart
element, the degrees of freedom are simply the integrals over an edge; that is, L;(P) = |, g P dx,
where E; for i = (0,1,2) are the edges of the triangle. Alternatively we could have used the value
at the midpoint of the edges since the polynomial P is linear. Finally, the different basis functions
{N;} are determined by the set of equations L;(N;) = J;;. These equations are then solved, using
lsolve, to compute the basis functions of the elements; that is, the coefficients [a0_0, a0_1, a0_2]
are determined for each specific basis function.

The basis functions of this element can then be displayed as follows:

Python code
po = [0,0,0]; pl = [1,0,0]; p2 = [6,1,0];
triangle = Triangle(p0, pl, p2)
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fe = CrouzeixRaviart(triangle)
for i in range(0,fe.nbf()):
print "N(%d) = "%i, fe.N(1)
print "grad(N(%d)) = "%i, grad(fe.N(i))

giving the following output:

C++ code
N(0) = 1/6%(-3+3#x+3xy+z) #2%+ (1/2)+1/6+2%% (1/2) * (3xx-2) +1/6+2%* (1/2) * (3*xy-Z)
grad(N(0)) = [[2#x(1/2)],[2+%(1/2)], [-1/6+2++(1/2)]]
N(1) = 1-2%x-1/3%z

grad(N(1)) = [[-2],[6],[-1/3]]

16.4 SFC: SyFi form compiler

As mentioned earlier, SFC translates UFL code to UFC code. Consider the following UFL code
for defining the variational problem for solving the Poisson problem, implemented in a file
Poisson.ufl:

Python code
cell = triangle
element = FiniteElement("CG", cell, 1)

= TrialFunction(element)
= TestFunction(element)
Coefficient(element)
= Coefficient(element)
= Coefficient(element)

Q -+ 0 < C
1]

Q
|

= cxdot(grad(u),grad(v))=*dx
L = -fxvxdx + g*v*ds

SFC translates this UFL form to UFC code as follows:

Bash code
sfc -wl -ogenerated_code Poisson.ufl

Here, -w1l means that DOLFIN wrappers are generated, while -ogenerate_code means that the
generated code should be located in the directory generate_code. Notice that the flags and
corresponding options are not separated by spaces. A complete list of options is obtained with sfc
-h. The generated code can be utilized in DOLFIN in a standard fashion. For a complete example
consider the demo demo/Poisson2D/cpp that comes with the SyFi package.

In DOLFIN, the form compiler may be chosen at run-time by setting:

Python code

parameters["form_compiler"]["name"] = "sfc"

The form compiler can be tuned with a range of options. A complete list of options is obtained as
follows:

Python code

from sfc.common.options import default_options
sfc_options = default_options()
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The object sfc_options is of type ParameterDict, which is a dictionary with some additional
functionality. One may use the following forms to set options before passing them to assemble.

Python code

sfc_options.code.integral.integration_method = "symbolic" # default is "quadrature"
# alternatively:
# sfc_options["code"]["integral"]["integration_method"] = "symbolic"

A = assemble(a, form_compiler_parameters=sfc_options)

Earlier versions of SFC produced slow code for complicated nonlinear equations as shown in

[ ]. Furthermore, the code generation was expensive both in terms of memory
and the number of operations required in the computations, because the SFC implementation
did not scale linearly with the complexity of the equations. However, a significant speed-up
came with the introduction of UFL with its expression tree traversal algorithms. Now, quite
complicated equations can be handled without losing computational efficiency. Consider for
example an elasticity problem where the constitutive law is a quite complicated variant of
[ ], described by the following equations:

F=1+ (Vu), (16.1)

CcC=FT. F, (16.2)

E=(C-1)/2, (16.3)

Y= %tr(E)2 + Kexp((EA,E)), (16.4)
d

P = %, (16.5)

L= /Q P: (Vo)dy, (16.6)
d

]1: = % (16.7)

Here, u is the unknown displacement, v is a test function, I is the identity matrix, A is a matrix, A
and K are material parameters, L is the system of nonlinear equations to be solved, and Jr is the
corresponding Jacobian. This variational form is implemented in DOLFIN as follows:

Python code
mesh = UnitSquare(N, N)
V = VectorFunctionSpace(mesh, "CG", order)
Q = FunctionSpace(mesh, "CG", order)

U = Function(V)

v = TestFunction(V)
u = TrialFunction(V)

lamda = Constant(
A = Expression ((
K = Constant(1.0)
n = U.cell().n

1.0)
('1.0", '0.3"), ('0.3", '2.3")))

I = Identity(U.cell().d)
=TI + grad(U)
J = det(F)

C = F.T+F
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N 100 | 200 | 400
Jo,p=1] 008 | 0.27 | 1.04
JL,p=2]036 | 141 | 545
Jr,p=1 1033 | 084 | 336
Jr,p=2 1] 068 | 2.26 | 855

Table 16.1: Comparison of the time (in seconds) for computing the Jacobian matrix for the two elasticity
problems on a N x N unit square mesh for linear (p = 1) and quadratic elements (p = 2).

E = (C-I)/2
E = variable(E)

psi = lamda/2 * tr(E)**2 + Kxexp(inner(A+E,E))
= Fxdiff(psi, E)

a_f = psixdx
= inner(P, grad(v))x*dx

J = derivative(L, U, u)

A = assemble(J)

To test the computational efficiency of the generated code for this problem, we compare the
assembly of Jr with the assembly of a corresponding linear elasticity problem with the following
matrix Ji:

JL = /Q)\V -uV v+ (A+pu)Vu: Vodx. (16.8)

In Table 16.1 we see a comparison of the efficiency for the above examples. Clearly, the nonlinear
example is no more than 4 times as slow as the linear problem when using linear elements, and
only a factor 2 when using quadratic elements.
We refer to [ 1, [ 1, [ 1,

[ ] for more discussions on the topic of efficient compilation of linear and nonlinear
variational formulations.

16.5 Code generation design

Finally, we briefly describe the overall design of the code generation software. UFC defines the
interface of the code produced by SFC. In SFC, each UFC class is mirrored by subclasses of the class
CodeGenerator called FormCG, DofMapCG, FiniteElementCG, and CellIntegralCg, etc. These classes
are used to generate code for the corresponding UFC classes, form, dofmap, finite_element,
cell integral, etc. These classes have a common function for generating the code, called
generate_code_dict. The function generate_code_dict generates a dictionary containing named
pieces of UFC code, most of which are function body implementations. This dictionary with
code is then combined with format strings from the UFC utility Python module to generate UFC
compliant code. An example of a format string is shown below.

Python code

cell_integral_implementation = """\

/// Constructor

%(classname)s::%(classname)s() : ufc::cell_integral()
{

%(constructor)s

[



288 CHAPTER 16. SYFI AND SFC: SYMBOLIC FINITE ELEMENTS AND FORM COMPILATION

/// Destructor
%(classname)s::~%(classname)s()

-~

%(destructor)s

=]

/// Tabulate the tensor for the contribution from a local cell
void %(classname)s::tabulate_tensor(doublex A,
const double * const * w,
const ufc::cell& c) const

-~

%(tabulate_tensor)s

]

Using this template, the code generation in SFC is then performed as follows:

Python code
def generate_cell_integral_code(integrals, formrep):
sfc_debug("Entering generate_cell_integral_code")
itgrep = CellIntegralRepresentation(integrals, formrep)

cg = CellIntegralCG(itgrep)
vars = cg.generate_code_dict()
supportcode = cg.generate_support_code()

hcode = ufc_utils.cell_integral_header % vars
ccode = supportcode + "\n"*3 + ufc_utils.cell_integral_implementation % vars

includes = cg.hincludes() + cg.cincludes()
system_headers = common_system_headers()

hincludes = "\n".join(’#include "%s"’ % inc for inc in cg.hincludes())
cincludes = "\n".join(’#include <%s>' % f for f in system_headers)
cincludes += "\n"

cincludes += "\n".join(’#include "%s"’ % inc for inc in cg.cincludes())

hcode = _header_template % \

{ "body": hcode, "name": itgrep.classname, "includes": hincludes }
ccode = _implementation_template % \

{ "body": ccode, "name": itgrep.classname, "includes": cincludes }
sfc_debug("Leaving generate_cell_integral_code")
return itgrep.classname, (hcode, ccode), includes

As seen above, the CellIntegralCG class is again mirrored by a corresponding class
CellIntegralRepresentation,

Python code
class CellIntegralRepresentation(IntegralRepresentation):
def __init__(self, integrals, formrep):
IntegralRepresentation. _init _(self, integrals, formrep, False)

def compute_A(self, data, iota, facet=None):
"Compute expression for A[iota]."

if data.integration_method == "quadrature":
if self.options.safemode:
integrand = data.integral.integrand()
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data.evaluator.update(iota)

integrand = data.evaluator.visit(integrand)
else:

n = len(data.G.V())

integrand = data.vertex data_set[iota][n-1]

D = self.formrep.D_sym
A = integrand * D

The representation classes are quite involved, in particular when using quadrature where the gen-
erated code involves multiple loops and quite a few temporary variables. To generate quadrature
based code, the computational graph algorithms from UFL (in particular the class ufl.Graph) are
used to split the expression tree into smaller subexpressions. SFC makes GiNaC symbols that
represent temporary variables for all subexpressions. To place the temporary variables inside
the correct loops in the generated code, the computational graph is partitioned based on the
dependencies of subexpressions. See Chapter 18 for an explanation of the partitioning algorithm
provided by UFL. The subexpression associated with each temporary variable is then translated to
a C/C++ string using GiNaC. Finally, SFC puts it all together into a tabulate tensor implementation
in the code generation classes (*CG).






17 UFC: a finite element code generation interface

By Martin Sandve Alnees, Anders Logg and Kent-Andre Mardal

A central component of FEniCS is the UFC interface (Unified Form-assembly Code). UFC is an
interface between problem-specific and general-purpose components of finite element programs.
In particular, the UFC interface defines the structure and signature of the code that is generated by
the form compilers FFC and SFC for DOLFIN. The UFC interface applies to a wide range of finite
element problems (including mixed finite elements and discontinuous Galerkin methods) and may
be used with libraries that differ widely in their design. For this purpose, the interface does not
depend on any other FEniCS components (or other libraries) and consists only of a minimal set of
abstract C++ classes using plain C arrays for data transfer. This chapter gives a short overview
of the UFC interface. For a more comprehensive discussion, we refer to the UFC manual [
, ] and the paper [ ]

17.1  QOverview

A key step in the solution of partial differential equations by the finite element method is the
assembly of linear and nonlinear systems of equations. The implementation of such solvers is much
helped by the existence of generic software libraries that provide data structures and algorithms for
computational meshes and linear algebra. This allows the implementation of a generic assembly
algorithm that may be partly reused from one application to another. However, since the inner loop
of the assembly algorithm inherently depends on the partial differential equation being solved and
the finite elements used to produce the discretization, this inner loop must typically be supplied by
the user. Writing the inner loop is a challenging task that is prone to errors, and which prohibits
rapid prototyping and experimentation with models and discretization methods.

The FEniCS tool-chain of FIAT-UFC-FFC/SFC-UFC-DOLFIN is an attempt to solve this problem.
By generating automatically the inner loop based on a high-level description of the finite element
variational problem (in the UFL form language), FEniCS is able to provide a completely generic
implementation of the assembly algorithm as part of DOLFIN. This is illustrated in Figure 17.1. We
note from this figure that the user input is partitioned into two sets: a first subset consisting of the
finite element variational problem that requires code generation, and a second subset consisting of
the mesh and coefficient data that is given as input to the assembler.

291
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Figure 17.1: A flow diagram of finite
el 1&%&]@

ssembly in FEniCS.
Coefficients
UFL . UFC Tensor
—»
Torm) Form compiler Cr codo) Assembler rp—

17.2  Finite element discretization and assembly

In Chapter 7, we described the assembly algorithm for computing the global rank p tensor A
corresponding to a multilinear form a of arity p:

a:WllthZIhx~~~><Wn/h X Vp,hx---xVZIhXVllh—HR,

(17.1)
a v a(wy, wy, ..., Wn;0p,...,02,01);

Herg, {V]',h};'):l is a sequence of discrete function spaces for the arguments {vj}le of the form and

{W]Z/h };1:1 is a sequence of discrete function spaces for the coefficients {w; }7:1 of the form. Typically,
the arity is p = 1 for a linear form or p = 2 for a bilinear form. In the simplest case, all function
spaces are equal but there are many important examples, such as mixed methods, where the
arguments come from different function spaces. The choice of coefficient function spaces depends
on the application; a polynomial basis simplifies exact integration, while in some cases evaluating
coefficients in quadrature points may be required.

As we saw in Chapter 7, the global tensor A can be computed by summing contributions from
the cells and facets of a mesh. We refer to these contributions as either cell tensors or facet tensors.
Although one may formulate a generic assembly algorithm, the cell and facet tensors must be
computed differently depending on the variational form, and their entries must be inserted
differently into the global tensor depending on the choice of finite element spaces. This is handled
in FEniCS by implementing a generic assembly algorithm (as part of DOLFIN) that relies on
special-purpose generated code (by FFC or SFC) for computing the cell and facet tensors, and for
computing the local-to-global map for insertion of the cell and facet tensors into the global matrix.

The UFC interface assumes that the multilinear form a in (17.1) can be expressed as a sum of

integrals over the cells 7y, the exterior facets dj,, and the interior facets 32 of the mesh. The integrals
0

n
may then be expressed on disjoint subsets 7, = Ui Tk, 0 = UZilah,k, and 9), = Ukilag K
respectively. In particular, it is assumed that the multilinear form can be expressed in the following
canonical form:

¢
a(wy, wo, ..., We;Vp, ..., 02,01) = Y Y, /I,ﬁ(wl,wz,...,wn;vp,...,vz,vl)dx
kZlTE'ﬁ,lk
ny
+ Z /SI,{(wl,wz,...,wn;vp,...,vz,vl)ds
k

=1 SGah,k (17‘2)

4
0
+Z Z /501’{ (w1, Wy, ..., Wy;0p,...,v2,01)dS.
k=150¢a) .
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Figure 17.2: Schematic overview of
some of the UFC classes. Arrows indi-
cate dependencies.

ufc::form

ufc::finite_element ::)

ufc::dofmap ;::)

§

ufc: :mesh

ufc::cell integral

ufc::cell

ufc::exterior facet integral

ufc::function

ufc::interior facet integral

We refer to an integral I} over a cell T as a cell integral, an integral I,{ over an exterior facet S
as an exterior facet integral (typically used to implement Neumann and Robin type boundary

conditions), and to an integral I,{ ¥ over an interior facet S° as an interior facet integral (typically
used in discontinuous Galerkin methods).

17.3 The UFC interface

The UFC interface' consists of a small collection of abstract C++ classes that represent common
components for assembling tensors using the finite element method. The full UFC interface is
specified in a single header file ufc.h. The UFC classes are accompanied by a set of conventions
for numbering of cell data and other arrays. Data is passed as plain C arrays for efficiency and
minimal dependencies. Most functions are declared const, reflecting that the operations they
represent should not change the outcome of future operations.>

17.3.1 Class relations

Figure (17.2) shows all UFC classes and their relations. The classes mesh, cell, and function
provide the means for communicating mesh and coefficient function data as arguments. The
integrals of (17.2) are represented by one of the following classes:

e cell_integral,
e exterior_facet_integral,
e interior_facet_integral.

Subclasses of form must implement factory functions which may be called to create integral objects.
These objects in turn know how to compute their respective contribution from a cell or facet during
assembly. A code fragment from the form class declaration is shown below.

C++ code

class form

{
public:

'This chapter describes version 1.4 of the UFC interface.
2The exceptions are the functions to initialize a dofmap.
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/// Create a new cell integral on sub domain i
virtual cell_integralx create_cell_integral(unsigned int i) const = 0;

/// Create a new exterior facet integral on sub domain i
virtual exterior_facet_integrals
create_exterior_facet_integral(unsigned int i) const = 0;

/// Create a new interior facet integral on sub domain i
virtual interior_facet_integral*
create_interior_facet_integral(unsigned int i) const = 0;

}:

The form class also specifies functions for creating finite_element and dofmap objects for the
finite element function spaces {erh}le and {W;, }?:1 of the variational form. The finite element
object provides functionality such as evaluation of degrees of freedom and evaluation of basis
functions and their derivatives. The dofmap object provides functionality such as tabulating the
local-to-global map of degrees of freedom on a single element, as well as tabulation of subsets
associated with particular mesh entities, which is used to apply Dirichlet boundary conditions and
build connectivity information.

Both the finite_element and dofmap classes can represent mixed elements, in which case it is
possible to obtain finite_element and dofmap objects for each subelement in a hierarchical manner.
Vector elements composed of scalar elements are in this context seen as special cases of mixed
elements where all subelements are equal. As an example, consider the dofmap for a P,—P;
Taylor-Hood element. From this dofmap it is possible to extract one dofmap for the quadratic vector
element and one dofmap for the linear scalar element. From the vector element, a dofmap for the
quadratic scalar element of each vector component can be obtained. This can be used to access
subcomponents from the solution of a mixed system.

17.3.2 Stages in the assembly algorithm

Next, we focus on a few key parts of the interface and explain how these can be used to implement
the assembly algorithm presented in Chapter 7. The general algorithm consists of three stages:
(i) assembling the contributions from all cells, (ii) assembling the contributions from all exterior
facets, and (iii) assembling the contributions from all interior facets.

Each of the three assembly stages (i)—(iii) is further composed of five steps. In the first step, a cell T
is fetched from the mesh, typically implemented by filling a cell structure (see Figure 17.3) with
coordinate data and global numbering of the mesh entities in the cell. This step depends on the
specific mesh being used.

In the second step, the coefficients in {W; ,} ]’-‘:1 are restricted to the local cell T. If a coefficient w; is
not given as a linear combination of basis functions for W; ;,, it must at this step be interpolated into
Wi, using the interpolant defined by the degrees of freedom of W; ;. One common choice of inter-
polation is point evaluation at the set of nodal points. In this case, the coefficient function is passed
as an implementation of the function interface (a simple functor) to the function evaluate_dofs
in the UFC finite_element class.

C++ code

/// Evaluate linear functionals for all dofs on the function f
virtual void evaluate_dofs(doublex values,
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Figure 17.3: Data structure for commu-

nicating cell data. C++ code

class cell

{
public:

/// Constructor
cell(): cell_shape(interval),
topological_dimension(0),
geometric_dimension(0),
entity_indices(0), coordinates(0) {}

/// Destructor
virtual ~cell() {}

/// Shape of the cell
shape cell_shape;

/// Topological dimension of the mesh
unsigned int topological_dimension;

/// Geometric dimension of the mesh
unsigned int geometric_dimension;

/// Array of global indices for the mesh entities of
the cell
unsigned int+* entity_indices;

/// Array of coordinates for the vertices of the cell
doublex* coordinates;

/// Cell index (short-cut for
entity_indices[topological_dimension][0])
unsigned int index;

/// Local facet index
int local_facet;

/// Unique mesh identifier
int mesh_identifier;
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const function& f,
const cell& c) const = 0;

Here, doublex values is a pointer to the first element of an array of double precision floating point
numbers which will be filled with the values of the degrees of freedom of the function f on the
current cell.

In the third step, the local-to-global map of degrees of freedom is tabulated for each of the
function spaces. That is, for each of the local discrete finite element spaces on T, we tabulate the
corresponding global degrees of freedom.

C++ code

/// Tabulate the local-to-global mapping of dofs on a cell
void dofmap::tabulate_dofs(unsigned int* dofs,

const mesh& m,

const cell& c) const

Here, unsigned intx dofs is a pointer to the first element of an array of unsigned integers that
will be filled with the local-to-global map on the current cell during the function call.

In the fourth step, the local element tensor contribution (cell or exterior/interior facet tensor) is
computed. This is done by a call to the function tabulate_tensor, illustrated below for a cell
integral.

C++ code

/// Tabulate the tensor for the contribution from a local cell
virtual void tabulate_tensor(doublex A,

const double * const * w,

const cell& c) const = 0;

Here, doublex A is a pointer to the first element of an array of double precision floating point
numbers which will be filled with the values of the element tensor, flattened into one array of
numbers. Similarly, one may evaluate interior and exterior facet contributions using slightly
different function signatures.

Finally, at the fifth step, the local element tensor contributions are added to the global tensor, using
the local-to-global maps previously obtained by calls to the tabulate_dofs function. This is an
operation that depends on the linear algebra backend used to store the global tensor.

17.3.3 Code generation utilities

UFC provides a number of utilities that can be used by form compilers to simplify the code
generation process, including templates for creating subclasses of UFC classes and utilities for
just-in-time compilation. These are distributed as part of the ufc_utils Python module.
Templates are available for all UFC classes listed in Figure 17.2 and consist of format strings for
the skeleton of each subclass. The following code illustrates how to generate a subclass of the UFC
form class.

C++ code

from ufc_utils import form_combined

implementation = {}

implementation["classname"] = "my_form"
implementation["members"] = ""
implementation["constructor_arguments"] = ""
implementation["initializer_ list"] = ""
implementation["constructor"] = "// Do nothing"
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implementation["destructor"] = "// Do nothing"
implementation["signature"] = "return \"my form\""
implementation["rank"] = "return 2;"
implementation["num_coefficients"] = "return 0;"
implementation|["num_cell _domains"] = "return 3;"
implementation["num_interior_facet_domains"] = "return 1;"
implementation|["num_exterior_facet_domains"] = "return 0;"
implementation["create_finite_element"] = "\
switch (i)
{
case 0:

return new my_finite element_0();
case 1:

return new my_finite_element_1();
default:

return 0;
3
implementation["create_dofmap"] = "\
switch (i)
{
case 0:

return new my_dofmap_0();
case 1:

return new my_dofmap_1();
default:

return 0;
3
implementation["create_cell_integral"] = "\
switch (i)
{
case 0:

return new my_cell_integral 0();
case 1:

return new my_cell_integral_1();
case 2:

return new my_cell_integral_2();
default:

return 0;
3
implementation["create_exterior_facet_integral"] = "\
return new my_exterior_facet_integral();"
implementation["create_interior_facet_integral®] = "return 0;"

print form_combined % implementation

This generates code for a single header file that also contains the implementation of each function
in the UFC form interface. It is also possible to generate code for separate header (.h) and
implementation (. cpp) files by using the form_header and form_implementation templates.

The ufc_utils module also contains the utility function build_ufc_module that can be called to
build a Python module based on generated UFC code. This process involves compilation, linking,
and loading of the generated C++ code as well as generating a Python wrapper module using
Instant/SWIG as described in Chapter 15.

17.4 Examples

In this section, we demonstrate how UFC can be used in practice for assembly of finite element
forms. First, we demonstrate how one may implement a simple assembler based on generated
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UFC code. We then show examples of input to the form compilers FFC and SFC as well as part of
the corresponding UFC code generated as output.

17.4.1 Assembler

The simple assembler presented in this section assumes that the degrees of freedom of the finite
element spaces involved depend only on vertices; that is, we assume piecewise linear elements.
We also assume that the assembled form is a tensor of rank two (a matrix), that we may insert
values into the given matrix data structure by simply assigning values to the entries of the matrix,
that the form does not depend on any coefficients, and that the form is expressed as a single
cell integral. In practice, the efficient insertion of entries into a sparse matrix typically requires
a the use of a special optimized library call. For example, entries may be inserted (added) to
a sparse PETSc matrix by a call to MatSetValues and to a sparse Trilinos/Epetra matrix by a
call to SumIntoGlobalValues. For a complete implementation of an assembler for general rank
tensors and generic linear algebra libraries that provide an insertion operation, we refer to the
class Assembler in DOLFIN (Assembler.cpp). The code example presented below is available in
the supplementary material for this chapter (assemble.cpp).

C++ code

void assemble(Matrix& A, ufc::form& form, dolfin::Mesh& mesh)
{

// Get dimensions

const uint D = mesh.topology().dim();

const uint d = mesh.geometry().dim();

// Initialize UFC mesh data structure

ufc::mesh ufc_mesh;

ufc_mesh.topological dimension = D;

ufc_mesh.geometric_dimension = d;

ufc_mesh.num_entities = new uint[D + 1];

for (uint i = 0; 1 <= D; i++)
ufc_mesh.num_entities[i] = 0;

ufc_mesh.num_entities[0] = mesh.num_vertices();

ufc_mesh.num_entities[D] = mesh.num_cells();

// Initialize UFC cell data structure, assuming that the
// cell is a simplex and only vertices are used for dofs
ufc::cell ufc_cell;
switch (D)
{
case 1:
ufc_cell.cell_shape = ufc::interval;
break;
case 2:
ufc_cell.cell_shape = ufc::triangle;
break;
default:
ufc_cell.cell_shape = ufc::tetrahedron;
break;
}
ufc_cell.topological_dimension = D;
ufc_cell.geometric_dimension = d;
ufc_cell.entity _indices = new uint * [D + 1];
for (uint i = 0; i <= D; i++)
ufc_cell.entity indices[i] = 0;
uint vertices_per_cell =D + 1;
ufc_cell.entity_indices[0] = new uint[vertices_per_cell];
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ufc_cell.entity_indices[D] = new uint[1];
ufc_cell.coordinates = new double * [vertices_per_cell];
for (uint i = 0; 1 <= D; i++)

ufc_cell.coordinates[i] = new double[d];

// Create cell integrals, assuming there is only one
ufc::cell_integral* cell_integral = form.create_cell_integral(0);

// Create dofmaps for rows and columns
ufc::dofmap+ dofmap_0 = form.create_dofmap(0);
ufc::dofmap+ dofmap_1 = form.create_dofmap(1l);

// Initialize dofmaps
dofmap_0->init_mesh(ufc_mesh);
dofmap_1->init_mesh(ufc_mesh);

// Omitting code for dofmap initialization on cells, which is not
// needed for code generated by FFC but which is generally required

// Get local and global dimensions

uint m = dofmap_0->max_local_dimension();
uint n = dofmap_1->max_local_dimension();
uint M = dofmap_0->global_dimension();
uint N = dofmap_1->global_dimension();

// Initialize array of local-to-global maps
uint* dofs_0 = new uint[m];
uint* dofs_1 = new uint[n];

// Initialize array of values for the cell matrix
doublex A_T = new double[m * n];

// Initialize global matrix
A.init(M, N);

// Iterate over the cells of the mesh
for (dolfin::CellIterator cell(mesh); !cell.end(); ++cell)
{
// Update UFC cell data structure for current cell
ufc_cell.entity indices[D][0] = cell->index();
for (dolfin::VertexIterator vertex(xcell); !'vertex.end(); ++vertex)
{
ufc_cell.entity_indices[0][vertex.pos()] = vertex->index();
for (uint 1 = 0; i < d; i++)
ufc_cell.coordinates[vertex.pos()][i] = vertex->x(1i);

// Compute local-to-global map for degrees of freedom
dofmap_0->tabulate _dofs(dofs_0, ufc_mesh, ufc_cell);
dofmap_1->tabulate_dofs(dofs_1, ufc_mesh, ufc_cell);

// Compute the cell matrix A_T
cell_integral->tabulate_tensor(A_T, 0, ufc_cell);

// Add entries to global matrix
for (uint 1 = 0; i < m; i++)
for (uint j = 0; j < m; j++)
A(dofs_0[i], dofs_1[j]) += A_T[i*n + jI;

// Omitting code for deleting allocated arrays
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17.4.2 Generated UFC code

The form language UFL described in Chapter 18 provides a simple language for specification of
variational forms, which may be entered either directly in Python or in text files given to a form
compiler. We consider the following definition of the bilinear form a(u,v) = (Vu, Vo) in UFL:

C++ code

element = FiniteElement("CG", "triangle", 1)

TrialFunction(element)
TestFunction(element)

a = inner(grad(u), grad(v))=dx

When compiling this code, a C++ header file is created, containing UFC code that may be used
to assemble the global sparse stiffness matrix for Poisson’s equation. Below, we present the code
generated for evaluation of the element stiffness matrix for the bilinear form a using FFC. Similar
code may be generated using SFC.

C++ code

/// Tabulate the tensor for the contribution from a local cell
virtual void tabulate_tensor(doublex A,

const double * const * w,

const ufc::cell& c) const

{
// Number of operations (multiply-add pairs) for Jacobian data: 11
// Number of operations (multiply-add pairs) for geometry tensor: 8
// Number of operations (multiply-add pairs) for tensor contraction: 11
// Total number of operations (multiply-add pairs): 30

// Extract vertex coordinates
const double * const * x = c.coordinates;

// Compute Jacobian of affine map from reference cell
const double J_00 = x[1][0] - x[0][0];
const double J_01 = x[2][0] - x[0][0];
const double J_10 = x[1][1] - x[0][1];
const double J_11 = x[2][1] - x[0][1];

// Compute determinant of Jacobian
double detJ = J_00+J_11 - J_01+J_10;

// Compute inverse of Jacobian

const double K_00 J_11 / detJ;
const double K 01 = -J_01 / det];
const double K_10 -J_10 / detJ;
const double K_11 J_00 / detJ;

// Set scale factor
const double det = std::abs(detl);

// Compute geometry tensor

const double GO_0_0 = detx(K_00+«K_00 + K_01xK_01);
const double GO_0_1 = det*(K_00+xK_10 + K_01xK_11);
const double GO_1_0 = detx(K_10+xK_00 + K_11xK_01);
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const double GO_1_1 = detx(K_10+xK_10 + K_11xK_11);

// Compute element tensor

A[0] = 0.500000000000000+GO_0_0 + 0.500000000000000+GO_0_1
0.500000000000000+GO_1_0 + 0.500000000000000+GO_1_1;
Al1] -0.500000000000000+GO_0_0 - 0.500000000000000+GO_1_0;
A[2] = -0.500000000000000+GO_0_1 - 0.500000000000000+GO_1_1;

s

A[3] = -0.500000000000000+GO_0_0 - 0.500000000000000+GO_0_1;
A[4] = 0.500000000000000+G0O_0_0;
A[5] = 0.500000000000000+GO_0_1;
A[6] = -0.500000000000000+GO_1_0 - 0.500000000000000+GO_1_1;

A[7] = 06.500000000000000+G0O_1_0;
A[8] = 0.500000000000000+GO_1_1;

Having computed the element tensor, one needs to compute the local-to-global map in order to
know where to insert the local contributions in the global tensor. This map may be obtained by
calling the member function tabulate_dofs of the class dofmap. FFC uses an implicit ordering
scheme, based on the indices of the topological entities in the mesh. This information may be
extracted from the cell attribute entity_indices. For linear Lagrange elements on triangles, each
degree of freedom is associated with a global vertex. Hence, FFC constructs the map by picking
the corresponding global vertex number for each degree of freedom as demonstrated below.

C++ code

virtual void tabulate_dofs(unsigned int* dofs,
const ufc::mesh& m,
const ufc::cell& c) const
{
dofs[0] = c.entity_indices[0][0];
dofs[1l] = c.entity_indices[0][1];
dofs[2] = c.entity_indices[0][2];
}

For quadratic Lagrange elements, a similar map is generated based on global vertex and edge
numbers (entities of dimension zero and one respectively). We list the code for tabulate_dofs
generated by FFC for quadratic Lagrange elements below.

C++ code

virtual void tabulate_dofs(unsigned int* dofs,
const ufc::mesh& m,
const ufc::cell& c) const

unsigned int offset = 0;

dofs[0] offset + c.entity_indices[0][0];
dofs[1] = offset + c.entity_indices[0][1];
dofs[2] = offset + c.entity_indices[0][2];
offset += m.num_entities[0];

dofs[3] = offset + c.entity_indices[1][0];
dofs[4] = offset + c.entity_indices[1][1];
dofs[5] = offset + c.entity_indices[1][2];
offset += m.num_entities[1];
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17.5 Numbering conventions

UFC relies on a set of numbering conventions for cells, vertices and other mesh entities. The
numbering scheme ensures that form compilers (FFC and SFC) and assemblers (DOLFIN) can
communicate data required for tabulating the cell and facet tensors as well as local-to-global maps.

17.5.1 Reference cells

The following five reference cells are covered by the UFC specification: the reference interval, the
reference triangle, the reference quadrilateral, the reference tetrahedron, and the reference hexahedron.
The UFC specification assumes that each cell in a finite element mesh is always isomorphic to one
of the reference cells. The UFC reference cells are listed in the table below.

Reference cell Dimension #Vertices #Facets
The reference interval 1 2 2
The reference triangle

The reference quadrilateral
The reference tetrahedron
The reference hexahedron

W W NN
o N Y
o N NG Y)

The reference interval. The reference interval and the coordinates of its two vertices are shown in
the figure and table below.

(2 U1 Vertex Coordinates
[ T X =
0 1 %0 0

(7 x=1

The reference triangle. The reference triangle and the coordinates of its three vertices are shown in
figure and table below.

(%]

Vertex Coordinates
00 X = (0,0)
01 x = (1,0)
3 x=1(0,1)

(%] 01

The reference quadrilateral. The reference quadrilateral and the coordinates of its four vertices are
shown in the figure and table below.
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U3

Vertex Coordinates
vo x = (0,0)

U1 x=(1,0)
v x=(1,1)
U3 x=(0,1)

Vo 01

The reference tetrahedron. The reference tetrahedron and the coordinates of its four vertices are
shown in the figure and table below.

U3

Vertex Coordinates
vo x = (0,0,0)

v x=(1,0,0)
23 x=1(0,1,0)
U3 X = (O, 0,1)

(]

01

The reference hexahedron. The reference hexahedron and the coordinates of its eight vertices are
shown in the figure and table below.

4 07 Vertex Coordinate
Vg x =(0,0,0)

1 x=(1,0,0)

%) x=(1,1,0)

V3 x=(0,1,0)

U4 x=1(0,0,1)

v Us5 x=(1,0,1)
U6 x=(1,1,1)

U1 vy x=1(0,1,1)

17.5.2 Numbering of mesh entities

The UFC specification dictates a certain numbering of the vertices, edges etc. of the cells of a finite
element mesh. First, an ad hoc numbering may be picked for the vertices of each cell. Then, the
remaining entities are ordered based on a simple rule, as described in detail below.
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Figure 17.4: The vertices of a simplicial

3 mesh are numbered locally based on
the corresponding global vertex num-
bers.

0 2

1

Basic concepts The topological entities of a cell (or mesh) are referred to as mesh entities. A mesh
entity can be identified by a pair (d, i), where d is the topological dimension of the mesh entity
and i is a unique index of the mesh entity. Mesh entities are numbered within each topological
dimension from 0 to n; — 1, where n, is the number of mesh entities of topological dimension d.
For convenience, mesh entities of topological dimension 0 are referred to as vertices, entities of
dimension 1 as edges, entities of dimension 2 as faces, entities of codimension 1 as facets, and entities
of codimension 0 as cells. These concepts are summarized in the table below.

Entity Dimension Codimension

Vertex 0 -
Edge 1 -
Face 2 -
Facet - 1
Cell - 0

Thus, the vertices of a tetrahedron are identified as vy = (0,0), v; = (0,1), v = (0,2) and
v3 = (0,3), the edges are ¢y = (1,0), e; = (1,1), e2 = (1,2), e3 = (1,3), e4 = (1,4) and e5 = (1,5),
the faces (facets) are fo = (2,0), f1 = (2,1), fo = (2,2) and f3 = (2,3), and the cell itself is
Co = (3, 0).

Numbering of vertices. For simplicial cells (intervals, triangles and tetrahedra) of a finite element
mesh, the vertices are numbered locally based on the corresponding global vertex numbers. In
particular, a tuple of increasing local vertex numbers corresponds to a tuple of increasing global
vertex numbers. This is illustrated in Figure 17.4 for a mesh consisting of two triangles.

For non-simplicial cells (quadrilaterals and hexahedra), the numbering is arbitrary, as long as
each cell is topologically isomorphic to the corresponding reference cell by matching each vertex



17.5. NUMBERING CONVENTIONS 305

Figure 17.5: The local numbering of 5
vertices of a non-simplicial mesh is ar-

bitrary, as long as each cell is topologi- ® ®
cally isomorphic to the reference cell
by matching each vertex to the corre-
sponding vertex of the reference cell.

S
[68)

03 (%2 % (%)

0o (%] 0o 03

Figure 17.6: Mesh entities are ordered 02
based on a lexicographical ordering of
the corresponding ordered tuples of
non-incident vertices. The first edge e

is non-incident to vertex v. P
0

0o 01

with the corresponding vertex in the reference cell. This is illustrated in Figure 17.5 for a mesh
consisting of two quadrilaterals.

Numbering of other mesh entities. When the vertices have been numbered, the remaining mesh
entities are numbered within each topological dimension based on a lexicographical ordering of the
corresponding ordered tuples of non-incident vertices.

As an illustration, consider the numbering of edges (the mesh entities of topological dimension
one) on the reference triangle in Figure 17.6. To number the edges of the reference triangle, we
identify for each edge the corresponding non-incident vertices. For each edge, there is only one
such vertex (the vertex opposite to the edge). We thus identify the three edges in the reference
triangle with the tuples (vg), (v1), and (v;). The first of these is edge ey between vertices v; and v,
opposite to vertex vy, the second is edge e between vertices vy and vy opposite to vertex v, and
the third is edge e; between vertices vg and v opposite to vertex v;.

Similarly, we identify the six edges of the reference tetrahedron with the corresponding non-
incident tuples (vg, v1), (vo,v2), (vo,v3), (v1,02), (v1,v3) and (v, v3). The first of these is edge ¢
between vertices v, and v3 opposite to vertices vg and v as shown in Figure 17.7.

Relative ordering. The relative ordering of mesh entities with respect to other incident mesh entities
follows by sorting the entities by their (global) indices. Thus, the pair of vertices incident to the



306 CHAPTER 17. UFC: A FINITE ELEMENT CODE GENERATION INTERFACE

Figure 17.7: Mesh entities are ordered
based on a lexicographical ordering of
the corresponding ordered tuples of
non-incident vertices. The first edge e
is non-incident to vertices vy and vy.

first edge ep of a triangular cell is (v1,v3), not (v, v1). Similarly, the first face fy of a tetrahedral
cell is incident to vertices (v1, v, v3).

For simplicial cells, the relative ordering in combination with the convention of numbering the
vertices locally based on global vertex indices means that two incident cells will always agree on
the orientation of incident subsimplices. Thus, two incident triangles will agree on the orientation
of the common edge and two incident tetrahedra will agree on the orientation of the common
edge(s) and the orientation of the common face (if any). This is illustrated in Figure 17.8 for two
incident triangles sharing a common edge. This leads to practical advantages in the assembly of
higher-order, H(div) and H(curl) elements.

Limitations. The UFC specification is only concerned with the ordering of mesh entities with
respect to entities of larger topological dimension. In other words, the UFC specification is only
concerned with the ordering of incidence relations of the class d — d’ where d > d’. For example,
the UFC specification is not concerned with the ordering of incidence relations of the class 0 — 1,
that is, the ordering of edges incident to vertices.

Numbering of mesh entities on intervals. The numbering of mesh entities on interval cells is sum-
marized in the table below.

Entity Incident vertices Non-incident vertices
vo = (0,0) (vo) (v1)
v =(0,1) (v1) (vo)
co = (1,0) (vo, v1) @

Numbering of mesh entities on triangular cells. The numbering of mesh entities on triangular cells
is summarized in the table below.
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Figure 17.8: Two incident triangles will
always agree on the orientation of the
common edge.

U2 02

0o 01
U1 0
Entity Incident vertices Non-incident vertices
0Up = (0, 0) (’00) (’01, ’02)
v =(0,1) (v1) (vo,v2)
v, = (0,2) (v2) (vo,v1)
eo = (1,0) (v1,02) (vo)
e = (1,1) (00,02) (01)
ez =(1,2) (vo,v1) (v2)
cop = (2, 0) (ZJ(), 01,02) @

Numbering of mesh entities on quadrilateral cells. The numbering of mesh entities on quadrilateral
cells is summarized in the table below.

Entity Incident vertices Non-incident vertices

vg = (0,0) (vg) (v1,02,03)

v =(0,1) (v1) (vo,v2,03)

v = (0,2) (v2) (v0,v1,03)

vz = (0,3) (v3) (vo,v1,02)

eo = (1,0) (v2,3) (vo, v1)

e = (1,1) ("()1,"02) (ZJQ, ’03)

e2 = (1,2) (v0,03) (v1,02)

e3 = (1,3) (vo,v1) (v2,03)
co=(2,0)  (vo,01,02,03)

Numbering of mesh entities on tetrahedral cells. The numbering of mesh entities on tetrahedral cells
is summarized in the table below.
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Numbering of mesh entities on hexahedral cells.
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Entity Incident vertices Non-incident vertices

v = (0,0) (vo) (v1,v2,03)

v = (0,1) (v1) (v0,v2,03)

v = (0,2) (02) (vg,v1,03)

vz = (0,3) (v3) (vo,v1,02)

eo = (1,0) (v2,03) (vo, v1)

ep = (L1) (01,03) (vo,v2)

er = (1,2) (v1,02) (v0,v3)

e3 = (1,3) (v0,v3) (v1,v2)

eg = (1,4) (v, v2) (v1,03)

es = (1,5) (vo,v1) (v2,03)
fo=1(2,0) (v1,02,03) (v0)
fi=(21) (vo,v2,03) (v1)
f=1(22) (v0,v1,03) (02)
f3=1(2,3) (v0,v1,02) (v3)
co=(3,0)  (vo,v1,02,03) %)

is summarized in the table below.

The numbering of mesh entities on hexahedral cells

Entity Incident vertices Non-incident vertices
v = (0,0) (v0) (v1,v2, 3,04, U5, V6, 07)
v =(0,1) (01) (v0,v2,v3, 4,05, V6, V7)
U2 = (0/2) (02) (Z) 01,703,04,05, 06, 7)
vz = (0,3) (v3) (v0,v1,v2,v4, Vs, Ve, V7)
vy = (0,4) (v4) (vo,v1,v2,03, Vs, Vs, U7)
vs = (0,5) (vs) (vo, v1,v2,V3, Vg, Vs, V7)
v6 = (0,6) (v6) (v0,v1,v2,03,04, s, 07)
v7 =(0,7) (v7) (vo,v1, V2,03, 04, U5, V)
eo = (1,0) (ve,v7) (vo,v1, V2,03, 04, 05)
e = (1’1) (05/ 06) (00101102/ 03,04, Z)7)
er = (1,2) (v4,07) (v0,v1,2,v3, Vs, Vs)
e3 = (1,3) (v4,05) (v0, V1,2, 3,6, 07)
ey = (1,4) (v3,v7) (v0,v1,02, 04,05, Vg)
es = (1,5) (v2,06) (v0,v1, 03,04, 05, 07)
e = (1,6) (v2,v3) (v0, V1,04, Vs, V6, V7)
ez =(17) (v1,05) (v0, V2, V3, V4, V6, V7)
es = (1,8) (v1,02) (v0,v3, 4,05, 06, 07)
eg = (1,9) (vo,v4) (v1,v2,03,05, 06, 07)
e10 = (1,10) (vo, v3) (v1,v2,v4, 05,06, 07)
enn = (1,11) (vo,v1) (02,03, 04, U5, V6, V7)
fo=1(2,0) (v4,v5,06,07) (v0,v1,2,03)
fi=(21) (v2,v3,06,07) (v0,v1,74,0s5)
f2=1(2,2) (v1,v2, U5, 06) (vo, V3,04, v7)
f3=1(23) (v0,v3,04,07) (v1,v2,05,06)
f4 = (2/4) (00101104/7)5) (U 0U3,06,0 7)
fs=1(2,5) (v0,v1,02,03) (v4,05,06,07)
cy) = (3,0) ('00,’01, U9, 03,04, 05, 0g, ’07) @
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17.6  Discussion

UFC has been used for many applications, including the Poisson equation; convection—diffusion—
reaction equations; continuum equations for linear elasticity, hyperelasticity and plasticity; the
incompressible Navier—Stokes equations; mixed formulations for the Hodge Laplacian; and many
more. The types of finite elements involved include standard continuous Lagrange elements of
arbitrary order, discontinuous Galerkin formulations, Brezzi-Douglas—Marini elements, Raviart—
Thomas elements, Crouzeix—Raviart elements and Nédélec elements.

The form compilers FFC and SFC described in Chapters 12 and 17 are UFC compliant, both
generating efficient UFC code from an abstract problem definition. The assembler in DOLFIN
uses the generated UFC code, communicates with the DOLFIN mesh data structure to extract
ufc::mesh and ufc::cell data, and assembles the global tensor into a data structure implemented
by one of a number of linear algebra backends supported by DOLFIN, including PETSc, Trilinos
(Epetra), uBLAS and MTL4.

One of the main limitations in the current version (1.4) of the UFC interface is the assumption of a
homogeneous mesh; that is, only one cell shape is allowed throughout the mesh. Thus, although
mesh ordering conventions have been defined for the interval, triangle, tetrahedron, quadrilateral
and hexahedron, only one type of shape can be used at any time. Another limitation is that
only one fixed finite element space can be chosen for each argument of the form, which excludes
p-refinement (increasing the element order in a subset of the cells). These limitations may be
addressed in future versions of the UFC interface.

17.7 Historical notes

UFC was introduced in 2007 when the first version of UFC (1.0) was released. The UFC interface
has been used by DOLFIN since the release of DOLFIN o0.7.0 in 2007. The 1.0 release of UFC
was followed by version 1.1 in 2008, version 1.2 in 2009, and version 1.4 in 2010. The new
releases have involved minor corrections to the initial UFC interface but have also introduced
some new functionality, like functions for evaluating multiple degrees of freedom (evaluate_dofs
in addition to evaluate_dof) and multiple basis functions (evaluate_basis_all in addition to
evaluate_basis). In contrast to other FEniCS components, few changes are made to the UFC
interface in order to maintain a stable interface for both form compilers (FFC and SFC) and
assemblers (DOLFIN).
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18 UFL: a finite element form language

By Martin Sandve Alnaes

The Unified Form Language — UFL [ , ] — is a domain specific language for the
declaration of finite element discretizations of variational forms and functionals. More precisely,
the language defines a flexible user interface for defining finite element spaces and expressions for
weak forms in a notation close to mathematical notation.

The FEniCS project provides a framework for building applications for solving partial differential
equations (PDEs). UFL is one of the core components of this framework. It defines the language
you express your PDEs in. It is the input language and front-end of the form compilers FFC and
SFC, which are covered in Chapter 12 and Chapter 16. The UFL implementation also provides
algorithms that the form compilers can use to simplify the compilation process. The output from
these form compilers is C++ [ , ] code that conforms to the UFC specification, which
is explained in Chapter 17. This code can be used with the C++/Python library DOLFIN, which is
covered in Chapter 11, to efficiently assemble linear systems and compute solutions to PDEs. Note
that this chapter does not cover how to actually solve equations defined in UFL. See Chapter 2 for
a tutorial on how to use the complete FEniCS framework to solve equations.

This chapter is intended both for the FEniCS user who wants to learn how to express her equations,
and for other FEniCS developers and technical users who wants to know how UFL works on the
inside. Therefore, the sections of this chapter are organized with an increasing amount of technical
details. Sections 18.1-18.5 give an overview of the language as seen by the end-user and is intended
for all audiences. Sections 18.6-18.9 explain the design of the implementation and dive into some
implementation details. Many details of the language has to be omitted in a text such as this, and
we refer to the UFL manual [ , ] for a more thorough description. Note that
this chapter refers to UFL version 0.5.4, and both the user interface and the implementation may
change in future versions.

Starting with a brief overview, we mention the main design goals for UFL and show an example
implementation of a non-trivial PDE in Section 18.1. Next we will look at how to define finite
element spaces in Section 18.2, followed by the overall structure of forms and their declaration in
Section 18.3. The main part of the language is concerned with defining expressions from a set of
data types and operators, which are discussed in Section 18.4. Operators applying to entire forms
is the topic of Section 18.5.

The technical part of the chapter begins with Section 18.6 which discusses the representation
of expressions. Building on the notation and data structures defined there, how to compute
derivatives is discussed in Section 18.7. Some central internal algorithms and key issues in their
implementation are discussed in Section 18.8. Implementation details, some of which are specific
to the programming language Python [ ], is the topic of Section 18.9. Finally,
Section 18.10 discusses future prospects of the UFL project.
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18.0.1 Related work

The combination of domain specific languages and symbolic computing with finite element
methods has been pursued from other angles in several other projects. Sundance [ , ,
,a] implements a symbolic engine directly in C++ to define variational forms, and has
support for automatic differentiation. The Life [ , ,a] project uses a domain
specific language embedded in C++, based on expression template techniques to specify variational
forms. SfePy [ , ] uses SymPy as a symbolic engine, extending it with finite
element methods. GetDP [ , ] is another project using a domain specific
language for variational forms. The Mathematica package AceGen [ , , ] uses the
symbolic capabilities of Mathematica to generate efficient code for finite element methods. All
these packages have in common a focus on high level descriptions of partial differential equations
to achieve higher human efficiency in the development of simulation software.
UFL almost resembles a library for symbolic computing, but its scope, goals and priorities are
different from generic symbolic computing projects such as GiNaC [ , ], Swiginac
[ , ] and SymPy [ , ]. Intended as a domain specific
language and form compiler frontend, UFL is not suitable for large scale symbolic computing.

18.1 Overview

18.1.1 Design goals

UFL is a unification, refinement and reimplementation of the form languages used in previous
versions of FFC and SFC. The development of this language has been motivated by several factors,
the most important being:

¢ A richer form language, especially for expressing nonlinear PDEs.
¢ Automatic differentiation of expressions and forms.

* Improving the performance of the form compiler technology to handle more complicated
equations efficiently.

UFL fulfills all these requirements, and by this it represents a major step forward in the capabilities
of the FEniCS project.
Tensor algebra and index notation support is modeled after the FFC form language and generalized
further. Several nonlinear operators and functions which only SFC supported before have been
included in the language. Differentiation of expressions and forms has become an integrated part
of the language, and is much easier to use than the way these features were implemented in SFC
before. In summary, UFL combines the best of FFC and SFC in one unified form language and
adds additional capabilities.
The efficiency of code generated by the new generation of form compilers based on UFL has been
verified to match previous form compiler benchmarks [ , ,

, ]. The form compilation process is now fast enough to blend into the regular application
build process. Complicated forms that previously required too much memory to compile, or took
tens of minutes or even hours to compile, now compiles in seconds with both SFC and FFC.

18.1.2 Motivational example

One major motivating example during the initial development of UFL has been the equations
for elasticity with large deformations. In particular, models of biological tissue use complicated
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hyperelastic constitutive laws with anisotropies and strong nonlinearities. To implement these
equations with FEniCS, all three design goals listed above had to be addressed. Below, one version
of the hyperelasticity equations and their corresponding UFL implementation is shown. Keep in
mind that this is only intended as an illustration of the close correspondence between the form
language and the natural formulation of the equations. The meaning of these equations is not
necessary for the reader to understand. Chapter 30 covers nonlinear elasticity in more detail. Note
that many other examples are distributed together with UFL.

In the formulation of the hyperelasticity equations presented here, the unknown function is the
displacement vector field u. The material coefficients c; and ¢, are scalar constants. The second
Piola-Kirchoff stress tensor S is computed from the strain energy function W(C). W defines the
constitutive law, here a simple Mooney-Rivlin law. The equations relating the displacement and
stresses read:

F=1I+gradu,
C =FTF,
IC = tr(C),
Il = %(tr(C)z —t(CC)), (18.1)
W = ci(Ic = 3) + 2 (1lc - 3),
IW
S _— 2%.

For simplicity in this example, we ignore external body and boundary forces and assume a
quasi-stationary situation, leading to the following mechanics problem. Find u such that

div(FS) =0, indx, (18.2)
u =ugy, onds. (18.3)

The finite element method is presented in Chapter 3, so we will only very briefly cover the steps
we take here. First we multiply Equation (18.2) with a test function ¢ € V, then integrate over the
domain (), and integrate by parts. The nonlinear variational problem then reads: Find u € V such
that

L(u; ) = /QFS rgrad¢pdx =0 Ve¢eV. (18.9)

Here we have omitted the coefficients ¢; and ¢, for brevity. Approximating the displacement field
as u ~ up =y i Uppy, where ¢ € Vj, = V are trial functions, and using Newtons’s method to solve
the nonlinear equations, we end up with a system of equations to solve

S AL (y; 9)

duig Aug = —L(up; ) V¢ € V. (18.5)

k=1
A bilinear form a(u; 1, ¢) corresponding to the left hand side of Equation (18.5) can be computed
automatically by UFL, such that

oL (uy;
a(up; i, ) :((_;Z(‘P) k=1,...,|V| (18.6)
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Figure 18.1: UFL implementation
of hyperelasticity equations with a
Mooney-Rivlin material law.

UFL code

# Finite element spaces
cell = tetrahedron
element = VectorElement("CG", cell, 1)

# Form arguments

phi@ = TestFunction(element)
phil = TrialFunction(element)
u = Coefficient(element)

cl = Constant(cell)

c2 = Constant(cell)

# Deformation gradient Fij = dXi/dxj
I = Identity(cell.d)
F =1+ grad(u)

# Right Cauchy-Green strain tensor C with invariants
C = variable(F.T+F)

IC=tr(C)

II_C = (I_C*#%2 - tr(C+C))/2

# Mooney-Rivlin constitutive law
W = c1+(I_C-3) + c2+(II_C-3)

# Second Piola-Kirchoff stress tensor
S = 2xdiff(W, C)

# Weak forms
L = inner(F+S, grad(phi0))xdx
a = derivative(L, u, phil)

Figure ?? shows an implementation of equations (18.1), (18.4) and (18.6) in UFL. Notice the close
relation between the mathematical notation and the UFL source code. In particular, note the
automated differentiation of both the constitutive law and the residual equation. The operator
diff can be applied to expressions to differentiate w.r.t designated variables such as C here, while
the operator derivative can be applied to entire forms to differentiate w.r.t. each coefficient of a
discrete function such as u. The combination of these features allows a new material law to be
implemented by simply changing W, the rest is automatic. In the following sections, the notation,
definitions and operators used in this implementation will be explained.

18.2  Defining finite element spaces

A polygonal cell is defined in UFL by a basic shape, and is declared by

UFL code
cell = Cell(shapestring)

Za7i V77

UFL defines a set of valid polygonal cell shapes: “interval”, “triangle”, “tetrahedron”, “quadri-
lateral”, and “hexahedron”. Cell objects of all shapes are predefined and can be used instead by
writing

UFL code

cell = tetrahedron

In the rest of this chapter, a variable name cell will be used where any cell is a valid argument, to
make the examples dimension independent wherever possible.
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UFL defines syntax for declaring finite element spaces, but does not know anything about the
actual polynomial basis or degrees of freedom. The polynomial basis is selected implicitly by
choosing among predefined basic element families and providing a polynomial degree, but UFL
only assumes that there exists a basis with a fixed ordering for each finite element space V},; that is,

V, = span {4)]'}?:1 ) (18.7)

Basic scalar elements can be combined to form vector elements or tensor elements, and elements
can easily be combined in arbitrary mixed element hierarchies.

The set of predefined' element family names in UFL includes “Lagrange” (short name “CG”),
representing scalar Lagrange finite elements (continuous piecewise polynomial functions), “Discon-
tinuous Lagrange” (short name “DG”), representing scalar discontinuous Lagrange finite elements
(discontinuous piecewise polynomial functions), and a range of other families that can be found in
the manual. Each family name has an associated short name for convenience. To print all valid
families to screen from Python, call show_elements().

The syntax for declaring elements is best explained with some examples.

UFL code

cell = tetrahedron

P FiniteElement("Lagrange", cell, 1)
V = VectorElement("Lagrange", cell, 2)
T = TensorElement("DG", cell, 0, symmetry=True)

TH
ME

V x P
MixedElement (T, V, P)

In the first line a polygonal cell is selected from the set of predefined cells. Then a scalar linear
Lagrange element P is declared, as well as a quadratic vector Lagrange element V. Next a symmetric
rank 2 tensor element T is defined, which is also piecewise constant on each cell. The code proceeds
to declare a mixed element TH, which combines the quadratic vector element V and the linear scalar
element P. This element is known as the Taylor-Hood element. Finally another mixed element with
three subelements is declared. Note that writing T * V * P would not result in a mixed element
with three direct subelements, but rather MixedElement (MixedElement (T, V), P).

18.3 Defining forms
Consider Poisson’s equation with two different boundary conditions on 9()y and 0(};,
a(w;u,v) = / wgradu - grad v dx, (18.8)
Q

L(f,g h;v) :/vadx+/mog21)ds+/an ho ds. (18.9)

These forms can be expressed in UFL as

UFL code

Q
|

= wxdot(grad(u), grad(v))=*dx
L = fxvedx + g#*2xv+xds(0) + hxvxds(1)

*Form compilers can register additional element families.
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where multiplication by the measures dx, ds(0) and ds(1) represent the integrals fQO(-) dx,

Jaq, (") ds, and [3 () ds respectively.

Forms expressed in UFL are intended for finite element discretization followed by compilation to
efficient code for computing the element tensor. Considering the above example, the bilinear form
a with one coefficient function w is assumed to be evaluated at a later point with a range of basis
functions and the coefficient function fixed, that is

V! = span {(/),1} , V2 =span {gb,%} , V2 =span {(pi’} , (18.10)
Vil

w=Y wpi, {wy} given, (18.11)
k=1

Aij:a(w;(p},c;)]g), i:1,...,|Vhl\, jzl,...,\th|. (18.12)

In general, UFL is designed to express forms of the following generalized form:
Nne e 7 .
a(wl,...,w”;(pl,...,(pr):2/ I,idx—l—Z/ I;zds—i-Z/ I dS. (18.13)
k=17% k=179% k=17Tk

Most of this chapter deals with ways to define the integrand expressions I¢, If and .. The rest of
the notation will be explained below.

The form arguments are divided in two groups, the basis functions ¢!, ...,¢" and the coefficient
functions w', ..., w". All {¢*} and {w*} are functions in some discrete function space with a basis.
Note that the actual basis functions {4);‘} and the coefficients {wy} are never known to UFL, but
we assume that the ordering of the basis for each finite element space is fixed. A fixed ordering
only matters when differentiating forms, explained in Section 18.7.

Each term of a valid form expression must be a scalar-valued expression integrated exactly once,
and they must be linear in {¢*}. Any term may have nonlinear dependencies on coefficient
functions. A form with one or two basis function arguments (r = 1,2) is called a linear or bilinear
form respectively, ignoring its dependency on coefficient functions. These will be assembled to
vectors and matrices when used in an application. A form depending only on coefficient functions
(r = 0) is called a functional, since it will be assembled to a real number. Multilinear forms where
r > 2 are supported but not as commonly used.

The entire domain is denoted (), the external boundary is denoted 0}, while the set of interior
facets of the triangulation is denoted I'. Subdomains are marked with a suffix, e.g., Qx C Q. As
mentioned above, integration is expressed by multiplication with a measure, and UFL defines the
measures dx, ds and dS. In summary, there are three kinds of integrals with corresponding UFL
representations

fQ )dx > (-)*dx(k), called a cell integral,
faQ ) ds <+ (-)*ds (k), called an exterior facet integral,

fr )dS > (-)*dS(k), called an interior facet integral,

Defining a different quadrature order for each term in a form can be achieved by attaching meta
data to measure objects, e.g.,

UFL code

dx02
dx14

dx(0, { "integration_order": 2 })
dx(1, { "integration_order": 4 })
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dx12 = dx(1, { "integration_order": 2 })
L = fxv+dx02 + g*v+dx1l4 + h*xvxdx12

Meta data can also be used to override other form compiler specific options separately for each
term. For more details on this feature see the manuals of UFL and the form compilers.

18.4 Defining expressions

Most of UFL deals with how to declare expressions such as the integrand expressions in Equa-
tion 18.13. The most basic expressions are terminal values, which do not depend on other
expressions. Other expressions are called operators, which are discussed in sections 18.4.2-18.4.5.
Terminal value types in UFL include form arguments (which is the topic of Section 18.4.1),
geometric quantities, and literal constants. Among the literal constants are scalar integer and
floating point values, as well as the d by d identity matrix I = Identity(d). To get unit vectors,
simply use rows or columns of the identity matrix, e.g., e®@ = I[0,:]. Similarly, I[1i,]] represents
the Kronecker delta function §;; (see Section 18.4.2 for details on index notation). Available
geometric values are the spatial coordinates x <> cell.x and the facet normal n <+ cell.n. The
geometric dimension is available as cell.d.

18.4.1 Form arguments

Basis functions and coefficient functions are represented by Argument and Coefficient respectively.
The ordering of the arguments to a form is decided by the order in which the form arguments
were declared in the UFL code. Each basis function argument represents any function in the basis
of its finite element space

¢ € {g}}, V) =span{¢]}. (18.14)

with the intention that the form is later evaluated for all ¢ such as in Equation (18.12). Each
coefficient function w represents a discrete function in some finite element space V},; it is usually a
sum of basis functions ¢y € V}, with coefficients wy

| Vi

w=Y wif. (18.15)
k=1

The exception is coefficient functions that can only be evaluated point-wise, which are declared
with a finite element with family “Quadrature”. Basis functions are declared for an arbitrary
element as in the following manner:

UFL code

phi = Argument(element)
v = TestFunction(element)
u = TrialFunction(element)

By using TestFunction and TrialFunction in declarations instead of Argument you can ignore
their relative ordering. The only time Argument is needed is for forms of arity r > 2.

Coefficient functions are declared similarly for an arbitrary element, and shorthand notation exists
for declaring piecewise constant functions:

UFL code

w = Coefficient(element)
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c = Constant(cell)
v = VectorConstant(cell)
M TensorConstant(cell)

If a form argument u in a mixed finite element space Vj, = V) x V] is desired, but the form is
more easily expressed using subfunctions 1y € V) and u; € V}}, you can split the mixed function
or basis function into its subfunctions in a generic way using split:

UFL code
V =V * V1
u = Coefficient (V)
ud, ul = split(u)

The split function can handle arbitrary mixed elements. Alternatively, a handy shorthand notation
for argument declaration followed by split is

UFL code

)
ud, ul = TrialFunctions(V)

vO, vl = TestFunctions(V
(
fo, f1l = Coefficients(V)

18.4.2 Index notation

UFL allows working with tensor expressions of arbitrary rank, using both tensor algebra and index
notation. A basic familiarity with tensor algebra and index notation is assumed. The focus here is
on how index notation is expressed in UFL.

Assuming a standard orthonormal Euclidean basis <€k>Z=1 for R, a vector can be expressed
with its scalar components in this basis. Tensors of rank two can be expressed using their scalar
components in a dyadic basis {¢; ® ej}f, =1 Arbitrary rank tensors can be expressed the same way,
as illustrated here.

d
v = (P (18.16)
k=1
d d
A= Z Z Aijei ®ej, (18.17)
i=1j=1
d d
C = 2 2 ZCijkel- ®ej R eg. (18.18)
121k

Here, v, A and C are rank 1, 2 and 3 tensors respectively. Indices are called free if they have no
assigned value, such as i in v;, and fixed if they have a fixed value such as 1 in v1. An expression
with free indices represents any expression you can get by assigning fixed values to the indices. The
expression A;; is scalar valued, and represents any component (i, j) of the tensor A in the Euclidean
basis. When working on paper, it is easy to switch between tensor notation (A) and index notation
(Ajj) with the knowledge that the tensor and its components are different representations of the
same physical quantity. In a programming language, we must express the operations mapping
from tensor to scalar components and back explicitly. Mapping from a tensor to its components,
for a rank 2 tensor defined as

Ajj=A:(ei®ej) (18.19)
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is accomplished using indexing with the notation A[1i, j]. Defining a tensor A from component
values A;; is defined as

A = Ajje;Qej, (18.20)

and is accomplished using the function as_tensor(Aij, (i,j)). To illustrate, consider the outer
product of two vectors A = u ® v = u;vje; ® ej, and the corresponding scalar components A;;. One
way to implement this is

UFL code
A = outer(u, v)
Aij = A[i, j]
Alternatively, the components of A can be expressed directly using index notation, such as
Ajj = u;vj. Ajj can then be mapped to A in the following manner:

UFL code
Aij = v[jl*uli]
A = as_tensor(Aij, (i, j))

These two pairs of lines are mathematically equivalent, and the result of either pair is that the
variable A represents the tensor A and the variable Aij represents the tensor A;;. Note that free
indices have no ordering, so their order of appearance in the expression v[j]*u[i] is insignificant.
Instead of as_tensor, the specialized functions as_vector and as_matrix can be used. Although
a rank two tensor was used for the examples above, the mappings generalize to arbitrary rank
tensors.

When indexing expressions, fixed indices can also be used such as in A[@, 1] which represents a
single scalar component. Fixed indices can also be mixed with free indices such as in A[0,1i]. In
addition, slices can be used in place of an index. An example of using slices is A[0, :] which is a
vector expression that represents row o of A. To create new indices, you can either make a single
one or make several at once:

UFL code
i = Index()
j, k, 1 = indices(3)

A set of indices i, j, k, Land p, g, r, s are predefined, and these should suffice for most applications.
If your components are not represented as an expression with free indices, but as separate unrelated
scalar expressions, you can build a tensor from them using as_tensor and its peers. As an example,
lets define a 2D rotation matrix and rotate a vector expression by 7:

UFL code
th = pi/2
A = as_matrix([[ cos(th), -sin(th)],
[ sin(th), cos(th)]1])
u = Axv

When indices are repeated in a term, summation over those indices is implied in accordance with
the Einstein convention. In particular, indices can be repeated when indexing a tensor of rank two
or higher (A[i,i]), when differentiating an expression with a free index (v[i].dx(i)), or when
multiplying two expressions with shared free indices (u[i]*v[i]).

Aii = ZAiir oiu; = Zviui, i = Zvi,i. (18.21)
i i i
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An expression Aij = A[i,]j] is represented internally using the Indexed class. Aij will reference
A, keeping the representation of the original tensor expression A unchanged. Implicit summation is
represented explicitly in the expression tree using the class IndexSum. Many algorithms become
easier to implement with this explicit representation, since e.g. a Product instance can never
implicitly represent a sum. More details on representation classes are found in Section 18.6.

18.4.3 Algebraic operators and functions

UFL defines a comprehensive set of operators that can be used for composing expressions. The
elementary algebraic operators +, -, *, / can be used between most UFL expressions with a few
limitations. Division requires a scalar expression with no free indices in the denominator. The
operands to a sum must have the same shape and set of free indices.

The multiplication operator * is valid between two scalars, a scalar and any tensor, a matrix and a
vector, and two matrices. Other products could have been defined, but for clarity we use tensor
algebra operators and index notation for those rare cases. A product of two expressions with
shared free indices implies summation over those indices, see Section 18.4.2 for more about index
notation.

Three often used operators are dot(a, b), inner(a, b), and outer(a, b). The dot product of two
tensors of arbitrary rank is the sum over the last index of the first tensor and the first index of the
second tensor. Some examples are

V- U= ViU, (18.22)
A-u = Ajuje;, (18.23)
A~ B = AyByjeie;, (18.24)
C- A= CijrAneiejer. (18.25)

The inner product is the sum over all indices, for example

VU= vju, (18.26)
A:B= AijBij/ (18.27)
C:D= Cijleijkl- (18.28)

Some examples of the outer product are

U Qu = viujeej, (18.29)
AQu= Aijukeiejek, (18.30)
A®B = AijBkleiejekel (18.31)

Other common tensor algebra operators are cross(u,v), transpose(A) (or A.T), tr(A), det(A),
inv(A), cofac(A), dev(A), skew(A), and sym(A). Most of these tensor algebra operators expect
tensors without free indices. The detailed definitions of these operators are found in the manual.
A set of common elementary functions operating on scalar expressions without free indices are
included, in particular abs (f), pow(f, g), sqrt(f), exp(f), In(f), sin(f), cos(f), and sign(f).

18.4.4 Differential operators

UFL implements derivatives w.r.t. three different kinds of variables. The most used kind is spatial
derivatives. Expressions can also be differentiated w.r.t. arbitrary user defined variables. And the
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final kind of derivatives are derivatives of a form or functional w.r.t. the coefficients of a discrete
function; that is, a Coefficient or Constant. Form derivatives are explained in Section 18.5.1.
Note that derivatives are not computed immediately when declared. A discussion of how deriva-
tives are computed is found in Section 18.7.

Spatial derivatives Basic spatial derivatives % can be expressed in two equivalent ways:

UFL code
df Dx(f, i)
df = f.dx(i)

Here, df represents the derivative of f in the spatial direction x;. The index i can either be an
integer, representing differentiation in one fixed spatial direction x;, or an Index, representing
differentiation in the direction of a free index. The notation f.dx (i) is intended to mirror the
index notation f;, which is shorthand for %. Repeated indices imply summation, such that the
divergence of a vector valued expression v can be written v; ;, or v[i].dx(1i).

Several common compound spatial derivative operators are defined, namely div, grad, curl and
rot (rot is a synonym for curl). Be aware that there are two common ways to define grad and div.
Let s be a scalar expression, v be a vector expression, and M be a tensor expression of rank 7. In

UFL, the gradient is then defined as

(grad(s)); = s, (18.32)
(grad(v))ij = Ui, (18.33)
(grad(M));, i x = Mi ik (18.34)

and the divergence is correspondingly defined as

div(v) = v; ;, (18.35)
(div(M)); ;=M (18.36)

1wl I

Thinking in terms of value shape, the gradient appends an axis to the end of the tensor shape of
its operand. Correspondingly, the divergence sums over the last index of its operand.

For 3D vector expressions, curl is defined in terms of the nabla operator and the cross product:

ad
V= Ekaka, (18.37)
curl(v) =V x v. (18.38)

For 2D vector and scalar expressions the definitions are:

curl(v) = v19 — o1, (18.39)
curl(f) = f1e0 — foer. (18.40)

User defined variables The second kind of differentiation variables are user-defined variables,
which can represent arbitrary expressions. Automating derivatives w.r.t. arbitrary quantities
is useful for several tasks, from differentiation of material laws to computing sensitivities. An
arbitrary expression ¢ can be assigned to a variable v. An expression f defined as a function of v
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can be differentiated f w.r.t. v:

v=g, (18.41)
f=f(v), (18.42)
(o) = ) (18.43)

Setting ¢ = sin(xg) and f = e?*, gives h = 20e”" =2 sin (xo)esi"* (%), which can be implemented as
follows:

UFL code
sin(cell.x[0])
variable(g)
exp(v*x*2)
diff(f, v)

o 4 < Q

Try running this code in a Python session and print the expressions. The result is

Python code
»>print v
var0(sin((x)[0]))
»>print h
d/d[var@(sin((x)[0]))] (exp((var@(sin((x)[0]))) ** 2))

Note that the variable has a label “var0”, and that h still represents the abstract derivative.
Section 18.7 explains how derivatives are computed.

18.4.5 Other operators

A few operators are provided for the implementation of discontinuous Galerkin methods. The
basic concept is restricting an expression to the positive or negative side of an interior facet, which
is expressed simply as v(’+") or v(’-") respectively. On top of this, the operators avg and jump
are implemented, defined as

. (v" +07), (18.44)

oo, (18.45)

avg(v) =
jump(v) =

SEENY

These operators can only be used when integrating over the interior facets (*dS).

The only control flow construct included in UFL is conditional expressions. A conditional expres-
sion takes on one of two values depending on the result of a boolean logic expression. The syntax
for this is

UFL code
f = conditional(condition, true_value, false_value)

which is interpreted as

t, if condition is true,

f= { (18.46)

f, otherwise.

The condition can be one of
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e lt(a, b) <> (a<b) ® gt(a, b) & (a>0D)
* le(a, b) &< (a<b) * ge(a, b) & (a>D)
* eq(a, b) & (a=0b) ® ne(a, b) & (a#b)

18.5 Form operators

Once you have defined some forms, there are several ways to compute related forms from them.
While operators in the previous section are used to define expressions, the operators discussed
in this section are applied to forms, producing new forms. Form operators can both make form
definitions more compact and reduce the chances of bugs since changes in the original form
will propagate to forms computed from it automatically. These form operators can be combined
arbitrarily; given a semi-linear form only a few lines are needed to compute the action of the
adjoint of the Jacobi. Since these computations are done prior to processing by the form compilers,
there is no overhead at run-time.

18.5.1  Differentiating forms

The form operator derivative declares the derivative of a form w.r.t. coefficients of a discrete
function (Coefficient). This functionality can be used for example to linearize your nonlinear
residual equation (linear form) automatically for use with the Newton-Raphson method. It can also
be applied multiple times, which is useful to derive a linear system from a convex functional, in
order to find the function that minimizes the functional. For non-trivial equations such expressions
can be tedious to calculate by hand. Other areas in which this feature can be useful include optimal
control and inverse methods, as well as sensitivity analysis.

In its simplest form, the declaration of the derivative of a form L w.r.t. the coefficients of a function
w reads

UFL code

a = derivative(L, w, u)

The form a depends on an additional basis function argument u, which must be in the same finite
element space as the function w. If the last argument is omitted, a new basis function argument is
created.

Let us step through an example of how to apply derivative twice to a functional to derive a linear
system. In the following, V}, is a finite element space with some basis , w is a function in V},, and
f = f(w) is a functional we want to minimize. Derived from f(w) is a linear form F(w;v), and a
bilinear form J(w; u,v).

Vir = span {¢x}, (18.47)

w(x) = ’l(vzhllwk%(x)f (18.48)

f: vh_—> R, (18.49)
Flw; ;) = af(.;(uf") i=1,..., |V, (18.50)
J(w; ¢, ¢) = M i=L..Vul, ¢€V (18.51)
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For a concrete functional f(w) = [, %wz dx, we can implement this as

UFL code
= TestFunction(element)
= TrialFunction(element)
= Coefficient(element)
= 0.5 * wx2 * dx
= derivative(f, w, v)
= derivative(F, w, u)

o m+h=E c<

This code declares two forms F and J. The linear form F represents the standard load vector wxvxdx
and the bilinear form J represents the mass matrix u*vx*dx.

Derivatives can also be defined w.r.t. coefficients of a function in a mixed finite element space.
Consider the Harmonic map equations derived from the functional

flx,A) = /Q gradx : grad x + Ax - xdx, (18.52)

where x is a function in a vector finite element space Vhd and A is a function in a scalar finite
element space V},. The linear and bilinear forms derived from the functional in Equation 18.52 have
basis function arguments in the mixed space V,f x Vj,. The implementation of these forms with
automatic linearization reads

UFL code
Vx = VectorElement("CG", triangle, 1)
Vy = FiniteElement("CG", triangle, 1)
u = Coefficient(Vx * Vy)
X, y = split(u)
f = inner(grad(x), grad(x))=*dx + yxdot(x,x)*dx
F = derivative(f, u)
J = derivative(F, u)

Note that the functional is expressed in terms of the subfunctions x and y, while the argument to
derivative must be the single mixed function u. In this example the basis function arguments to
derivative are omitted and thus provided automatically in the right function spaces.

Note that in computing derivatives of forms, we have assumed that

0 0

or in particular that the domain () is independent of w. Also, any coefficients other than w are
assumed independent of w. Furthermore, note that there is no restriction on the choice of element
in this framework, in particular arbitrary mixed elements are supported.

18.5.2  Adjoint

Another form operator is the adjoint a* of a bilinear form a, defined as a*(u, v) = a(v, ), which is
similar to taking the transpose of the assembled sparse matrix. In UFL this is implemented simply
by swapping the test and trial functions, and can be written using the adjoint form operator. An
example of its use on an anisotropic diffusion term looks like

UFL code
V = VectorElement("CG", cell, 1)
T = TensorElement("CG", cell, 1)
u = TrialFunction(V)
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v = TestFunction(V)
M = Coefficient(T)
a = M[1i,j] * u[k].dx(j) * v[k].dx(i) * dx
astar = adjoint(a)

which corresponds to

a(M;u,v) :/QMI-]-uk/jvkli dx, (18.54)

a*(M;u,v) =a(M;v,u) = / M;joy jug,i dx. (18.55)
Q

This automatic transformation is particularly useful if we need the adjoint of nonsymmetric bilinear
forms computed using derivative, since the explicit expressions for a are not at hand. Several of
the form operators below are most useful when used in conjunction with derivative.

18.5.3 Replacing functions

Evaluating a form with new definitions of form arguments can be done by replacing terminal
objects with other values. Lets say you have defined a form L that depends on some functions f
and g. You can then specialize the form by replacing these functions with other functions or fixed
values, such as

L(f,gv) = /Q(fz/(Zg))v dx, (18.56)
Ly(f,gv) = L(g,3;v) = /Q(gz/6)vdx. (18.57)
This feature is implemented with replace, as illustrated in this case:

UFL code
V = FiniteElement("CG", cell, 1)
v = TestFunction(V)
f = Coefficient (V)
g = Coefficient(V)
L = f+x2 / (2%g) * v * dx
replace(L, { f: g, g: 3})
g**2 / 6 * v x dx

-
w N
non

Here L2 and L3 represent exactly the same form. Since they depend only on g, the code generated
for these forms can be more efficient.

18.5.4 Action

In some applications the matrix is not needed explicitly, only the action of the matrix on a vector.
Assembling the resulting vector directly can be much more efficient than assembling the sparse
matrix and then performing the matrix-vector multiplication. Assume a is a bilinear form and w
is a Coefficient defined on the same finite element as the trial function in a. Let A denote the
sparse matrix that can be assembled from a. Then you can assemble the action of A on a vector
directly by defining a linear form L representing the action of a bilinear form a on a function w.
The notation for this is simply L = action(a, w), or even shorter L = ax*w.
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18.5.5 Splitting a system

If you prefer to write your PDEs with all terms on one side such as
a(u,v) — L(v) =0, (18.58)

you can declare forms with both linear and bilinear terms and split the equations into 2 and L
afterwards. A simple example is

UFL code
= FiniteElement("CG", cell, 1)
= TrialFunction(V)
= TestFunction(V)
f = Coefficient (V)
pde = uxv*dx - frvrdx
a, L = system(pde)

< ©c <

Here system is used to split the PDE into its bilinear and linear parts. Alternatively, lhs and rhs
can be used to obtain the two parts separately. Make note of the resulting sign of the linear part,
which corresponds to moving L to the right hand side in Equation (18.58).

18.5.6 Computing the sensitivity of a function

If you have found the solution u to Equation (18.58), and u depends on some constant scalar value
¢, you can compute the sensitivity of # w.r.t. changes in c. If u is represented by a coefficient vector
x that is the solution to the algebraic linear system Ax = b, the coefficients of g—‘c‘ are g—’C‘. Applying
% to Ax = b and using the chain rule, we can write

dx db OJA
g = & — gx, (1859)

and thus 3—’; can be found by solving the same algebraic linear system used to compute x, only with
a different right hand side. The linear form corresponding to the right hand side of Equation (18.59)
can be written

UFL code
u = Coefficient(element)
sL = diff(L, c) - action(diff(a, c), u)
or you can use the equivalent form transformation
UFL code

sL = sensitivity rhs(a, u, L, c)

Note that the solution u must be represented by a Coefficient, while u in a(u, v) is represented
by a Argument.

18.6  Expression representation

From a high level view, UFL is all about defining forms. Each form contains one or more scalar
integrand expressions, but the form representation is largely disconnected from the representation
of the integrand expressions. Indeed, most of the complexity of the UFL implementation is related
to expressing, representing, and manipulating expressions. The rest of this chapter will focus on
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expression representations and algorithms operating on them. These topics will be of little interest
to the average user of UFL, and more directed towards developers and curious technically oriented
users.

To reason about expression algorithms without the burden of implementation details, we need
an abstract notation for the structure of an expression. UFL expressions are representations
of programs, and the notation should allow us to see this connection. Below we will discuss
the properties of expressions both in terms of this abstract notation, and related to specific
implementation details.

18.6.1  The structure of an expression

The most basic expressions, which have no dependencies on other expressions, are called terminal
expressions. Other expressions result from applying some operator to one or more existing expres-
sions. Consider an arbitrary (non-terminal) expression z. This expression depends on a set of
terminal expressions {t;}, and is computed using a set of operators {f;}. If each subexpression
of z is labeled with an integer, an abstract program can be written to compute z by computing a
sequence of subexpressions (y;)?_; and setting z = y,,. Algorithm 5 shows such a program.

Algorithm 5 Program to compute an expression z.

fori=1,...,m:
y; = t; = terminal expression
fori=m+1,...,n:
Yi :fi(<yj>]'eji>
Z =1y

Each terminal expression t; is a literal constant or input argument to the program. This includes
coefficients, basis functions, and geometric quantities. A non-terminal subexpression y; is the
result of applying an operator f; to a sequence of previously computed expressions <yj>]. 3 where
J; is an ordered sequence of expression labels. Note that the order in which subexpressions must
be computed to produce the same value of z is not unique. For correctness we only require
j <iVje€7J,, such that all dependencies of a subexpression y; has been computed before y;. In
particular, all terminals are numbered first in this abstract algorithm for notational convenience
only.

The program to compute z can be represented as a graph, where each expression y; corresponds to
a graph vertex. There is a directed graph edge e = (i,j) from y; to y; if j € J;, that is if y; depends
on the value of y;. More formally, the graph G representing the computation of z consists of a set
of vertices V and a set of edges E defined by:

G =(V,E), (18.60)
V= (vi)ii1 = (Vi)iz1 (18.61)
E={e}=J {(ij)VjeT}. (18.62)

i=1

This graph is clearly directed, since dependencies have a direction. It is acyclic, since an expression
can only be constructed from existing expressions. Thus a UFL expression can be represented by a
directed acyclic graph (DAG). There are two ways this DAG can be represented in UFL. While
defining expressions, a linked representation called the expression tree is built. Technically this
is still a DAG since vertices can be reused in multiple subexpressions, but the representation
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Figure 18.2: Expression class hierar-
Expr chy.
Terminal Operator
Argument Inner

emphasizes the tree like structure of the DAG. The other representation is called the computational
graph, which closely mirrors the definition of G above. This representation is mostly useful for
form compilers. The details of these two DAG representations will be explained below. They both
share the representation of a vertex in the graph as an expression object, which will be explained
next.

18.6.2  Expression objects

Recall from Algorithm 5 that non-terminals are expressions y; = fi(<yj> . The operator f;

)
is represented by the class of the expression object, while the expressior]1 y; is represented by
the instance of this class. In the UFL implementation, each expression object is an instance of
some subclass of Expr. The class Expr is the superclass of a hierarchy containing all terminal
expression types and operator types supported by UFL. Expr has two direct subclasses, Terminal
and Operator, which divides the expression type hierarchy in two, as illustrated in Figure 18.2.
All expression objects are considered immutable; once constructed an expression object will never
be modified. Manipulating an expression should always result in a new object being created. The
immutable property ensures that expression objects can be reused and shared between expressions
without side effects in other parts of a program. This both reduces memory usage, avoids needless
copying of objects, and simplifies recognition of common subexpressions.

Calling e.operands() on an Expr object e representing y; returns a tuple with expression objects
representing <yj>]. 3, Note that this also applies to terminals where there are no outgoing edges

and t.operands() returns an empty tuple. Instead of modifying the operands of an expression
object, a new expression object of the same type can be constructed with modified operands using
e.reconstruct(operands), where operands is a tuple of expression objects. If the operands are the
same this function returns the original object, allowing many algorithms to save memory without
additional complications. The invariant e.reconstruct(e.operands()) == e should always hold.

18.6.3 Expression properties

In Section 18.4.2 the tensor algebra and index notation capabilities of UFL was discussed. Expres-
sions can be scalar or tensor-valued, with arbitrary rank and shape. Therefore, each expression
object e has a value shape e.shape(), which is a tuple of integers with the dimensions in each
tensor axis. Scalar expressions have shape (). Another important property is the set of free indices
in an expression, obtained as a tuple using e.free_indices(). Although the free indices have no
ordering, they are represented with a tuple of Index instances for simplicity. Thus the ordering
within the tuple carries no meaning.
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Figure 18.3: Expression tree for
gradu : grad v. Inner
Grad Grad
Argument(V, o) Argument(V, 1)

UFL expressions are referentially transparent with some exceptions. Referential transparency
means that a subexpression can be replaced by another representation of its value without changing
the meaning of the expression. A key point here is that the value of an expression in this context
includes the tensor shape and set of free indices. Another important point is that the derivative of
a function f(v) in a point, f'(v)|v=¢, depends on function values in the vicinity of v = g. The effect
of this dependency is that operator types matter when differentiating, not only the current value
of the differentiation variable. In particular, a Variable cannot be replaced by the expression it
represents, because diff depends on the Variable instance and not the expression it has the value
of. Similarly, replacing a Coefficient with some value will change the meaning of an expression
that contains derivatives w.r.t. function coefficients.

The following example illustrate the issue with Variable and diff.

UFL code

0
variable(e)
sin(v)

= diff(f, v)

Q -+ < 0
[}

Here v is a variable that takes on the value o, but sin(v) cannot be simplified to o since the
derivative of f then would be o. The correct result here is g = cos(v). Printing f and g gives the
strings sin(varl(0)) and d/d[varl(@)] (sin(varl(0))). Try just setting v = e and see how f
and g becomes zero.

18.6.4 Tree representation

The expression tree does not have a separate data structure. It is merely a way of viewing the
structure of an expression. Any expression object e can be seen as the root of a tree, where
e.operands () returns its children. If some of the children are equal, they will appear as many
times as they appear in the expression. Thus it is easy to traverse the tree nodes; that is, v; in the
DAG, but eventual reuse of subexpressions is not directly visible. Edges in the DAG does not
appear explicitly, and the list of vertices can only be obtained by traversing the tree recursively and
selecting unique objects.

An expression tree for the stiffness term grad u : grad v is illustrated in Figure 18.3. The terminals
u and v have no children, and the term grad u is itself represented by a tree with two nodes. Each
time an operator is applied to some expressions, it will return a new tree root that references its
operands. Note that the user will apply the functions grad and inner in her use of the language,
while the names Grad, Inner and Argument in this figure are the names of the Expr subclasses used
in UFL to represent the expression objects. In other words, taking the gradient of an expression
with grad(u) gives an expression representation Grad(u), and inner(a, b) gives an expression
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representation Inner(a, b). This separation of language and representation is merely a design
choice in the implementation of UFL.

18.6.5 Graph representation

When viewing an expression as a tree, the lists of all unique vertices and edges are not directly avail-
able. Representing the DAG more directly allows many algorithms to be simplified or optimized.
UFL includes tools to build an array based representation of the DAG, the computational graph,
from any expression. The computational graph G = V, E is a data structure based on flat arrays,
directly mirroring the definition of the graph in equations (18.60)-(18.62). This representation
gives direct access to dependencies between subexpressions, and allows easy iteration over unique
vertices. The graph is constructed easily with the lines:

Python code
from ufl.algorithms import Graph
G = Graph(expression)
V, E=G

One array (Python list) V is used to store the unique vertices (v;)"_; of the DAG. For each vertex
v; an expression node y; is stored to represent it. Thus the expression tree for each vertex is also
directly available, since each expression node is the root of its own expression tree. The edges are
stored in an array E with integer tuples (i,j) representing an edge from v; to vj; that is, v; is an
operand of v;. The vertex list in the graph is built using a postordering from a depth first traversal,
which guarantees that the vertices are topologically sorted such that j < i Vj € J;.

Let us look at an example of a computational graph. The following code defines a simple expression
and then prints the vertices and edges of its graph.

Python code
from ufl import x
cell = triangle
V = FiniteElement("CG", cell, 1)
= TrialFunction(V)
= TestFunction(V)
Constant(cell)
Coefficient(V)
c o+ F*x2 x u * v

® -+~ 0 < C
Il

from ufl.algorithms import Graph, partition

G = Graph(e)

V, E, =G

print "str(e) = %s\n" % str(e)

print "\n".join("V[%d] = %s" % (i, v) for (i, v) in enumerate(V)), "\n"
print "\n".join("E[%d] = %s" % (i, e) for (i, e) in enumerate(E)), "\n"

An excerpt of the program output is shown here:

Generated code

vVie] = v_{-2}

VI[7] vo{-1} * c_0 *x w_1 *x 2
VI8] = v_{-2} * v_{-1} * Cc_0 * w_1 *x 2

E[6] = (8, 0)
E[7] = (8, 7)
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The two last edges shown here represent the dependencies of vertex 8 on vertex 7 and o, since
vg = vpvy. Run the code to see the full output of this code. Try changing the expression and see
what the graph looks like.

From the edges E, related arrays can be computed efficiently; in particular the vertex indices of
dependencies of a vertex v; in both directions are useful:

‘Vbut - <ji>z:1/
Vin = <{]|1 € jj}>?:1

These arrays can be easily constructed for any expression:

(18.63)

Python code
Vin = G.Vin()
Vout = G.Vout()

Similar functions exist for obtaining indices into E for all incoming and outgoing edges. A nice
property of the computational graph built by UFL is that no two vertices will represent the same
identical expression. During graph building, subexpressions are inserted in a hash map (Python
dictionary) to achieve this. Some expression classes sort their arguments uniquely such that e.g.
axb and bxa will become the same vertex in the graph.

Free indices in expression nodes can complicate the interpretation of the linearized graph when
implementing some algorithms, because an expression object with free indices represents not one
value but a set of values, one for each permutation of the values its free indices can have. One
solution to this can be to apply expand_indices before constructing the graph, which will replace
all expressions with free indices with equivalent expressions with explicit fixed indices. Note
however that free indices cannot be regained after expansion. See Section 18.8.3 for more about
this transformation.

18.6.6  Partitioning

UFL is intended as a front-end for form compilers. Since the end goal is generation of code from
expressions, some utilities are provided for the code generation process. In principle, correct
code can be generated for an expression from its computational graph simply by iterating over
the vertices and generating code for each operation separately, basically mirroring Algorithm 5.
However, a good form compiler should be able to produce better code. UFL provides utilities
for partitioning the computational graph into subgraphs (partitions) based on dependencies of
subexpressions, which enables quadrature based form compilers to easily place subexpressions
inside the right sets of loops. The function partition implements this feature. Each partition
is represented by a simple array of vertex indices, and each partition is labeled with a set of
dependencies. By default, this set of dependencies use the strings "x’, 'c’, and 'v%d’ to denote
dependencies on spatial coordinates, cell specific quantities, and form arguments (not coefficients)
respectively.

The following example code partitions the graph built above, and prints vertices in groups based
on their dependencies.

Python code
partitions, keys = partition(G)
for deps in sorted(partitions.keys()):
P = partitions[deps]
print "The following depends on", tuple(deps)
for 1 in sorted(P):
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print "V[%d] = %s" % (i, V[i])

The output text from the program is included below. Notice that the literal constant 2 has no
dependencies. Expressions in this partition can always be precomputed compile time. The
Constant c_0 depends on data which varies for each cell, represented by ¢’ in the dependency set,
but not on spatial coordinates, so it can be placed outside the quadrature loop. The Function w_1
and expressions depending on it depends in addition on the spatial coordinates, represented by "x’,
and therefore needs to be computed for each quadrature point. Expressions depending on only the
test or trial function are marked with 'v%d’ where the number is the internal counter used by UFL
to distinguish between arguments. Note that test and trial functions are here marked as depending
on the spatial coordinates, but not on cell dependent quantities. This is only true for finite elements
defined on a local reference element, in which case the basis functions can be precomputed in
each quadrature point. The actual runtime dependencies of a basis function in a finite element
space is unknown to UFL, which is why the partition function takes an optional multifunction
argument such that the form compiler writer can provide more accurate dependencies. We refer to
the implementation of partition for such implementation details.

Generated code
The following depends on ()

V[4] = 2

The following depends on (’'c’,)
V[2] = c0

The following depends on (’'x’', 'c’)
V[3] = w_1

VI5] = w_1 %% 2
V[6] = c 0 x w1 % 2
The following depends on ('x’', 'v-1'")

V[1] = v_{-1}

The following depends on (’'x’', 'c’, 'v-1")

VI7] = v_{-1} * c_0 * w.1 *x 2

The following depends on (’'x’', 'v-2")

viel = v_{-2}

The following depends on (’'x’', 'c’, 'v-2', 'v-1")

VI8] = v_{-2} * v_{-1} * c_0 % w_1 *x 2

18.7 Computing derivatives

When any kind of derivative expression is declared by the end-user of the form language, an
expression object is constructed to represent it, but nothing is computed. The type of this
expression object is a subclass of Derivative. Before low level code can be generated from the
derivative expression, some kind of algorithm to evaluate derivatives must be applied, since
differential operators are not available natively in low level languages such as C++. Computing
exact derivatives is important, which rules out approximations by divided differences. Several
alternative algorithms exist for computing exact derivatives. All relevant algorithms are based
on the chain rule combined with differentiation rules for each expression object type. The main
differences between the algorithms are in the extent of which subexpressions are reused, and in
the way subexpressions are accumulated.

Mixing derivative computation into the code generation strategy of each form compiler would
lead to a significant duplication of implementation effort. To separate concerns and keep the code
manageable, differentiation is implemented as part of UFL in such a way that the form compilers
are independent of the differentiation strategy chosen in UFL. Therefore, it is advantageous to use
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the same representation for the evaluated derivative expressions as for any other expression. Before
expressions are interpreted by a form compiler, differential operators should be evaluated such that
the only operators left are non-differential operators. An exception is made for spatial derivatives
of terminals which are unknown to UFL because they are provided by the form compilers.
Below, the differences and similarities between some of the simplest algorithms are discussed.
After the algorithm currently implemented in UFL has been explained, extensions to tensor and
index notation and higher order derivatives are discussed. Finally, the section is closed with some
remarks about the differentiation rules for terminal expressions.

18.7.1 Approaches to computing derivatives

Algorithms for computing derivatives are designed with different end goals in mind. Symbolic
Differentiation (SD) takes as input a single symbolic expression and produces a new symbolic
expression for its derivative. Automatic Differentiation (AD) takes as input a program to compute
a function and produces a new program to compute the derivative of the function. Several variants
of AD algorithms exist, the two most common being Forward Mode AD and Reverse Mode
AD [ , ]. More advanced algorithms exist, and is an active research topic. A UFL
expression is a symbolic expression, represented by an expression tree. But the expression tree is a
directed acyclic graph that represents a program to evaluate said expression. Thus it seems the
line between SD and AD becomes less distinct in this context.

Naively applied, SD can result in huge expressions, which can both require a lot of memory
during the computation and be highly inefficient if written to code directly. However, some
illustrations of the inefficiency of symbolic differentiation, such as in [ ], are based on
computing closed form expressions of derivatives in some stand-alone computer algebra system
(CAS). Copying the resulting large expressions directly into a computer code can lead to very
inefficient code. The compiler may not be able to detect common subexpressions, in particular if
simplification and rewriting rules in the CAS has changed the structure of subexpressions with a
potential for reuse.

In general, AD is capable of handling algorithms that SD can not. A tool for applying AD to
a generic source code must handle many complications such as subroutines, global variables,
arbitrary loops and branches [ , , , , ]. Since the
support for program flow constructs in UFL is very limited, the AD implementation in UFL will
not run into such complications. In Section 18.7.2 the similarity between SD and forward mode
AD in the context of UFL is explained in more detail.

18.7.2  Forward mode automatic differentiation

Recall Algorithm 5, which represents a program for computing an expression z from a set of
terminal values {t;} and a set of elementary operations {f;}. Assume for a moment that there
are no differential operators among {f;}. The algorithm can then be extended to compute the
derivative %, where v represents a differentiation variable of any kind. This extension gives
Algorithm 6.

This way of extending a program to simultaneously compute the expression z and its derivative %
is called forward mode automatic differentiation (AD). By renaming y; and % to a new sequence
of values <§]~>7=1, Algorithm 6 can be rewritten as shown in Algorithm 7, which is isomorphic to
Algorithm 5 (they have exactly the same structure).

Since the program in Algorithm 5 can be represented as a DAG, and Algorithm 7 is isomorphic to

Algorithm 5, the program in Algorithm 7 can also be represented as a DAG. Thus a program to
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Algorithm 6 Forward mode AD on Algorithm 5.

fori=1,...,m:

yi =t
dyi _ d;
dv — dv

fori=m+1,...,n:
yi = fil{¥))jes,)

dy; of; d
yf_zkej fi dyx

v — i Iy do
Z =Yy

dz _ dyn
dv — dou

compute % can be represented by an expression tree built from terminal values and non-differential
operators.

The currently implemented algorithm for computing derivatives in UFL follows forward mode
AD closely. Since the result is a new expression tree, the algorithm can also be called symbolic
differentiation. In this context, the differences between the two are implementation details. To
ensure that we can reuse expressions properly, simplification rules in UFL avoids modifying
the operands of an operator. Naturally repeated patterns in the expression can therefore be
detected easily by the form compilers. Efficient common subexpression elimination can then be
implemented by placing subexpressions in a hash map. However, there are simplifications such as
0+ f —0and 1% f — f, called constant folding, which simplify the result of the differentiation
algorithm automatically as it is being constructed. These simplifications are crucial for the memory
use during derivative computations, and the performance of the resulting program.

18.7.3 Extensions to tensors and indexed expressions

So far we have not considered derivatives of non-scalar expression and expressions with free
indices. This issue does not affect the overall algorithms, but it does affect the local derivative rules
for each expression type.

Consider the expression diff(A, B) with A and B matrix expressions. The meaning of derivatives
of tensors w.r.t. to tensors is easily defined via index notation, which is heavily used within the
differentiation rules:

dA  dAj

9B ~ By ei®ej e Qe (18.64)

Derivatives of subexpressions are frequently evaluated to literal constants. For indexed expres-
sions, it is important that free indices are propagated correctly with the derivatives. Therefore,
differentiated expressions will some times include literal constants annotated with free indices.

There is one rare and tricky corner case when an index sum binds an index i such as in (v;7;)
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and the derivative w.r.t. x; is attempted. The simplest example of this is the expression (v;7;) ;,
which has one free index j. If j is replaced by i, the expression can still be well defined, but you
would never write (v;v;) ; manually. If the expression in the parenthesis is defined in a variable
e = v[ilxv[i], the expression e.dx (i) looks innocent. However, this will cause problems as
derivatives (including the index i) are propagated up to terminals. If this case is encountered in
the current implementation of UFL, it will be detected and an error message will be triggered. To
work around the problem, simply use different index instances. In a future version of UFL, this
case may be handled by relabeling indices to change any expression (¥; ¢;) ; into (¥; ¢;) .

18.7.4 Higher order derivatives

A simple forward mode AD implementation such as Algorithm 6 only considers one differenti-
ation variable. Higher order or nested differential operators must also be supported, with any
combination of differentiation variables. A simple example illustrating such an expression can be

d (d d
1= g (0255000 (18.65)

Considerations for implementations of nested derivatives in a functional® framework have been
explored in several papers [ , , , ,

, 2008].
In the current UFL implementation this is solved in a different fashion. Considering Equa-
tion (18.65), the approach is simply to compute the innermost derivatives 4 f(x) and % g(x,y)
first, and then computing the outer derivatives. This approach is possible because the result of a
derivative computation is represented as an expression tree just as any other expression. Mainly
this approach was chosen because it is simple to implement and easy to verify. Whether other
approaches are faster has not been investigated. Furthermore, alternative AD algorithms such as
reverse mode can be experimented with in the future without concern for nested derivatives in the
first implementations.
An outer controller function apply_ad handles the application of a single variable AD routine
to an expression with possibly nested derivatives. The AD routine is a function accepting a
derivative expression node and returning an expression where the single variable derivative has
been computed. This routine can be an implementation of Algorithm 7. The result of apply_ad is
mathematically equivalent to the input, but with no derivative expression nodes left3.
The function apply_ad works by traversing the tree recursively in post-order, discovering subtrees
where the root represents a derivative, and applying the provided AD routine to the derivative
subtree. Since the children of the derivative node has already been visited by apply_ad, they are
guaranteed to be free of derivative expression nodes and the AD routine only needs to handle the
case discussed above with algorithms 6 and 7.
The complexity of the ad_routine should be O(n), with 1 being the size of the expression tree.
The size of the derivative expression is proportional to the original expression. If there are d
derivative expression nodes in the expression tree, the complexity of this algorithm is O(dn),
since ad_routine is applied to subexpressions d times. As a result the worst case complexity of
apply_ad is O(n?), but in practice d < n. A recursive implementation of this algorithm is shown
in Figure 18.4.

2Functional as in functional languages.
3Except direct spatial derivatives of form arguments, but that is an implementation detail.
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Figure 18.4: Simple implementation of

Python code recursive apply_ad procedure.

def apply_ad(e, ad_routine):

if isinstance(e, Terminal):
return e

ops = [apply_ad(o, ad_routine) for o in
e.operands()]

e = e.reconstruct(*ops)

if isinstance(e, Derivative):
e = ad_routine(e)

return e

18.7.5 Basic differentiation rules

To implement the algorithm descriptions above, we must implement differentiation rules for all
expression node types. Derivatives of operators can be implemented as generic rules independent
of the differentiation variable, and these are well known and not mentioned here. Derivatives
of terminals depend on the differentiation variable type. Derivatives of literal constants are of
course always zero, and only spatial derivatives of geometric quantities are non-zero. Since form
arguments are unknown to UFL (they are provided externally by the form compilers), their spatial

derivatives (8 and aw ) are considered input arguments as well. In all derivative computations,
the assumptlon is made that form coefficients have no dependencies on the differentiation variable.
Two more cases needs explaining, the user defined variables and derivatives w.r.t. the coefficients

of a Coefficient.

If v is a Variable, then we define gt = 0 for any terminal t. If v is scalar valued then g—z =

Furthermore, if V is a tensor valued Variable, its derivative w.r.t. itself is

dv. 4V

i Vi el Qe ®ep Qe = djdje; ej Qex ey, (18.66)

In addition, the derivative of a variable w.r.t. something else than itself equals the derivative of the
expression it represents:

v=g, (1867)
dv dg
— =1 (18.68)

Finally, we consider the operator derivative, which represents differentiation w.r.t. all coefficients
{wy} of a function w. Consider an object element which represents a finite element space Vj, with
a basis {¢ }. Next consider form arguments defined in this space:

UFL code

v = Argument(element)
w = Coefficient(element)

The Argument instance v represents any v € {¢}, while the Coefficient instance w represents
the sum

w=Y wegy(x). (18.69)
k
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The derivative of w w.r.t. any wy, is the corresponding basis function in V;,,

Jw

— = k=1,... .
awk (Pkr ’ ’ |Vh |/ (18 70)
(18.71)

which can be represented by v, since
|Vl
Vil _ < Jw >

v E = — . (18.72
<¢k>k_1 awk 1 7 )

Note that v should be a basis function instance that has not already been used in the form.

18.8 Algorithms

In this section, some central algorithms and key implementation issues are discussed, much of
which relates to the Python programming language. Thus, this section is mainly intended for
developers and others who need to relate to UFL on a technical level. Python users may also find
some of the techniques here interesting.

18.8.1  Effective tree traversal in Python
Applying some action to all nodes in a tree is naturally expressed using recursion:

Python code
def walk(expression, pre_action, post_action):
pre_action(expression)
for o in expression.operands():
walk(o)
post_action(expression)

This implementation simultaneously covers pre-order traversal, where each node is visited before
its children, and post-order traversal, where each node is visited after its children.

A more “pythonic” way to implement iteration over a collection of nodes is using generators. A
minimal implementation of this could be

Python code
def post_traversal(root):
for o in root.operands():
yield post_traversal(o)
yield root

which then enables the natural Python syntax for iteration over expression nodes:

Python code

for e in post_traversal(expression):
post_action(e)

For efficiency, the actual implementation of post_traversal in UFL is not using recursion. Function
calls are very expensive in Python, which makes the non-recursive implementation an order of
magnitude faster than the above.
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18.8.2  Type based function dispatch in Python

A common task in both symbolic computing and compiler implementation is the selection of some
operation based on the type of an expression node. For a selected few operations, this is done
using overloading of functions in the subclasses of Expr, but this is not suitable for all operations.
In many cases type-specific operations are better implemented together in the algorithm instead
of distributed across class definitions. This implementation pattern is called the Visitor pattern
[ , ]. The implementation in UFL is somewhat different from the patterns used in
a statically typed language such as C++.

One way to implement type based operation selection is to use a type switch, or a sequence of
if-tests such as this:

Python code

if isinstance(expression, IntValue):
result = int_operation(expression)
elif isinstance(expression, Sum):
result = sum_operation(expression)
# etc.

There are several problems with this approach, one of which is efficiency when there are many
types to check. A type based function dispatch mechanism with efficiency independent of
the number of types is implemented as an alternative through the class MultiFunction. The
underlying mechanism is a dictionary lookup (which is O(1)) based on the type of the input
argument, followed by a call to the function found in the dictionary. The lookup table is built in the
MultiFunction constructor only once. Functions to insert in the table are discovered automatically
using the introspection capabilities of Python.

A multifunction is declared as a subclass of MultiFunction. For each type that should be handled
particularly, a member function is declared in the subclass. The Expr classes use the CamelCaps
naming convention, which is automatically converted to underscore_notation for corresponding
function names, such as IndexSum and index_sum. If a handler function is not declared for a type,
the closest superclass handler function is used instead. Note that the MultiFunction implementa-
tion is specialized to types in the Expr class hierarchy. The declaration and use of a multifunction
is illustrated in Figure 18.5. Note that argument and sum will handle instances of the exact types
Argument and Sum, while terminal and operator will handle the types SpatialCoordinate and
Product since they have no specific handlers.

18.8.3 Implementing expression transformations

Many transformations of expressions can be implemented recursively with some type-specific
operation applied to each expression node. Examples of operations are converting an expression
node to a string representation, to an expression representation using an symbolic external library,
or to a UFL representation with some different properties. A simple variant of this pattern can be
implemented using a multifunction to represent the type-specific operation:

Python code
def apply(e, multifunction):
ops = [apply(o, multifunction) for o in e.operands()]
return multifunction(e, +ops)

The basic idea is as follows. Given an expression node e, begin with applying the transformation
to each child node. Then return the result of some operation specialized according to the type of e,
using the already transformed children as input.
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Figure 18.5: Example declaration and
use of a multifunction.

class ExampleFunction(MultiFunction):

def __init__(self):
MultiFunction.__init__ (self)

def terminal(self, expression):

return "Got a Terminal subtype %s." %
type(expression)

def operator(self, expression):

return "Got an Operator subtype %s." %
type(expression)

def argument(self, expression):

return "Got an Argument."

def sum(self, expression):

return "Got a Sum."

m = ExampleFunction()

cell = triangle

element = FiniteElement("CG", cell, 1)
x = cell.x

print m(Argument(element))

print m(x)

print m(x[0] + x[1])

print m(x[0] * x[1])

Python code

339

The Transformer class implements this pattern. Defining a new algorithm using this pattern
involves declaring a Transformer subclass, and implementing the type specific operations as
member functions of this class just as with MultiFunction. The difference is that member functions
take one additional argument for each operand of the expression node. The transformed child
nodes are supplied as these additional arguments. The following code replaces terminal objects
with objects found in a dictionary mapping, and reconstructs operators with the transformed
expression trees. The algorithm is applied to an expression by calling the function visit, named

after the similar Visitor pattern.

class Replacer(Transformer):
def __init__(self, mapping):
Transformer.__init__(self)
self.mapping = mapping
def operator(self, e, *ops):
return e.reconstruct(*ops)
def terminal(self, e):
return self.mapping.get(e, e)

Constant(triangle)
Replacer({f: f*x2})
r.visit(2+f)

S
]

Python code

After running this code the result is ¢ = 2f2. The actual implementation of the replace function is

similar to this code.
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In some cases, child nodes should not be visited before their parent node. This distinction is
easily expressed using Transformer, simply by omitting the member function arguments for the
transformed operands. See the source code for many examples of algorithms using this pattern.

18.8.4 Important transformations

There are many ways in which expression representations can be manipulated. Here, we describe
three particularly important transformations. Note that each of these algorithms removes some ab-
stractions, and hence may remove some opportunities for analysis or optimization. To demonstrate
their effect, each transformation will be applied below to the expression

a = grad(fu) - grad v. (18.73)

At the end of the section, some example code is given to demonstrate more representation details.
Some operators in UFL are termed “compound” operators, meaning they can be represented by
other more elementary operators. Try defining an expression a = dot(grad(f*u), grad(v)), and
print repr(a). As you will see, the representation of a is Dot (Grad(Product(f, u)), Grad(v)),
with some more details in place of f, u and v. By representing the gradient directly with a high
level type Grad instead of more low level types, the input expressions are easier to recognize in the
representation, and rendering of expressions to for example IAIEX format can show the original
compound operators as written by the end-user. However, since many algorithms must implement
actions for each operator type, the function expand_compounds is used to replace all expression
nodes of “compound” types with equivalent expressions using basic types. When this operation is
applied to the input forms from the user, algorithms in both UFL and the form compilers can still
be written purely in terms of more basic operators. Expanding the compound expressions from
Equation (18.73) results in the expression

v d(u
Zaxl 8xl ' (18.74)

Another important transformation is expand_derivatives, which applies automatic differentiation
to expressions, recursively and for all kinds of derivatives. The end result is that most derivatives
are evaluated, and the only derivative operator types left in the expression tree applies to terminals.
The precondition for this algorithm is that expand_compounds has been applied. Expanding the
derivatives in a, from Equation (18.74) gives us

Za Bxl +f ax) (18.75)

Index notation and the IndexSum expression node type complicate interpretation of an expression
tree somewhat, in particular in expressions with nested index sums. Since expressions with
free indices will take on multiple values, each expression object represents not only one value
but a set of values. The transformation expand_indices then comes in handy. The precondition
for this algorithm is that expand_compounds and expand_derivatives have been applied. The
postcondition of this algorithm is that there are no free indices left in the expression. Expanding
the indices in Equation (18.75) finally gives

o af v of

”i:aTco< g f8x0)+ﬁ( P faxl) (18.76)
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We started with the higher level concepts gradient and dot product in Equation (18.73), and ended
with only scalar addition, multiplication, and partial derivatives of the form arguments. A form
compiler will typically start with a; or a;, insert values for the argument derivatives, apply some
other transformations, before finally generating code.

Some example code to play around with should help in understanding what these algorithms do
at the expression representation level. Since the printed output from this code is a bit lengthy, only
key aspects of the output is repeated below. Copy this code to a python file or run it in a python
interpreter to see the full output.

Python code
from ufl import *
V = FiniteElement("CG", triangle, 1)
u = TestFunction(V)
v = TrialFunction(V)
f = Coefficient(V)

# Note no *dx! This is an expression, not a form.
a = dot(grad(f * u), grad(v))

from ufl.algorithms import =
ac = expand_compounds(a)

ad = expand_derivatives(ac)
ai = expand_indices(ad)

print "\na: ", str(a), "\n", tree_format(a)
print "\nac:", str(ac), "\n", tree_format(ac)
print "\nad:", str(ad), "\n", tree_format(ad)
print "\nai:", str(ai), "\n", tree_format(ai)

The print output showing a is (with the details of the finite element object cut away for shorter
lines):

Output
a: (grad(v_{-2} * w_0)) . (grad(v_{-1}))
Dot
(
Grad
Product
(
Argument (FiniteElement(...), -2)
Coefficient(FiniteElement(...), 0)
)
Grad

Argument (FiniteElement(...), -1)
)

The arguments labeled -1 and -2 refer to v and u respectively.
In ac, the Dot product has been expanded to an IndexSum of a Product with two Indexed operands:

Output
IndexSum

(
Product

(
Indexed

(

MultiIndex((Index(10),), {Index(10): 2})
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Indexed

(

MultiIndex((Index(10),), {Index(10): 2})
)
)
MultiIndex((Index(10),), {Index(10): 2})
)

The somewhat complex looking expression MultiIndex((Index(10),), {Index(10): 2}) canbe
read simply as “index named i1p, bound to an axis with dimension 2”.

Zooming in to one of the ... lines above, the representation of grad(fu) must still keep the vector
shape after being transformed to more basic expressions, which is why the SpatialDerivative
object is wrapped in a ComponentTensor object:

Output

ComponentTensor
(
SpatialDerivative
(
Product
(
u
f
)
MultiIndex((Index(8),), {Index(8): 2})
)
MultiIndex((Index(8),), {Index(8): 2})
)

A common pattern occurs in the algorithmically expanded expressions:

Output

Indexed
(
ComponentTensor

(

MultiIndex((Index(8),), {Index(8): 2})
)
MultiIndex((Index(10),), {Index(10): 2})
)

This pattern acts as a relabeling of the index objects, renaming ig from inside ... to ijg on the

outside. When looking at the print of ad, the result of the chain rule ((fu)" = uf’ + fu’) can be
seen as the Sum of two Product objects.

Output

Sum

Product
(
u
SpatialDerivative
(
f

MultiIndex((Index(8),), {Index(8): 2})
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)
Product

(
f
SpatialDerivative

(
u
MultiIndex((Index(8),), {Index(8): 2})

)

Finally after index expansion in ai (not shown here), no free Index objects are left, but instead
a lot of FixedIndex objects can be seen in the print of ai. Looking through the full output from
the example code above is strongly encouraged if you want a good understanding of the three
transformations shown here.

18.8.5 Evaluating expressions

Even though UFL expressions are intended to be compiled by form compilers, it can be useful to
evaluate them to floating point values directly. In particular, this makes testing and debugging of
UFL much easier, and is used extensively in the unit tests. To evaluate an UFL expression, values
of form arguments and geometric quantities must be specified. Expressions depending only on
spatial coordinates can be evaluated by passing a tuple with the coordinates to the call operator.
The following code which can be copied directly into an interactive Python session shows the
syntax:

Python code
from ufl import *
cell = triangle
x = cell.x
e = x[0] + x[1]
print e((0.5, 0.7)) # prints 1.2

Other terminals can be specified using a dictionary that maps from terminal instances to values.
This code extends the above code with a mapping;:

Python code
c = Constant(cell)
e =c * (x[0] + x[1])
print e((0.5, 0.7), { c: 10 }) # prints 12.0

If functions and basis functions depend on the spatial coordinates, the mapping can specify a
Python callable instead of a literal constant. The callable must take the spatial coordinates as input
and return a floating point value. If the function being mapped is a vector function, the callable
must return a tuple of values instead. These extensions can be seen in the following code:

Python code

element = VectorElement("CG", triangle, 1)
c = Constant(triangle)
f = Coefficient(element)
e =c x (f[0] + f[1])
def fh(x):

return (x[0], x[1])
print e((0.5, 0.7), { c: 10, f: fh }) # prints 12.0
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To use expression evaluation for validating that the derivative computations are correct, spatial
derivatives of form arguments can also be specified. The callable must then take a second argument
which is called with a tuple of integers specifying the spatial directions in which to differentiate. A
final example code computing g2 + g,zo + g,zl for g = xpx7 is shown below.

Python code
element = FiniteElement("CG", triangle, 1)
g = Coefficient(element)
e = g#*2 + g.dx(0)**2 + g.dx(1)*x2
def gh(x, der=()):

if der == : return x[0] * x[1]
): return x[1]
if der == ): return x[0]

)
()
if der == (0
(1

print e((2, 3), { g: gh }) # prints 49

18.8.6 Viewing expressions

Expressions can be formatted in various ways for inspection, which is particularly useful while
debugging. The Python built in string conversion operator str(e) provides a compact human
readable string. If you type print e in an interactive Python session, str(e) is shown. An-
other Python built in string operator is repr(e). UFL implements repr correctly such that e ==
eval(repr(e)) for any expression e. The string repr(e) reflects all the exact representation types
used in an expression, and can therefore be useful for debugging. Another formatting function
is tree_format(e), which produces an indented multi-line string that shows the tree structure of
an expression clearly, as opposed to repr which can return quite long and hard to read strings.
Information about formatting of expressions as I£IEX and the dot graph visualization format can
be found in the manual.

18.9 Implementation issues

18.9.1 Python as a basis for a domain specific language

Many of the implementation details detailed in this section are influenced by the initial choice of
implementing UFL as an embedded language in Python. Therefore some words about why Python
is suitable for this, and why not, are appropriate here.

Python provides a simple syntax that is often said to be close to pseudo-code. This is a good
starting point for a domain specific language. Object orientation and operator overloading is
well supported, and this is fundamental to the design of UFL. The functional programming
features of Python (such as generator expressions) are useful in the implementation of algorithms
and form compilers. The built-in data structures list, dict and set play a central role in fast
implementations of scalable algorithms.

There is one problem with operator overloading in Python, and that is the comparison operators.
The problem stems from the fact that __eq__ or __cmp__ are used by the built-in data structures
dictionary and set to compare keys, meaning that a == b must return a boolean value for Expr
to be used as keys. The result is that __eq__ can not be overloaded to return some Expr type
representation such as Equals(a, b) for later processing by form compilers. The other problem is
that and and or cannot be overloaded, and therefore cannot be used in conditional expressions.
There are good reasons for these design choices in Python. This conflict is the reason for the
somewhat non-intuitive design of the comparison operators in UFL.
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18.9.2  Ensuring unique form signatures

The form compilers need to compute a unique signature of each form for use in a cache system
to avoid recompilations. A convenient way to define a signature is using repr(form), since the
definition of this in Python is eval(repr(form)) == form. Therefore __repr__ is implemented for
all Expr subclasses.

Some forms are mathematically equivalent even though their representation is not exactly the
same. UFL does not use a truly canonical form for its expressions, but takes some measures to
ensure that trivially equivalent forms are recognized as such.

Some of the types in the Expr class hierarchy (subclasses of Counted), has a global counter to
identify the order in which they were created. This counter is used by form arguments (both
Argument and Coefficient) to identify their relative ordering in the argument list of the form.
Other counted types are Index and Label, which only use the counter as a unique identifier.
Algorithms are implemented for renumbering of all Counted types such that all counts start from
0.

In addition, some operator types such as Sum and Product maintains a sorted list of operands
such that a+b and b+a are both represented as Sum(a, b). This operand sorting is intentionally
independent of the numbering of indices because that would not be stable. The reason for this
instability is that the result of algorithms for renumbering indices depends on the order of operands.
The operand sorting and renumberings combined ensure that the signature of equal forms will
stay the same. Note that the representation, and thus the signature, of a form may change with
versions of UFL. The following line prints the signature of a form with expand_derivatives and
renumbering applied.

Python code
print repr(preprocess(myform).form_data().form)

18.9.3 Efficiency considerations

By writing UFL in Python, we clearly do not put peak performance as a first priority. If the form
compilation process can blend into the application build process, the performance is sufficient.
We do, however, care about scaling performance to handle complicated equations efficiently, and
therefore about the asymptotic complexity of the algorithms we use.

To write clear and efficient algorithms in Python, it is important to use the built in data structures
correctly. These data structures include in particular list, dict and set. CPython [

], the reference implementation of Python, implements the data structure list as an array,
which means append, and pop, and random read or write access are all O(1) operations. Random
insertion, however, is O(n). Both dict and set are implemented as hash maps, the latter simply
with no value associated with the keys. In a hash map, random read, write, insertion and deletion
of items are all O(1) operations, as long as the key types implement __hash__ and __eq__ efficiently.
The dictionary data structure is used extensively by the Python language, and therefore particular
attention has been given to make it efficient [ , ]. Thus to enjoy efficient use of
these containers, all Expr subclasses must implement these two special functions efficiently. Such
considerations have been important for making the UFL implementation perform efficiently.

18.10 Conclusions and future directions

Many additional features can be introduced to UFL. Which features are added will depend on the
needs of FEniCS users and developers. Some features can be implemented in UFL alone, but most
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features will require updates to other parts of the FEniCS project. Thus the future directions for
UFL is closely linked to the development of the FEniCS project as a whole.

Improvements to finite element declarations is likely easy to do in UFL. The added complexity
will mostly be in the form compilers. Among the current suggestions are space-time elements and
time derivatives. Additional geometry mappings and finite element spaces with non-uniform cell
types are also possible extensions.

Additional operators can be added to make the language more expressive. Some operators are
easy to add because their implementation only affects a small part of the code. More compound
operators that can be expressed using elementary operations is easy to add. Additional special
functions are easy to add as well, as long as their derivatives are known. Other features may
require more thorough design considerations, such as support for complex numbers which will
affect large parts of the code.

User friendly notation and support for rapid development are core values in the design of
UFL. Having a notation close to the mathematical abstractions allows expression of particular
ideas more easily, which can reduce the probability of bugs in user code. However, the notion
of metaprogramming and code generation adds another layer of abstraction which can make
understanding the framework more difficult for end-users. Good error checking everywhere is
therefore very important, to detect user errors as close as possible to the user input. Improvements
to the error messages, documentation, and unit test suite will always be helpful, to avoid frequently
repeated errors and misunderstandings among new users.

To support the form compiler projects, algorithms and utilities for generating better code more
efficiently could be included in UFL. Such algorithms should probably be limited to algorithms
such as general transformations of expression graphs which can be useful independently of form
compiler specific approaches. In this area, more work on alternative automatic differentiation
algorithms [ , , , ] can be useful.

To summarize, UFL is a central component in the FEniCS framework, where it provides a rich
form language, automatic differentiation, and a building block for efficient form compilers. These
are useful features in rapid development of applications for efficiently solving partial differential
equations. UFL provides the user interface to Automation of Discretization that is the core feature
of FEniCS, and adds Automation of Linearization to the framework. With these features, UFL has
brought FEniCS one step closer to its overall goal Automation of Mathematical Modeling.
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19 Unicorn: a unified continuum mechanics solver

By Cem Degirmenci, Johan Hoffman, Johan Jansson, Niclas Jansson and Murtazo
Nazarov

This chapter provides a description of the technology in Unicorn focusing on simple, efficient
and general algorithms and software for the Unified Continuum (UC) concept and the adaptive
General Galerkin (G2) discretization as a unified approach to continuum mechanics. We describe
how Unicorn fits into the FEniCS framework, how it interfaces to other FEniCS components, what
interfaces and functionality Unicorn provides itself and how the implementation is designed. We
also present some examples in fluid-structure interaction and adaptivity computed with Unicorn.
One such example is presented in Figure 19.1 which shows the simulation of a model problem of a
3D flexible flag in turbulent flow.

19.1  Background

Unicorn is solver technology (models, methods, algorithms and software) with the goal of auto-
mated simulation of realistic continuum mechanics applications, such as drag or lift computation
for fixed or flexible objects (fluid—structure interaction) in turbulent incompressible or compressible
flow. The basis for Unicorn is Unified Continuum (UC) modeling formulated in Euler (laboratory)
coordinates, together with a G2 (General Galerkin) adaptive stabilized finite element discretization
with a moving mesh for tracking the phase interfaces. The UC model consists of canonical conser-
vation equations for mass, momentum, energy and phase over the whole domain as one continuum,
together with a Cauchy stress and phase variable as data for defining material properties and
constitutive equations. Unicorn formulates and implements the adaptive G2 method applied to
the UC model, and interfaces to other components in the FEniCS chain (FIAT, FFC, DOLFIN)
providing representation of finite element function spaces, weak forms and mesh, and algorithms
such as automated parallel assembly and linear algebra.

The Unicorn software is organized into three parts:

Library The Unicorn library provides common solver technology such as automated time-stepping,
error estimation, adaptivity, mesh smoothing and slip/friction boundary conditions.

Solver The Unicorn solver implements the G2 adaptive discretization method for the UC model by
formulating the relevant weak forms. Currently there are two primary solvers: incompressible
fluids and solids (including fluid—structure interaction) and compressible Euler (only fluid),
where the long-term goal is a unification of the incompressible and compressible formulations
as well.

Applications Associated to the solver(s) are applications such as computational experiments and
benchmarks with certain geometries, coefficients and parameters. These are represented as

347
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ure 19.1: A fluid-structure inter-
on problem consisting of a flag
unted behind a cube in turbu-
t flow. The plot shows the fluid-
icture interface, an isosurface of the
ssure and a cut of the mesh.

stand-alone programs built on top of the Unicorn solver/library, running in either serial or
parallel (currently restricted to adaptive incompressible flow).

19.2  Unified continuum modeling

We define, following classical continuum mechanics [Gurtin, 1981], a unified continuum model in
a fixed Euler coordinate system consisting of:

¢ conservation of mass,

e conservation of momentum,

* conservation of energy,

* phase convection equation,

* constitutive equations for stress as data,

where the stress is the Cauchy (laboratory) stress and the phase is an indicator function used to
determine which constitutive equation and material parameters to use. Note that in this continuum
description the coordinate system is fixed (Euler), and a phase function (indicator) is convected
according to the phase convection equation. The mesh is moved with the continuum velocity in
the case of a solid phase to eliminate diffusion of the phase interface. We elaborate on this below
in Section 19.3.2.

We define two variants of this model, incompressible and compressible, where a future aim is to
construct a unified incompressible/compressible model and solver. We focus here the presentation
on the incompressible model.

We start with a model for conservation of mass and momentum, together with a convection
equation for a phase function 6 over a space-time domain Q = Q x [0, T| with Q) an open domain



19.2. UNIFIED CONTINUUM MODELING 349

Figure 19.2: Example application of
adaptive computation of 3D compress-
ible flow around a sphere.

Figure 19.3: Example application of 3D
turbulent incompressible flow around
a cylinder with parallel adaptive com-
putation.
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in R® with boundary T

?Tft) + aTCj(ujp) =0, (mass conservation) (19.1)
om; d d .
oF + a—y{j(u]ml) = a—xj(flj + fi, (momentum conservation) (19.2)
a6 d . .
=+ — (u]@) =0, (phase convection equation) (19.3)
ot aX]
together with initial and boundary conditions, where p is density, m; = pu; is momentum

and u; is velocity. If we make the assumption that the continuum is incompressible, that is,
0=Dyp = %p + uj%p, it follows that we may express the incompressible UC equations as
]

aui E)ui - d 5 :
1Y (E)t + u]axj> - ij(TZJ +fzr (194)
au]' -0
aij =0, (19-5)
a0 d
5 + a—xj(u]@) =0. (19.6)

The UC modeling framework is simple and compact, close to the formulation of the original
conservation equations, and does not require mappings between different coordinate systems. This
allows simple manipulation and processing for error estimation and implementation.

One key design choice of UC modeling is to define the Cauchy stress o as data, which means the
conservation equations are fixed regardless of the choice of constitutive equation. This gives a
generality in method and software design, where a modification of constitutive equation impacts
the formulation and implementation of the constitutive equation, but not the formulation and
implementation of the conservation equations.

19.3 Space-time general Galerkin discretization

Adaptive G2 methods (also referred to as Adaptive DNS/LES) have been used in a number of
turbulent flow computations to a very low computational cost [ , ,

, , , ’ , , , , ], where
convergence is obtained in output quantities such as drag, lift and pressure coefficients and
Strouhal numbers, using orders of magnitude fewer mesh points than with standard LES methods
based on ad hoc refined computational meshes.

19.3.1 Standard Galerkin

We begin by formulating the standard ¢G(1)cG(1) FEM [ , ] with piecewise
continuous linear solution in time and space for (19.7). We let w = (u, p,0) denote the exact
solution, W = (U, P,®) the discrete solution, v = (v*,v?, 09) the test function and R(W) =
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(Ru(W),R,(W), Rg(W)) the residual. The residual is defined by

_ ou; au; Jd o,
R, (W) —p( 3t +U]axj> aszl] fir

_

Ry(W) = 57, (19)
]
00 00

where X denotes a discrete piecewise constant stress.
To compute the solution, we enforce the Galerkin orthogonality

(R(W),0) =0 (19.8)

for all functions v in the test space V}, consisting of piecewise linear continuous functions in space
and piecewise constant discontinuous functions in time. Here (-, -) denotes the L?-inner product
in space and time.

This standard finite element formulation is unstable for convection-dominated problems and also
suffers from instabilities as a result of equal order elements for the pressure and velocity. We
therefore add streamline-diffusion stabilization as described below.

The ¢G(1)cG(1) formulation with trapezoid quadrature in time is equivalent to Crank-Nicolson
time-stepping with piecewise linear elements in space. This has the advantage of being a very
simple, standard, and familiar discrete formulation.

19.3.2 Local ALE

If the phase function ® has different values on the same cell, it would lead to an undesirable

diffusion of the phase interface. By introducing a moving space-time finite element space and

mesh, oriented along the characteristics of the convection of the phase interface [ ,
, section concerning “The characteristic Galerkin method”], we can define the phase interface

at cell facets, allowing the interface to stay discontinuous.

We thus define a local ALE coordinate map as part of the discretization on each space-time slab,

where it is used to introduce a mesh velocity. Note that we still compute with global Euler

coordinates, but with a moving mesh.

To be able to define and compensate for an arbitrary mesh velocity B, we define a local coordinate

map ¢ on each space-time slab:

d

=¢(t,x) = t,x),
at(P( ) ﬁh( ) (19.9)
(x,t) = ¢p(x,t).
Application of the chain rule gives the relation
) 0 - _ e o
gll(x, )+ U(x, t) - VU(x, t) = EU(x,t) + (U(x,t) — By)) - VU(X, t). (19.10)

Choosing B;, = U in the solid part of the mesh gives a trivial solution of the phase convection
equation, and we can remove it from the system. The resulting discrete UC equations are then
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defined by the residuals

ou; ou; d

Ry(W)=p ( o5 + (U — ﬁ]) ]> - aTCjZij—ﬁf
(19.11)

R (W) = aU;

p(W) = Tx]

We thus choose the mesh velocity B, to be the discrete material velocity U in the structure part of

the mesh (vertices touching structure cells) and in the rest of the mesh we use mesh smoothing to

determine ) to maximize the mesh quality. Alternatively, one may use local mesh modification

operations (refinement, coarsening, swapping) on the mesh to maintain the quality [ ,

.

19.3.3 Streamline—diffusion stabilization

The standard FEM formulation is unstable. We therefore consider a weighted standard streamline—
diffusion method of the form (R(W),v + éR(v)) = 0 for all v € V}, (see [1996]) with
6 > 0 a stabilization parameter. We make further simplifications by only including necessary
stabilization terms and dropping terms not contributing to stabilization. Although not fully
consistent, this avoids unnecessary smearing of shear layers. For the UC model, the stabilized
method thus looks like:

au BU )
(RA(W), ) = (oG4 U T = fuef) + (B ool +SDUW0) =0, (192)
]
aU;
(RP(W), o) = (31, 0P) + SDP (W, 09) = 0, (19.13)
j
for all v € V,, where
au; . oo} ou; 9o+
u i e el
SD"(W,v") = 61 (U; 8 SUj=—+ i3y >+52(axj, axj>' (19.14)
aP azﬂ’
SDP(W,ovP) = 61{=—, —). 19.1
W,o") =650, 50) (19.15)

19.4 Implementation

We here present an overview of the design of Unicorn. The Unicorn solver class UCSolver ties
together the technology in the Unicorn library with other parts of FEniCS to expose an interface
(see listing 19.5) for simulating applications in continuum mechanics. The main part of the
solver implementation is the weak forms for the Gz discretization of the UC model, together
with forms for the stress and residuals for the error estimation. Coefficients from the application
are connected to the form, and then time-stepping is carried out by the class TimeDependentPDE.
Certain coefficients, such as the ¢ stabilization coefficients are also computed as part of the solver
(not as forms). The solver computes one iteration of the adaptive algorithm (primal solve, dual
solve and mesh refinement), where the adaptive loop is implemented by iteratively running the
solver for a sequence of meshes.

The UCSolver implementation is parallelized for distributed memory architectures using MPI, and
we can show strong scaling for hundreds of cores on several platforms (see Figure 19.4). The



19.4. IMPLEMENTATION 353

Figure 19.4: Strong scaling results for 35¢
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entire adaptive algorithm is parallel (including Rivara mesh refinement and a priori predictive load
balancing). An example of a parallel adaptive simulation is shown in Figure 19.3. Fluid-structure
interaction is not yet enabled in parallel but this is work in progress.

A compressible variant of the UCSolver exists as the CNSSolver for adaptive G2 for compressible
Euler flow. The general method and algorithm is very close to that of the UCSolver, aside from
the incompressibility. The long term goal is a unification of the incompressible/compressible
formulations as well. We refer to [ ] for implementation details of the compressible
CNSSolver. See Figure 19.2 for an example plot of compressible flow around a sphere.

19.4.1 Unicorn classes/interfaces

Key concepts are abstracted in the following classes/interfaces:

TimeDependentPDE: time-stepping
In each time-step a nonlinear algebraic system is solved by fixed-point iteration.

ErrorEstimate: adaptive error control
The adaptive algorithm is based on computing local error indicators of the form ng =
ILR(U)||7||DZ||T, where Z is the so-called dual solution.

SpaceTimeFunction: space-time coefficient
Storage and evaluation of a space-time function/coefficient.
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C++ code

class UCSolver :
public TimeDependentPDE, public MeshAdaptInterface
{
public:
/// Constructor: give boundary conditions,
/// coefficients
UCSolver(Function& U, Function& UO,
Function#* bisect, Mesh& mesh,
Array <BoundaryCondition*>& bc_mom,
Array <BoundaryCondition*>& bc_con,
Function#* f, real T, real nu,
real mu, real rho_f, real rho_s,
real u_bar, TimeDependent& t,
PDEData* pdedata);

/// Prescribe mesh size for MeshAdaptInterface
virtual void updateSizeField();

/// Allocate/deallocate PDE data for dynamic mesh
/// adaptivity

virtual void allocateAndComputeData();

virtual void deallocateData();

/// Compute mesh vertex coordinates and velocity
void computeX();
void computeW();

/// Compute density, pressure, stress
void computeRho();

void computeP();

void computeStress();

/// Compute initial theta
void computeThetaO();

/// From TimeDependentPDE: time-stepping control
void shift();

bool update(real t, bool end);

void preparestep();

void prepareiteration();

/// Assemble time step residual (L) right-hand
/// side of Newton
void rhs(const Vector& x, Vector& dotx, real T);

/// Compute initial value
void u@(Vector& x);

/// Save solution/output quantities
void save(Function& U, real t);

/// Compute least-squares stabilization parameters

/// (delta)

void computeStabilization(Mesh& mesh, Function& w,
real nu, real k, real t,
Vector& dlvector,
Vector& d2vector);

/// Deform/move mesh
void deform(Mesh& mesh, Function& W, Function& WO);

/// Smooth/optimize quality of all or part of the
/// mesh
void smoothMesh(bool bAdaptive);

Figure 19.5: C++ class interface for the
Unicorn class UCSolver.
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SLipBC: friction boundary condition
Efficient computation of turbulent flow in Unicorn is based on modeling of turbulent bound-
ary layers by a friction model, where the slip boundary condition u - n = 0 is implemented
strongly as part of the algebraic system.

ElasticSmoother: elastic mesh smoothing/optimization
Optimization of cell quality according to an elastic analogy.

MeshAdaptInterface: mesh adaptation interface
Abstraction of the interface to the MAdLib package for mesh adaptation using local mesh
operations.

19.4.2 TimeDependentPDE

We consider general time-dependent equations of the type %u + A(u) = 0, where A denotes a
possibly nonlinear differential operator in space. We want to define a class (data structures and
algorithms) abstracting the time-stepping of the G2 method. The equation is given as input and
the time-stepping should be generated automatically. We do this for the ¢G(1)cG(1) method by
applying a simplified Newton’s method. This is encapsulated in a C++ class interface in Figure 19.6
called TimeDependentPDE.

The skeleton of the time-stepping with fixed-point iteration is implemented in listing ??.

We use a block-diagonal quasi-Newton method, where we start by formulating the full Newton
method and then drop terms off the diagonal blocks. We also use the constitutive law as an
identity to express Z in terms of U, allowing larger time steps than would be possibly otherwise
by iterating between ¥ and U. See [ ] for a discussion about the efficiency of the
fixed-point iteration and its implementation.

19.4.3 ErrorEstimate

The duality-based adaptive error control algorithm requires the following components:

Residual computation We compute the mean-value in each cell of the residual R(U) by an L2-
projection into the space of piecewise constants.

Dual solution We compute the solution of the dual problem using the same technology as the
primal problem. The dual problem is solved backward in time, but using the time coordinate
transform s = T — t we can use the standard TimeDependentPDE interface.

Space-time function storage/evaluation We compute error indicators while solving the dual prob-
lem as space-time integrals over cells: nr = (R(U), %Z ), where we need to evaluate both the
primal solution U and the dual solution Z. In addition, U is a coefficient in the dual equation.
This requires storage and evaluation of a space-time function, which is encapsulated in the
SpaceTimeFunction class.

Mesh adaptation After the computation of the error indicators, we select the largest p% of the
indicators for refinement. The refinement is then performed by recursive Rivara cell bisection.
Alternatively, one may use MAdLib [ , ] for more general mesh adaptation
based on edge split, collapse and swap operations.

Using these components, we can construct an adaptive algorithm. The adaptive algorithm is
encapsulated in the C++ class interface in Figure 19.8 which we call ErrorEstimate.
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Figure 19.6: C++ class interface for
TimeDependentPDE

C++ code

/// Represent and solve time dependent PDE.
class TimeDependentPDE
{
/// Public interface
public:
TimeDependentPDE (
// Computational mesh
Mesh& mesh,
// Bilinear form for Jacobian approx.
Form& a,
// Linear form for time-step residual
Form& L,
// List of boundary conditions
Array <BoundaryCondition*>& bcs,
// End time
real T);

/// Solve PDE
virtual uint solve();

protected:
/// Compute initial value
virtual void u@(Vector& u);
/// Called before each time step
virtual void preparestep();
/// Called before each fixed-point iteration
virtual void prepareiteration();
/// Return the bilinear form a
Form& a();
/// Return the linear form L
Form& L();
/// Return the mesh
Mesh& mesh();

};
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Figure 19.7: Skeleton implementation
in Unicorn of time-stepping with fixed-
void TimeDependentPDE: :solve() p(ﬁntiterath)n.
{
// Time-stepping
while (t < T)
{
U = uoe;
preparestep();
step();
}
}

C++ code

void TimeDependentPDE: :step()
{
// Fixed-point iteration
for(int iter = 0; iter < maxiter; iter++)
{
prepareiteration();
step_residual = iter();

if (step_residual < tol)
{
// Iteration converged
break;
}
}
}

void TimeDependentPDE::iter()
{
// Compute one fixed-point iteration
assemble(J, a());
assemble(b, L());
for (uint i = 0; i < bc().size(); i++)
bc()[i]->apply(J, b, a());
solve(J, x, b);

// Compute residual for the time-step/fixed-point
// equation

J.mult(x, residual);

residual -= b;

return residual.norm(linf);
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Figure 19.8: C++ class interface for

C++ code ErrorEstimate

/// Estimate error as local error indicators based
/// on duality

class ErrorEstimate

{

public:

/// Constructor (give components of UC residual
/// and dual solution)
ErrorEstimate (Mesh& mesh,

Form+ Lres_1,

Form+ Lres_2,

Form+ Lres_3,

Form+ LDphi_1,

Form+ LDphi_2,

Form+ LDphi_3);

// Compute error (norm estimate)
void ComputeError(real& error);

// Compute error indicator
void ComputeErrorIndicator(real t, real k,
real T);

// Compute largest indicators

void ComputelLargestIndicators(
std::vector<int>& cells,
real percentage);

// Refine based on indicators
void AdaptiveRefinement(real percentage);
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Figure 19.9: C++ class interface for

C++ code SpaceTimeFunction.

/// Representation of space-time function (storage
/// and evaluation)

class SpaceTimeFunction

{

public:

/// Create space-time function
SpaceTimeFunction(Mesh& mesh, Function& Ut);

/// Evaluate function at time t, giving result in
/// Ut
void eval(real t);

// Add a space function at time t
void addPoint(std::string Uname, real t);

/// Return mesh associated with function
Mesh& mesh();

/// Return interpolant function
Function& evaluant();

19.4.4 SpaceTimeFunction

The error estimation algorithm requires, as part of solving the dual problem, the evaluation of
space-time coefficients appearing in the definition of the dual problem. In particular, we must
evaluate the primal solution U at time t = T —t. This requires storage and evaluation of a
space-time function, which is encapsulated in the SpaceTimeFunction class (see listing 19.9).

The space-time functionality is implemented as a list of space functions at regular sample times,
where evaluation is piecewise linear interpolation in time of the degrees of freedom.

19.4.5 SUlipBC

For high Reynolds number problems such as car aerodynamics or airplane flight, it is not possible
to resolve the turbulent boundary layer. One possibility is then to model turbulent boundary layers
by a friction model:

u-n=20 (19.16)
Bu-t+ (on) -7 =0,k=1,2. (19.17)

We implement the normal component condition (slip) boundary condition strongly. By “strongly”
we here mean an implementation of the boundary condition after assembling the left-hand side
matrix and the right-hand side vector in the algebraic system, whereas the tangential components
(friction) are implemented “weakly” by adding boundary integrals in the variational formulation.
The row of the matrix and load vector corresponding to a degree of freedom is found and replaced
by a new row according to the boundary condition.

The idea is as follows: Initially, the test function v is expressed in the Cartesian standard basis
(e1,€2,e3). Now, the test function is mapped locally to normal-tangent coordinates with the basis
(n,7, 1), where n = (nq,np,n3) is the normal, and 7y = (711, T12, T13), T2 = (1, Toz, To3) are
tangents to each node on the boundary. This allows us to let the normal direction be constrained
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Figure 19.10: Robustness test with (a)
elastic smoothing and (b) mesh adap-
tation. Note the badly shaped cells
squeezed between the cube and flag.
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and the tangent directions be free:
v=(v-nmn+ v -u)u+ @ n)n. (19.18)

For the matrix and vector this means that the rows corresponding to the boundary need to be
multiplied with n, 71, T, respectively, and then the normal component of the velocity should be set
to zero.

This concept is encapsulated in the class S1ipBC which is a subclass of dolfin: :BoundaryCondition
for representing strong boundary conditions. For more details about the implementation of slip
boundary conditions,we refer to Nazarov [2009].

19.4.6 ElasticSmoother

To maintain a discontinuous phase interface in the UC model, we define the mesh velocity g, as
the discrete velocity U in the solid phase (specifically on the interface). The mesh velocity in the
fluid can be chosen more arbitrarily, but has to satisfy mesh quality and size criteria. We construct
a cell quality optimization/smoothing method based on a pure elastic variant of the UC. We define
the following requirements for the mesh velocity p;:

1. B; = U in the solid phase part of the mesh.
2. Bounded mesh quality Q defined by
_ AIFlE
det(F)i

where d is the spatial dimension, in the fluid part of the mesh. Preferably the mesh smoothing
should improve Q if possible.

3. Maintain mesh size /(x) close to a desired /i(x) given by a posteriori error estimation in an
adaptive algorithm.
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Figure 19.11: C++ class interface for

C++ code ElasticSmoother.

/// Optimize cell quality according to elastic
/// variant of UC model
class ElasticSmoother

{
public:

ElasticSmoother(Mesh& mesh);

/// Smooth smoothed_cells giving mesh velocity W
/// over time step k with hO the prescribed cell
/// size
void smooth(MeshFunction<bool>& smoothed_cells,
MeshFunction<bool>& masked_cells,
MeshFunction<real>& ho,
Function& W, real k);

/// Extract submesh (for smoothing only marked cells)

static void

submesh (Mesh& mesh, Mesh& sub,
MeshFunction<bool>& smoothed_cells,
MeshFunction<int>& old2new_vertex,
MeshFunction<int>& old2new_cell);

Mesh smoothing is handled in Unicorn by an elastic model using the constitutive law o = p(I —
(FFT)~1) where we recall F as the deformation gradient. We use the update law: %F 1= _—F1Vu
where we thus need an initial condition for F. We set the initial condition Fy = F where F is the
deformation gradient with regard to a scaled equilateral reference cell, representing the optimal
shape with quality Q = 1.

Solving the elastic model can thus be seen as optimizing for the highest global quality Q in the
mesh. We also introduce a weight on the Young’s modulus u for cells with low quality, penalizing
high average, but low local quality over mediocre global quality. We refer to the source code for
more details.

Unicorn provides the ElasticSmoother class (see listing 19.11, which can be used to smooth/opti-
mize for quality in all or part of the mesh.

We perform a robustness test of the elastic smoothing and the mesh adaptivity shown in 19.10
where we use the same geometry as the turbulent 3D flag problem, but define a zero inflow
velocity and instead add a gravity body force to the flag to create a very large deformation with
the flag pointing straight down. Both the elastic smoothing and the mesh adaptivity compute
solutions, but as expected, the elastic mesh smoothing eventually cannot control the cell quality;
there does not exist a mesh motion which can handle large rigid body rotations while bounding
the cell quality.

19.4.7 MeshAdaptInterface

A critical component in the adaptive algorithm as described above is mesh adaptivity, which we
define as constructing a mesh satisfying a given mesh size function h(x).

We start by presenting the Rivara recursive bisection algorithm [ , ] as a basic choice for
mesh adaptivity (currently the only available choice for parallel mesh adaptivity), but which can
only refine and not coarsen. Then the more general MAdLib is presented, which enables full mesh
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Figure 19.12: Edge swap operation:
(a) initial cavity with swap edge high-
lighted (b) possible configuration after
the swap.

adaptation to the prescribed h(x) through local mesh operations: edge split, edge collapse and
edge swap.

Rivara recursive bisection The Rivara algorithm bisects (splits) the longest edge of a cell, thus
replacing the cell with two new cells, and uses recursive bisection to eliminate non-conforming
cells with hanging nodes. The same algorithm holds in both 2D /3D (triangles/tetrahedra). In 2D,

Algorithm 8 The Rivara recursive bisection algorithm

procedure BISECT(T)
Split longest edge e
while Tj(e) is non-conforming do
BISECT(T;)
end while
end procedure

it can be shown [ , ] that the algorithm terminates in a finite number of steps, and that
the minimum angle of the refined mesh is at least half the minimum angle of the starting mesh. In
practice, the algorithm produces excellent quality refined meshes both in 2D and 3D.

Local mesh operations: MAdLib MAGJLib incorporates an algorithm and implementation of mesh
adaptation in which a small set of local mesh modification operators are defined such as edge
split, edge collapse and edge swap (see Figure 19.12 for an illustration of the edge swap operator).
A mesh adaptation algorithm is defined which uses this set of local operators in a control loop
to satisfy a prescribed size field h(x) and quality tolerance. Edge swapping is the key operator
for improving the quality of cells, for example around a vertex with a large number of connected
edges.

In the formulation of finite element methods, it is typically assumed that the cell size of a
computational mesh can be freely modified to satisfy a desired size field h(x) or to allow mesh
motion. In state-of-the-art finite element software implementations, this is seldom the case
[ 7 7 7 ]'

The mesh adaptation algorithm in MAdLib gives the freedom to adapt to a specified size field
using local mesh operations. The implementation is published as free/open-source software.
Unicorn provides the MeshAdaptInterface class (see listing 19.13), where one can subclass and
implement virtual functions to control the mesh adaptation using MAdLib.
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Figure 19.13: C++ class interface for

C++ code MeshAdaptInterface.

/// Interface to MAdLib for mesh adaptation using
/// local operations Subclass and implement the
/// virtual functions

class MeshAdaptInterface

{
public:
MeshAdaptInterface(Mesh x);

protected:
/// Start mesh adaptation algorithm
void adaptMesh();

/// Give cell size field
virtual void updateSizeField() = 0;

/// Allocate and deallocate solver data
virtual void deallocateData() = 0;
virtual void allocateAndComputeData() = 0;

/// Constrain entities not to be adapted
void constrainExternalBoundaries();
void constrainInternalBoundaries();

/// Add functions to be automatically interpolated
void addFunction(string name, Functions*x f);
void clearFunctions();

19.5 Solving continuum mechanics problems

In this section, we present some examples computed using Unicorn. The first example is a
fluid-structure interaction problem without adaptivity, where we cover modeling of geometry and
subdomains, coefficients, dynamic allocation of PDE data for mesh adaptivity and specification
of the main program (interface to running the solver). Next, we present an example of solving a
turbulent pure fluid problem with adaptivity, where we cover modeling of data for the dual prob-
lem, the adaptive loop, and specifying slip/friction boundary conditions for modeling turbulent
boundary layers.

19.5.1  Fluid—structure interaction

(Editor note: What's the point of this section? There is no code and no plots? ]

We here present an example of solving a fluid—-structure continuum mechanics problem, where the
user specifies data for modeling the problem. We divide the presentation into four parts:

Geometry and subdomains
The user specifies possible geometrical parameters and defines subdomains. We note that
for complex geometries the user may omit geometry information and specify subdomain
markers as data files.

Coefficients
Known coefficients such as a force function and boundary conditions are declared.
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PDE data
The user subclasses a PDEData class and specifies how the PDE data is constructed and
destroyed. This construction/destruction may happen during the simulation if the mesh is
adapted.

main program
The user implements the main program and declares and passes data to to the solver.

19.5.2 Adaptivity

(Editor note: Where is the solution? ]

We continue with a use case for adaptive solution of a pure fluid turbulent flow problem: flow
around a 3D cylinder. The implementation of the problem is very similar to the fluid-structure
case (just with pure fluid data), but with 3 important additions:

Dual problem
To compute the error estimate required by the adaptive algorithm, we must solve a dual
problem generated by the primal problem and an output quantity . Since the dual problem
is similar in form to the primal problem, we implement both as variants of the same solver.

In this case we are interested in computing drag, which gives i as a boundary condition for
the dual problem:

C++ code

CylinderBoundary cb;
SubSystem xcomp(0);
Function minus_one(mesh, -1.0);

DirichletBC dual_bc@(minus_one, mesh, cb, xcomp);

Array <BoundaryCondition+> dual_bc_mom;
dual_bc_mom.push_back(&dual_bc0);

Adaptive loop
We construct the program to compute one iteration of the adaptive loop: solve primal
problem, solve dual problem, compute error estimate and check if tolerance is satisfied,
compute adapted mesh. We can then run the adaptive loop simply by a loop which runs the
program (here in Python which we also use to move data according to iteration number):

Python code

offset = 0
N = 20

for i in range(offset, N):
dirname = ‘‘iter_%2.2d'’" % i
mkdir(dirname)

system(‘‘./unicorn-cylinder > log’’)
for file in glob(‘‘./*.vtu’’):
move(file, dirname)

for file in glob(‘‘./*.pvd’’):
move(file, dirname)
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Figure 19.14: Part 1 of Unicorn solver
FSI use case: geometry and subdo-
mains.

Slip boundary condition

C++ code

#include <dolfin.h>
#include <unicorn/FSIPDE.h>

using namespace dolfin;
using namespace dolfin::unicorn;

real bmarg = 1.0e-3 + DOLFIN_EPS;

namespace Geo

{
// Geometry details
real box_L = 3.0;
real box_H = 2.0;
real box W = 2.0;

real xmin = 0.0; real xmax = box_L;
real ymin = 0.0; real ymax = box_H;
real zmin = 0.0; real zmax = box_W;

}

// Sub domain for inflow

class InflowBoundary3D : public SubDomain

{

public:
bool inside(const realsx p, bool on_boundary) const
{

return on_boundary && (p[0] < Geo::xmax - bmarg);

}

};

// Sub domain for outflow

class OutflowBoundary3D : public SubDomain

{

public:
bool inside(const real* p, bool on_boundary) const
{

return on_boundary && (p[@] > Geo::xmax - bmarg);

}

}

For turbulent flow we model the boundary layer as a friction boundary condition. We specify
the normal component as a string slip boundary condition used just as a regular Dirichlet
boundary condition. The xcomp variable denotes an offset for the first velocity component in
a system (for compressible Euler the system is [density, velocity, energy], and we would thus

give component 2 as offset).

SlipBoundary sb;
SubSystem xcomp(0);

S1ipBC slip_bc(mesh, sb, xcomp);

C++ code

Array <BoundaryCondition+> primal_bc_mom;

primal_bc_mom.push_back(&slip_bc);
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Figure 19.15: Part 2 of Unicorn solver

C++ code FSI use case: coefficients.

// Force term
class ForceFunction : public Function
{
public:
ForceFunction(Mesh& mesh, TimeDependent& td)
Function(mesh), td(td) {}
void eval(real+ values, const real* x) const
{
int d = cell().dim();

for (int i = 0; 1 < d; i++)
{
values[i] = 0.0;
}
}

TimeDependent& td;
}

// Boundary condition for momentum equation
class BC_Momentum_3D : public Function
{
public:
BC_Momentum_3D(Mesh& mesh, TimeDependent& td)
Function(mesh), td(td) {}
void eval(real*x values, const realx x) const
{
int d = cell().dim();

for (int i = 0; i < d; i++)
{
values[i] = 0.0;
}
if (x[0] < (Geo::xmin + bmarg))
values[0] = 100.0;
}

TimeDependent& td;
}

// Initial condition for phase variable
class BisectionFunction : public Function
{
public:
BisectionFunction(Mesh& mesh) : Function(mesh) {}
void eval(real* values, const reals p) const
{
// NB: We specify the phase variable as
// xml data so this function is not used

bool condition = true;

if (condition)
values[0] = 0.0;
else
values[0] = 1.0;
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Figure 19.16: Part 4 of FSI use case:

main program, passing data to solver. C++ code
int main()

{
Mesh mesh("flag.xml");

real nu = 0.0;
real nus = 0.5;
real rhof = 1.0;
real rhos = 1.0;

real E

1.0e6;

real T = 0.2;

dolfin::set("ODE number of samples", 500);

Function U, UQ;

real u_bar = 100.0;

FlagData pdedata;

ICNSPDE pde(U, UO, &(pdedata.bisect), mesh,
pdedata.bc_mom, pdedata.bc_con,
&(pdedata.f), T, nu, E, nus, rhof, rhos,

u_bar, pdedata.td, &pdedata);

// Compute solution
pde.solve(U, UO);

return 0;
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19.5.3 Unicorn-HPC installation and basic test

(Editor note: Where is the solution, the implementation and the problem definition? ]

Unicorn-HPC is the high-performance computing branch of Unicorn, showing strong linear scaling
on massively parallel hardware as described above.

To verify the correct installation and functionality of Unicorn-HPC, follow the steps in the README
file in the Unicorn-HPC distribution, under “Testing”. The test represents the turbulent flow past a
cube simulation described in Chapter 24.
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20 Lessons learned in mixed language program-
ming

By Johan Hake and Kent-Andre Mardal

This chapter describes decisions made and lessons learned in the implementation of the Python

interface of DOLFIN. The chapter is quite technical, since we aim at giving the reader a thorough
understanding of the implementation of DOLFIN Python interface.

20.1 Background

Python has over the last decade become an established platform for scientific computing. Widely

used scientific software such as, e.g., , , GiNaC [ ,
] have all been equipped with Python mterfaces The FEmCS packages FErari, FIAT, FFC,
UFL, Viper, as well as other packages such as SymPy [ , ], SciPy [ , ]

are pure Python packages. The DOLFIN library has both a C++ and a Python user-interface.
Python makes application building on top of DOLFIN more user friendly, but the Python interface
also introduces additional complexity and new problems. We assume that the reader has basic
knowledge of both C++ and Python. A suitable textbook on Python for scientific computing is

[ ], which cover both Python and its C interface. SWIG, which is the software we
use to wrap DOLFIN, is well documented and we refer to the user manual that can be found on
its web page [ ]. Finally, we refer to [ ] and [ ] for a
description of how SWIG can be used to generate Python interfaces for other packages such as
Diffpack and Trilinos.

20.2 Using SWIG

Python and C++ are two very different languages, while Python is user—friendly and flexible, C++

is very efficient. To combine the strengths of the two languages, it has become common to equip

C++ (or FORTRAN/C) libraries with Python interfaces. Such interfaces must comply with the

. Writing such interfaces, often called wrapper code, is quite involved. Therefore, a

number of wrapper code generators have been developed in the recent years, some examples are

, SIP, , and . SWIG has been used to create the DOLFIN Python interface, and

will therefore be the focus in this chapter. SWIG is a mature wrapper code generator that supports
many languages and is extensively documented.

369
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20.2.1 Basic SWIG

To get a basic understanding of SWIG, we consider an implementation of an array class. Let the
array class be defined in Array.h as follows:

C++ code

#include <iostream>

class Array {

public:
// Constructors and destructors
Array(int n_=0);
Array(int n_, doublex a_);
Array(const Array& a_);
~Array();

// Operators

Array& operator=(const Array& a_);

const double& operator [] (int i) const;
double& operator [] (int i);

const Array& operator+= (const Array& b);

// Methods

int dim() const;

double norm() const;
private:

int n;
double *a;

b

std::ostream & operator<< ( std::ostream& os, const Array& a);

A first attempt to make the Array accessible in Python using SWIG, is to write a SWIG interface
file Array_1.1i.

SWIG code
%smodule Array
%{
#include "Array.h"
%}

%sinclude "Array.h"

Here, we specify the name of the Python module: Array; the code that should be inlined in the
wrapper code directly (the declarations): #include "Array.h"; and the code SWIG should parse
to create the wrapper code: %include "Array.h" (definitions). The following command shows
how to run SWIG to produce the wrapper code:

Bash code
swig -python -c++ -I. -0 Array_1l.i

The command generates two files: Array.py and Array_wrap.cxx. The file Array_wrap.cxx con-
tains C code that defines the Python interface of Array. After Array_wrap.cxx is compiled into
a shared library, it can be imported into Python. The file Array.py is written in pure Python. It
imports the shared library and also adds some functionality to the wrapped module. The reader
should be able to recognize the Python class Array at the end of the Array. py file.
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The following file (setup. py) executes the SWIG command above and compiles and links
the source code and the generated wrapper code into a shared library.

Python code
import os
import numpy
from distutils.core import setup, Extension
swig_cmd ='swig -o Array_wrap.cxx -python -c++ -0 -I. Array_1l.i’
os.system(swig_cmd)

sources = ['Array.cpp’, 'Array_wrap.cxx’]
setup(name = "Array’,
py_modules = ["Array"],
ext_modules = [Extension(’'_’ + 'Array’, sources, \
include_dirs=[".", numpy.get_include() + "/numpy"1)1)

Build and install the module in the current working directory with the command:

Bash code
python setup.py install --install-lib=.

The Python proxy class resembles the C++ class in many ways. Simple methods such as dim() and
norm() will be wrapped correctly to Python, since SWIG maps int and double arguments to the
corresponding Python types through built-in typemaps. However, a number of issues appear:

1. the operator[] does not work;

2. the operator+= returns a new Python object (with different id);

3. printing does not use the std::ostream & operator<s;

4. the Array(int n_, doublex a_); constructor is not working properly.

We see that a number of different problems arise even in such a simple example. Fortunately,
these problems are fairly common, and general solutions can be implemented quite easily. In
the following, we will go through each of the above issues. The example code with the solutions
proposed in the following can be found in Array_2.1i.

20.2.2 The operator([]

In C++, the subscripting operator[] is used to implement both set and get operators. It is possible
to distinguish the set operator from the get operator using const, but this is not required. In
Python, subscripting is performed with the two special methods: __setitem__ and __getitem__.
Since, the mapping between the Python operators (__setitem__ and __getitem__) and the C++
operators operator[] may be ambiguous, SWIG currently ignores these operators. To implement
the operators properly, also in future versions of SWIG, we ignore both version of the operator[]
with

SWIG code

%ignore Array::operator[];

and extend the interface of the generated C++ code with the auxiliary __setitem__ and __getitem__
methods:

SWIG code

%sextend Array {
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double __getitem__(int i) {
return (xself)[i];

}

void __setitem__(int i, double v) {
(xself)[i] = v;

}

}

Note that all SWIG directives start with ’'%’. Furthermore, the access to the actual instance is
provided by the self pointer, which in this case is a C++ pointer that points to an Array instance.
The pointer is comparable to the this pointer in a C++ class, but only the public attributes are
available.

20.2.3 operator +=

The second problem is related to SWIG and garbage collection in Python. Python features garbage
collection, which means that a user should not be concerned with the destruction of objects. The
mechanism is based on reference counting; that is, when no more references are pointing to an
object, the object is destroyed. The SWIG generated Python module consists of a small Python
layer that defines the interface to the underlying C++ object. An instance of a SWIG generated
class therefore keeps a reference to the underlying C++ object. The default behavior is that the
C++ object is destroyed together with the Python object. This behavior is not consistent with the
operator +=returning a new object, which is illustrated by the generated segmentation fault in
the following example (see segfault_test.py):

Python code

from Array import Array
def add(b):
print "id(b):",id(b)
b+=b
print "id(b):",id(b)

a = Array(10)

print "id(a):",id(a)
add(a)

a+=a

This script produces the following output:

Python code
id(a): 3085535980
id(b): 3085535980
id(b): 3085536492
Segmentation fault

The script causes a segmentation fault because the underlying C++ object is destroyed after the
call to add (). When the last a+=a is performed the underlying C++ object is already destroyed.
This happens because the SWIG generated __iadd__ method returns a new Python object. This is
illustrated by the different values obtained from the id() function’. The last two calls to id(b)
return different numbers, which means that a new Python object is returned by the SWIG generated
__iadd__ method. The second b object is local in the add function and is therefore deleted together
with the underlying C++ object when add has finished.

*The id function returns a unique integer identifying the object.
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The memory problem can be solved by extending the interface with an _add method and imple-
menting our own __iadd__ method in terms of _add, using the %extend directive:

SWIG code

%sextend Array {

void _add(const Array& a){
(xself) += a;

}

%spythoncode %{
def __iadd__(self,a):
self._add(a)
return self

b

The above script will now report the same id for all objects. No objects are created or deleted, and
segmentation fault is avoided.

20.2.4 std::ostream & operator<<

In C++, shift operators such as operator « are typically used to implement I/O, while in Python
the _str_ method is used. Therefore, SWIG ignores the shift operator, as it is likely not to perform
as intended. However, we can again use the %extend directive to make this operator available from
Python by adding a __str__ method.

SWIG code

%include <std_string.i>
%sextend Array {

std::string __str__() {
std::ostringstream s;
s << (xself);
return s.str();
}
};

This method uses the operator<< representation of the array to a std: :ostringstream and then
returns a std: :string representation of the stream. Note that we need to include std_string.i
in the Array_2.1i. In Python, we can then call print on an instance of Array.

20.2.5 The constructor: Array(int n_, doublex a_);

The fourth problem is related to pointer handling in C/C++ and SWIG. From the constructor
signature alone, it is not clear whether doublex a_ points to a single value or to the first element
of an array. Therefore, SWIG takes a conservative approach and handles pointers as pointers to
single values. In our example doublex a_ points to the first element of an array of length n, and
SWIG erroneously generates code for passing an int and a double to the method.

As a remedy, SWIG provides the typemap concept to enable mappings between C/C++ and Python
types. The following code, explained in detail below, demonstrates how to map a NumPy array to
the (int n_, double* a_) arguments in the constructor.
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SWIG code

%typemap(in) (int n_, doublex a_){

if (!PyArray_Check($input)) {
PyErr_SetString(PyExc_TypeError, "Not a NumPy array");
return NULL; ;

}

PyArrayObject* pyarray = reinterpret_cast<PyArrayObject+>($input);

if (!(PyArray_TYPE(pyarray) == NPY_DOUBLE)) {
PyErr_SetString(PyExc_TypeError, "Not a NumPy array of doubles");
return NULL; ;

}

$1 = PyArray_DIM(pyarray,0);

$2 = static_cast<doublex>(PyArray_DATA(pyarray));
}

The first line specifies that the typemap should be applied to the input (in) arguments of operators,
functions, and methods with the int n_,doublex a_ arguments in the signature. The $ prefixed
variables are used to map input and output variables in the typemap; that is, the variables $1 and
$2 map to the first and second output C arguments of the typemap, n_ and a_, while $input maps
to the Python input.

In the next three lines, we check that the input Python object is a NumPy array, and raise an
exception if not. Note that any Python C-API function that returns NULL tells the Python interpreter
that an exception has occurred. Python will then raise an error, with the error message set by the
PyErr_SetString function. Next, we cast the Python object pointer to a NumPy array pointer and
check that the data type of the NumPy array is correct; that is, that it contains doubles. Then, we
acquire the data from the NumPy array and assign the two input variables.

Overloading operators, functions and methods is not possible in Python. Instead, Python dynami-
cally determines what code to call, a process which is called dynamic dispatch. To generate proper
wrapper code, SWIG relies on %typecheck directives to resolve the overloading. A suitable type
check for our example typemap is:

SWIG code

%stypecheck (SWIG_TYPECHECK DOUBLE_ARRAY) (int n_, doublex a_) {
$1 = PyArray_Check($input) ? 1 : 0;
}

Here, SWIG_TYPECHECK_DOUBLE_ARRAY is a typedef for the priority number assigned for arrays of
doubles. The type check should return 1 if the Python object $input has the correct type, and o
otherwise.

20.3 SWIG and the DOLFIN Python interface

To make the DOLFIN Python interface more Pythonic, we have made a number of specializations,
along the lines mentioned above, that we will now go through. But let us start with the overall
picture. The interface files resides in the dolfin/swig directory, and are organized into i) global
files, that apply to the entire DOLFIN library, and ii) kernel module files that apply to specific
DOLFIN modules. The latter files are divided into . .._pre.iand..._post.1i files, which are applied
before and after the inclusion of the header files of the particular kernel module, respectively. The
kernel modules, as seen in kernel_module. i, mirror the directory structure of DOLFIN: common,
parameters, la, mesh and so forth. The global interface files are all included in dolfin.1i, the main
SWIG interface file. The kernel module interface files are included, together with the C++ header
files, in the automatically generated kernel_modules.1 file.
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The following sections deal with the main interface file of dolfin.i and address the global interface
files. Then we will address some issues in the module specific interface files.

20.3.1 dolfin.i and the cpp module
The file dol1fin.i starts by defining the name of the generated Python module.

SWIG code

%smodule(package="dolfin", directors="1") cpp

This statement tells SWIG to create a module called cpp that resides in the package of DOLFIN. We
have also enabled the use of directors. The latter is required to be able to subclass DOLFIN classes
in Python, an issue that will be discussed below. By naming the generated extension module cpp,
and including it in the DOLFIN Python package, we hide the generated interface into a submodule
of DOLFIN; the dolfin.cpp module. The DOLFIN module then imports the needed classes and
functions from dolfin.cpp in the __init__.py file along with additional pure Python classes and
functions.

The next two blocks of dolfin.i define code that will be inserted into the SWIG generated C++
wrapper file.

SWIG code

%{

#include <dolfin/dolfin.h>

#define PY_ARRAY_UNIQUE_SYMBOL PyDOLFIN
#include <numpy/arrayobject.h>

°
%}

%init%{
import_array();

%}

SWIG inserts code that resides in a %{. . .}% block, verbatim at the top of the generated C++ wrapper
file. Note that %{...}% is short for %header%{...}%. Hence, the first block of code is similar to the
include statements you would put in a standard C++ program. The code in the second block,
%1nit%{...}%, is inserted in the code where the Python module is initialized. A typical example of
such a function is import_array(), which initializes the NumPy module. SWIG provides several
such statements, each inserting code verbatim into the wrapper file at different positions.

20.3.2 Reference counting using shared_ptr

In the previous example dealing with operator+=, we saw that it is important to prevent premature
destruction of underlying C++ objects. A nice feature of SWIG is that we can declare that a
wrapped class shall store the underlying C++ object using a shared pointer (shared_ptr), instead
of a raw pointer. By doing so, the underlying C++ object is not explicitly deleted when the reference
count of the Python object reach zero, instead the reference count on the shared_ptr is decreased.
Shared pointers are provided by the boost_shared_ptr.i file. This file declare the directive:
%sshared_ptr. The directive must be used for each class we want shared pointers for. In DOLFIN
this is done in the shared_ptr_classes.1i file. Note that the when the directive is called typemaps
for passing a shared_ptr stored object to method that expects a reference or a pointer is declared.
This means that the typemap pass a de-referenced shared_ptr to the function. This behavior can
lead to unintentional trouble because the shared_ptr mechanism is circumvented.



376 CHAPTER 20. LESSONS LEARNED IN MIXED LANGUAGE PROGRAMMING

In DOLFIN, instances of some crucial classes are stored internally with shared_ptrs. These classes
also uses shared_ptr in the Python interface. When objects of these classes are passed as arguments
to methods or constructors in C++, two versions are needed: a shared_ptr and a reference version.
The following code snippet illustrates two constructors of Function, each taking a FunctionSpace
as an argument:

C++ code

/// Create function on given function space
explicit Function(const FunctionSpace& V);

/// Create function on given function space (shared data)
explicit Function(boost::shared_ptr<const FunctionSpace> V);

Instances of FunctionSpace in DOLFIN are stored using shared_ptr. Hence, we want SWIG to use
the second constructor. However, SWIG generates de-reference typemaps for the first constructor.
So when a Function is instantiated with a FunctionSpace, SWIG will unfortunately pick the
first constructor and the FunctionSpace is passed without increasing the reference count of the
shared_ptr. This undermines the whole concept of shared_ptr. To prevent this faulty behavior,
we ignore the reference constructor (see function_pre.1i):

SWIG code

%ignore dolfin::Function::Function(const FunctionSpace&);

20.3.3 Typemaps

Most types in the kernel_module.1i file are wrapped nicely with SWIG. However, as in the Array
example above, there is need for typemaps, for instance to handle NumPy arrays. In dolfin.i
we include three different types of global typemaps: i) general-, i) NumPy- and, iii) std: :vector-
typemaps. These are implemented in the interface files: typemaps.i, numpy_typemaps.i and
std_vector_typemaps.i. Here, we present some of the typemaps defined in these files.

In typemaps.i, typemaps for four different basic types are defined. In- and out-typemaps
for dolfin::uint, and dolfin::real, an in-typemap for int, and an out-typemap macro for
std::pair<dolfin::uint,dolfin: :uint>.

The simplest typemap is an out-typemap for dolfin::uint a typedef of unsigned int. This
typemap is needed since Python does not have an equivalent of an unsigned int type:

SWIG code

stypemap (out, fragment=SWIG_From_frag(unsigned int)) unsigned int
{

// Typemap unsigned int

$result = SWIG_From(unsigned int)($1);
}

This typemap specifies that a function returning a unsigned int will use the SWIG provided type
conversion macro: SWIG_From(type) (arg) to convert the unsigned int to a Python int. The macro
is not provided by default in SWIG. We therefore need to specify that SWIG includes the definition
of the macro in the wrapper file by using the fragment argument to the typemap directive.

The next typemap is an in typemap for unsigned int.

SWIG code

*Instances of FunctionSpace are internally stored using shared_ptr in the DOLFIN C++ library.
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stypemap(in, fragment="PyInteger_Check") unsigned int

{
if (PyInteger_Check($input))
{
long tmp = static_cast<long>(PyInt_AsLong($input));
if (tmp>=0)
$1 = static_cast<unsigned int>(tmp);
else
SWIG_exception(SWIG_TypeError, "expected positive ’'int’ for argument $argnum");
}
else
SWIG_exception(SWIG_TypeError, "expected positive ’'int’ for argument $argnum");
}

The typemap has the same structure as the NumPy typemap above. We first check that the
object is of integer type, with the PyInteger_Check function. Here, we have implemented the
PyInteger_Check function ourselves instead of using the Python macro PyInt_Check. The reason
is that PyInt_Check in Python2.6 can not be combined with NumPy, which is the above mentioned
bug. Here we use the fragment argument to the typemap to tell SWIG to include code that defines
the PyInteger_Check function. Next, we convert the Python integer to a long and check whether it
is positive. Finally, we assign the input argument $1 to a dolfin: :uint casted version of the value.
If either of these checks fail, we use the built in SWIG function, SWIG_exception to raise a Python
exception. These predefined SWIG exceptions are defined in the exception.i file, included in
dolfin.i. Note that SWIG expands the $argnum variable to the number of the argument using
the dolfin::uint typemap. Including this number in the string creates more understandable
error message. Finally, we present the out-typemap for std: :pair<dolfin::uint,dolfin::uint>,
which returns a Python tuple of two integers:

SWIG code
%stypemap(out) std::pair<dolfin::uint,dolfin::uint>
{
$result = Py_Build Value("ii",$1.first,$1l.second);
}

This is an example of a short and comprehensive typemap. It uses the Python C-API function
Py_BuildValue to build a tuple of the two values in the std: :pair object.

In numpy_typemaps. i, typemaps for arrays of primitive types: double, int and dolfin::uint are
defined. As in the Array example above, these typemaps are defined so a NumPy array of the
corresponding type can be passed as the argument to functions, methods, and operators. Instead
of writing one typemap for each primitive type, we defined a SWIG macro, which is called with
different types as argument. Using macros may produce a lot of code as some of these typemaps
are used frequently. To avoid code bloat, most of the typemap code is place in the function
convert_numpy_to_array_no_check(TYPE_NAME)3, which is called by the actual typemap. The
code is defined within a fragment directive, which means that a typemap can make use of that
code by adding the name of the fragment as an argument in the typemap definition. The entire
macro reads:

SWIG code
%sdefine UNSAFE_NUMPY_TYPEMAPS (TYPE, TYPE_UPPER,NUMPY_TYPE, TYPE_NAME, DESCR)

%sfragment(convert_numpy_to_array_no_check(TYPE_NAME), "header") {
// Typemap function (Reducing wrapper code size)

3 ## TYPE_NAME is a SWIG macro directive that will be expanded to the value of the TYPE_NAME macro argument.
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SWIGINTERN bool convert_numpy_to_array_no_check_ ## TYPE_NAME(PyObject* input, TYPEx& ret)
{
if (PyArray_Check(input))
{
PyArrayObject #*xa = reinterpret_cast<PyArrayObjectx>(input);
if ( PyArray_TYPE(xa) == NUMPY_TYPE )
{
ret = static_cast<TYPE*>(PyArray_DATA(xa));
return true;
}
}
PyErr_SetString(PyExc_TypeError, "numpy array of 'TYPE_NAME' expected. Make sure that the
numpy array use dtype='DESCR’'.");
return false;
}
}

// The typecheck

% typecheck (SWIG_TYPECHECK_ ## TYPE_UPPER ## _ARRAY) TYPE * {
$1 = PyArray_Check($input) ? 1 : 0;

}

// The typemap
%stypemap(in, fragment=convert_numpy_to_array_no_check(TYPE_NAME)) TYPE * {
if (!convert_numpy_to_array_no_check_ ## TYPE_NAME($input,$1))

return NULL;

}
The first line defines the signature of the macro. The macro is called using 5 arguments:
1. TYPE is the name of the primitive type. Examples are dolfin::uint and double.

2. TYPE_UPPER is the name of the type check name that SWIG uses. Examples are INT32 and
DOUBLE.

3. NUMPY_TYPE is the name of the NumPy type. Examples are NPY_UINT and NPY_DOUBLE.
4. TYPE_NAME is a short type name used in exception string. Examples are uint and double.

5. DESCRis a description character used in NumPy to describe the type. Examples are "I’ and
d’.

We can then call the macro to instantiate the typemaps and type checks.

SWIG code

UNSAFE_NUMPY_TYPEMAPS (dolfin: :uint, INT32,NPY_UINT,uint,I)
UNSAFE_NUMPY_TYPEMAPS (double, DOUBLE, NPY_DOUBLE, double, d)

Here, we have instantiated the typemap for a dolfin: :uint and a double array. The above typemap
does not check the length of the handed NumPy array and is therefore unsafe. Corresponding
safe typemaps can also be found in numpy_typemaps.i. The conversion function included in the
fragment declaration

SWIG code
SWIGINTERN bool convert_numpy_to_array_no_check_ ## TYPE_NAME(PyObject* input, TYPEx& ret)

takes a pointer to a PyObject as input. This function returns true if the conversion is successful
and false otherwise. The converted array will be returned by the TYPEx& ret argument. Finally,
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the %apply TYPEx {TYPEx _array} directive means that we want the typemap to apply to any
argument of type TYPEx with argument name _array. This is another way of copying a typemap,
similar to what we did for the dolfin: :uint out-typemap above.

In std_vector_typemaps.i, two typemap macros for passing std: :vector<Type> between Python
and C++ are defined. One is an in-typemap macro for passing a std::vector of pointers of
DOLFIN objects to a C++ function. The other is an out-typemap macro for passing a std: :vector
of primitives, using NumPy arrays, to Python. It is not strictly necessary to add these typemaps
as SWIG provides a std: :vector type. However, the SWIG std: :vector functionality is not very
Pythonic and we have therefore chosen to implement our own typemaps to handle std: :vector
arguments.

The first typemap macro enables the use of a Python list of DOLFIN objects instead of a std:vector
of pointers to such objects. Since the handed DOLFIN objects may and may not be stored using a
shared_ptr, we provide a typemap that works for both situations. We also create typemaps for
signatures where const are used. Typically a signature can look like:

SWIG code
{const} std::vector<{const} dolfin::TYPE x>

where const is optional. To handle the optional consts we use nested macros:

SWIG code

%sdefine IN_TYPEMAPS_STD_VECTOR_OF_POINTERS(TYPE)

// Make SWIG aware of the shared_ptr version of TYPE
%types (SWIG_SHARED_PTR_QNAMESPACE: : shared_ptr<TYPE>x*);
IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE, const,)
IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE, ,const)
IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE, const, const)
%senddef

%define IN_TYPEMAP_STD_VECTOR_OF_POINTERS(TYPE,CONST,CONST_VECTOR)
%stypecheck (SWIG_TYPECHECK_POINTER) CONST_VECTOR std::vector<CONST dolfin::TYPE *> &
{
$1 = PyList_Check($input) ? 1 : 0O;
}

%typemap (in) CONST_VECTOR std::vector<CONST dolfin::TYPE *> & (std::vector<CONST dolfin::TYPE *
> tmp_vec)
{
if (PyList_Check($input))
{
int size = PyList Size($input);
int res = 0;
PyObject + py_item = 0;
void = itemp = 0;
int newmem = 0;
tmp_vec.reserve(size);
for (int i = 0; i < size; i++)
{
py_item = PyList_GetItem($input,i);
res = SWIG_ConvertPtrAndOwn(py_item, &itemp, $descriptor(dolfin::TYPE *), 0, &newmem);
if (SWIG_IsOK(res)) {
tmp_vec.push_back(reinterpret_cast<dolfin::TYPE #*>(itemp));
}
else {
// If failed with normal pointer conversion then
// try with shared_ptr conversion
newmem = 0;
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res = SWIG_ConvertPtrAndOwn(py_item, &itemp,
$descriptor(SWIG_SHARED_PTR_QNAMESPACE: :shared_ptr< dolfin::TYPE > x),
0, &newmem);
if (SWIG_IsOK(res)){
// If we need to release memory
if (newmem & SWIG_CAST_NEW_MEMORY){
tempshared = *reinterpret_cast< SWIG_SHARED_PTR_QNAMESPACE: :shared_ptr<dolfin::TYPE> * >
(itemp);
delete reinterpret_cast< SWIG_SHARED_PTR_QNAMESPACE::shared_ptr< dolfin::TYPE > * >
(itemp);
arg = const_cast< dolfin::TYPE * >(tempshared.get());
}

else {
arg = const_cast< dolfin::TYPE * >(reinterpret_cast<
SWIG_SHARED_PTR_QNAMESPACE: :shared_ptr< dolfin::TYPE > * >(itemp)->get());

}
tmp_vec.push_back(arg);

}
else {
SWIG_exception(SWIG_TypeError, "list of TYPE expected (Bad conversion)");
}
}
}
$1 = &tmp_vec;
}
else {
SWIG_exception(SWIG_TypeError, "list of TYPE expected");
}

}
%senddef

In the typemap, we first check that we get a Python list. We then iterate over the items and try to
acquire the specified C++ object by converting the Python object to the underlying C++ pointer.
This is accomplished by:

SWIG code
res = SWIG_ConvertPtrAndOwn(py_item, &itemp, $descriptor(dolfin::TYPE %), 0, &newmem);

If the conversion is successful we push the C++ pointer to the tmp_vec. If the conversion fails we
try to acquire a shared_ptr version of the C++ object instead. If neither of the two conversions
succeed we raise an error.

The second typemap defined for std: :vector arguments, is a so called argout-typemap. This kind
of typemap is used to return values from arguments. In C++, non const references or pointers
arguments are commonly used both as input and output of functions. In Python, output should
be returned. The following call to the GenericMatrix: :getrow method illustrates the difference
between C++ and Python. The C++ signature is:

SWIG code

GenericMatrix::getrow(dolfin::uint row, std::vector<uint>& columns, std::vector<double>& values)

Here, the sparsity pattern associated with row number row is filled into the columns and values
vectors. In Python, a corresponding call should look like:

Python code

columns, values = A.getrow(row)
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To obtain the desired Python behavior we employ argout-typemaps. The following typemap macro
defines such typemaps:

SWIG code

%define ARGOUT_TYPEMAP_STD_VECTOR_OF_PRIMITIVES(TYPE, TYPE_UPPER, ARG_NAME, NUMPY_TYPE)
// In typemap removing the argument from the expected in list
stypemap (in,numinputs=0) std::vector<TYPE>& ARG_NAME (std::vector<TYPE> vec_temp)
{
$1 = &vec_temp;
}

%typemap(argout) std::vector<TYPE> & ARG_NAME
{
PyObject+ 00
PyObject+ ol
PyObject* 02 =
npy_intp size = $1->size();
PyArrayObject «ret = reinterpret_cast<PyArrayObject+>(PyArray_SimpleNew(1l, &size,
NUMPY_TYPE) ) ;
TYPE* data = static_cast<TYPE+>(PyArray_DATA(ret));
for (int i = 0; 1 < size; ++1i)
data[i] = (*$1)[i];
00 = PyArray_Return(ret);
// If the $result is not already set
(

0;
0;
0

if ((!$result) || ($result == Py_None))
{
$result = 00;
}
// If the result is set by another out typemap build a tuple of arguments
else
{

// If the argument is set but is not a tuple make one and put the result in it
if (!PyTuple_Check($result))
{
ol = $result;
$result = PyTuple_New(1l);
PyTuple_SetItem($result, 0, ol);
}
02 = PyTuple_New(1);
PyTuple_SetItem(02, 0, 00);
0l = $result;
$result = PySequence_Concat(ol, 02);
Py_DECREF(01);
Py_DECREF(02);
}
}

%senddef

The macro begins by defining an in-typemap that removes the output argument and instantiates
the std: :vector that will be passed as argument to the C++ function. Then we have the code for
the argout-typemap, which is inserted after the C++ call. Here, the "returned" C++ arguments
are transformed to Python arguments, by instantiating a NumPy array ret and filling it with the
values from the std: :vector. Note that here we are forced to copy the values, or else the return
argument would overwrite any previous created return argument, with memory corruption as
result.
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20.3.4 DOLFIN header files and Python docstrings

As mentioned earlier, the file kernel_module. i, generated by generate.py, tells SWIG what parts
of DOLFIN that should be wrapped. The associated script generate_docstrings.py generates
the Python docstrings extracted from comments in the C++ documentation. The comments are
transformed into SWIG docstring directives like:

SWIG code

%feature("docstring") dolfin::Data::ufc_cell "
Return current UFC cell (if available)

n.,
’

and saved to a SWIG interface file docstrings.i. The docstrings.i file is included from the
main dolfin.i file. Note that the kernel_module.i and docstrings.i files are not generated
automatically during the build process. This means that when a header file is added to the
DOLFIN library, one must to manually run generate.py to update the kernel_module.i and
docstrings.i files.

20.3.5 Specializations of kernel modules

The DOLFIN SWIG interface file kernel_module. i mirrors the directory structure of DOLFIN. As
mentioned above, many directories come with specializations in ..._pre.i and ..._post.1 files.
Below, we will highlight some of these specializations.

The mesh module. The mesh module defines the Python interfaces for Mesh, MeshFunction, MeshEntity,
and their subclasses. In Mesh the geometrical and topological information is stored in contiguous
arrays. These arrays are accessible from Python using access methods that return NumPy arrays of
the underlying data. With this functionality, a user can for example move a mesh 1 unit to the
right as follows:

Python code

mesh.coordinates()[:,0] += 1

To obtain this functionality, the Mesh class has been extended with a function coordinates that
returns a NumPy array. This is obtained by the following code in mesh_pre. i:

SWIG code
%extend dolfin::Mesh {

PyObject* coordinates() {
int m = self->num_vertices();
int n = self->geometry().dim();
MAKE_ARRAY (2, m, n, self->coordinates(), NPY_DOUBLE)
return reinterpret_cast<PyObject+>(array);
}
%ignore dolfin::Mesh::coordinates;

This function wraps a 2 dimensional NumPy array around the coordinates obtained from the mesh,
using the macro MAKE_ARRAY. In addition, the original coordinates function is ignored using the
%signore directive. The MAKE_ARRAY macro looks like:
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SWIG code

%define MAKE_ARRAY(dim_size, m, n, dataptr, TYPE)
npy_intp adims[dim_size];

adims[0] = m;
if (dim_size == 2)
adims[1] = n;

PyArrayObject* array = reinterpret_cast<PyArrayObject+>(PyArray_SimpleNewFromData(dim_size,
adims, TYPE, (char =*)(dataptr)));
if ( array == NULL ) return NULL;
PyArray_INCREF(array);
s enddef

%

The macro takes five arguments. The dim_size, m, and n arguments set the dimensions of
the NumPy array. The dataptr is a pointer that points to the first element of the underly-
ing contiguous array and TYPE is the type of the elements in the array. The NumPy macro
PyArray_SimpleNewFromData creates a NumPy array wrapping the underlying data. Hence, this
function does not take ownership of the underlying data and will not delete the data when the
NumPy array is deleted. This prevents corruption of data when the NumPy array is deleted.

In a similar fashion, we use the MAKE_ARRAY macro to wrap the connectivity information to Python.
This is done with the following SWIG directives in the mesh_pre.1i files.

SWIG code

%sextend dolfin::MeshConnectivity {
PyObject+ __call__() {
int m = self->size();
int n = 0;

MAKE_ARRAY (1, m, n, (*xself)(), NPY_UINT)

return reinterpret_cast<PyObject+>(array);

}

Here, we extend the C++ extension layer of the dolfin::MeshConnectivity class with a __call__
method. The method returns all connections between any two types of topological dimensions in
the mesh.

In mesh_pre.i, we also declare that it should be possible to subclass SubDomain in Python. This is
done using the %director directive.

SWIG code

%feature("director") dolfin::SubDomain;

To avoid code bloat, this feature is only included for certain classes. The following typemap enables
seamless integration of NumPy array and the Array<double>& in the inside and map methods.

SWIG code

%typemap(directorin) const dolfin::Array<double>& {
npy_intp dims[